WO2019233291A1 - 一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃 - Google Patents

一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃 Download PDF

Info

Publication number
WO2019233291A1
WO2019233291A1 PCT/CN2019/088252 CN2019088252W WO2019233291A1 WO 2019233291 A1 WO2019233291 A1 WO 2019233291A1 CN 2019088252 W CN2019088252 W CN 2019088252W WO 2019233291 A1 WO2019233291 A1 WO 2019233291A1
Authority
WO
WIPO (PCT)
Prior art keywords
free
alkali
glass
phosphorus
free glass
Prior art date
Application number
PCT/CN2019/088252
Other languages
English (en)
French (fr)
Inventor
彭寿
马立云
王萍萍
曹欣
石丽芬
倪嘉
韩娜
赵凤阳
仲召进
单传丽
王巍巍
崔介东
操芳芳
高强
Original Assignee
中建材蚌埠玻璃工业设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建材蚌埠玻璃工业设计研究院有限公司 filed Critical 中建材蚌埠玻璃工业设计研究院有限公司
Publication of WO2019233291A1 publication Critical patent/WO2019233291A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets

Definitions

  • the present application relates to the field of flexible glass production, and in particular to an alkali-free glass batch suitable for float molding and an alkali-free glass prepared by the same.
  • Flexible glass is a new type of special glass. Compared with ordinary glass, it not only has the hardness, light transmission, heat resistance, and chemical stability of ordinary glass, but also has the characteristics of flexible, lightweight, and processable plastics. Flexible glass can be used to make touch panels such as mobile phones and tablet computers, substrates for flexible displays, and substrates for organic thin-film solar cells.
  • the preparation methods of flexible glass mainly include primary forming method and secondary forming method.
  • the primary forming method mainly includes overflow down-draw method and float method; the secondary forming method mainly includes chemical thinning method and re-drawing method.
  • flexible glass mainly includes alkali-free aluminosilicate glass, soda lime glass and high aluminosilicate glass; among them, alkali-free aluminosilicate glass is mainly used as electronic information display such as TFT-LCD (thin film transistor liquid crystal display) Screen substrate glass.
  • the alkali-free aluminosilicate glass has more alumina in the formula, which makes the molten glass viscosity higher at high temperature.
  • TFT-LCD thin film transistor liquid crystal display
  • the application provides a phosphorus-free alkali-free glass batch suitable for float molding and a phosphorus-free alkali-free glass prepared by the same, which is used to solve the problem that the existing alkali-free aluminosilicate glass has a large viscosity after melting.
  • the first aspect of the present application provides a phosphorus-free and alkali-free glass batch suitable for float molding, which comprises, by mass percentage, the following components:
  • the content of B 2 O 3 is 6 to 7.5%.
  • the second aspect of the present application provides a method for preparing a float phosphorus-free alkali-free glass, including:
  • it may further include step (4), and a step of annealing at 640-680 ° C.
  • the operating temperature of the float molding is 1230-1260 ° C.
  • the melting and clarifying temperature is 1638-1658 ° C.
  • the molding start temperature is 1407 to 1421 ° C.
  • the third aspect of the present application provides a phosphorus-free and alkali-free glass suitable for float molding, which comprises, by mass percentage, the following components:
  • the content of B 2 O 3 is 6 to 6.8%.
  • the value of (MgO + CaO + SrO) / Al 2 O 3 is: 0.71 to 1.03.
  • the phosphorus-free and alkali-free glass does not contain As 2 O 3 and Sb 2 O 3 .
  • the intrinsic viscosity point when the viscosity is 10 Pa ⁇ s is 1638 to 1658 ° C;
  • the intrinsic viscosity point is 1407 to 1421 ° C.
  • the surface tension of the phosphorus-free and alkali-free glass at 1200 ° C. is 300 to 310 mN / m, and preferably 302 to 306 mN / m.
  • the phosphorus-free and alkali-free glass has at least one of the following performance indicators:
  • the density is 2.528 ⁇ 2.559g / cm 3 ;
  • the annealing point is 724 ⁇ 732 °C;
  • Softening point of dead weight is 970 ⁇ 980 °C
  • Young's modulus is 74 ⁇ 78GPa
  • Shear modulus is 30 ⁇ 32GPa
  • Poisson's ratio is 0.21 to 0.24.
  • the phosphorus-free and alkali-free glass has an average visible light transmittance of 90 to 91% when the visible light is 380 to 800 nm and the thickness is 2 mm.
  • the thickness of the phosphorus-free and alkali-free glass is 0.5-1.5 mm.
  • a phosphorus-free and alkali-free glass batch material suitable for float molding and a phosphorus-free and alkali-free glass prepared by the application are provided. Optimization, including but not limited to adding an appropriate amount of GeO 2 to the composition, effectively reduces the viscosity of the alkali-free aluminosilicate glass after melting, thereby reducing the requirements for glass production equipment and reducing costs;
  • the surface tension of the alkali-free aluminosilicate glass after melting is reduced; it is more beneficial to the molding of glass, especially flexible glass.
  • the inventors of this application have unexpectedly found that by introducing GeO 2 , the viscosity of the glass after melting can be effectively reduced.
  • the analysis is because the melting point of GeO 2 is much smaller than that of SiO 2 and the viscosity of the GeO 2 melt The activation energy is small, so that the viscosity of the glass decreases after melting at high temperature; but the inventors further found that excess GeO 2 will increase the density of the glass, and GeO 2 may change the network structure to make the strain point, annealing point and softening point.
  • the negative impact on the glass performance index comprehensive consideration of the advantages and disadvantages that may be brought by the introduction of GeO 2 and taking into account the reduction of the difficulty of glass preparation process and the improvement of performance indicators, under the premise of this
  • the mass percentage of GeO 2 contained in the phosphorus-free alkali-free glass batch and / or the phosphorus-free alkali-free glass is 2-8%.
  • the inventors found through extensive research that introducing a small amount of MoO 3 and WO 3 into the composition of the glass can effectively reduce the surface tension of the glass liquid; thereby facilitating the molding of ultra-thin flexible glass.
  • the glass liquid can be reduced.
  • the effect of surface tension while not increasing the density of the glass; in line with the trend of lightweight glass flexible development.
  • the total content of MoO 3 and WO 3 is less than 0.2%, such as 0.1%, the decrease in the surface tension of the glass is not significant. Whereas the sum of the contents of MoO 3 and WO 3 is greater than 0.5%, for example, 0.7%, the density of the glass increases significantly, which is undesirable.
  • the inventors further found that the simultaneous introduction of MoO 3 and WO 3 into the glass composition is more effective than the introduction of either of them separately.
  • SiO 2 is the main component constituting the glass network.
  • B 2 O 3 can also reduce the viscosity of the glass liquid, and it can also reduce the expansion coefficient of the glass.
  • the suitable range of B 2 O 3 contained in the phosphorus-free and alkali-free glass is 6 to 7.5. %, Or 6 to 6.8%.
  • the alkali-free glass batch preferable range of B 2 O 3 is from 6 to 8.3%, or from 6 to 7.5%.
  • Al 2 O 3 enters the glass network in the form of [AlO 4 ] tetrahedron and plays a role in repairing the broken network, which is conducive to enhancing the density of the glass network structure and increasing the characteristic viscosity point of the glass.
  • no A suitable range of Al 2 O 3 contained in the alkali glass batch and / or the phosphorus-free and alkali-free glass is 15 to 19.1%.
  • a suitable range of ZrO 2 contained in the alkali-free glass batch and / or the phosphorus-free alkali-free glass is 0.1 to 0.3%.
  • MgO can reduce the high-temperature viscosity of the glass, increase the low-temperature viscosity, and also increase the strain point of the glass.
  • the content of MgO contained in the alkali-free glass batch and / or phosphorus-free alkali-free glass is 2 ⁇ 3.8%, if the content is greater than 3.8%, the decrease in high temperature viscosity may cause the liquidus temperature of the glass to increase, and the linear thermal expansion coefficient will also decrease.
  • CaO and MgO have similar effects, and can also reduce the high temperature viscosity of the molten glass.
  • the suitable range of CaO contained in the alkali-free glass batch and / or phosphorus-free alkali-free glass is 3.7 to 6%.
  • the effect of SrO is similar, and a suitable range is 6 to 7%.
  • SnO is used to eliminate bubbles in the glass liquid.
  • the suitable range of SnO contained in the alkali-free glass batch and / or phosphorus-free alkali-free glass is 0.05 to 0.3%.
  • each component contained therein can be introduced through a mineral raw material substantially free of alkali, or through a chemical raw material Introduce
  • silica, aluminum oxide, germanium dioxide, zirconium dioxide, magnesium oxide, calcium carbonate, strontium carbonate, boric acid, stannous oxide, and tungsten trioxide can be passed through , Molybdenum trioxide and other compounds to introduce the corresponding components.
  • SiO 2 may be introduced through quartz sand (the amount of impurities Fe ⁇ K ⁇ Na is controlled at a qualified level); GeO 2 may be introduced through a high-purity chemical raw material inorganic germanium powder; and aluminum hydroxide (purity 99.5% or more) introduction of Al 2 O 3 ; introduction of B 2 O 3 through boric acid; introduction of CaO through purified heavy calcium carbonate; introduction of SrO through high-purity strontium carbonate; other components with less content, such as ZrO 2 , SnO, MoO 3 and WO 3 can be introduced directly through chemical raw materials.
  • quartz sand the amount of impurities Fe ⁇ K ⁇ Na is controlled at a qualified level
  • GeO 2 may be introduced through a high-purity chemical raw material inorganic germanium powder
  • aluminum hydroxide purity 99.5% or more
  • the phosphorus-free and alkali-free glass according to the third aspect may be prepared from the phosphorus-free and alkali-free glass batch according to the first aspect.
  • the components and contents of the phosphorus-free and alkali-free glass are basically the same as those of the batch, except for the individual volatile components.
  • the content of the phosphorus-free and alkali-free glass is relative to that The content will be reduced; for example, B 2 O 3 will lose about 10% after melting at high temperature. It should be noted that the volatility of each component and the degree of volatility are well known to those skilled in the art.
  • step (2) the temperature of the batch can be raised from room temperature to 1000 ° C. at a heating rate of 5-10 ° C./min. Then, the temperature is increased from 1000 ° C to a temperature of 1630-1660 ° C (melting and clarifying temperature) at a temperature increase rate of 2-5 ° C / min; and the temperature is maintained at this temperature for 1-4 hours for clarification of the glass liquid.
  • SiO 2 + GeO 2 means the sum of the mass percentages of SiO 2 and GeO 2 .
  • SiO 2 + Al 2 O 3 + ZrO 2 represents the sum of the mass percentages of the three of SiO 2 , Al 2 O 3 , and ZrO 2 .
  • (MgO + CaO + SrO) / Al 2 O 3 ” means the ratio of the sum of the mass percentages of (MgO + CaO + SrO) to the mass percentage of Al 2 O 3 .
  • MgO / CaO means the ratio of the mass percentage of MgO to the mass percentage of CaO.
  • GeO 2 / SiO 2 means a ratio of the mass percentage of GeO 2 to the mass percentage of SiO 2 .
  • mineral raw materials can be understood as natural mineral raw materials, which have the characteristics of complex components and more impurities, such as quartz sand, clay, feldspar and limestone.
  • chemical raw materials can be understood as chemically purified raw materials with high purity and few impurities, such as aluminum hydroxide, zinc oxide, boric acid, and the like.
  • base-free or “base-free” means that it is substantially free of alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O.
  • the "intrinsic viscosity point" refers to the temperature value when the glass reaches a certain viscosity.
  • glass liquid is sometimes referred to as "melted glass” and both have the same meaning.
  • the "operating temperature” refers to the working temperature of the edger during the thinning operation by the edger after the molten glass liquid enters the tin bath from the melting furnace when the glass is formed by the float method.
  • the molten glass is allowed to enter a tin bath, and float molding is performed at an operating temperature of 1236 ° C;
  • the formed glass is annealed at an annealing temperature of 650 ° C. After being held at the annealing temperature for 1 hour, it is cooled to room temperature; a phosphorus-free and alkali-free glass having a thickness of 1 mm is obtained; the process parameters during the preparation process and the phosphorus-free and 1 mm-thickness
  • the performance indexes of the alkali glass are all shown in Table 2.
  • the phosphorus-free and alkali-free glass composition and process parameters described in Table 2 were used to prepare a phosphorus-free and alkali-free glass with a thickness of 1 mm; and the prepared 1 mm phosphorus-free and alkali-free glass
  • the performance index of glass is shown in Table 2.
  • a glass having a thickness of 1 mm was prepared by using the glass composition and process parameters described in Table 3;
  • the intrinsic viscosity point of the glass decreases, that is, the viscosity of the glass decreases; the melting and clarification temperature, the molding start temperature, and the operating temperature corresponding to the glass also decrease accordingly.
  • using the alkali-free glass composition provided in the present application to prepare glass can reduce equipment requirements and reduce costs in the float molding process; in addition, lowering the temperature will also make the molding process easier to control.
  • Comparative Examples 4-5 that when the sum of the contents of MoO 3 and WO 3 is too small, for example, 0.1%, the degree of reduction in the surface tension of the glass (compared to Comparative Example 1) is significantly lower than that of MoO 3 and WO 3 Examples whose total content is greater than 0.2%. However, the sum of the contents of MoO 3 and WO 3 is too large. For example, when 0.7%, the density of glass increases significantly, which is undesirable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃,其中无磷无碱玻璃配合料按质量百分比计,包含以下组分:49.5~59.5% SiO2,2~8% GeO2,15~19.1% Al2O3,0.1~0.3% ZrO2,3.7~6% CaO,6~8.3% B2O3,2~3.8% MgO,6~7% SrO,0.05~0.3% SnO,0.1~0.25% MoO3、0.1~0.25% WO3,其中,SiO2+GeO2值为57.5~61.8%,SiO2+Al2O3+ZrO2值68.9~78.8%,优选75~77%。其有效地降低了无碱铝硅酸盐玻璃熔融后的粘度和表面张力。

Description

一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃
本申请要求于2018年06月05日提交中国专利局、申请号为201810570809.6发明名称为“一种适用于浮法成型的无磷无碱玻璃配合料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及柔性玻璃生产领域,具体涉及一种适用于浮法成型的无碱玻璃配合料及其制备的无碱玻璃。
背景技术
柔性玻璃是一种新型的特种玻璃,其相对于普通玻璃,不仅具有普通玻璃的硬度、透光性、耐热性、化学稳定性,还具有塑料的可弯曲、质轻,可加工等特点。柔性玻璃可用于制作手机及平板电脑等触摸面板、柔性显示器的基板、有机薄膜太阳能电池基板等。柔性玻璃的制备方法,主要有一次成形法和二次成形法,一次成形法主要包括溢流下拉法和浮法;二次成形法主要包括化学减薄法和再次拉引法。
目前,柔性玻璃主要包括无碱铝硅酸盐玻璃、钠钙玻璃及高铝硅酸盐玻璃等;其中无碱铝硅酸盐玻璃主要作为TFT-LCD(薄膜晶体管液晶显示屏)等电子信息显示屏的基板玻璃。无碱铝硅酸盐玻璃由于配方中含有较多氧化铝,使得高温熔融的玻璃液粘度较大;当通过浮法制备无碱铝硅酸盐玻璃时,需要通过提高温度来降低玻璃液的粘度,以便于玻璃的成型。但更高的温度对于玻璃生产设备的要求更高,使得玻璃的生产成本增加。
有鉴于此,在现有的无碱铝硅酸盐玻璃的基础上,如何实现进一步地降低玻璃熔融后的粘度,是本领域技术人员亟待解决的技术问题。
发明内容
本申请提供了一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃,用于解决现有的无碱铝硅酸盐玻璃熔融后粘度较大的问题。
本申请第一方面提供了一种适用于浮法成型的无磷无碱玻璃配合料,按质量百分比计,包含以下组分:
Figure PCTCN2019088252-appb-000001
在本申请第一方面的一些实施方式中,B 2O 3的含量为6~7.5%。
本申请第二方面提供了一种浮法无磷无碱玻璃的制备方法,包括:
(1)获得前述第一方面的玻璃配合料的步骤;
(2)将所述玻璃配合料加热至熔化澄清温度,以获得澄清的玻璃液的步骤,所述熔化澄清温度为1630-1660℃;
和/或
(3)当所述玻璃液的温度降至成型开始温度,将其倒入锡槽进行浮法成型的步骤,所述成型开始温度为1400-1430℃。
在本申请第二方面的一些实施方式中,还可以包括步骤(4),在640-680℃进行退火的步骤。
在本申请第二方面的一些实施方式中,浮法成型的操作温度为1230-1260℃。
在本申请第二方面的一些实施方式中,步骤(2)中,熔化澄清温度为1638~1658℃。
在本申请第二方面的一些实施方式中,步骤(3)中,成型开始温度为 1407~1421℃。
本申请第三方面提供了一种适用于浮法成型的无磷无碱玻璃,按质量百分比计,包含以下组分:
Figure PCTCN2019088252-appb-000002
在本申请第三方面的一些实施方式中,B 2O 3的含量为6~6.8%。
在本申请第三方面的一些实施方式中,(MgO+CaO+SrO)/Al 2O 3的值为:0.71~1.03。
在本申请第三方面的一些实施方式中,0.34≤MgO/CaO≤0.78,和/或0.03≤GeO 2/SiO 2≤0.16。
在本申请第三方面的一些实施方式中,所述无磷无碱玻璃不含有As 2O 3和Sb 2O 3
在本申请第三方面的一些实施方式中,粘度为10Pa·s时的特征粘度点为1638~1658℃;
和/或
粘度为100Pa·s时的特征粘度点为1407~1421℃。
在本申请第三方面的一些实施方式中,所述无磷无碱玻璃在1200℃的表面张力为300~310mN/m,优选为302~306mN/m。
在本申请第三方面的一些实施方式中,所述无磷无碱玻璃具有以下性能指标中的至少一种:
线性热膨胀系数:25~350℃范围内为3.63×10 -6/℃≤线性热膨胀系数≤3.75×10 -6/℃;
密度为2.528~2.559g/cm 3
应变点为670~680℃;
退火点为724~732℃;
自重软化点为970~980℃;
杨氏模量为74~78GPa;
剪切模量为30~32GPa;
泊松比为0.21~0.24。
在本申请第三方面的一些实施方式中,所述无磷无碱玻璃在380~800nm的可见光照射下,厚度为2mm时的平均可见光透过率为90~91%。
在本申请第三方面的一些实施方式中,所述无磷无碱玻璃的厚度为0.5-1.5mm。
由上述的技术方案可见,本申请提供的一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃,通过对现有的无碱铝硅酸盐玻璃的组分进行优化,包括但不限于在组分中添加适量的GeO 2,有效地降低了无碱铝硅酸盐玻璃熔融后的粘度,从而降低了对玻璃生产设备的要求,降低了成本;
进一步地,通过在玻璃组分中添加适量的MoO 3和WO 3,降低了无碱铝硅酸盐玻璃熔融后的表面张力;更有利于玻璃,尤其是柔性玻璃的成型。
具体实施方式
本申请的发明人通过研究,出人意料地发现,通过引入GeO 2,可以有效地降低熔融后的玻璃的粘度,分析是由于GeO 2的熔点比SiO 2的小很多,且GeO 2熔体的黏滞活化能小,从而使得玻璃在高温熔融后,粘度降低;但是发明人进一步发现,过量的GeO 2又会增加玻璃的密度,同时GeO 2可能通过改变网络结构,使得应变点、退火点与软化点的降低,给玻璃性能指标带来负面影响;综合考虑GeO 2的引入可能带来的优点与缺点,并在兼顾了玻璃制备工艺难度的降低与性能指标提升的两个方面的前提下,在本申请提供的技术方案中,无磷无碱玻璃配合料和/或无磷无碱玻璃中所包含的GeO 2的质量百分比为2~8%。
玻璃通过浮法成型时,作用力有两种,即自身的重力和表面张力;自身重力促使玻璃液摊开,而表面张力则阻止玻璃液无限摊开,当两者平衡时,漂浮在锡液上的玻璃带才能获得自然厚度,进行成型。而表面张力较大时,往往很难获得较薄的玻璃;这对于超薄的柔性玻璃的成型影响尤为显著,玻璃表面张力所引起的表面收缩对柔性玻璃的成型带来了困难。为了解决这一问题,发明人通过广泛地研究发现,在玻璃的组成中引入微量的MoO 3与WO 3,可以有效地降低玻璃液的表面张力;从而有利于超薄的柔性玻璃的成型。在本申请的技术方案中,无碱玻璃配合料和/或无磷无碱玻璃中所包含的MoO 3与WO 3的含量总和在0.2~0.5%之间时,既有较好的降低玻璃液表面张力的效果,同时又不会增加玻璃的密度;符合柔性玻璃轻量化发展的趋势。而一但MoO 3与WO 3的含量总和小于0.2%,例如为0.1%时,玻璃的表面张力的下降并不明显。而MoO 3与WO 3的含量总和大于0.5%,例如为0.7%时,玻璃的密度增加明显,而这是不希望看到的。
发明人进一步地发现,在玻璃组成中同时引入MoO 3与WO 3,要比单独引入两者中的一种效果更好。
SiO 2是构成玻璃网络的主要成分,SiO 2含量较高,玻璃的应变点就会越高,但同时玻璃的高温粘度也会增加,如果SiO 2过多,就难以得到料性长的玻璃。而如果SiO 2含量较低则不易形成玻璃,应变点下降,膨胀系数增加,考虑到熔化温度、析晶上限温度、玻璃膨胀系数、应变点、玻璃料性等性能,在本申请的技术方案中,无碱玻璃配合料和/或无磷无碱玻璃中所包含的SiO 2 含量为49.5~59.5%。
B 2O 3同样可以降低玻璃液的粘度,同时它还可以使玻璃的膨胀系数降低,本申请的技术方案中,无磷无碱玻璃中所包含的B 2O 3适宜的范围是6~7.5%,或6~6.8%。考虑到B 2O 3在高温条件下的挥发,无碱玻璃配合料中的B 2O 3适宜的范围是6~8.3%,或者6~7.5%。
Al 2O 3以[AlO 4]四面体的形式进入玻璃网络,并对断网起到修补作用,从而利于增强玻璃网络结构致密性,使玻璃特征粘度点增加,本申请的技术方案中,无碱玻璃配合料和/或无磷无碱玻璃中所包含的Al 2O 3适宜的范围是15~19.1%。
ZrO 2高温下Zr 4+以四配位形式进入网络,它同Si 4+一样具有成网作用,适量的ZrO 2可以增加玻璃网络结构致密性,但过量的ZrO 2又会使玻璃粘度增大,本申请的技术方案中,无碱玻璃配合料和/或无磷无碱玻璃中所包含的ZrO 2的适宜范围是0.1~0.3%。
MgO可以降低玻璃的高温粘度,增加低温粘度,还可以增加玻璃的应变点,本申请的技术方案中,无碱玻璃配合料和/或无磷无碱玻璃中所包含的MgO的含量为2~3.8%,如果含量大于3.8%,由于高温粘度的降低可能使得玻璃液相线温度的增加,线性热膨胀系数也会降低。
CaO与MgO的功效相似,也可降低玻璃液的高温粘度;本申请的技术方案中,无碱玻璃配合料和/或无磷无碱玻璃中所包含的CaO适宜的范围是3.7~6%。SrO的作用也类似,适宜的范围是6~7%。
SnO用于玻璃液的气泡消除,本申请的技术方案中,无碱玻璃配合料和/或无磷无碱玻璃中所包含的SnO适宜的范围是0.05~0.3%。
本申请第一方面涉及的无磷无碱玻璃的配合料及第三方面涉及的无磷无碱玻璃,其所包含的各组分,可以通过基本不含碱的矿物原料引入,也可以通过化工原料引入;
示例性地,在本申请的一些实施方式中,可以通过二氧化硅、三氧化二铝、二氧化锗、二氧化锆、氧化镁、碳酸钙、碳酸锶、硼酸、氧化亚锡、三氧化钨、三氧化钼等化合物来引入相应的组分。
在本申请的另一些实施方式中,可以通过石英砂(杂质Fe\K\Na量控制在合格水平)引入SiO 2;通过高纯度的化工原料无机锗粉引入GeO 2;通过氢氧化铝(纯度99.5%以上)引入Al 2O 3;通过硼酸引入B 2O 3;通过提纯的重质碳酸钙引入CaO;通过高纯碳酸锶引入SrO;其它含量较少的组分,例如ZrO 2、SnO、MoO 3、WO 3等,可以直接通过化工原料引入。
在本申请的一些实施方式中,第三方面涉及的无磷无碱玻璃可以由第一方面涉及的无磷无碱玻璃配合料来制备。无磷无碱玻璃的组分与配合料的组分及含量是基本相同的,只是个别易挥发的组分,经过高温熔融后,其在无磷无碱玻璃中的含量相对于其在配合料中的含量会有所下降;例如B 2O 3在经过高温熔融后,会有10%左右的损失。需要说明的是,各组分的挥发性以及挥发的程度对于本领域技术人员来说是熟知的。
本申请第二方面所涉及的浮法无磷无碱玻璃的制备方法,其步骤(2)中,可以先以5-10℃/min的升温速率将配合料的温度由室温升至1000℃左右;然后再以2-5℃/min的升温速率由1000℃升至温度1630-1660℃(熔化澄清温度);并在此温度下保温1-4小时用于玻璃液的澄清。
本申请所涉及的玻璃各项性能指标的检测,其所依据的检测标准,及采用的仪器参见下表1。
表1
Figure PCTCN2019088252-appb-000003
Figure PCTCN2019088252-appb-000004
定义
在本申请中,“SiO 2+GeO 2”表示SiO 2与GeO 2的质量百分比的和。
类似地,“SiO 2+Al 2O 3+ZrO 2”表示SiO 2、Al 2O 3、ZrO 2三者的质量百分比的和。
在本申请中,“(MgO+CaO+SrO)/Al 2O 3”表示(MgO+CaO+SrO)的质量百分比的和与Al 2O 3的质量百分比的比值。类似地,“MgO/CaO”表示MgO的质量百分比与CaO的质量百分比的比值。“GeO 2/SiO 2”表示GeO 2的质量百分比与SiO 2的质量百分比的比值。
在本申请中,“矿物原料”可以理解为天然矿物原料,其具有成分复杂、杂质较多的特点,如石英砂、粘土、长石及石灰石等。
在本申请中,“化工原料”可以理解为经化学提纯的原料,其纯度较高,杂质少,例如氢氧化铝、氧化锌、硼酸等。
在本申请中,“不含碱”或“无碱”是指基本不含Na 2O、K 2O、Li 2O等碱金属氧化物。
在本申请中,“特征粘度点”是指玻璃达到某一特定粘度时的温度值。
可以理解的是,当玻璃在某一特定粘度下的特征粘度点降低时,可以确定该玻璃的粘度是降低的。
在本申请中,“玻璃液”,有时也称为“熔融后的玻璃”,二者具有相同的含义。
在本申请中,“操作温度”是指采用浮法成型玻璃时,熔融玻璃液由熔窑进入锡槽后,采用拉边机进行拉薄操作的过程中,拉边机的工作温度。
为使本申请的目的、技术方案、及优点更加清楚明白,以下通过具体的实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
按表2中无磷无碱玻璃的组成称取合适的配合料;然后将所称取的配合料投入熔窑中,并将配合料以8℃/min的升温速率由室温升至1000℃;然后以3℃/min的升温速率由1000℃升至熔化澄清温度1638℃(对应玻璃液粘度10Pa·s);在熔化澄清温度下保温2小时,得到澄清的玻璃液;
当玻璃液的温度降至成型开始温度1407℃(对应玻璃液粘度100Pa·s)时,使玻璃液进入锡槽,在操作温度1236℃下进行浮法成型;
将成型后的玻璃进行退火,退火温度为650℃,在退火温度下保温1小时后再冷却至室温;得到厚度为1mm的无磷无碱玻璃;制备过程中的工艺参数及1mm厚度无磷无碱玻璃的性能指标均记载于表2中。
实施例2-8
根据实施例1所记载的浮法玻璃的制备方法,采用表2中所记载的无磷无碱玻璃组成及工艺参数,制备厚度为1mm的无磷无碱玻璃;所制备的1mm无磷无碱玻璃的性能指标记载于表2中。
表2
Figure PCTCN2019088252-appb-000005
Figure PCTCN2019088252-appb-000006
对比例1-7
根据实施例1所记载的浮法玻璃的制备方法,采用表3中所记载的玻璃组成及工艺参数,制备厚度为1mm的玻璃;所制备的1mm无碱玻璃的性能指标记载于表3中。
表3
Figure PCTCN2019088252-appb-000007
Figure PCTCN2019088252-appb-000008
对比例1的市售的无碱铝硅酸盐柔性玻璃的组成;从表2-3中的数据可以看出,对比例1的玻璃组分中,并不含有GeO 2、MoO 3及WO 3;同时相比于对比例1,本申请实施例1-8的融化澄清温度、成型开始温度、及操作温度以及表面张力明显降低,这充分说明了:
(1)在玻璃组成中添加了适量的GeO 2后,玻璃的特征粘度点降低,也就是说玻璃的粘度降低;玻璃所对应的融化澄清温度、成型开始温度、及操作温度也因此降低。有鉴于此,采用本申请提供的无碱玻璃组成来制备玻璃, 能够降低浮法成型工艺中对设备的要求,降低成本;另外,降低了温度,也会使得成型工艺更容易控制。
(2)在玻璃组成中添加了MoO 3、WO 3,可以有效降低玻璃的表面张力;因此更易于超薄的柔性玻璃的成型。
另外,与对比例2-3相比可以看出,低于2%的GeO 2并不能明显的降低玻璃的粘度;而高于8%的GeO 2,虽然能有效的降低玻璃的粘度,但是会使得玻璃的应变点、退火点与软化点等性能指标的降低,使得玻璃的性能下降。
从对比例4-5可以看出,当MoO 3与WO 3的含量总和太小,例如为0.1%时,玻璃的表面张力的下降程度(与对比例1比)明显低于MoO 3与WO 3的含量总和大于0.2%的实施例。而MoO 3与WO 3的含量总和过大,例如0.7%时,玻璃的密度增加明显,而这是不希望看到的。
更令人惊讶地是,从对比例6-7可以看出,单独引入0.35%的MoO 3或WO 3时,所制备的无碱玻璃的表面张力为305-307mN/m;而实施例6同时引入MoO 3和WO 3(二者之和0.35%),表面张力为302mN/m;由此可见,在玻璃组成中同时引入MoO 3与WO 3,要比单独引入两者中的一种,可以更明显的降低表面张力。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (15)

  1. 一种适用于浮法成型的无磷无碱玻璃配合料,其特征在于,按质量百分比计,包含以下组分:
    Figure PCTCN2019088252-appb-100001
  2. 根据权利要求1所述的无磷无碱玻璃配合料,其特征在于,B 2O 3的含量为6~7.5%。
  3. 一种浮法无磷无碱玻璃的制备方法,其特征在于,包括:
    (1)获得权利要求1或2所述的玻璃配合料的步骤;
    (2)将所述玻璃配合料加热至熔化澄清温度,以获得澄清的玻璃液的步骤,所述熔化澄清温度为1630-1660℃;
    和/或
    (3)当所述玻璃液的温度降至成型开始温度,将其倒入锡槽进行浮法成型的步骤,所述成型开始温度为1400-1430℃。
  4. 根据权利要求3所述的浮法无磷无碱玻璃的制备方法,其特征在于,还包括步骤(4),在640-680℃进行退火的步骤。
  5. 根据权利要求3或4所述的浮法无磷无碱玻璃的制备方法,其特征在于,浮法成型的操作温度为1230-1260℃。
  6. 一种适用于浮法成型的无磷无碱玻璃,其特征在于,按质量百分比计,包含以下组分:
    Figure PCTCN2019088252-appb-100002
  7. 根据权利要求6所述的无磷无碱玻璃,其特征在于,B 2O 3的含量为6~6.8%。
  8. 根据权利要求6或7所述的无磷无碱玻璃,其特征在于,(MgO+CaO+SrO)/Al 2O 3的值为:0.71~1.03。
  9. 根据权利要求6-8中任一项所述的无磷无碱玻璃,其特征在于,0.34≤MgO/CaO≤0.78,和/或0.03≤GeO 2/SiO 2≤0.16。
  10. 根据权利要求6-9中任一项所述的无磷无碱玻璃,其特征在于,所述无磷无碱玻璃不含有As 2O 3和Sb 2O 3
  11. 根据权利要求6-10中任一项所述的无磷无碱玻璃,其特征在于,粘度为10Pa·s时的特征粘度点为1638~1658℃;
    和/或
    粘度为100Pa·s时的特征粘度点为1407~1421℃。
  12. 根据权利要求6-11中任一项所述的无磷无碱玻璃,其特征在于,所 述无磷无碱玻璃在1200℃的表面张力为300~310mN/m,优选为302~306mN/m。
  13. 根据权利要求6-12中任一项所述的无磷无碱玻璃,其特征在于,所述无磷无碱玻璃具有以下性能指标中的至少一种:
    线性热膨胀系数:25~350℃范围内为3.63×10 -6/℃≤线性热膨胀系数≤3.75×10 -6/℃;
    密度为2.528~2.559g/cm 3
    应变点为670~680℃;
    退火点为724~732℃;
    自重软化点为970~980℃;
    杨氏模量为74~78GPa;
    剪切模量为30~32GPa;
    泊松比为0.21~0.24。
  14. 根据权利要求6-13中任一项所述的无磷无碱玻璃,其特征在于,所述无磷无碱玻璃在380~800nm的可见光照射下,厚度为2mm时的平均可见光透过率为90~91%。
  15. 根据权利要求6-14中任一项所述的无磷无碱玻璃,其特征在于,所述无磷无碱玻璃的厚度为0.5-1.5mm。
PCT/CN2019/088252 2018-06-05 2019-05-24 一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃 WO2019233291A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810570809.6A CN108558200A (zh) 2018-06-05 2018-06-05 一种适用于浮法成型的无磷无碱玻璃配合料
CN201810570809.6 2018-06-05

Publications (1)

Publication Number Publication Date
WO2019233291A1 true WO2019233291A1 (zh) 2019-12-12

Family

ID=63553016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088252 WO2019233291A1 (zh) 2018-06-05 2019-05-24 一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃

Country Status (2)

Country Link
CN (1) CN108558200A (zh)
WO (1) WO2019233291A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168018B2 (en) 2013-08-15 2021-11-09 Corning Incorporated Aluminoborosilicate glass substantially free of alkali oxides
USRE49307E1 (en) 2013-08-15 2022-11-22 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467197A (zh) * 2018-06-05 2018-08-31 中建材蚌埠玻璃工业设计研究院有限公司 一种适用于浮法成型的无碱玻璃配合料
CN108558200A (zh) * 2018-06-05 2018-09-21 中建材蚌埠玻璃工业设计研究院有限公司 一种适用于浮法成型的无磷无碱玻璃配合料
CN111170632A (zh) * 2019-12-27 2020-05-19 中建材蚌埠玻璃工业设计研究院有限公司 一种无碱玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838106A (zh) * 2010-05-14 2010-09-22 北京工业大学 一种光热发电用硼硅酸盐玻璃管
CN101092280B (zh) * 2007-06-07 2012-01-18 河南安彩高科股份有限公司 铝硼硅酸盐玻璃组合物及其应用
CN106495468A (zh) * 2016-10-11 2017-03-15 武汉理工大学 一种低表面张力的超薄玻璃及其制备方法
CN108558200A (zh) * 2018-06-05 2018-09-21 中建材蚌埠玻璃工业设计研究院有限公司 一种适用于浮法成型的无磷无碱玻璃配合料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066836B (zh) * 2007-06-11 2010-12-08 中国洛阳浮法玻璃集团有限责任公司 Tft基板玻璃
CN104176932B (zh) * 2014-08-18 2016-03-30 海南中航特玻材料有限公司 一种低表面张力的高强度安全保护玻璃及制备方法
CN107382052B (zh) * 2017-08-25 2020-02-07 郑州大学 一种无碱硅酸盐玻璃及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092280B (zh) * 2007-06-07 2012-01-18 河南安彩高科股份有限公司 铝硼硅酸盐玻璃组合物及其应用
CN101838106A (zh) * 2010-05-14 2010-09-22 北京工业大学 一种光热发电用硼硅酸盐玻璃管
CN106495468A (zh) * 2016-10-11 2017-03-15 武汉理工大学 一种低表面张力的超薄玻璃及其制备方法
CN108558200A (zh) * 2018-06-05 2018-09-21 中建材蚌埠玻璃工业设计研究院有限公司 一种适用于浮法成型的无磷无碱玻璃配合料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168018B2 (en) 2013-08-15 2021-11-09 Corning Incorporated Aluminoborosilicate glass substantially free of alkali oxides
USRE49307E1 (en) 2013-08-15 2022-11-22 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass

Also Published As

Publication number Publication date
CN108558200A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
WO2019233291A1 (zh) 一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃
JP3396835B2 (ja) アルカリ金属を含有しないアルミノ硼珪酸ガラスとその用途
US6465381B1 (en) Alkali-free aluminoborosilicate glass, its use and process for its preparation
JP4941872B2 (ja) 液晶ディスプレイ用透明無アルカリガラス基板
JP4603702B2 (ja) アルカリ金属不含のアルミノホウケイ酸塩ガラスおよびその使用
JP7421171B2 (ja) ガラス
KR102282396B1 (ko) 유리용 조성물, 알칼리 토류 알루미늄 규산염 유리 및 그 제조 방법과 적용
WO2019233290A1 (zh) 一种适用于浮法成型的无碱玻璃配合料及其制备的无碱玻璃
JP2016084280A (ja) 中間的な熱膨張係数を有するガラス
TW201802051A (zh) 尺寸穩定之快速蝕刻玻璃
TW201305083A (zh) 平面顯示器用玻璃基板及其製造方法
JPWO2009131053A1 (ja) ディスプレイパネル用ガラス板、その製造方法およびtftパネルの製造方法
JPWO2013005401A1 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
JP6663010B2 (ja) 低ホウ素とバリウムフリーのアルカリ土類アルミノシリケートガラス及びその応用
TW201825421A (zh) 玻璃
JP7219538B2 (ja) ガラス
JP2024087022A (ja) ガラス
JP2024074996A (ja) 無アルカリガラス板
TW202342390A (zh) 玻璃
WO2020080163A1 (ja) 無アルカリガラス板
CN110330226B (zh) 无碱铝硼硅酸盐玻璃及其制备方法和应用
JP4305025B2 (ja) 無アルカリガラス
JP7389400B2 (ja) 無アルカリガラス板
WO2014208523A1 (ja) 無アルカリガラス
TWI230145B (en) Substrate glass for plate panel display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814689

Country of ref document: EP

Kind code of ref document: A1