WO2019208832A1 - 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤 - Google Patents

細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤 Download PDF

Info

Publication number
WO2019208832A1
WO2019208832A1 PCT/JP2019/018272 JP2019018272W WO2019208832A1 WO 2019208832 A1 WO2019208832 A1 WO 2019208832A1 JP 2019018272 W JP2019018272 W JP 2019018272W WO 2019208832 A1 WO2019208832 A1 WO 2019208832A1
Authority
WO
WIPO (PCT)
Prior art keywords
extracellular matrix
collagen
cells
component
fragmented
Prior art date
Application number
PCT/JP2019/018272
Other languages
English (en)
French (fr)
Inventor
史朗 北野
新司 入江
典弥 松▲崎▼
Original Assignee
凸版印刷株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社, 国立大学法人大阪大学 filed Critical 凸版印刷株式会社
Priority to JP2020515638A priority Critical patent/JP6903299B2/ja
Priority to EP19792637.1A priority patent/EP3786179A4/en
Priority to CN201980021496.1A priority patent/CN111902424A/zh
Priority to US17/050,731 priority patent/US20210238542A1/en
Publication of WO2019208832A1 publication Critical patent/WO2019208832A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to an extracellular matrix-containing composition, a method for producing the same, a three-dimensional tissue body, and a three-dimensional tissue body-forming agent.
  • Non-Patent Document 1 a method of producing a three-dimensional tissue body by culturing coated cells in which the entire surface of the cultured cells is coated with an adhesive film (Patent Document 1), seeding cells on a scaffold made of polylactic acid or the like.
  • Patent Document 1 a method for producing a three-dimensional tissue
  • Non-Patent Document 1 a method for producing a three-dimensional tissue
  • the present inventors have so far included three-dimensionally arranging cells coated with a coating containing an extracellular matrix component such as a collagen component and a fibronectin component to form a three-dimensional tissue.
  • a method for producing a tissue body (Patent Document 2), a method for producing a three-dimensional tissue body, comprising forming coated cells in which a coating is formed on the surface of a cell, and arranging the coated cells in three dimensions.
  • the formation of the coated cells includes immersing the cells in a fluid containing a coating component, and separating the soaked cells and the fluid containing the coating component with a liquid permeable membrane.
  • a manufacturing method (Patent Document 3) and the like are proposed.
  • Such three-dimensional tissue bodies are expected to be used as substitutes for experimental animals, transplantation materials, and the like.
  • Various methods of cell three-dimensional culture such as a method using a scaffold material to which cells can adhere and a method of stacking cells without using a scaffold material, are being studied.
  • culturing with cells in the presence of an extracellular matrix component such as a collagen component is generally performed. This is because the extracellular matrix component plays a biologically important role in cell development, differentiation, morphogenesis, etc. in addition to functioning as a material that physically supports the tissue structure in the cell stroma. This is because it is considered to be.
  • JP 2012-115254 A International Publication No. 2015/072164 International Publication No. 2016/027853
  • Extracellular matrix components are generally insoluble, and it has been difficult to dissolve a large amount of extracellular matrix components in an aqueous medium. Therefore, in the method of forming a three-dimensional tissue body by suspending a solution containing extracellular matrix components and cells, the thickness of the tissue that can be formed and the mass content of the extracellular matrix components in the tissue body are determined. There was a limit.
  • the present inventors prepared a dispersion containing a higher concentration of extracellular matrix component by suspending the fragmented extracellular matrix component (fragmented extracellular matrix component) in an aqueous medium, It has been found that by suspending cells in the dispersion, it is possible to form a tissue body having a thickness and a mass content of extracellular matrix components that cannot be achieved by conventional techniques.
  • the present invention has been made in view of the above circumstances, and an extracellular matrix-containing composition excellent in dispersibility after dry storage, a method for producing the same, a three-dimensional tissue including the extracellular matrix-containing composition, and a three-dimensional structure.
  • the purpose is to provide a tissue-forming agent.
  • the present invention provides, for example, the following [1] to [13].
  • [1] An extracellular matrix-containing composition comprising a fragmented extracellular matrix component, wherein at least a part of the fragmented extracellular matrix component is crosslinked.
  • a three-dimensional tissue formation agent comprising the extracellular matrix-containing composition according to any one of (1) to (7).
  • a three-dimensional tissue body comprising the extracellular matrix-containing composition according to any one of (1) to (7) and cells.
  • a method for producing an extracellular matrix-containing composition containing a fragmented extracellular matrix component, comprising a fragmentation step of fragmenting an extracellular matrix component that is at least partially crosslinked in an aqueous medium Production method.
  • the production method according to (10) comprising a crosslinking step of heating the extracellular matrix component and crosslinking at least a part of the extracellular matrix component before the fragmentation step.
  • an extracellular matrix-containing composition excellent in dispersibility after dry storage a method for producing the same, a three-dimensional tissue body containing the extracellular matrix-containing composition, and a three-dimensional tissue body forming agent.
  • the extracellular matrix-containing composition of the present invention can be redispersed even when freeze-dried in a fragmented state, it can be stored for a long period of time.
  • FIG. 1 is a photograph of a fragmented cross-linked collagen component before lyophilization.
  • FIG. 2 is a photograph of the fragmented crosslinked collagen component after lyophilization.
  • FIG. 3 is a photograph of the fragmented non-crosslinked collagen component before lyophilization and after lyophilization.
  • FIG. 4A is a graph showing the measurement results of the degree of crosslinking by the TNBS method
  • FIG. 4B is a graph showing the change in the degree of crosslinking by the TNBS method according to the crosslinking time.
  • FIG. 5 is a diagram showing a method for producing a three-dimensional tissue and a three-dimensional tissue including a fragmented crosslinked collagen component.
  • FIG. 6A to 6B are photographs and graphs showing the results of water dispersion stability in the fragmentation step, respectively.
  • FIG. 7 is a photograph showing a fluorescence observation result of a three-dimensional tissue body constructed using a fragmented non-crosslinked collagen component or a fragmented crosslinked collagen component.
  • FIG. 8 is a photograph showing the observation results of the fragmented cross-linked collagen component by a stirring type or ultrasonic type homogenizer.
  • FIG. 9 is a graph and a photograph showing the results of confirmation of dispersibility after lyophilization.
  • the extracellular matrix-containing composition according to the present embodiment includes a fragmented extracellular matrix component (fragmented extracellular matrix component), and at least a part of the fragmented extracellular matrix component is crosslinked.
  • the extracellular matrix-containing composition according to this embodiment is excellent in dispersibility (redispersibility) after dry storage. Since it is excellent in redispersibility, it is easy to prepare a dispersion having a uniform concentration, and therefore it can be suitably used as a scaffolding material for forming a three-dimensional tissue.
  • the extracellular matrix-containing composition contains at least an extracellular matrix component that is fragmented and cross-linked.
  • the extracellular matrix-containing composition may include a fragmented, non-crosslinked extracellular matrix component, and at least a partially crosslinked, non-fragmented extracellular matrix component. May be.
  • the extracellular matrix component is an aggregate of extracellular matrix molecules formed by a plurality of extracellular matrix molecules.
  • An extracellular matrix molecule means a substance that exists outside a cell in an organism. Any substance can be used as the extracellular matrix molecule as long as it does not adversely affect the growth of cells and the formation of cell aggregates. Examples of extracellular matrix molecules include, but are not limited to, collagen, laminin, fibronectin, vitronectin, elastin, tenascin, entactin, fibrillin, and proteoglycan. These extracellular matrix components may be used alone or in combination.
  • the extracellular matrix molecule may be a modified or variant of the above-mentioned extracellular matrix molecule as long as it does not adversely affect cell growth and cell aggregate formation.
  • collagen examples include fibrous collagen and non-fibrous collagen.
  • Fibrous collagen means collagen that is the main component of collagen fibers, and specific examples include type I collagen, type II collagen, type III collagen, and the like.
  • non-fibrous collagen examples include type IV collagen.
  • proteoglycans include, but are not limited to, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, keratan sulfate proteoglycan, and dermatan sulfate proteoglycan.
  • the extracellular matrix component may contain at least one selected from the group consisting of collagen, laminin and fibronectin, and preferably contains collagen.
  • the collagen is preferably fibrous collagen, more preferably type I collagen.
  • fibrous collagen commercially available collagen may be used, and specific examples thereof include lyophilized porcine skin-derived type I collagen produced by Nippon Ham Co., Ltd.
  • the collagen is preferably atelocollagen, which is collagen from which the telopeptide has been removed. Atelocollagen can be obtained, for example, by treating tropocollagen with pepsin.
  • the extracellular matrix component may be an animal-derived extracellular matrix component.
  • the animal species from which the extracellular matrix component is derived may be a mammal, a bird, a reptile, or a fish, and is preferably a mammal. Examples of animal species from which extracellular matrix components are derived include, but are not limited to, humans, pigs, and cows.
  • the animal species from which the extracellular matrix component is derived may be a mammal or a pig.
  • As the extracellular matrix component a component derived from one type of animal may be used, or a component derived from a plurality of types of animals may be used in combination.
  • the animal species from which the extracellular matrix component is derived may be the same as or different from the origin of the three-dimensionally organized cells.
  • the fragmented extracellular matrix component is a component obtained by subdividing the above-described extracellular matrix component by applying physical force.
  • the fragmented extracellular matrix component is a defibrated extracellular matrix component (defibrated extracellular matrix component) obtained by defibrating the extracellular matrix component without breaking the binding of extracellular matrix molecules. Is preferred.
  • the fragmented extracellular matrix component is a fibrillated extracellular matrix component, it can be used more effectively as a scaffold material.
  • the method for fragmenting extracellular matrix components is not particularly limited.
  • the extracellular matrix component may be fragmented (or fibrillated) by applying physical force such as an ultrasonic homogenizer, a stirring homogenizer, and a high-pressure homogenizer.
  • the extracellular matrix component may be homogenized as it is, or may be homogenized in an aqueous medium such as physiological saline. It is also possible to obtain fragmented extracellular matrix components of millimeter size or nanometer size by adjusting the homogenization time, the number of times, and the like.
  • the fragmented extracellular matrix component can also be obtained by fragmentation by repeated freeze-thawing.
  • the fragmented extracellular matrix component preferably contains a fragmented collagen component (fragmented collagen component).
  • fragmented collagen component fragmented collagen component
  • the fragmented collagen component is preferably a fibrillated collagen component.
  • the fragmented extracellular matrix component may be naturally derived.
  • a naturally derived fragmented extracellular matrix component is a fragment of a natural extracellular matrix component, and a naturally derived fragmented extracellular matrix component is converted into a natural extracellular matrix molecule by chemical treatment. Components whose structure has been modified are not included. Examples of the chemical treatment include hydrolysis by alkali treatment.
  • the shape of the fragmented extracellular matrix component examples include a fibrous shape.
  • the fibrous form means a shape constituted by a filamentous extracellular matrix component or a shape constituted by crosslinking a filamentous extracellular matrix component.
  • the fragmented collagen component preferably maintains a triple helical structure (fibrous) derived from collagen. From the viewpoint of further improving redispersibility, at least a part of the fragmented extracellular matrix component is preferably fibrous.
  • the average length of the fragmented extracellular matrix component is preferably 100 nm to 400 ⁇ m, and more preferably 5 ⁇ m to 400 ⁇ m, 10 ⁇ m to 400 ⁇ m, 22 ⁇ m to 400 ⁇ m from the viewpoint of easily forming a thick tissue. Or 100 ⁇ m to 400 ⁇ m. In another embodiment, the average length of the fragmented extracellular matrix component may be 100 ⁇ m or less, preferably 50 ⁇ m, from the viewpoint of facilitating tissue formation and further improving redispersibility.
  • the average length of the most fragmented extracellular matrix component is preferably within the above numerical range. Specifically, it is preferable that the average length of 95% of the fragmented extracellular matrix components out of the entire fragmented extracellular matrix components is within the above numerical range.
  • the fragmented extracellular matrix component is preferably a fragmented collagen component having an average length within the above range.
  • the average diameter of the fragmented extracellular matrix component is preferably 50 nm to 30 ⁇ m, more preferably 4 ⁇ m to 30 ⁇ m, and even more preferably 20 ⁇ m to 30 ⁇ m.
  • the fragmented extracellular matrix component is preferably a fragmented collagen component having an average diameter within the above range.
  • the fragmented extracellular matrix component is suspended again in an aqueous medium to form a tissue after the drying step described later. It is desirable that the average length or the average diameter is within the above range.
  • the average length and average diameter of the fragmented extracellular matrix component can be determined by measuring each fragmented collagen component with an optical microscope and analyzing the image.
  • “average length” means the average value of the lengths of the measured samples in the longitudinal direction
  • “average diameter” means the average length of the measured samples in the direction perpendicular to the longitudinal direction. Mean value.
  • the extracellular matrix-containing composition according to the present embodiment, at least a part of the fragmented extracellular matrix component is crosslinked.
  • the extracellular matrix component may be cross-linked within or between the extracellular matrix molecules that make up the extracellular matrix component.
  • cross-linking method examples include physical cross-linking by application of heat, ultraviolet rays, radiation, etc., cross-linking agents, chemical cross-linking by enzyme reaction, etc., but the method is not particularly limited. Since it is not necessary to add an artificial element to the extracellular matrix component as much as possible, physical crosslinking by application of heat is preferable.
  • Crosslinking (physical crosslinking and chemical crosslinking) may be crosslinking via covalent bonds.
  • the cross-linking may be formed between collagen molecules (triple helical structure) or may be formed between collagen fibrils formed by collagen molecules.
  • the crosslinking is preferably thermal crosslinking (thermal crosslinking).
  • the thermal crosslinking can be performed, for example, by performing a heat treatment using a vacuum pump under reduced pressure.
  • the extracellular matrix component is cross-linked by the amino group of the collagen molecule forming a peptide bond (—NH—CO—) with the carboxy group of the same or another collagen molecule. It's okay.
  • the extracellular matrix component can also be crosslinked by using a crosslinking agent.
  • the crosslinking agent may be, for example, one capable of crosslinking carboxyl groups and amino groups, or one capable of crosslinking amino groups.
  • As the crosslinking agent for example, aldehyde-based, carbodiimide-based, epoxide-based and imidazole-based crosslinking agents are preferable from the viewpoint of economy, safety and operability.
  • glutaraldehyde, 1-ethyl-3- (3 And water-soluble carbodiimides such as 1-cyclohexyl-3- (2-morpholinyl-4-ethyl) carbodiimide sulfonate and the like.
  • the degree of crosslinking may be the degree of crosslinking measured by the TNBS (2,4,6-trinitrobenzene sulfonic acid) method.
  • the degree of cross-linking by the TNBS method refers to the proportion of amino groups used for cross-linking among the amino groups of the extracellular matrix component.
  • the degree of crosslinking by the TNBS method can be quantified based on the TNBS method described in Non-Patent Document 2 and the like.
  • the degree of crosslinking by the TNBS method may be 1% or more, 2% or more, 4% or more, 8% or more, or 12% or more, or 30% or less, 20% or less, or 15% or less.
  • the degree of crosslinking by the TNBS method is in the above range, the extracellular matrix molecules can be dispersed moderately, and the redispersibility after dry storage is good.
  • the degree of crosslinking by the TNBS method tends to increase.
  • the degree of crosslinking measured by the TNBS method is preferably within the above range.
  • the degree of crosslinking may be calculated by quantifying the carboxyl group. For example, in the case of an extracellular matrix component insoluble in water, it may be quantified by the TBO (Toluidine Blue O) method.
  • TBO Toluidine Blue O
  • the form of the extracellular matrix-containing composition may be solid or powdery, preferably powdery, from the viewpoint of easy weighing.
  • the extracellular matrix-containing composition may not contain moisture.
  • Water in the extracellular matrix-containing composition can be removed by, for example, a freeze-drying method. Not containing water does not mean that it does not contain any water molecules, but means that it does not contain water to the extent that it can be reasonably reached by a drying method such as freeze-drying. .
  • the extracellular matrix-containing composition according to one embodiment can be dispersed in an aqueous medium.
  • aqueous medium means a liquid containing water as an essential component.
  • the aqueous medium is not particularly limited as long as the extracellular matrix component can be stably present.
  • physiological media such as phosphate buffered saline (PBS), liquid media such as Dulbecco's Modified Eagle's medium (DMEM), and vascular endothelial cell-dedicated medium (EGM2), but are not limited thereto.
  • PBS phosphate buffered saline
  • DMEM Dulbecco's Modified Eagle's medium
  • ECM2 vascular endothelial cell-dedicated medium
  • Whether it can be dispersed in an aqueous medium is determined, for example, by the following method. That is, when the extracellular matrix-containing composition is dispersed in ultrapure water when 50 mg of the extracellular matrix-containing composition is added and suspended in 5 mL of ultrapure water (when aggregation, sedimentation, etc. do not occur), It can be determined that it can be dispersed in an aqueous medium.
  • the temperature at which the extracellular matrix-containing composition is dispersed in ultrapure water may be a temperature equal to or lower than the culture temperature (for example, 37 ° C.), or may be room temperature.
  • the dispersed state means a state where no aggregation, sedimentation, or the like has occurred visually.
  • dispersibility can be determined, for example, by measuring transmittance with respect to light having a wavelength of 500 nm.
  • the transmittance for light having a wavelength of 500 nm is 50% or less, preferably 35% or less, more preferably 30% or less, still more preferably 20% or less, even more preferably 15% or less, and even more preferably 12% or less. In this case, it can be determined that the data can be distributed.
  • the transmittance may be measured using an aqueous solution comprising an extracellular matrix-containing composition and water (such as ultrapure water) as a sample to be measured.
  • the content of the extracellular matrix-containing composition in the sample to be measured may be 0.5% by mass based on the total mass of the aqueous solution comprising the extracellular matrix-containing composition and water.
  • the transmittance may be measured immediately after adding the extracellular matrix-containing composition to ultrapure water.
  • the transmittance can be measured, for example, by measuring the transmittance for light having a wavelength of 500 nm using an ultraviolet-visible-near infrared spectrophotometer. Specifically, the transmittance can be measured by the method described in Examples described later.
  • the pH of the aqueous medium is preferably within a range that does not adversely affect cell growth and cell aggregate formation.
  • the pH of the aqueous medium may be, for example, 7.0 or more and 8.0 or less, for example, from the viewpoint of reducing the load on the cells when charged into the cells.
  • the pH of the aqueous medium is 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9. Or 8.0.
  • the aqueous medium preferably has a buffer capacity in the above pH range, and more preferably a liquid medium.
  • the liquid medium is not particularly limited, and a suitable medium can be selected according to the type of cells to be cultured.
  • the medium examples include Eagle's MEM medium, DMEM, Modified Eagle medium (MEM), Minimum Essential medium, RPMI, and GlutaMax medium.
  • the medium may be a medium supplemented with serum or a serum-free medium.
  • the liquid medium may be a mixed medium in which two or more kinds of mediums are mixed.
  • the extracellular matrix-containing composition may be produced by crosslinking the extracellular matrix component and then fragmenting, or may be produced by fragmenting and then crosslinking the extracellular matrix component.
  • the extracellular matrix-containing composition according to this embodiment is preferably produced by cross-linking extracellular matrix molecules and then fragmenting them.
  • the method for producing an extracellular matrix-containing composition includes a fragmentation step of fragmenting an extracellular matrix component that is at least partially crosslinked in an aqueous medium.
  • the method for fragmenting the extracellular matrix component that is at least partially crosslinked may be the same as the method exemplified above.
  • the aqueous medium may be the same as the above-mentioned aqueous medium.
  • the production method according to the present embodiment may include a crosslinking step in which the extracellular matrix component is heated to crosslink at least a part of the extracellular matrix component before the fragmentation step.
  • the temperature (heating temperature) and time (heating time) for heating the extracellular matrix component can be appropriately determined.
  • the heating temperature in the crosslinking step may be, for example, 100 ° C. or higher and 200 ° C. or lower.
  • the heating temperature is, for example, 100 ° C, 110 ° C, 120 ° C, 130 ° C, 140 ° C, 150 ° C, 160 ° C, 170 ° C, 180 ° C, 190 ° C, 200 ° C, 220 ° C, etc. Good.
  • the heating time (time for holding at the heating temperature) can be appropriately set depending on the heating temperature. For example, when heating at 100 ° C.
  • the heating time may be 6 hours or longer and 72 hours or shorter, and more preferably 24 hours or longer and 48 hours or shorter.
  • heating may be performed in the absence of a solvent, or heating may be performed under reduced pressure.
  • the production method according to the present embodiment may include a drying step of drying the fragmented extracellular matrix component after the fragmentation step.
  • the fragmented extracellular matrix components are dried. Drying may be performed, for example, by freeze drying.
  • An aqueous medium is removed from the liquid containing a fragmented extracellular matrix component and an aqueous medium by performing a drying process after the fragmentation process.
  • the removal of the aqueous medium does not mean that no moisture is attached to the fragmented extracellular matrix components, and can be reached by common sense by the general drying method described above. It means that moisture is not attached as much as possible.
  • the extracellular matrix-containing composition can be suitably used as a scaffold for forming a three-dimensional tissue. Therefore, the extracellular matrix-containing composition is suitably used for three-dimensional tissue formation applications.
  • the extracellular matrix-containing composition is suitable as a scaffold for forming a three-dimensional tissue body, in one embodiment of the present invention, the extracellular matrix-containing composition includes the above-described extracellular matrix-containing composition. An agent is provided.
  • the three-dimensional tissue formation agent according to the present embodiment contains the above-described fragmented extracellular matrix component, a thicker three-dimensional tissue can be formed.
  • the three-dimensional structure forming agent may be in a powder state when stored, and is preferably in a dispersion state dispersed in an aqueous medium at the stage of forming the three-dimensional structure.
  • the three-dimensional tissue body includes the above-described extracellular matrix-containing composition and cells. At least some of the cells may adhere to the extracellular matrix-containing composition.
  • “Three-dimensional tissue” means an aggregate of cells in which cells are three-dimensionally arranged via an extracellular matrix component and is artificially created by cell culture.
  • tissue There is no restriction
  • tissue For example, a sheet form, a spherical form, an ellipsoid shape, a rectangular parallelepiped shape etc. are mentioned.
  • the biological tissue includes blood vessels, sweat glands, lymphatic vessels, sebaceous glands, and the like, and the configuration is more complicated than the three-dimensional tissue body. Therefore, the three-dimensional tissue body and the biological tissue can be easily distinguished.
  • the cells are not particularly limited, but may be cells derived from animals such as humans, monkeys, dogs, cats, rabbits, pigs, cows, mice, rats, and the like.
  • the cell origin is not particularly limited, and may be a somatic cell derived from bone, muscle, viscera, nerve, brain, bone, skin, blood or the like, or a germ cell.
  • the cells may be induced pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), or cultured cells such as primary cultured cells, subcultured cells, and cell line cells. Also good.
  • cells for example, nerve cells, dendritic cells, immune cells, vascular endothelial cells (eg, human umbilical vein-derived vascular endothelial cells (HUVEC)), lymphatic endothelial cells, fibroblasts, colon cancer Cells (eg, human colon cancer cells (HT29)), cancer cells such as hepatoma cells, epithelial cells (eg, human gingival epithelial cells), keratinocytes, cardiomyocytes (eg, human iPS cell-derived cardiomyocytes (iPS ⁇ )) CM)), hepatocytes, pancreatic islet cells, tissue stem cells, smooth muscle cells (eg, aortic smooth muscle cells (Aorta-SMC), etc.), but the cells may be used alone. A plurality of types of cells may be used in combination.
  • a plurality of types of cells may be used in combination.
  • the cells include collagen-secreting cells that secrete collagen such as fibrous collagen.
  • collagen-secreting cells include mesenchymal cells such as fibroblasts, chondrocytes, and osteoblasts, and fibroblasts are preferred.
  • Preferred fibroblasts include, for example, human skin-derived fibroblasts (NHDF), human cardiac fibroblasts (NHCF), and human gingival fibroblasts (HGF).
  • the three-dimensional tissue may include endogenous collagen.
  • Endogenous collagen means collagen produced by collagen-producing cells constituting a three-dimensional tissue. Endogenous collagen may be fibrillar collagen or non-fibrillar collagen.
  • the three-dimensional tissue may include cells containing collagen-secreting cells, an extracellular matrix-containing composition, and an endogenous collagen component.
  • the cells including collagen secreting cells may adhere to the extracellular matrix-containing composition and / or the endogenous collagen component.
  • a conventional three-dimensional tissue body has a low collagen concentration and a high cell density. For this reason, there are problems such that the three-dimensional tissue contracts due to the pulling force of the cells during or after the culture, and that the three-dimensional tissue is easily decomposed by the enzyme produced by the cells during or after the culture.
  • the three-dimensional tissue according to one embodiment has a higher collagen concentration than the conventional one, and is less susceptible to contraction and stable.
  • the three-dimensional tissue body may include collagen-secreting cells and cells other than collagen-secreting cells as cells.
  • cells other than collagen-producing cells include vascular endothelial cells (eg, human umbilical vein-derived vascular endothelial cells (HUVEC)), colon cancer cells (eg, human colon cancer cells (HT29)), liver cancer cells, and the like.
  • vascular endothelial cells eg, human umbilical vein-derived vascular endothelial cells (HUVEC)
  • colon cancer cells eg, human colon cancer cells (HT29)
  • liver cancer cells e.g, liver cancer cells, and the like.
  • cardiomyocytes eg, human iPS cell-derived cardiomyocytes (iPS-CM)
  • epithelial cells eg, human gingival epithelial cells
  • keratinocytes eg, human gingival epithelial cells
  • lymphatic endothelial cells neurons
  • hepatocytes tissue stem cells
  • tissue stem cells Embryonic stem cells, induced pluripotent stem cells, adherent cells (eg immune cells), smooth muscle cells (eg aortic smooth muscle cells (Aorta-SMC)
  • the cells constituting the three-dimensional tissue further include one or more types of cells selected from the group consisting of vascular endothelial cells, cancer cells and cardiomyocytes.
  • the collagen content in the three-dimensional tissue may be 0.01 to 90% by mass, preferably 10 to 90% by mass, based on the three-dimensional tissue (dry weight). %, Preferably 10 to 70% by mass, preferably 10 to 60% by mass, preferably 1 to 50% by mass, and preferably 10 to 50% by mass. The content is more preferably 10 to 30% by mass, and more preferably 20 to 30% by mass.
  • collagen in the three-dimensional tissue means collagen constituting the three-dimensional tissue, and may be endogenous collagen or collagen derived from a fragmented collagen component (exogenous collagen). There may be. That is, when the three-dimensional tissue includes an endogenous collagen component and a fragmented collagen component, the concentration of collagen constituting the three-dimensional tissue means the total concentration of the endogenous collagen component and the fragmented collagen component. The concentration of the collagen can be calculated from the volume of the obtained three-dimensional tissue and the mass of the decellularized three-dimensional tissue.
  • Examples of the method for quantifying the amount of collagen in the three-dimensional tissue include the following methods for quantifying hydroxyproline.
  • a sample is prepared by mixing hydrochloric acid (HCl) with a lysate in which a three-dimensional tissue is dissolved, incubating at high temperature for a predetermined time, returning to room temperature, and diluting the centrifuged supernatant to a predetermined concentration.
  • a hydroxyproline standard solution is treated in the same manner as the sample, and then diluted in stages to prepare a standard.
  • Each sample and standard is treated with a hydroxyproline assay buffer and a detection reagent, and the absorbance at 570 nm is measured.
  • the amount of collagen is calculated by comparing the absorbance of the sample with the standard.
  • the solution obtained by directly suspending and dissolving the three-dimensional tissue in high-concentration hydrochloric acid may be centrifuged to collect the supernatant and used for collagen quantification. Further, the three-dimensional tissue to be dissolved may be in a state of being recovered from the culture solution, or may be dissolved in a state where the liquid component is removed by performing a drying process after the recovery.
  • examples of the method for quantifying the amount of collagen include the following methods.
  • sample preparation The total amount of the three-dimensional tissue that has been lyophilized is mixed with 6 mol / l HCl, incubated at 95 ° C. for 20 hours or longer in a heat block, and then returned to room temperature. After centrifuging at 13000 g for 10 minutes, the supernatant of the sample solution is collected. A sample is prepared by diluting 200 ⁇ L with 100 ⁇ L of ultrapure water after appropriately diluting with 6 mol / l HCl so that the result falls within the range of the calibration curve in the measurement described later. Use 35 ⁇ L of sample.
  • the supernatant is diluted with ultrapure water to produce 300 ⁇ g / mL S1, and S1 is diluted stepwise to S2 (200 ⁇ g / mL), S3 (100 ⁇ g / mL), S4 (50 ⁇ g / mL), S5 (25 ⁇ g / mL), S6 (12.5 ⁇ g / mL), S7 (6.25 ⁇ g / mL) are prepared. Also prepare S8 (0 ⁇ g / mL) with only 90 ⁇ L of 4 mol / l HCl.
  • the collagen occupying the three-dimensional tissue may be defined by its area ratio or volume ratio.
  • “Specified by area ratio or volume ratio” means that other tissues are composed of collagen in a three-dimensional tissue by a known staining method (for example, immunostaining using anti-collagen antibody or Masson trichrome staining), etc. This means that the ratio of the existing region of collagen in the entire three-dimensional tissue is calculated using the naked eye observation, various microscopes, image analysis software, and the like after making it distinguishable from the object.
  • the area ratio is defined, it is not limited by which cross-section or surface in the three-dimensional structure the area ratio is defined. For example, when the three-dimensional structure is a spherical body or the like, it passes through the substantially central portion. You may prescribe
  • the area ratio is 0.01 to 99% and 1 to 99% based on the total area of the three-dimensional tissue. It is preferably 5 to 90%, preferably 7 to 90%, preferably 20 to 90%, and more preferably 50 to 90%.
  • the “collagen in the three-dimensional tissue” is as described above.
  • the ratio of the area of the collagen constituting the three-dimensional tissue means the ratio of the area combining the endogenous collagen and the exogenous collagen.
  • the ratio of the area of the collagen is, for example, the ratio of the area of the collagen stained blue with respect to the entire area of the cross-section passing through the approximate center of the three-dimensional tissue after staining the obtained three-dimensional tissue with Masson Trichrome. Can be calculated as
  • the three-dimensional tissue body preferably has a residual ratio of 70% or more after trypsin treatment at a trypsin concentration of 0.25%, a temperature of 37 ° C., a pH of 7.4, and a reaction time of 15 minutes, and more than 80%. It is more preferable that it is 90% or more.
  • a three-dimensional tissue is stable because it is difficult to be degraded by an enzyme during or after culture.
  • the residual rate can be calculated from, for example, the mass of the three-dimensional tissue body before and after trypsin treatment.
  • the three-dimensional tissue body may have a residual rate of 70% or more after collagenase treatment at a collagenase concentration of 0.25%, a temperature of 37 ° C., a pH of 7.4, and a reaction time of 15 minutes, or 80% or more. It is more preferable that it is 90% or more.
  • Such a three-dimensional tissue is stable because it is unlikely to be degraded by an enzyme during or after culture.
  • the thickness of the three-dimensional structure is preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, and even more preferably 1000 ⁇ m or more.
  • Such a three-dimensional tissue has a structure closer to that of a living tissue, and is suitable as a substitute for a laboratory animal and a transplant material.
  • the upper limit of the thickness of the three-dimensional tissue is not particularly limited, but may be, for example, 10 mm or less, 3 mm or less, 2 mm or less, or 1.5 mm or less. It may be 1 mm or less.
  • the “thickness of the three-dimensional structure” means the distance between both ends in the direction perpendicular to the main surface when the three-dimensional structure is a sheet or a rectangular parallelepiped.
  • the thickness means the distance at the thinnest portion of the main surface.
  • the three-dimensional tissue when the three-dimensional tissue is spherical, it means its diameter. Furthermore, when the three-dimensional tissue is an ellipsoid, it means the minor axis. When the three-dimensional structure is substantially spherical or ellipsoidal and the surface is uneven, the thickness is the distance between two points where the straight line passing through the center of gravity of the three-dimensional structure and the surface intersects. Means the shortest distance.
  • ⁇ Method for producing three-dimensional tissue> In the method for producing a three-dimensional tissue body according to the present embodiment, (1) a step of bringing the extracellular matrix-containing composition and cells into contact with each other in an aqueous medium (step (1)), and (2) the above-described step. A step of culturing the cells in contact with the extracellular matrix-containing composition (step (2)).
  • the cells are preferably cells including collagen-producing cells.
  • cells including collagen-secreting cells By using cells including collagen-secreting cells, a more stable three-dimensional tissue body in which cells are uniformly distributed can be obtained. Details of the mechanism by which such a three-dimensional structure is obtained are unknown, but are presumed as follows.
  • the cells are cells containing collagen-producing cells
  • the cells first contact and adhere on the extracellular matrix-containing composition.
  • the cell itself produces a protein that constitutes an extracellular matrix component (for example, collagen such as fibrous collagen).
  • the produced protein contacts and adheres to the extracellular matrix-containing composition, thereby acting as a cross-linking agent between the extracellular matrix-containing compositions, and constitutes an extracellular matrix component in an environment where cells exist uniformly. Proteins and other structures are progressing.
  • a three-dimensional tissue body that is more stable and in which cells are uniformly distributed is obtained.
  • the above estimation does not limit the present invention.
  • the number of steps for manufacturing a three-dimensional tissue body is large, and an operation time of about one hour is required.
  • a three-dimensional tissue body can be manufactured in a short work time.
  • a three-dimensional tissue body can be easily manufactured.
  • in the manufacturing method described in Patent Document 2 in order to manufacture a three-dimensional tissue having a thickness of about 1 mm, at least 10 6 cells are required. According to the manufacturing method according to the present embodiment, it is possible to manufacture a large three-dimensional tissue body having a relatively small number of cells and a thickness of 1 mm or more.
  • step (1) the extracellular matrix-containing composition and cells are brought into contact in an aqueous medium.
  • the method for bringing the extracellular matrix-containing composition and cells into contact with each other in an aqueous medium is not particularly limited.
  • a method of adding an extracellular matrix-containing composition to a culture medium containing cells a method of adding an aqueous medium and cells to an extracellular matrix-containing composition, or an extracellular matrix-containing composition and cells in a previously prepared aqueous medium The method of adding each is mentioned.
  • step (1) cells containing collagen-producing cells and cells other than collagen-producing cells may be used.
  • the collagen-producing cells and other cells other than the collagen-producing cells the cells described above can be used.
  • various model tissues can be produced. For example, when NHCF and HUVEC are used, it is possible to obtain a three-dimensional tissue having capillaries inside.
  • NHCF and colon cancer cells are used, a model tissue of colon cancer can be obtained.
  • NHCF and iPS-CM a myocardial model tissue exhibiting synchronous pulsation can be obtained.
  • the concentration of the extracellular matrix-containing composition in the step (1) can be appropriately determined according to the shape, thickness, size of the incubator, etc. of the target three-dimensional tissue.
  • the concentration of the extracellular matrix-containing composition in the aqueous medium in step (1) may be 0.1 to 90% by mass or 1 to 30% by mass.
  • the amount of the extracellular matrix-containing composition in the step (1) may be 0.1 to 100 mg or 1 to 50 mg per 1 ⁇ 10 5 cells.
  • the mass ratio of the extracellular matrix-containing composition to the cells is preferably 1/1 to 1000/1, preferably 9/1 to 900/1. More preferably, it is 10/1 to 500/1.
  • the ratio of the number of collagen-producing cells in step (1) to the ratio of other cells is: It may be 9/1 to 99/1, may be 50/50 to 80/20, may be 20/80 to 50/50, or may be 10/90 to 50/50 Good.
  • a step of precipitating both the extracellular matrix-containing composition and the cells in an aqueous medium may be further included.
  • the distribution of the extracellular matrix-containing composition and cells in the three-dimensional tissue becomes more uniform.
  • Step (1) may be performed by forming a cell layer in an aqueous medium and then bringing the extracellular matrix-containing composition into contact therewith.
  • a three-dimensional tissue body having a high cell density in the lower layer can be produced.
  • a three-dimensional tissue body having a high cell density in the lower layer of cells containing collagen-producing cells can be produced. it can.
  • a tissue closer to a living body can be produced by this method.
  • step (3) may further include a step of contacting the cells and culturing the cells.
  • the cell may be the same type or different type as the cell used in step (1).
  • the cells used in step (3) may include collagen-producing cells.
  • the cells used in the step (3) may include cells other than the collagen producing cells.
  • Both the cells used in step (1) and the cells used in step (3) may contain collagen-producing cells, and both the cells used in step (1) and the cells used in step (3) are cells other than collagen-producing cells. May be included.
  • tissue closer to a living body can be produced by this method.
  • human gingival fibroblasts and gingival epithelial cells are used, a three-dimensional tissue structure having a two-layer structure free from tissue contraction and tissue cracking can be produced by this method.
  • the method for culturing the cells in contact with the extracellular matrix-containing composition is not particularly limited, and can be performed by a suitable culturing method according to the type of cells to be cultured.
  • the culture temperature may be 20 ° C. to 40 ° C., or 30 ° C. to 37 ° C.
  • the pH of the medium may be 6 to 8, or 7.2 to 7.4.
  • the culture time may be 1 day to 2 weeks, or 1 week to 2 weeks.
  • the medium is not particularly limited, and a suitable medium can be selected according to the type of cells to be cultured.
  • the medium include Eagle's MEM medium, DMEM, Modified Eagle medium (MEM), Minimum Essential medium, RPMI, and GlutaMax medium.
  • the medium may be a medium supplemented with serum or a serum-free medium.
  • the liquid medium may be a mixed medium in which two or more kinds of mediums are mixed.
  • the cell density in the medium in the step (2) can be appropriately determined according to the shape and thickness of the target three-dimensional tissue, the size of the incubator, and the like.
  • the cell density in the medium in the step (2) may be 1 to 10 8 cells / ml or 10 3 to 10 7 cells / ml.
  • the cell density in the culture medium in the step (2) may be the same as the cell density in the aqueous medium in the step (1).
  • the three-dimensional tissue body preferably has a shrinkage rate during culture of 20% or less, more preferably 15% or less, and even more preferably 10% or less.
  • the shrinkage rate can be calculated by the following equation, for example.
  • L1 indicates the length of the longest part of the three-dimensional tissue body on the first day after the culture
  • L3 indicates the length of the corresponding part in the three-dimensional tissue body on the third day after the culture.
  • Shrinkage rate (%) ⁇ (L1-L3) / L1 ⁇ ⁇ 100
  • the above-described production method is a three-dimensional tissue body including cells and extracellular matrix components, and the collagen content is 10% by mass to 90% by mass based on the three-dimensional tissue body.
  • a source tissue can be produced.
  • Example 1 Production of cross-linked collagen component
  • 100 mg of lyophilized porcine skin-derived type I collagen manufactured by Nippon Ham Co., Ltd. was heated at 200 ° C. for 24 hours while using a vacuum specimen dryer HD-15H (manufactured by Ishii Rika Kikai Seisakusho) under reduced pressure.
  • a collagen component crosslinked collagen component at least partially crosslinked was obtained as a dried body. It should be noted that no significant change in the appearance of collagen was observed before and after heating at 200 ° C.
  • Example 2 Fragmentation of cross-linked collagen component
  • 50 mg of the cross-linked collagen component prepared in Example 1 was suspended in 5 mL of ultrapure water and homogenized for 2 minutes using a stirring homogenizer, so that a fragmented collagen component (fragmented cross-linked collagen at least partially cross-linked) was obtained.
  • a dispersion containing (component) was obtained.
  • FIG. 1 is a photograph showing a fragmented cross-linked collagen component in the dispersion.
  • the average length (length) of the obtained fragmented crosslinked collagen component was 374 ⁇ 162 ⁇ m (number of samples: 20).
  • Example 3 Lyophilization and redispersion of fragmented cross-linked collagen component
  • the dispersion containing the fragmented cross-linked collagen component prepared in Example 2 was lyophilized for 3 days to remove moisture. After lyophilization, it was suspended again in ultrapure water. The result is shown in FIG. As shown in FIG. 2, the fragmented crosslinked collagen component could be dispersed again in ultrapure water after lyophilization.
  • the average length (length) of the fragmented crosslinked collagen component after lyophilization was 261 ⁇ 128 ⁇ m (number of samples: 20).
  • Non-crosslinked fragmented collagen component (fragmented non-fragmented) was prepared by suspending 50 mg of lyophilized porcine skin type I collagen, which had not been cross-linked, in 5 mL of ultrapure water and homogenizing for 2 minutes. A dispersion containing a cross-linked collagen component) was obtained. The average length (length) of the fragmented non-crosslinked collagen component was 210 ⁇ 90 ⁇ m (number of samples: 20).
  • the dispersion containing the fragmented non-crosslinked collagen component was freeze-dried with FDU-2200 type (manufactured by Tokyo Rika Kikai Co., Ltd.) for 3 days to remove moisture. After lyophilization, dispersion in ultrapure water was attempted again. The result is shown in FIG. As shown in FIG. 3, the fragmented non-crosslinked collagen component was fragmented to the same size as the fragmented crosslinked collagen component and dispersed in ultrapure water before lyophilization. However, after lyophilization, even if suspended with ultrapure water, the dried product was not dispersed in ultrapure water, and a dispersion could not be obtained.
  • FDU-2200 type manufactured by Tokyo Rika Kikai Co., Ltd.
  • Example 4 Measurement of the degree of crosslinking of thermally crosslinked collagen
  • the degree of cross-linking of collagen when cross-linking was performed at a heating temperature of 200 ° C. was measured by the TNBS method.
  • the TNBS method was performed based on the method described in Non-Patent Document 2. That is, first, 4 mg of thermally cross-linked collagen component, 0.5 mL of 4% NaHCO 3 solution (prepared with sodium bicarbonate (Wako, 191-01305) and ultrapure water) and 0.5 mL of 0.5% trinitrobenzenesulfone.
  • FIG. 4 (A) shows the results of absorption spectrum measurement of crosslinked collagen and non-crosslinked collagen
  • FIG. 4 (B) shows the relationship between the heating time and the degree of crosslinking.
  • the waveform of the absorption spectrum there was no significant difference between the heating temperature of 200 ° C. and the non-heated collagen. That is, before and after heating, it was suggested that there was no structural change that could greatly change the physical properties such as gelatinization.
  • the degree of cross-linking when heated at a heating temperature of 200 ° C. for 24 hours was about 12%.
  • the degree of cross-linking of each sample when heated at a heating temperature of 200 ° C. for 5 to 48 hours was confirmed. As a result, when the heating time was 24 hours or more, there was no significant difference in the degree of crosslinking of the generated crosslinked collagen component.
  • Example 5 Tissue formation using fragmented cross-linked collagen component
  • a lyophilized pig skin-derived type I collagen manufactured by Nippon Ham Co., Ltd. was heated at 200 ° C. for 24 hours in the same manner as in Example 1 to obtain a crosslinked collagen component.
  • the obtained cross-linked collagen component was dispersed in 10-fold phosphate buffered saline (X10 PBS) and homogenized for 2 minutes using a stirring homogenizer to obtain a fragmented cross-linked collagen component.
  • the fragmented cross-linked collagen component was freeze-dried with FDU-2200 type (manufactured by Tokyo Rika Kikai Co., Ltd.) for 3 days. -2 was suspended in 300 ⁇ l of a mixed medium to obtain a dispersion containing a fragmented cross-linked collagen component.
  • normal human skin-derived fibroblasts manufactured by NHDF Lonza
  • 1.0 ⁇ 10 6 cells and human umbilical vein-derived vascular endothelium were added to the dispersion of the fragmented crosslinked collagen component (lyophilized heat-crosslinked CMF)
  • Cells (HUVEC Lonza) 2.0 ⁇ 10 5 cells were suspended, added to a 24-well cell culture insert (Corning), and cultured in 2 mL of mixed medium for 1 day. Thereafter, the plate was transferred to a 6-well plate (manufactured by IWAKI), and further cultured for 4 days in 12 mL of mixed medium.
  • Fluorescent immunostaining using an anti-CD31 antibody (DAKO, M0823) and Alexa647-labeled secondary antibody (Invitrogen, A-21235) is performed on the cultured three-dimensional tissue. Blood vessels in the body were fluorescently labeled. This fluorescence-labeled three-dimensional tissue was observed with a confocal quantitative image cytometer CQ1 (manufactured by Yokogawa Electric Corporation) to confirm the presence or absence of vascular network formation. The result is shown in FIG. As shown in FIG. 5, it was confirmed that a vascular network was formed by forming a three-dimensional tissue body using a fragmented crosslinked collagen component.
  • Example 6 Effect of degree of crosslinking on water dispersion stability in fragmentation step
  • the fragmented non-crosslinked collagen component sometimes dissolved in the solvent when the fragmentation step (homogenization) was continued for a long time. It was confirmed whether or not the fragmented cross-linked collagen component has water dispersion stability in the fragmentation step.
  • the water dispersion stability refers to the property that when an extracellular matrix component is contained in a solvent containing water as a main component (preferably ultrapure water), it is in a dispersed state without being dissolved.
  • the degree of cross-linking by the TNBS method of the cross-linked collagen component prepared under the heating temperatures of 100 ° C., 150 ° C. and 200 ° C. was 3%, 4% and 12%, respectively.
  • FIG. 6A shows a fragmented non-crosslinked collagen component, a fragmented cross-linked collagen component having a degree of cross-linking of 3%, 4% or 12% by TNBS method in ultrapure water at a concentration of 1% by mass.
  • the photograph at the time when 24 hours passed at 4 ° C. is shown.
  • FIG. 6B shows the measurement results of the recovery rates of various collagen components. It was shown that when the degree of crosslinking by the TNBS method is increased, it becomes difficult to dissolve in water in the fragmentation step, and it is easy to recover after the fragmentation step. Thus, it was shown that the production efficiency is improved by increasing the degree of crosslinking by the TNBS method.
  • Example 7 Construction of three-dimensional tissue using fragmented crosslinked collagen
  • 8 mg of the fragmented crosslinked collagen component (cCMF) was weighed in the obtained lyophilized body, suspended in 300 ⁇ l of a mixed medium of D-MEM and EBM-2, and fragmented crosslinked collagen component ( A dispersion containing (cCMF) was obtained.
  • a dispersion containing a fragmented non-crosslinked collagen component (CMF) was obtained.
  • a dispersion containing a fragmented cross-linked collagen component (cCMF) or a fragmented non-crosslinked collagen component (CMF) normal human skin-derived fibroblasts (manufactured by NHDF Lonza) 1.0 ⁇ 10 6 cells and human umbilical vein-derived vascular endothelial cells (HUVEC Lonza) 5.0 ⁇ 10 5 cells were suspended, added to a 24-well cell culture insert (manufactured by Corning), and cultured in 2 mL of mixed medium for 1 day. Thereafter, the plate was transferred to a 6-well plate (manufactured by IWAKI), and further cultured for 4 days in 12 mL of mixed medium.
  • cCMF fragmented cross-linked collagen component
  • CMF fragmented non-crosslinked collagen component
  • Fluorescent immunostaining using an anti-CD31 antibody (DAKO, M0823) and Alexa647-labeled secondary antibody (Invitrogen, A-21235) is performed on the cultured three-dimensional tissue. Blood vessels in the body were fluorescently labeled. The fluorescence-labeled three-dimensional tissue was observed with a confocal quantitative image cytometer CQ1 (manufactured by Yokogawa Electric Corporation) to observe vascular network formation. The result is shown in FIG. As shown in FIG. 7, it was shown that the presence or absence of cross-linking did not significantly affect the cell activity in the construction of the three-dimensional tissue.
  • Example 8 Production of fragmented crosslinked collagen by ultrasonic treatment
  • 50 mg of the crosslinked collagen component prepared in Example 1 was suspended in 5 mL of ultrapure water.
  • the tube containing the suspension was subjected to ultrasonic treatment for 20 seconds with an ultrasonic homogenizer (Sonics and Materials VC50) on ice, and then allowed to stand for 10 seconds 100 times.
  • an ultrasonic homogenizer Sonics and Materials VC50
  • FIG. 8 is a photograph and a micrograph showing the appearance of a fragmented cross-linked collagen component (cCMF) using a stirring homogenizer and a fragmented cross-linked collagen component (scCMF) using an ultrasonic homogenizer (sonication).
  • each of cCMF and scCMF was again suspended in 2 mL of ultrapure water under the conditions of a concentration of 0.5 mass% and a temperature of 20 ° C.
  • the suspension start time was set to 0 s, and the state of each suspension was observed for 1 hour.
  • the results are shown in FIG.
  • the transmittance of ultrapure water in which cCMF and scCMF are suspended to light with a wavelength of 500 nm is 11% and 8%, respectively. It was confirmed that all scCMFs can be redispersed after lyophilization.
  • the dispersed state was maintained for a longer time.
  • high dispersibility can be easily maintained by reducing the size (average length) of the fragmented heat-crosslinked collagen component (for example, 50 ⁇ m or less, preferably 20 ⁇ m or less).
  • the transmittance was measured by measuring transmittance with respect to light having a wavelength of 500 nm using a V-670 spectrophotometer (Jasco).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、断片化された細胞外マトリックス成分を含み、断片化された細胞外マトリックス成分の少なくとも一部が架橋されている、細胞外マトリックス含有組成物に関する。

Description

細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤
 本発明は、細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤に関する。
 近年、生体外で細胞の三次元組織体を構築する技術が開発されている。例えば、培養細胞の表面全体が接着膜で被覆された被覆細胞を培養することによって、三次元組織体を製造する方法(特許文献1)、ポリ乳酸等を材料とした足場に細胞を播種して三次元組織体を製造する方法(非特許文献1)等が提案されている。また、本発明者らはこれまで、コラーゲン成分、フィブロネクチン成分等の細胞外マトリックス成分を含む被膜でコートされた細胞を三次元に配置して、三次元組織体を形成することを含む、三次元組織体を製造する方法(特許文献2)、細胞の表面に被膜が形成された被覆細胞を形成すること、及び被覆細胞を三次元に配置することを含む三次元組織体の製造方法であって、被覆細胞の形成は、被膜成分を含有する液に細胞を浸漬させること、及び浸漬させた細胞と被膜成分を含有する液とを液透過性膜によって分離することを含む、三次元組織体の製造方法(特許文献3)等を提案している。このような三次元組織体は、実験動物の代替品、移植材料等としての利用が期待されている。
 細胞の三次元培養の手法には、細胞が接着可能な足場材料を使った手法、足場材料を用いずに細胞を積層させる手法等の様々な手法が検討されているが、いずれの細胞培養手法においても、コラーゲン成分等の細胞外マトリックス成分の共存化で細胞と培養することが一般的に行われている。これは、細胞外マトリックス成分が細胞間質において組織構造を物理的に支持する材料として機能していることに加え、細胞の発生、分化、形態形成等において生物学的に重要な役割を担っていると考えられているためである。
特開2012-115254号公報 国際公開第2015/072164号 国際公開第2016/027853号
Nature Biotechnology, 2005,Vol.23, NO.7, p.879-884 Acta Biomaterialia, 2015, Vol.25,p.131-142
 細胞外マトリックス成分は一般的に不溶性であり多量の細胞外マトリックス成分を水性媒体に溶解させることは困難であった。そのため、細胞外マトリックス成分を含む溶液と細胞とを懸濁することによって三次元組織体を形成する方法では、形成できる組織の厚み、及び、組織体中に占める細胞外マトリックス成分の質量含有率には限界があった。
 そこで、本発明者らは、断片化された細胞外マトリックス成分(断片化細胞外マトリックス成分)を水性媒体に懸濁することによって、より高濃度の細胞外マトリックス成分を含む分散液を調整し、その分散液中に細胞を懸濁することによって、従来の手法では到達し得なかった厚み及び細胞外マトリックス成分の質量含有率を有する組織体が形成できることを見出した。
 断片化細胞外マトリックス成分を含む組織化材料及びこれを用いて組織化する手法は有効なものである一方、断片化細胞外マトリックス成分は、乾燥保存後に水性媒体中に分散させることが困難であった。そのため、断片化細胞外マトリックス成分は用事調製する必要があることから、作業負担増大の一因となっていた。
 本発明は、上記事情に鑑みてなされたものであり、乾燥保存後の分散性に優れる細胞外マトリックス含有組成物及びその製造方法並びに当該細胞外マトリックス含有組成物を含む三次元組織体及び三次元組織体形成剤の提供を目的とする。
 本発明者らは、乾燥保存後の分散性を改善するという新規な課題を解決すべく、鋭意研究を重ねた結果、以下に示す発明によって、当該課題が解決できることを見出した。
 すなわち、本発明は、例えば以下の[1]~[13]を提供する。
[1]断片化された細胞外マトリックス成分を含み、断片化された細胞外マトリックス成分の少なくとも一部が架橋されている、細胞外マトリックス含有組成物。
[2]断片化された細胞外マトリックス成分は、少なくとも一部が繊維状である、(1)に記載の細胞外マトリックス含有組成物。
[3]水性媒体中で分散可能である、(1)又は(2)に記載の細胞外マトリックス含有組成物。
[4]断片化された細胞外マトリックス成分の平均長が100nm~400μmである、(1)~(3)のいずれかに記載の細胞外マトリックス含有組成物。
[5]断片化された細胞外マトリックス成分が断片化されたコラーゲン成分を含む、(1)~(4)のいずれかに記載の細胞外マトリックス含有組成物。
[6]TNBS法による架橋度が2%以上である、(1)~(5)のいずれかに記載の細胞外マトリックス含有組成物。
[7]粉末状である、(1)~(6)のいずれかに記載の細胞外マトリックス含有組成物。
[8](1)~(7)のいずれかに記載の細胞外マトリックス含有組成物を含む、三次元組織体形成剤。
[9](1)~(7)のいずれかに記載の細胞外マトリックス含有組成物と、細胞と、を含む、三次元組織体。
[10]断片化された細胞外マトリックス成分を含む細胞外マトリックス含有組成物の製造方法であって、少なくとも一部が架橋された細胞外マトリックス成分を水性媒体中で断片化する断片化工程を備える、製造方法。
[11]断片化工程前に、細胞外マトリックス成分を加熱して、細胞外マトリックス成分の少なくとも一部を架橋する架橋工程を備える、(10)に記載の製造方法。
[12]架橋工程における加熱温度が、100℃以上である、(11)に記載の製造方法。
[13]断片化工程後に、断片化された細胞外マトリックス成分を乾燥する乾燥工程を備える、(10)~(12)のいずれかに記載の製造方法。
 本発明によれば、乾燥保存後の分散性に優れる細胞外マトリックス含有組成物及びその製造方法並びに当該細胞外マトリックス含有組成物を含む三次元組織体及び三次元組織体形成剤の提供が可能となる。本発明の細胞外マトリックス含有組成物は、断片化した状態で凍結乾燥を行った場合であっても、再分散可能であるため、長期間保存可能である。
図1は凍結乾燥前の断片化架橋コラーゲン成分の写真である。 図2は凍結乾燥後の断片化架橋コラーゲン成分の写真である。 図3は凍結乾燥前及び凍結乾燥後の断片化非架橋コラーゲン成分の写真である。 図4(A)はTNBS法による架橋度の測定結果を示すグラフであり、図4(B)は、架橋時間に応じたTNBS法による架橋度の変化を示すグラフである。 図5は三次元組織体の製造方法及び断片化架橋コラーゲン成分を含む三次元組織体を示す図である。 図6(A)~(B)はそれぞれ断片化工程における水分散安定性の結果を示す写真及びグラフである。 図7は、断片化非架橋コラーゲン成分又は断片化架橋コラーゲン成分を用いて構築した三次元組織体の蛍光観察結果を示す写真である。 図8は、撹拌式又は超音波式ホモジナイザーによる断片化架橋コラーゲン成分の観察結果を示す写真である。 図9は、凍結乾燥後の分散性の確認結果を示すグラフ及び写真である。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<細胞外マトリックス含有組成物>
 本実施形態に係る細胞外マトリックス含有組成物は、断片化された細胞外マトリックス成分(断片化細胞外マトリックス成分)を含み、断片化された細胞外マトリックス成分の少なくとも一部が架橋されている。
 本実施形態に係る細胞外マトリックス含有組成物は、乾燥保存後の分散性(再分散性)に優れている。再分散性に優れていることから、濃度が均一である分散液の調製が容易であるため、三次元組織体を形成するための足場材等として好適に利用することができる。
 細胞外マトリックス含有組成物は、断片化及び架橋されている細胞外マトリックス成分を少なくとも含んでいる。細胞外マトリックス含有組成物は、断片化されており、架橋されていない細胞外マトリックス成分を含んでいてもよく、少なくとも一部が架橋されており、断片化されていない細胞外マトリックス成分を含んでいてもよい。
 細胞外マトリックス成分は、複数の細胞外マトリックス分子によって形成されている、細胞外マトリックス分子の集合体である。細胞外マトリックス分子とは、生物において細胞の外に存在する物質を意味する。細胞外マトリックス分子としては、細胞の生育及び細胞集合体の形成に悪影響を及ぼさない限り、任意の物質を用いることができる。細胞外マトリックス分子として、コラーゲン、ラミニン、フィブロネクチン、ビトロネクチン、エラスチン、テネイシン、エンタクチン、フィブリリン、及びプロテオグリカン等が挙げられるが、これらに限定されない。細胞外マトリックス成分は、これらを1種単独で用いてもよく、組み合わせて用いてもよい。なお、細胞外マトリックス分子は、細胞の生育及び細胞集合体の形成に悪影響を及ぼさない限り、上述の細胞外マトリックス分子の改変体及びバリアントであってもよい。
 コラーゲンとしては、例えば、線維性コラーゲン及び非線維性コラーゲンが挙げられる。線維性コラーゲンとは、コラーゲン線維の主成分となるコラーゲンを意味し、具体的には、I型コラーゲン、II型コラーゲン、III型コラーゲン等が挙げられる。非線維性コラーゲンとしては、例えば、IV型コラーゲンが挙げられる。
 プロテオグリカンとして、コンドロイチン硫酸プロテオグリカン、ヘパラン硫酸プロテオグリカン、ケラタン硫酸プロテオグリカン、デルマタン硫酸プロテオグリカンが挙げられるが、これらに限定されない。
 細胞外マトリックス成分は、コラーゲン、ラミニン及びフィブロネクチンからなる群より選択される少なくとも1種を含んでいてよく、コラーゲンを含むことが好ましい。コラーゲンは好ましくは繊維性コラーゲンであり、より好ましくはI型コラーゲンである。線維性コラーゲンは、市販されているコラーゲンを用いてもよく、その具体例としては、日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体が挙げられる。コラーゲンは、テロペプチドが除去されたコラーゲンであるアテロコラーゲンであることが好ましい。アテロコラーゲンは、例えば、トロポコラーゲンをペプシン処理することにより得ることができる。
 細胞外マトリックス成分は、動物由来の細胞外マトリックス成分であってよい。
細胞外マトリックス成分の由来となる動物種は、哺乳類、鳥類、爬虫類、又は魚類等であってよく、哺乳類であることが好ましい。細胞外マトリックス成分の由来となる動物種として、例えば、ヒト、ブタ、ウシ等が挙げられるが、これらに限定されない。細胞外マトリックス成分の由来となる動物種は、哺乳類であってよく、ブタであってよい。細胞外マトリックス成分は、一種類の動物に由来する成分を用いてもよいし、複数種の動物に由来する成分を併用して用いてもよい。細胞外マトリックス成分の由来となる動物種は、三次元組織化する細胞の由来と同じであっても異なっていてもよい。
 断片化細胞外マトリックス成分は、上述の細胞外マトリックス成分を物理的な力の印加により細分化した成分である。断片化細胞外マトリックス成分は、細胞外マトリックス分子の結合を切断することなく、細胞外マトリックス成分を解繊して得られる解繊された細胞外マトリックス成分(解繊細胞外マトリックス成分)であることが好ましい。断片化細胞外マトリックス成分が、解繊された細胞外マトリックス成分である場合、足場材料としてより効果的に用いることが可能となる。
 細胞外マトリックス成分を断片化する方法としては、特に制限されない。例えば、超音波式ホモジナイザー、撹拌式ホモジナイザー、及び高圧式ホモジナイザー等の物理的な力の印加によって細胞外マトリックス成分を断片化(又は解繊)してもよい。撹拌式ホモジナイザーを用いる場合、細胞外マトリックス成分をそのままホモジナイズしてもよいし、生理食塩水等の水性媒体中でホモジナイズしてもよい。また、ホモジナイズする時間、回数等を調整することでミリメートルサイズ、ナノメートルサイズの断片化細胞外マトリックス成分を得ることも可能である。断片化細胞外マトリックス成分は、凍結融解を繰り返すことで断片化することにより得ることもできる。
 断片化細胞外マトリックス成分は、断片化されたコラーゲン成分(断片化コラーゲン成分)を含むことが好ましい。断片化コラーゲン成分は、水性媒体に分散させることにより、水性媒体中で細胞と接触しやすくなり、三次元組織体の形成を促進し得る。断片化されたコラーゲン成分は解繊されたコラーゲン成分であることが好ましい。
 断片化細胞外マトリックス成分は、天然由来であってよい。天然由来である断片化細胞外マトリックス成分は、天然の細胞外マトリックス成分を断片化したものであり、天然由来である断片化細胞外マトリックス成分には、化学的処理により天然の細胞外マトリックス分子の構造を改変した成分は含まれない。化学的処理としては、例えば、アルカリ処理による加水分解等が挙げられる。
 断片化細胞外マトリックス成分の形状としては、例えば、繊維状が挙げられる。繊維状とは、糸状の細胞外マトリックス成分で構成される形状、又は糸状の細胞外マトリックス成分が架橋して構成される形状を意味する。例えば、断片化コラーゲン成分は、コラーゲンに由来する三重らせん構造(繊維状)を維持していることが好ましい。再分散性がより一層優れたものとなる観点から、断片化細胞外マトリックス成分の少なくとも一部は、繊維状であることが好ましい。
 一実施形態において、断片化細胞外マトリックス成分の平均長は、100nm~400μmであることが好ましく、厚い組織が形成しやすくなる観点から、より好ましくは、5μm~400μm、10μm~400μm、22μm~400μm、又は100μm~400μmである。他の実施形態において、断片化細胞外マトリックス成分の平均長は、組織形成が安定しやすくなる観点及び再分散性がより一層優れたものとなる観点から、100μm以下であってよく、好ましくは50μm以下であり、より好ましくは30μm以下であり、更に好ましくは25μm以下、又は20μm以下であり、15μm以下、10μm以下、又は1μm以下であってよく、100nm以上であってもよい。断片化細胞外マトリックス成分全体のうち、大部分の断片化細胞外マトリックス成分の平均長が上記数値範囲内であることが好ましい。具体的には、断片化細胞外マトリックス成分全体のうち95%の断片化細胞外マトリックス成分の平均長が上記数値範囲内であることが好ましい。断片化細胞外マトリックス成分は、平均長が上記範囲内である断片化コラーゲン成分であることが好ましい。
 断片化細胞外マトリックス成分の平均径は、50nm~30μmであることが好ましく、4μm~30μmであることがより好ましく、20μm~30μmであることがさらにより好ましい。断片化細胞外マトリックス成分は、平均径が上記範囲内である断片化コラーゲン成分であることが好ましい。
 なお、上述の平均長及び平均径の範囲は、組織形成の観点から至適化されたものであるため、後述する乾燥工程後、断片化細胞外マトリックス成分を再度水性媒体に懸濁し組織形成する段階で上記の平均長又は平均径の範囲内に収まっていることが望ましい。
 断片化細胞外マトリックス成分平均長及び平均径は、光学顕微鏡によって個々の断片化コラーゲン成分を測定し、画像解析することによって求めることが可能である。なお、本明細書において、「平均長」は、測定した試料の長手方向の長さの平均値を意味し、「平均径」は、測定した試料の長手方向に直交する方向の長さの平均値を意味する。
 本実施形態に係る細胞外マトリックス含有組成物において、断片化された細胞外マトリックス成分の少なくとも一部は架橋されている。細胞外マトリックス成分は、細胞外マトリックス成分を構成する細胞外マトリックス分子の分子内又は分子間で架橋されていてよい。
 架橋する方法としては、例えば、熱、紫外線、放射線等の印加による物理架橋、架橋剤、酵素反応等による化学架橋等による方法が挙げられるが、その方法は特に限定されない。細胞外マトリックス成分にできるだけ人工的な要素を付加しないでよいため、熱の印加による物理架橋が好ましい。架橋(物理架橋及び化学架橋)は、共有結合を介した架橋であってよい。
 細胞外マトリックス成分がコラーゲン成分を含む場合、架橋は、コラーゲン分子(三重らせん構造)の間で形成されていてもよく、コラーゲン分子によって形成されたコラーゲン細繊維の間で形成されていてもよい。架橋は、熱による架橋(熱架橋)が好ましい。熱架橋は、例えば、真空ポンプを使って減圧下で、加熱処理を行うことにより実施することができる。コラーゲン成分の熱架橋を行う場合、細胞外マトリックス成分は、コラーゲン分子のアミノ基が、同一又は他のコラーゲン分子のカルボキシ基とペプチド結合(-NH-CO-)を形成することにより、架橋されていてよい。
 細胞外マトリックス成分は架橋剤を使用することによっても、架橋することができる。架橋剤は、例えば、カルボキシル基とアミノ基を架橋可能なもの、又はアミノ基同士を架橋可能なものであってよい。架橋剤としては、例えば、アルデヒド系、カルボジイミド系、エポキシド系及びイミダゾール系架橋剤が経済性、安全性及び操作性の観点から好ましく、具体的には、グルタルアルデヒド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド・塩酸塩、1-シクロヘキシル-3-(2-モルホリニル-4-エチル)カルボジイミド・スルホン酸塩等の水溶性カルボジイミドを挙げることができる。
 架橋度は、TNBS(2,4,6-trinitrobenzene sulfonic acid)法で測定される架橋度であってよい。TNBS法による架橋度は、細胞外マトリックス成分が有するアミノ基のうち架橋に使われているアミノ基の割合をいう。TNBS法による架橋度は、非特許文献2等に記載されているTNBS法に基づき定量することが可能である。
 TNBS法による架橋度は、1%以上、2%以上、4%以上、8%以上、又は12%以上であってよく、30%以下、20%以下、又は15%以下であってもよい。TNBS法による架橋度が上記範囲にあることにより、細胞外マトリックス分子が適度に分散することができ、また、乾燥保存後の再分散性が良好である。熱による架橋を行う場合、例えば、加熱処理を行う際の温度を高くすると、TNBS法による架橋度が高くなる傾向がある。
 細胞外マトリックス成分がコラーゲン成分を含む場合、TNBS法により測定される架橋度が上記範囲内であることが好ましい。
 架橋度は、カルボキシル基を定量することにより、算出してもよい。例えば、水に不溶性の細胞外マトリックス成分の場合、TBO(トルイジンブルーO)法により定量してもよい。
 細胞外マトリックス含有組成物の形態は、秤量が容易になりやすい観点から、固形状又は粉末状であってよく、好ましくは粉末状である。細胞外マトリックス含有組成物は、水分を含んでいなくてよい。細胞外マトリックス含有組成物中の水分は、例えば、凍結乾燥法により除去することができる。水分を含んでいないとは、一切の水分子を含んでいないことを意味するものではなく、凍結乾燥法等の乾燥手法により常識的に達することができる程度に水分を含んでいないことを意味する。
 一実施形態に係る細胞外マトリックス含有組成物は、水性媒体中において分散可能である。「水性媒体」とは、水を必須構成成分とする液体を意味する。水性媒体としては、細胞外マトリックス成分が安定に存在できるものであれば、特に制限はない。例えば、水性媒体として、リン酸緩衝生理食塩水(PBS)等の生理食塩水、Dulbecco’s Modified Eagle培地(DMEM)、血管内皮細胞専用培地(EGM2)等の液体培地が挙げられるがこれに制限されない。
 水性媒体中において分散可能であることは、例えば、以下の方法により判定される。すなわち、細胞外マトリックス含有組成物50mgを超純水5mL中に添加して懸濁したときに超純水中で細胞外マトリックス含有組成物が分散した場合(凝集、沈降等が生じない場合)、水性媒体中において分散可能であると判定できる。超純水中で細胞外マトリックス含有組成物を分散させる際の温度は、培養温度(例えば、37℃)以下の温度であってよく、室温であってもよい。分散している状態とは、目視にて凝集、沈降等が生じていない状態を意味する。なお、分散可能であることは、例えば、波長500nmの光に対する透過率の測定によっても判別することができる。波長500nmの光に対する透過率が、50%以下、好ましくは35%以下、より好ましくは30%以下、さらに好ましくは20%以下、さらにより好ましくは15%以下、さらによりまた好ましくは12%以下の場合に、分散可能であると判別することができる。透過率は、細胞外マトリックス含有組成物及び水(超純水等)からなる水溶液を被測定試料として測定してよい。被測定試料中の細胞外マトリックス含有組成物の含有量は、細胞外マトリックス含有組成物及び水からなる水溶液の全質量を基準として、0.5質量%であってよい。透過率は、細胞外マトリックス含有組成物を超純水に添加した直後に測定されてもよい。透過率の測定は、例えば、紫外可視近赤外分光光度計を用い、波長500nmの光に対する透過率を測定することにより実施することができる。透過率は、具体的には後述する実施例に記載の方法で測定することができる。
 水性媒体のpHは細胞の生育及び細胞集合体の形成に悪影響を及ぼさない範囲が好ましい。水性媒体のpHは、細胞に投入した際の細胞への負荷を軽減する観点から、例えば、7.0以上であってよく、8.0以下であってよい。具体的には、水性媒体のpHは、7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、又は8.0であってよい。水性媒体は、上記pHの範囲において緩衝能を有することが好ましく、より好ましくは液体培地である。液体培地は特に制限はなく、培養する細胞の種類に応じて好適な培地を選択できる。当該培地としては、例えば、Eagle’s MEM培地、DMEM、Modified Eagle培地(MEM)、Minimum Essential培地、RPMI、及びGlutaMax培地等が挙げられる。培地は、血清を添加した培地であってもよいし、無血清培地であってもよい。更に、液体培地は二種類以上の培地を混合した混合培地であってもよい。
<細胞外マトリックス含有組成物の製造方法>
 細胞外マトリックス含有組成物は、細胞外マトリックス成分を架橋した後、断片化することにより、製造してもよく、細胞外マトリックス成分を断片化した後、架橋することにより製造してもよい。本実施形態に係る細胞外マトリックス含有組成物は、細胞外マトリックス分子を架橋した後、断片化することにより製造することが好ましい。これにより、乾燥保存後の再分散性が向上するため、細胞と混合しやすく、三次元組織体を形成しやすい。
 以下、細胞外マトリックス含有組成物の製造方法の一例として、細胞外マトリックス分子を架橋した後に断片化することにより、細胞外マトリックス含有組成物を製造する方法について説明する。
 一実施形態に係る細胞外マトリックス含有組成物の製造方法は、少なくとも一部が架橋された細胞外マトリックス成分を水性媒体中で断片化する断片化工程を備える。
 少なくとも一部が架橋された細胞外マトリックス成分を断片化する方法は、上記例示した方法と同様の方法であってよい。また、水性媒体は、上述の水性媒体と同様であってよい。
 本実施形態に係る製造方法は、断片化工程前に、細胞外マトリックス成分を加熱して、細胞外マトリックス成分の少なくとも一部を架橋する架橋工程を備えていてよい。
 架橋工程において、細胞外マトリックス成分を加熱する際の温度(加熱温度)及び時間(加熱時間)は適宜定めることができる。架橋工程における、加熱温度は、例えば100℃以上であってよく、200℃以下であってよい。加熱温度は、具体的には、例えば、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、220℃等であってよい。加熱時間(上記加熱温度で保持する時間)は、加熱温度により適宜設定することができる。加熱時間は、例えば、100℃~220℃で加熱する場合、6時間以上72時間以下であってよく、より好ましくは24時間以上48時間以下である。架橋工程では、溶媒非存在下で加熱してよく、また、減圧条件下で加熱してもよい。
 本実施形態に係る製造方法は、断片化工程後に、断片化された細胞外マトリックス成分を乾燥する乾燥工程を備えていてよい。
 乾燥工程では、断片化された細胞外マトリックス成分を乾燥する。乾燥は、例えば、凍結乾燥法により実施してよい。断片化工程後に、乾燥工程を行うことで、断片化細胞外マトリックス成分及び水性媒体を含む液から、水性媒体が除去される。水性媒体が除去されるとは、断片化された細胞外マトリックス成分中に一切の水分が付着していないことを意味するものではなく、上述の一般的な乾燥手法により、常識的に達することができる程度に水分が付着していないことを意味する。
 細胞外マトリックス含有組成物は、三次元組織体を形成するための足場材として好適に用いることができる。したがって、細胞外マトリックス含有組成物は、三次元組織体形成用途に好適に用いられる。
<三次元組織体形成剤>
 細胞外マトリックス含有組成物は、三次元組織体を形成するための足場材等として好適であるため、本発明の一実施形態において、上述の細胞外マトリックス含有組成物を含む、三次元組織体形成剤が提供される。
 本実施形態に係る三次元組織体形成剤は、上述の断片化細胞外マトリックス成分を含んでいるため、より厚い三次元組織体を形成することができる。
 三次元組織形成剤は、保存する際には粉末の状態であってよく、また、三次元組織体の形成段階においては、水性媒体に分散させた分散液の状態であることが好ましい。
<三次元組織体>
 本実施形態に係る三次元組織体は、上述の細胞外マトリックス含有組成物と、細胞と、を含む。細胞の少なくとも一部が細胞外マトリックス含有組成物に接着していてよい。「三次元組織体」とは、細胞外マトリックス成分を介して細胞が三次元的に配置されている細胞の集合体であって、細胞培養によって人工的に作られる集合体を意味する。三次元組織体の形状には特に制限はなく、例えば、シート状、球体状、楕円体状、直方体状等が挙げられる。ここで、生体組織は、血管、汗腺、リンパ管、脂腺等を含み、構成が三次元組織体より複雑である。そのため、三次元組織体と生体組織とは容易に区別可能である。
 細胞は、特に限定されないが、例えば、ヒト、サル、イヌ、ネコ、ウサギ、ブタ、ウシ、マウス、ラット等の動物に由来する細胞であってよい。細胞の由来部位も特に限定されず、骨、筋肉、内臓、神経、脳、骨、皮膚、血液等に由来する体細胞であってもよく、生殖細胞であってもよい。さらに、細胞は、誘導多能性幹細胞細胞(iPS細胞)、胚性幹細胞(ES細胞)であってもよく、また、初代培養細胞、継代培養細胞及び細胞株細胞等の培養細胞であってもよい。具体的には、細胞として、例えば、神経細胞、樹状細胞、免疫細胞、血管内皮細胞(例えば、ヒト臍帯静脈由来血管内皮細胞(HUVEC))、リンパ管内皮細胞、線維芽細胞、大腸がん細胞(例えば、ヒト大腸がん細胞(HT29))、肝癌細胞等の癌細胞、上皮細胞(例えば、ヒト歯肉上皮細胞)、角化細胞、心筋細胞(例えば、ヒトiPS細胞由来心筋細胞(iPS-CM))、肝細胞、膵島細胞、組織幹細胞、平滑筋細胞(例えば、大動脈平滑筋細胞(Aorta-SMC)等が挙げられるが、これらに限定されない。細胞は、一種単独で用いてもよいし、複数種類の細胞を組み合わせて用いてもよい。
 細胞として、線維性コラーゲン等のコラーゲンを分泌するコラーゲン分泌細胞を含むことが好ましい。コラーゲン分泌細胞としては、例えば、線維芽細胞、軟骨細胞、骨芽細胞等の間葉系細胞が挙げられ、好ましくは、線維芽細胞である。好ましい線維芽細胞としては、例えば、ヒト皮膚由来線維芽細胞(NHDF)、ヒト心臓線維芽細胞(NHCF)及びヒト歯肉線維芽細胞(HGF)が挙げられる。
 三次元組織体が細胞としてコラーゲン分泌細胞を含む場合、三次元組織体は内因性コラーゲンを含んでいてよい。「内因性コラーゲン」とは、三次元組織体を構成するコラーゲン産生細胞が産生するコラーゲンを意味する。内因性コラーゲンは、線維性コラーゲンであってもよいし、非線維性コラーゲンであってもよい。
 三次元組織体が細胞としてコラーゲン分泌細胞を含む場合、三次元組織体は、コラーゲン分泌細胞を含む細胞と、細胞外マトリックス含有組成物と、内因性コラーゲン成分とを含んでいてよい。この場合、コラーゲン分泌細胞を含む細胞の少なくとも一部は細胞外マトリックス含有組成物及び/又は内因性コラーゲン成分に接着していてよい。従来の三次元組織体は、コラーゲンの濃度が低く、且つ細胞密度が高いものであった。そのため、培養中又は培養後に細胞のけん引力によって三次元組織体が収縮したり、培養中又は培養後に細胞が産生する酵素によって三次元組織体が容易に分解される等の問題があった。一実施形態に係る三次元組織体は、コラーゲンの濃度が従来のものより高く、収縮が起きにくく安定である。
 三次元組織体は、細胞として、コラーゲン分泌細胞と、コラーゲン分泌細胞以外の細胞と、を含んでいてよい。コラーゲン産生細胞以外の細胞としては、血管内皮細胞(例えば、ヒト臍帯静脈由来血管内皮細胞(HUVEC))、大腸がん細胞(例えば、ヒト大腸がん細胞(HT29))、肝がん細胞等のがん細胞、心筋細胞(例えば、ヒトiPS細胞由来心筋細胞(iPS-CM))、上皮細胞(例えば、ヒト歯肉上皮細胞)、角化細胞、リンパ管内皮細胞、神経細胞、肝細胞、組織幹細胞、胚性幹細胞、人工多能性幹細胞、接着性細胞(例えば、免疫細胞)、平滑筋細胞(例えば、大動脈平滑筋細胞(Aorta-SMC))等が挙げられる。好ましくは、上記三次元組織体を構成する細胞が、血管内皮細胞、がん細胞及び心筋細胞からなる群から選ばれる、一種又は複数種の細胞を更に含む。
 三次元組織体におけるコラーゲンの含有率は、上記三次元組織体(乾燥重量)を基準として0.01~90質量%であってよく、10~90質量%であることが好ましく、10~80質量%であることが好ましく、10~70質量%であることが好ましく、10~60質量%であることが好ましく、1~50質量%であることが好ましく、10~50質量%であることが好ましく、10~30質量%であることがより好ましく、20~30質量%であることがより好ましい。
 ここで、「三次元組織体におけるコラーゲン」とは、三次元組織体を構成するコラーゲンを意味し、内因性コラーゲンであってもよいし、断片化コラーゲン成分に由来するコラーゲン(外因性コラーゲン)であってもよい。すなわち、三次元組織体が内因性コラーゲン成分及び断片化コラーゲン成分を含む場合、上記三次元組織体を構成するコラーゲンの濃度は、内因性コラーゲン成分及び上記断片化コラーゲン成分の合計濃度を意味する。上記コラーゲンの濃度は、得られた三次元組織体の体積、及び脱細胞化した三次元組織体の質量から算出することが可能である。
 三次元組織体におけるコラーゲンの量を定量する方法としては、例えば、以下のようなヒドロキシプロリンを定量する方法が挙げられる。三次元組織体を溶解した溶解液に、塩酸(HCl)を混合し、高温で所定の時間インキュベートした後に室温に戻し、遠心分離した上澄みを所定の濃度に希釈することでサンプルを調製する。ヒドロキシプロリンスタンダード溶液をサンプルと同様に処理した後、段階的に希釈してスタンダードを調製する。サンプル及びスタンダードのそれぞれに対してヒドロキシプロリンアッセイバッファ及び検出試薬で所定の処理をし、570nmの吸光度を測定する。サンプルの吸光度をスタンダードと比較することでコラーゲン量を算出する。なお、三次元組織体を、高濃度の塩酸に直接懸濁して溶解した溶解液を遠心分離して上澄みを回収し、コラーゲン定量に用いてもよい。また、溶解させる三次元組織体は、培養液から回収したままの状態であってもよいし、回収後に乾燥処理を行い、液体成分を除去した状態で溶解させてもよい。但し、培養液から回収したままの状態の三次元組織体を溶解してコラーゲン定量を行う場合、三次元組織体が吸収している培地成分、及び実験手技の問題による培地の残りの影響で、三次元組織体重量の計測値がばらつくことが予想されるため、組織体の重量及び単位重量あたりに占めるコラーゲン量を安定して計測する観点からは、乾燥後の重量を基準とすることが好ましい。
 コラーゲンの量を定量する方法として、より具体的には、例えば、以下のような方法が挙げられる。
(サンプルの調製)
 凍結乾燥処理を行った三次元組織体の全量を6mol/l HClと混合し、ヒートブロックで95℃、20時間以上インキュベートした後、室温に戻す。13000gで10分遠心分離した後、サンプル溶液の上澄みを回収する。後述する測定において結果が検量線の範囲内に収まるように6mol/l HClで適宜希釈した後、200μLを100μLの超純水で希釈することでサンプルを調製する。サンプルは35μL用いる。
(スタンダードの調製)
 スクリューキャップチューブに125μLのスタンダード溶液(1200μg/mL in acetic acid)と、125μLの12mol/l HClを加え混合し、ヒートブロックで95℃、20時間インキュベートした後、室温に戻す。13000gで10分遠心分離した後、上澄みを超純水で希釈して300μg/mLのS1を作製し、S1を段階的に希釈してS2(200μg/mL)、S3(100μg/mL)、S4(50μg/mL)、S5(25μg/mL)、S6(12.5μg/mL)、S7(6.25μg/mL)を作製する。4mol/l HCl90μLのみのS8(0μg/mL)も準備する。
(アッセイ)
 35μLのスタンダード及びサンプルをそれぞれプレート(QuickZyme Total Collagen Assayキット付属、QuickZyme Biosciences社)に加える。75μLのアッセイバッファ(上記キット付属)をそれぞれのウェルに加える。シールでプレートを閉じ、20分シェイキングしながら室温でインキュベートする。シールをはがし、75μLのdetection reagent (reagent A:B=30μL:45μL、上記キット付属)をそれぞれのウェルに加える。シールでプレートを閉じ、シェイキングで溶液を混合し、60℃で60分インキュベートする。氷上で十分に冷まし、シールをはがして570nmの吸光度を測定する。サンプルの吸光度をスタンダードと比較することでコラーゲン量を算出する。
 また、三次元組織体中に占めるコラーゲンを、その面積比又は体積比によって規定してもよい。「面積比又は体積比によって規定する」とは、例えば三次元組織体中のコラーゲンを既知の染色手法(例えば、抗コラーゲン抗体を用いた免疫染色、又はマッソントリクローム染色)等で他の組織構成物と区別可能な状態にした上で、肉眼観察、各種顕微鏡及び画像解析ソフト等を用いて、三次元組織体全体に占めるコラーゲンの存在領域の比率を算出することを意味する。面積比で規定する場合、三次元組織体中の如何なる断面もしくは表面によって面積比を規定するかは限定されないが、例えば三次元組織体が球状体等である場合には、その略中心部を通る断面図によって規定してもよい。
 例えば、三次元組織体中のコラーゲンを面積比によって規定する場合、その面積の割合は、上記三次元組織体の全体の面積を基準として0.01~99%であり、1~99%であることが好ましく、5~90%であることが好ましく、7~90%であることが好ましく、20~90%であることが好ましく、50~90%であることがより好ましい。「三次元組織体におけるコラーゲン」については、上述したとおりである。三次元組織体が外因性コラーゲンを含む場合、上記三次元組織体を構成するコラーゲンの面積の割合は、内因性コラーゲン及び外因性コラーゲンを合わせた面積の割合を意味する。上記コラーゲンの面積の割合は、例えば、得られた三次元組織体をマッソントリクロームで染色し、三次元組織体の略中心部を通る断面の全体の面積に対する、青く染色したコラーゲンの面積の割合として算出することが可能である。
 上記三次元組織体は、トリプシンの濃度0.25%、温度37℃、pH7.4、反応時間15分でトリプシン処理を行った後の残存率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更により好ましい。このような三次元組織体は、培養中又は培養後において酵素による分解が起きにくく、安定である。上記残存率は、例えば、トリプシン処理の前後における三次元組織体の質量から算出できる。
 上記三次元組織体は、コラゲナーゼの濃度0.25%、温度37℃、pH7.4、反応時間15分でコラゲナーゼ処理を行った後の残存率が70%以上であってもよく、80%以上であることがより好ましく、90%以上であることが更により好ましい。このような三次元組織体は、培養中又は培養後における酵素による分解が起きにくく、安定である。
 上記三次元組織体の厚さは10μm以上であることが好ましく、100μm以上であることがより好ましく、1000μm以上であることが更により好ましい。このような三次元組織体は、生体組織により近い構造であり、実験動物の代替品、及び移植材料として好適なものとなる。三次元組織体の厚さの上限は、特に制限されないが、例えば、10mm以下であってもよいし、3mm以下であってもよいし、2mm以下であってもよいし、1.5mm以下であってもよいし、1mm以下であってもよい。
 ここで、「三次元組織体の厚さ」とは、三次元組織体がシート状、又は直方体状である場合、主面に垂直な方向における両端の距離を意味する。上記主面に凹凸がある場合、厚さは上記主面の最も薄い部分における距離を意味する。
 また、三次元組織体が球体状である場合、その直径を意味する。さらにまた、三次元組織体が楕円体状である場合、その短径を意味する。三次元組織体が略球体状又は略楕円体状であって表面に凹凸がある場合、厚さは、三次元組織体の重心を通る直線と上記表面とが交差する2点間の距離であって最短の距離を意味する。
<三次元組織体の製造方法>
 本実施形態に係る三次元組織体の製造方法は、(1)水性媒体中において、上述の細胞外マトリックス含有組成物と細胞とを接触させる工程(工程(1))、及び(2)上述の細胞外マトリックス含有組成物が接触した細胞を培養する工程(工程(2))を備えている。
 三次元組織体の製造方法において、細胞は、コラーゲン産生細胞を含む細胞であることが好ましい。コラーゲン分泌細胞を含む細胞を用いることで、より安定で、細胞が均一に分布している三次元組織体が得られる。このような三次元組織体が得られるメカニズムの詳細は不明であるが、以下のように推測される。
 従来の足場を利用した三次元組織体の製造方法では、予め用意された足場に目的の細胞を注入するため、足場の内部にまで均一に細胞を分布させることが困難であった。細胞がコラーゲン産生細胞を含む細胞である場合、まず、細胞が細胞外マトリックス含有組成物上に接触して接着する。その後、細胞は自分自身で細胞外マトリックス成分を構成するタンパク質(例えば、線維性コラーゲン等のコラーゲン)を産生する。産生されたタンパク質は細胞外マトリックス含有組成物上に接触して接着することで、細胞外マトリックス含有組成物間の架橋剤として働き、細胞が均一に存在する環境下で細胞外マトリックス成分を構成するタンパク質等の構造化が進む。その結果、より安定で、細胞が均一に分布している三次元組織体が得られる。ただし、上記推測は本発明を限定するものではない。
 また、特許文献1~3に記載の製造方法では、三次元組織体を製造するための工程数が多く、1時間程度の作業時間が必要であった。本実施形態に係る製造方法によれば、短い作業時間で三次元組織体を製造できる。さらに、本実施形態に係る製造方法によれば、簡便に三次元組織体を製造できる。特許文献2に記載の製造方法では、厚さが1mm程度の三次元組織体を製造するために、細胞が少なくとも10cells必要であった。本実施形態に係る製造方法によれば、比較的少ない細胞数で、厚さが1mm以上である、サイズが大きい三次元組織体を製造できる。
 工程(1)では、水性媒体中において、細胞外マトリックス含有組成物と細胞とを接触させる。水性媒体中において、細胞外マトリックス含有組成物と細胞とを接触させる方法は特に制限されない。例えば、細胞を含む培養液に、細胞外マトリックス含有組成物を加える方法、細胞外マトリックス含有組成物に水性媒体と細胞を加える方法、又は予め用意した水性媒体に、細胞外マトリックス含有組成物及び細胞をそれぞれ加える方法が挙げられる。
 工程(1)においては、コラーゲン産生細胞及びコラーゲン産生細胞以外の他の細胞を含む細胞を用いてよい。コラーゲン産生細胞、及びコラーゲン産生細胞以外の他の細胞としては、上述した細胞をそれぞれ用いることができる。コラーゲン産生細胞及びコラーゲン産生細胞以外の他の細胞を共に用いて三次元組織体を製造することで、種々のモデル組織を製造することが可能になる。例えば、NHCF及びHUVECを用いた場合、内部に毛細血管を有する三次元組織体を得ることが可能になる。NHCF及び大腸がん細胞を用いた場合、大腸がんのモデル組織を得ることが可能になる。また、NHCF及びiPS-CMを用いた場合、同期拍動を示す心筋のモデル組織を得ることが可能になる。
 工程(1)における細胞外マトリックス含有組成物の濃度は、目的とする三次元組織体の形状、厚さ、培養器のサイズ等に応じて適宜決定できる。例えば、工程(1)における水性媒体中の細胞外マトリックス含有組成物の濃度は、0.1~90質量%であってもよいし、1~30質量%であってもよい。
 工程(1)における細胞外マトリックス含有組成物の量は、1×10cellsの細胞に対して、0.1~100mgであってもよいし、1~50mgであってもよい。
 工程(1)において、細胞外マトリックス含有組成物と細胞との質量比(細胞外マトリックス含有組成物/細胞)は、1/1~1000/1であることが好ましく、9/1~900/1であることがより好ましく、10/1~500/1であることがさらに好ましい。
 コラーゲン産生細胞とその他の細胞とを共に用いる場合、その他の細胞の比率に対する工程(1)におけるコラーゲン産生細胞の細胞数の比(工程(1)におけるコラーゲン産生細胞/その他の細胞の比)は、9/1~99/1であってもよく、50/50~80/20であってもよく、20/80~50/50であってもよく、10/90~50/50であってもよい。
 工程(1)及び工程(2)の間に、水性媒体中における細胞外マトリックス含有組成物と細胞とを共に沈降させる工程を更に含んでもよい。このような工程を行うことで、三次元組織体における細胞外マトリックス含有組成物及び細胞の分布が、より均一になる。具体的な方法としては、特に制限はないが、例えば細胞外マトリックス含有組成物と細胞とを含む培養液を遠心操作する方法が挙げられる。
 工程(1)は、水性媒体中で細胞の層を形成させた後、細胞外マトリックス含有組成物を接触させることにより行われてもよい。細胞の層を細胞外マトリックス含有組成物と接触させる前に形成することで、下層部の細胞密度が高い三次元組織体を作製することができる。また、コラーゲン産生細胞を含む細胞の層を細胞外マトリックス含有組成物と接触させる前に形成することで、コラーゲン産生細胞を含む細胞の下層部の細胞密度が高い三次元組織体を作製することができる。用いる細胞の種類(例えば、大動脈平滑筋細胞)によっては、この方法により、より生体に近い組織を作製することができる。
 工程(2)の後、工程(3)として、さらに細胞を接触させ、細胞を培養する工程を含んでもよい。上記細胞は、工程(1)で用いた細胞と同種であってよく、異種であってもよい。例えば、工程(1)で用いる細胞がコラーゲン産生細胞以外の細胞を含む場合に、工程(3)で用いる細胞はコラーゲン産生細胞を含んでもよい。また例えば、工程(1)で用いる細胞がコラーゲン産生細胞を含む場合に、工程(3)で用いる細胞はコラーゲン産生細胞以外の細胞を含んでもよい。工程(1)で用いる細胞及び工程(3)で用いる細胞の両方がコラーゲン産生細胞を含んでもよく、工程(1)で用いる細胞及び工程(3)で用いる細胞の両方がコラーゲン産生細胞以外の細胞を含んでもよい。上記工程(3)により、二層構造の三次元組織体を作製することができる。例えば、大動脈平滑筋細胞及び血管内皮細胞を用いた場合、並びにヒト皮膚由来線維芽細胞及びヒト表皮角化細胞を用いた場合には、この方法により、より生体に近い組織を作製することができる。また、例えば、ヒト歯肉線維芽細胞と歯肉上皮細胞を用いた場合には、この方法により、組織収縮及び組織割れのない二層構造の三次元組織体を作製することができる。
 細胞外マトリックス含有組成物が接触した細胞を培養する方法は、特に制限はなく、培養する細胞の種類に応じて好適な培養方法で行うことができる。例えば、培養温度は20℃~40℃であってもよく、30℃~37℃であってもよい。培地のpHは、6~8であってもよく、7.2~7.4であってもよい。培養時間は、1日~2週間であってもよく、1週間~2週間であってもよい。
 培地は特に制限はなく、培養する細胞の種類に応じて好適な培地を選択できる。培地としては、例えば、Eagle’s MEM培地、DMEM、Modified Eagle培地(MEM)、Minimum Essential培地、RPMI、及びGlutaMax培地等が挙げられる。培地は、血清を添加した培地であってもよいし、無血清培地であってもよい。更に、液体培地は二種類以上の培地を混合した混合培地であってもよい。
 工程(2)における培地中の細胞密度は、目的とする三次元組織体の形状、厚さ、培養器のサイズ等に応じて適宜決定できる。例えば、工程(2)における培地中の細胞密度は、1~10cells/mlであってもよいし、10~10cells/mlであってもよい。また、工程(2)における培地中の細胞密度は、工程(1)における水性媒体中の細胞密度と同じであってもよい。
 上記三次元組織体は、培養中の収縮率が20%以下であることが好ましく、15%以下であることがより好ましく、10%以下であることがさらに好ましい。上記収縮率は、例えば、以下の式で算出できる。式中L1は、培養後1日目の三次元組織体のもっとも長い部分の長さを示し、L3は、培養後3日目の三次元組織体における対応する部分の長さを示す。
 収縮率(%)={(L1―L3)/L1}×100
 上述の製造方法により例えば、細胞と、細胞外マトリックス成分とを含む三次元組織体であって、コラーゲンの含有率が、上記三次元組織体を基準として10質量%~90質量%である、三次元組織体を製造することができる。
 以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1:架橋コラーゲン成分の作製)
 日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体100mgを、真空検体乾燥器HD-15H(石井理化機器製作所製)で、減圧状態にしながら、200℃で24時間加熱を行った。これにより、乾燥体として、少なくとも一部が架橋されているコラーゲン成分(架橋コラーゲン成分)を得た。なお、200℃の加熱前後において、コラーゲンに外見上の大きな変化は確認されなかった。
(実施例2:架橋コラーゲン成分の断片化)
 実施例1で作製した架橋コラーゲン成分50mgを5mLの超純水に懸濁し、撹拌式ホモジナイザーを用いて2分間ホモジナイズすることにより、少なくとも一部が架橋されている断片化コラーゲン成分(断片化架橋コラーゲン成分)を含有する分散液を得た。図1は、当該分散液中の断片化架橋コラーゲン成分を示す写真である。得られた断片化架橋コラーゲン成分の平均長(長さ)は、374±162μmであった(サンプル数:20)。
(実施例3:断片化架橋コラーゲン成分の凍結乾燥及び再分散)
 実施例2で作製した断片化架橋コラーゲン成分を含有する分散液を3日間凍結乾燥し、水分を除去した。凍結乾燥後、再度、超純水中に懸濁した。その結果を図2に示す。図2に示す通り、断片化架橋コラーゲン成分は、凍結乾燥後も再度超純水中に分散させることが可能であった。凍結乾燥後の断片化架橋コラーゲン成分の平均長(長さ)は、261±128μmであった(サンプル数:20)。
(比較例1:非架橋コラーゲン成分の断片化及び凍結乾燥後の再分散能)
 架橋処理を行っていない日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体50mgを超純水5mLに懸濁して2分間ホモジナイズすることにより、架橋されていない断片化コラーゲン成分(断片化非架橋コラーゲン成分)を含有する分散液を得た。断片化非架橋コラーゲン成分の平均長(長さ)は、210±90μmであった(サンプル数:20)。
 断片化非架橋コラーゲン成分を含有する分散液をFDU-2200型(東京理化器械製)により3日間凍結乾燥し、水分を除去した。凍結乾燥後、再度、超純水中での分散を試みた。その結果を図3に示す。図3に示す通り、断片化非架橋コラーゲン成分は、凍結乾燥前の段階では、断片化架橋コラーゲン成分と同程度のサイズに断片化し超純水中に分散していた。しかし、凍結乾燥後では超純水と懸濁しても乾燥体が超純水中に分散せず、分散液を得ることができなかった。
(実施例4:熱架橋コラーゲンの架橋度の測定)
 加熱温度200℃で架橋を行った際のコラーゲンの架橋度を、TNBS法によって測定した。TNBS法は非特許文献2に記載の方法に基づき行った。すなわち、まず、4mgの熱架橋コラーゲン成分に0.5mLの4%NaHCO溶液(炭酸水素ナトリウム(Wako,191-01305)と超純水により調製)と0.5mLの0.5%トリニトロベンゼンスルホン酸溶液(2,4,6-トリニトロベンゼンスルホン酸ナトリウム(ナカライテスク,35211-44)と超純水により調製)を加えて、40℃で2時間反応後、1.5mLの6M塩酸(塩酸(Wako,080-01066)を2倍希釈)を加え、60℃で90分間静置した。その後、反応液を1mL取り出して、6mLの超純水で希釈し、紫外可視近赤外分光光度計(JASCO,V-670M)を用いて345nmにおける吸光度(Abs345nm)を測定した。アミノ基の架橋度を、架橋度=1-(Abs345nm/重量架橋)/(Abs345nm/重量未架橋)の式より求めた。
 図4(A)は、架橋コラーゲン及び非架橋コラーゲンの吸収スペクトル測定結果を示し、図4(B)は、加熱時間及び架橋度の関係を示す。吸光スペクトルの波形については、加熱温度200℃及び非加熱のコラーゲンで大きな差異は無かった。即ち、加熱の前後においては、ゼラチン化のようなその物理的特性を大きく変化させ得る構造変化は生じていないことが示唆された。また、200℃の加熱温度にて24時間加熱した際の架橋度は約12%であった。更に、200℃の加熱温度で5時間~48時間加熱した場合における各サンプルの架橋度を確認した。その結果、加熱時間24時間以上では、生成する架橋コラーゲン成分の架橋度に大きな違いは生じなかった。
(実施例5:断片化架橋コラーゲン成分を用いた組織形成)
 日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体を、実施例1と同様にして200℃で24時間加熱し、架橋コラーゲン成分を得た。得られた架橋コラーゲン成分を10倍濃度のリン酸緩衝生理食塩水(X10 PBS)に分散し、撹拌式ホモジナイザーを用いて2分間ホモジナイズし、断片化架橋コラーゲン成分を得た。断片化架橋コラーゲン成分をFDU-2200型(東京理化器械製)により3日間凍結乾燥し、水分を除去した後、凍結乾燥体の状態で断片化架橋コラーゲン成分8mgを秤量し、D―MEMとEBM-2の混合培地300μlに懸濁して断片化架橋コラーゲン成分を含有する分散液を得た。
 更に、図5に示すように、断片化架橋コラーゲン成分(凍結乾燥熱架橋CMF)の分散液に、正常ヒト皮膚由来線維芽細胞(NHDF Lonza製)1.0x10cell及びヒト臍帯静脈由来血管内皮細胞(HUVEC Lonza製)2.0x10cellを懸濁し、24ウェルセルカルチャーインサート(コーニング製)に添加して、2mLの混合培地中で1日間培養した。その後、6ウェルプレート(IWAKI製)に移し、12mLの混合培地中で更に4日間培養を行った。培養後の三次元組織体に対して、anti-CD31抗体(DAKO社製、M0823)とAlexa647標識二次抗体(Invitrogen社製、A-21235)を用いた蛍光免疫染色を行い、当該三次元組織体中の血管を蛍光標識した。この蛍光標識された三次元組織体を、共焦点定量イメージサイトメーターCQ1 (横河電機製)で観察して血管網形成有無を確認した。その結果を図5に示す。図5に示す通り、断片化架橋コラーゲン成分を用いた三次元組織体の形成により、血管網が形成されていることを確認した。
(実施例6:断片化工程における水分散安定性への架橋度の効果)
 断片化非架橋コラーゲン成分は、断片化工程(ホモジナイズ)を長時間続けたときに溶媒中に断片化コラーゲン成分が溶解する場合があった。断片化架橋コラーゲン成分が、断片化工程において、水分散安定性を有しているか否かを確認した。水分散安定性とは、細胞外マトリックス成分を、水を主成分とする溶媒(好ましくは超純水)に含有させた際に、溶解せずに分散状態となる性質のことを指す。
 日本ハム株式会社製のブタ皮膚由来I型コラーゲン凍結乾燥体100mgを、真空検体乾燥器HD-15H(石井理化機器製作所製)で、減圧状態にしながら、100℃、150℃、又は200℃で24時間加熱を行った(架橋工程)。これにより、架橋コラーゲン成分を得た。得られた各架橋コラーゲン成分50mgを5mLの超純水に懸濁し、撹拌式ホモジナイザーを用いて2分間ホモジナイズすることにより、断片化架橋コラーゲン成分を含有する分散液を得た(断片化工程)。
 加熱温度100℃、150℃及び200℃の条件で調製した架橋コラーゲン成分のTNBS法による架橋度はそれぞれ3%、4%及び12%であった。
 図6(A)は、断片化非架橋コラーゲン成分、TNBS法による架橋度が3%、4%又は12%である、断片化架橋コラーゲン成分を、濃度1質量%で超純水に含有させてから、4℃で、24時間経過した時点の写真を示す。図6(B)は、各種コラーゲン成分の回収率の測定結果を示す。TNBS法による架橋度を高くすると、断片化工程において、水に溶解しにくくなり、断片化工程後に回収することが容易になることが示された。これによって、TNBS法による架橋度を高くすることによって、製造効率が向上することが示された。
(実施例7:断片化架橋コラーゲンを用いた三次元組織体の構築)
 実施例5と同様にして、得た凍結乾燥体の状態で断片化架橋コラーゲン成分(cCMF)8mgを秤量し、D―MEMとEBM-2の混合培地300μlに懸濁して断片化架橋コラーゲン成分(cCMF)を含有する分散液を得た。これと同様にして、断片化非架橋コラーゲン成分(CMF)を含有する分散液を得た。
 断片化架橋コラーゲン成分(cCMF)又は断片化非架橋コラーゲン成分(CMF)を含有する分散液に、正常ヒト皮膚由来線維芽細胞(NHDF Lonza製)1.0x10cell及びヒト臍帯静脈由来血管内皮細胞(HUVEC Lonza製)5.0x10cellを懸濁し、24ウェルセルカルチャーインサート(コーニング製)に添加して、2mLの混合培地中で1日間培養した。その後、6ウェルプレート(IWAKI製)に移し、12mLの混合培地中で更に4日間培養を行った。培養後の三次元組織体に対して、anti-CD31抗体(DAKO社製、M0823)とAlexa647標識二次抗体(Invitrogen社製、A-21235)を用いた蛍光免疫染色を行い、当該三次元組織体中の血管を蛍光標識した。この蛍光標識された三次元組織体を、共焦点定量イメージサイトメーターCQ1 (横河電機製)で観察して血管網形成を観察した。その結果を図7に示す。図7に示すように、架橋の有無によって、三次元組織体の構築における細胞の活動に大きな影響は出ていないことが示された。
(実施例8:超音波処理による断片化架橋コラーゲンの作製)
 実施例1で作製した架橋コラーゲン成分50mgを5mLの超純水に懸濁した。この懸濁液が入ったチューブを氷上で、超音波式ホモジナイザー(Sonics and Materials社 VC50)により20秒間超音波処理した後、10秒間静置することを、100回繰り返した。これにより、少なくとも一部が架橋されている断片化コラーゲン成分(断片化架橋コラーゲン成分)を含有する分散液を得た。
 図8は、撹拌式ホモジナイザーによる断片化架橋コラーゲン成分(cCMF)及び超音波式ホモジナイザー(超音波処理)による断片化架橋コラーゲン成分(scCMF)の外観を示す写真及び顕微鏡写真である。超音波処理による断片化架橋コラーゲン成分(scCMF)の平均長は、14.8±8.2μm(N=20)であった。超音波処理によって、よりサイズの小さい断片化架橋コラーゲンが得られることが示された。
 cCMF又はscCMFを含有する分散液を凍結させ、3日間乾燥し、水分を除去した。これによって、乾燥体として、cCMF及びscCMFを得た(図9(A))。
 凍結乾燥後、cCMF及びscCMFそれぞれを再度2mLの超純水に、濃度0.5質量%、温度20℃の条件で懸濁した。凍結乾燥後懸濁開始時点を0sとして、1時間各懸濁液の状態を観察した。結果を図9(B)に示す。図9(B)に示す通り、凍結乾燥後懸濁開始時点を0sにおいて、cCMF及びscCMFを懸濁させた超純水の波長500nmの光に対する透過率はそれぞれ11%及び8%となり、cCMF及びscCMFいずれも凍結乾燥後に再分散可能であることが確認された。scCMFを用いた場合、より長時間分散された状態が維持されていた。これによって、断片化熱架橋コラーゲン成分のサイズ(平均長)を小さくすること(例えば、50μm以下、好ましくは20μm以下にすること)によって、高い分散性が維持されやすくなることが示された。なお、透過率の測定は、V-670 spectrophotometer(Jasco)を用い、波長500nmの光に対する透過率を測定することにより実施した。

Claims (13)

  1.  断片化された細胞外マトリックス成分を含み、
     前記断片化された細胞外マトリックス成分の少なくとも一部が架橋されている、細胞外マトリックス含有組成物。
  2.  前記断片化された細胞外マトリックス成分は、少なくとも一部が繊維状である、請求項1に記載の細胞外マトリックス含有組成物。
  3.  水性媒体中で分散可能である、請求項1又は2に記載の細胞外マトリックス含有組成物。
  4.  前記断片化された細胞外マトリックス成分の平均長が100nm~400μmである、請求項1~3のいずれか一項に記載の細胞外マトリックス含有組成物。
  5.  前記断片化された細胞外マトリックス成分が断片化されたコラーゲン成分を含む、請求項1~4のいずれか一項に記載の細胞外マトリックス含有組成物。
  6.  TNBS法による架橋度が2%以上である、請求項1~5のいずれか一項に記載の細胞外マトリックス含有組成物。
  7.  粉末状である、請求項1~6のいずれか一項に記載の細胞外マトリックス含有組成物。
  8.  請求項1~7のいずれか一項に記載の細胞外マトリックス含有組成物を含む、三次元組織体形成剤。
  9.  請求項1~7のいずれか一項に記載の細胞外マトリックス含有組成物と、細胞と、を含む、三次元組織体。
  10.  断片化された細胞外マトリックス成分を含む細胞外マトリックス含有組成物の製造方法であって、
     少なくとも一部が架橋された細胞外マトリックス成分を水性媒体中で断片化する断片化工程を備える、製造方法。
  11.  断片化工程前に、細胞外マトリックス成分を加熱して、細胞外マトリックス成分の少なくとも一部を架橋する架橋工程を備える、請求項10に記載の製造方法。
  12.  前記架橋工程における加熱温度が、100℃以上である、請求項11に記載の製造方法。
  13.  断片化工程後に、断片化された細胞外マトリックス成分を乾燥する乾燥工程を備える、請求項10~12のいずれか一項に記載の製造方法。
PCT/JP2019/018272 2018-04-27 2019-05-07 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤 WO2019208832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020515638A JP6903299B2 (ja) 2018-04-27 2019-05-07 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤
EP19792637.1A EP3786179A4 (en) 2018-04-27 2019-05-07 EXTRACELLULAR MATRIX-CONTAINING COMPOSITION, METHOD OF PREPARATION THEREOF, THREE-DIMENSIONAL TISSUE CONSTRUCT AND MEANS FOR FORMING A THREE-DIMENSIONAL TISSUE CONSTRUCT
CN201980021496.1A CN111902424A (zh) 2018-04-27 2019-05-07 含细胞外基质的组合物及其制造方法、以及三维组织体、三维组织体形成剂
US17/050,731 US20210238542A1 (en) 2018-04-27 2019-05-07 Extracellular-matrix-containing composition, method for producing same, three-dimensional tissue construct, and three-dimensional tissue construct formation agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018087326 2018-04-27
JP2018-087326 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208832A1 true WO2019208832A1 (ja) 2019-10-31

Family

ID=68295043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018272 WO2019208832A1 (ja) 2018-04-27 2019-05-07 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤

Country Status (5)

Country Link
US (1) US20210238542A1 (ja)
EP (1) EP3786179A4 (ja)
JP (1) JP6903299B2 (ja)
CN (1) CN111902424A (ja)
WO (1) WO2019208832A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203582A1 (ja) * 2019-04-01 2020-10-08 凸版印刷株式会社 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法
WO2021100709A1 (ja) * 2019-11-19 2021-05-27 凸版印刷株式会社 細胞構造体及びその製造方法並びに被験物質の肝毒性の評価方法
WO2022050393A1 (ja) * 2020-09-03 2022-03-10 凸版印刷株式会社 三次元組織体の製造方法及び三次元組織体
WO2023286611A1 (ja) * 2021-07-12 2023-01-19 凸版印刷株式会社 断片化細胞外マトリックス成分の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131189A (ja) * 2007-11-29 2009-06-18 Nipro Corp 付着性細胞の培養方法
JP2012115254A (ja) 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
WO2015072164A1 (ja) 2013-11-14 2015-05-21 国立大学法人大阪大学 コラーゲンを含む被膜でコートされた細胞及びその製造方法
WO2016027853A1 (ja) 2014-08-22 2016-02-25 国立大学法人大阪大学 被覆細胞、その製造方法及び被覆細胞を用いた三次元組織体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1064033A1 (en) * 1998-03-17 2001-01-03 Tissue Engineering, Inc. Biopolymer matt for use in tissue repair and reconstruction
US20110301131A1 (en) * 2008-11-06 2011-12-08 Joan Fitzpatrick Drug Delivery Implants and Processes for Their Preparation
JP2011254719A (ja) * 2010-06-07 2011-12-22 Sumitomo Bakelite Co Ltd 細胞培養用基材、培養基材の製造方法、細胞培養方法および細胞回収方法
US20120027732A1 (en) * 2010-07-27 2012-02-02 Voytik-Harbin Sherry L Thermoreversible collagen
EP2803371B1 (en) * 2012-01-12 2019-10-30 Nippi Incorporated Collagen structure, and method for producing collagen structure
JP6055466B2 (ja) * 2012-05-24 2016-12-27 国立大学法人 東京大学 酸化オリゴ糖で架橋したゲル材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009131189A (ja) * 2007-11-29 2009-06-18 Nipro Corp 付着性細胞の培養方法
JP2012115254A (ja) 2010-11-11 2012-06-21 Osaka Univ 細胞の三次元構造体、及び、これを製造する方法
WO2015072164A1 (ja) 2013-11-14 2015-05-21 国立大学法人大阪大学 コラーゲンを含む被膜でコートされた細胞及びその製造方法
WO2016027853A1 (ja) 2014-08-22 2016-02-25 国立大学法人大阪大学 被覆細胞、その製造方法及び被覆細胞を用いた三次元組織体の製造方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
ACTA BIOMATERIALIA, vol. 25, 2015, pages 131 - 142
KATO NATSUKO : "O-11-6 Construction of three-dimensional human cancer stromal tissue with high-density ECM using collagen microfibers", THE 17TH CONGRES OF THE JAPANESE SOCIETY FOR REGENERATIVE MEDICINE , vol. 17, 28 February 2018 (2018-02-28), JP, pages 1 - 3, XP009524154, ISSN: 1347-7919 *
KOKI NISHI , MISAKI KOMEDA , MICHIYA MATSUSAKI : "2Pa097 Construction of iPS cell -derived cardiomyocyte tissue using collagen microfiber", PREPRINTS OF THE 66TH SPSJ ANNUAL MEETING, vol. 66, no. 1, 30 November 2016 (2016-11-30), JP, pages 1 - 1, XP009523716 *
KOKI NISHI , MISAKI KOMEDA , MICHIYA MATSUSAKI: "3N03 Establishment of iPS cell -derived cardiac fibrosis model using collagen microfiber", PREPRINTS OF THE 66TH SPSJ ANNUAL MEETING, vol. 66, no. 2, 30 November 2016 (2016-11-30), JP, pages 1 - 2, XP009523713 *
MATSUSAKI, MICHIYA ET AL.: "3C1-03 Construction of Vascularized 3D-Stromal Tissues with High Density Extracellular Matrix", PROCEEDINGS OF THE 97TH SPRING ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN; MARCH 16-19, 2017, YOKOHAMA, JAPAN, vol. 97, 2017, pages 3C1-03, XP009523791 *
MICHIYA MATSUSAKI , MISAKI KOMEDA : "3N02 Construction of 3D-connective tissue having high density ECM through sedimentation culture in which collagen microfiber is used", PREPRINTS OF THE 66TH SPSJ ANNUAL MEETING, vol. 66, no. 2, 30 November 2016 (2016-11-30), JP, pages 1 - 2, XP009523712 *
MISAKI KOMEDA , MICHIYA MATSUSAKI : "2Q10 Construction of three- dimensional interstitial tissue with high concentration extracellular matrix and capillary network by collagen microfiber", PREPRINTS OF THE 66TH SPSJ ANNUAL MEETING, vol. 66, no. 2, 30 November 2016 (2016-11-30), pages 1 - 2, XP009523710 *
NATSUKO KATO , MISAKI KOMEDA , MICHIYA MATSUSAKI : "2Pb096 Construction of three-dimensional cancer-interstitial tissue using collagen microfiber", PREPRINTS OF THE 66TH SPSJ ANNUAL MEETING, vol. 66, no. 1, 30 November 2016 (2016-11-30), JP, pages 1 - 1, XP009523709 *
NATSUKO KATO; MISAKI KOMEDA; MICHIYA MATSUSAKI: "2Q11: Construction of Human 3D-Cancer-Stromal Tissues with High ECM Density Using CollagenMicrofibers", PREPRINTS OF THE 66TH SPSJ ANNUAL MEETING, vol. 66, no. 2, 1 January 2017 (2017-01-01), pages 1 - 2, XP009523711 *
NATURE BIOTECHNOLOGY, vol. 23, no. 7, 2005, pages 879 - 884
NISHI KOKI : "O-31-4: Construction of a human myocardial fibrosis model using collagen microfibers and iPS cell-derived cardiomyocytes", THE 17TH CONGRESS OF THE JAPANESE SOCIETY FOR REGENERATIVE MEDICINE, March 2018 (2018-03-01), XP009524169 *
See also references of EP3786179A4
YASUHIRO NAKA , KOKI NISHI , MICHIYA MATSUSAKI: "2H11 Improvement of physical stability by collagen fiber cross-linking and application to 3D tissue construction", PREPRINTS OF THE 67TH SPSJ ANNUAL MEETING, vol. 67, no. 1, May 2018 (2018-05-01), pages 1 - 1, XP009523714 *
YASUHIRO NAKA; KOKI NISHI; MICHIYA MATSUSAKI: "2P-050 New bottom up-style organization using the microscaffolding", PREPRINTS OF THE 40TH CONFERENCE OF JAPANESE SOCIETY FOR BIOMATERIALS, vol. 40, 30 November 2018 (2018-11-30), pages 421 - 421, XP009523901 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203582A1 (ja) * 2019-04-01 2020-10-08 凸版印刷株式会社 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法
JP6797389B1 (ja) * 2019-04-01 2020-12-09 凸版印刷株式会社 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法
EP3950710A4 (en) * 2019-04-01 2023-01-18 Toppan Inc. EXTRACELLULAR MATRIX COMPOSITION AND METHODS OF PRODUCTION THEREOF AND THREE-DIMENSIONAL TISSUE CONSTRUCT AND METHODS OF PRODUCTION THEREOF
JP7498454B2 (ja) 2019-04-01 2024-06-12 Toppanホールディングス株式会社 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法
WO2021100709A1 (ja) * 2019-11-19 2021-05-27 凸版印刷株式会社 細胞構造体及びその製造方法並びに被験物質の肝毒性の評価方法
JPWO2021100709A1 (ja) * 2019-11-19 2021-05-27
JP2022163218A (ja) * 2019-11-19 2022-10-25 凸版印刷株式会社 細胞構造体及びその製造方法並びに被験物質の肝毒性の評価方法
WO2022050393A1 (ja) * 2020-09-03 2022-03-10 凸版印刷株式会社 三次元組織体の製造方法及び三次元組織体
WO2023286611A1 (ja) * 2021-07-12 2023-01-19 凸版印刷株式会社 断片化細胞外マトリックス成分の製造方法

Also Published As

Publication number Publication date
US20210238542A1 (en) 2021-08-05
EP3786179A4 (en) 2022-02-09
JPWO2019208832A1 (ja) 2021-02-25
CN111902424A (zh) 2020-11-06
EP3786179A1 (en) 2021-03-03
JP6903299B2 (ja) 2021-07-14

Similar Documents

Publication Publication Date Title
JP6903299B2 (ja) 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体、三次元組織体形成剤
JP6775157B2 (ja) 三次元組織体及びその製造方法、並びに、三次元組織体の形成剤
JP7340194B2 (ja) 細胞外マトリックス含有組成物、三次元組織体形成用仮足場材及び三次元組織体形成剤並びに三次元組織体から細胞を回収する方法
JP7201972B2 (ja) 三次元組織体及びその製造方法並びに細胞含有組成物の製造方法
WO2020203369A1 (ja) 細胞構造体及び細胞構造体の製造方法
WO2021177407A1 (ja) 三次元組織体のヤング率を制御する方法、三次元組織体の製造方法、及び三次元組織体
WO2019189786A1 (ja) 細胞培養用シート並びに三次元組織体及びその製造方法
JP6797389B1 (ja) 細胞外マトリックス含有組成物及びその製造方法、並びに三次元組織体及びその製造方法
WO2022091822A1 (ja) 細胞構造体の凍結方法
WO2023074814A1 (ja) 組織体の製造方法及びヒト由来の脂肪由来幹細胞の血管内皮細胞への分化促進方法
WO2022113540A1 (ja) 組織体の製造方法、及び脂肪由来幹細胞の分化促進方法
JP7526397B2 (ja) 細胞構造体及びその製造方法
WO2022173058A1 (ja) 三次元組織体の製造方法及び脂肪由来幹細胞の分化促進方法
US20220341918A1 (en) Cell structure and method for producing same
JP2021176287A (ja) 細胞構造体及びその製造方法
JP2022036357A (ja) 細胞構造体及び細胞構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019792637

Country of ref document: EP