WO2019174328A1 - 转子结构及具有其的电机 - Google Patents

转子结构及具有其的电机 Download PDF

Info

Publication number
WO2019174328A1
WO2019174328A1 PCT/CN2018/119877 CN2018119877W WO2019174328A1 WO 2019174328 A1 WO2019174328 A1 WO 2019174328A1 CN 2018119877 W CN2018119877 W CN 2018119877W WO 2019174328 A1 WO2019174328 A1 WO 2019174328A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic steel
rotor
magnetic
groove
rotor structure
Prior art date
Application number
PCT/CN2018/119877
Other languages
English (en)
French (fr)
Inventor
郭长光
张小波
刘健宁
张芳
贾金信
李广海
李忠雨
魏琼
闫瑾
王泽业
熊博文
梁建东
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2019174328A1 publication Critical patent/WO2019174328A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to the field of electrical equipment, and in particular to a rotor structure and a motor therewith.
  • Permanent magnet synchronous motors have the advantages of high efficiency, low noise and high reliability. They have become the main trend of automotive drive motors in the future. Permanent magnet synchronous motors generally use NdFeB magnets of rare earth materials, accounting for 20- of the total cost of the entire motor. 30%. As the only blueprint and technical direction for the global future of reducing carbon emissions in the automotive sector, new energy vehicles will gradually replace fuel vehicles. In the future, there will be a great demand for automotive drive motors, which will inevitably lead to the use of rare earths. Therefore, the use of motors in the prior art is likely to cause cost problems. Further, the rotor structure of the prior art has a problem of large magnetic flux leakage and low anti-demagnetization capability.
  • a primary object of the present invention is to provide a rotor structure and a motor therewith to solve the problem of low demagnetization resistance of the rotor of the motor in the prior art.
  • a rotor structure including: a rotor body having a magnetic steel groove group formed thereon, the magnetic steel groove group including a plurality of magnetic steel grooves, and a plurality of magnetic steel grooves Independently disposed, a magnetic conductive channel is formed between two adjacent magnetic steel grooves, and an extension line of a plurality of magnetic steel grooves in a radial direction is surrounded by a triangle.
  • the plurality of magnetic steel grooves include: a first magnetic steel groove, a first end of the first magnetic steel groove extends toward a center of the rotor body, and a second end of the first magnetic steel groove extends toward an outer edge of the rotor body; a second magnetic steel groove, the first end of the second magnetic steel groove extends toward a center of the rotor body and is disposed adjacent to the first end of the first magnetic steel groove, and the second end of the second magnetic steel groove faces the outer side of the rotor body
  • the edge extends and gradually moves away from the first magnetic steel groove, and the first magnetic steel groove and the second magnetic steel groove enclose a V-shaped structure.
  • the plurality of magnetic steel grooves further include: a third magnetic steel groove, the first end of the third magnetic steel groove extends toward the first end of the first magnetic steel groove, and the second end of the third magnetic steel groove faces the The second end of the two magnetic steel troughs is extended, and the third magnetic steel trough is located in an angle formed by the first magnetic steel trough and the second magnetic steel trough.
  • the mid-perpendicular line of the third geometric center line in the longitudinal direction of the third magnetic steel groove passes through the center of the rotor body.
  • At least one of the two side walls of the third magnetic steel groove which are oppositely disposed from the inside to the outside in the radial direction of the rotor body is a straight surface.
  • the two side walls of the third magnetic steel groove which are disposed oppositely from the inside to the outside in the radial direction of the rotor body are disposed in parallel with each other.
  • a side wall of the third magnetic steel groove away from the center of the rotor body is disposed at a distance from the outer edge of the rotor body to form a magnetic isolation bridge.
  • the rotor structure further includes: a first magnetic steel, the first magnetic steel is disposed in the third magnetic steel groove, and at least one end of the first magnetic steel is disposed at a distance from an inner wall of the third magnetic steel groove to form an air groove.
  • the rotor structure further includes: a second magnetic steel disposed in the first magnetic steel trough and the second magnetic steel trough, wherein the first magnetic steel and the second magnetic steel are ferrite magnetic steel, or the first magnetic steel One of the first magnetic steel and the second magnetic steel is a ferrite magnetic steel, and the other of the first magnetic steel and the second magnetic steel is a rare earth neodymium iron boron magnetic steel.
  • an electric machine comprising a rotor structure, the rotor structure being the rotor structure described above.
  • the rotor structure comprises a rotor body, and the rotor body is provided with a magnetic steel groove group, the magnetic steel groove group comprises a plurality of magnetic steel grooves, and the plurality of magnetic steel grooves are independently arranged, and the adjacent two magnetic steels A magnetic conductive path is formed between the grooves.
  • the extension line of the plurality of magnetic steel grooves in the radial direction is surrounded by a triangle.
  • the arrangement of the magnetic steel trough can effectively increase the length of the magnetic isolation bridge formed on the rotor body, reduce the magnetic flux leakage of the adapter structure, and improve the anti-demagnetization capability of the rotor, that is, effectively improve the rotor The utilization of the magnetic field and the loss of the rotor.
  • Figure 1 shows a schematic structural view of an embodiment of a rotor structure in accordance with the present invention.
  • a rotor structure is provided in accordance with an embodiment of the present invention.
  • the rotor structure includes a rotor body 10, and the rotor body 10 is provided with a magnetic steel groove group, the magnetic steel groove group includes a plurality of magnetic steel grooves, and the plurality of magnetic steel grooves are independently disposed, and the adjacent two magnetic steel grooves A magnetic conductive path is formed therebetween, and an extension line of the plurality of magnetic steel grooves in the radial direction is surrounded by a triangle.
  • the extension lines of the plurality of magnetic steel grooves in the radial direction are surrounded by a triangle.
  • the arrangement of the magnetic steel trough can effectively increase the length of the magnetic isolation bridge 11 formed on the rotor body, reduce the magnetic flux leakage of the transfer structure, and improve the anti-demagnetization capability of the rotor, thereby effectively improving the magnetic flux.
  • the plurality of magnetic steel grooves include the first magnetic steel groove 20 and the second magnetic steel groove 30.
  • the first end of the first magnetic steel groove 20 extends toward the center of the rotor body 10, and the second end of the first magnetic steel groove 20 extends toward the outer edge of the rotor body 10.
  • the first end of the second magnetic steel groove 30 extends toward the center of the rotor body 10 and is disposed adjacent to the first end of the first magnetic steel groove 20, and the second end of the second magnetic steel groove 30 faces the outer side of the rotor body 10.
  • the edge extends and gradually moves away from the first magnetic steel groove 20, and the first magnetic steel groove 20 and the second magnetic steel groove 30 enclose a V-shaped structure. This arrangement facilitates the cooperation with the "one" type third magnetic steel groove 40 to jointly form a more stable rotor magnetic field.
  • the plurality of magnetic steel grooves further include a third magnetic steel groove 40.
  • the first end of the third magnetic steel groove 40 extends toward the first end of the first magnetic steel groove 20, and the second end of the third magnetic steel groove 40 extends toward the second end of the second magnetic steel groove 30, and the third The magnetic steel groove 40 is located within an angle formed by the first magnetic steel groove 20 and the second magnetic steel groove 30. This arrangement can effectively reduce the amount of magnetic leakage of the rotor structure.
  • the center line of the third geometric center line in the longitudinal direction of the third magnetic steel groove 40 passes through the center of the rotor body 10. This arrangement ensures a uniform magnetic field distribution of the rotor.
  • At least one of the two side walls of the third magnetic steel groove 40 which are disposed oppositely from the inside to the outside in the radial direction of the rotor body 10 is a straight surface. This arrangement facilitates the installation of the magnetic steel in the magnetic steel trough and the positioning is accurate.
  • the two side walls of the third magnet groove 40 which are disposed oppositely from the inside to the outside in the radial direction of the rotor body 10 are disposed in parallel with each other. This arrangement facilitates the installation of the magnetic steel and ensures that the rotor is evenly stressed during the high-speed rotation process, thereby ensuring the service life of the rotor.
  • the side wall of the third magnet groove 40 away from the center of the rotor body 10 is disposed at a distance from the outer edge of the rotor body 10 to form a magnetic bridge 11.
  • the magnetic isolation bridge 11 is between the third magnetic steel groove 40 and the stator teeth 72 on the stator 70, wherein the stator teeth 72 are uniformly circumferentially arranged on the stator 70, and the coils 71 are disposed between the stator teeth 72, so that the arrangement is reduced.
  • the magnetic flux leakage of the rotor magnetic field is provided to form a distance from the outer edge of the rotor body 10 to form a magnetic bridge 11.
  • the rotor structure further includes a first magnetic steel 50.
  • the first magnet 50 is disposed in the third magnet channel 40. At least one end of the first magnet 50 is disposed at a distance from the inner wall of the third magnet groove 40 to form an air groove. This arrangement makes mounting the magnetic steel more convenient.
  • the rotor structure further includes a second magnetic steel 60.
  • the second magnet steel 60 is disposed in the first magnet steel tank 20 and the second magnet steel tank 30.
  • the first magnet 50 and the second magnet 60 are both ferrite magnets.
  • ferrite magnets are weaker in magnetic properties and easier to install than NdFeB magnets.
  • one of the first magnetic steel and the second magnetic steel is a ferrite magnetic steel
  • the other of the first magnetic steel and the second magnetic steel is a rare earth neodymium iron boron magnetic steel.
  • the rotor structure in the above embodiment can also be used in the technical field of electrical equipment, that is, in accordance with another aspect of the present invention, an electric machine is provided.
  • the motor includes a rotor structure which is the rotor structure in the above embodiment. This arrangement reduces the overall cost of the motor, increases the effective length of the magnetic isolation bridge 11, reduces the leakage flux of the rotor, and improves the magnetic field utilization of the rotor.
  • the neodymium iron boron magnetic steel used in the prior art is suitable for operation in a low temperature environment, and the lower the temperature, the better the performance. Ferrite magnets still have good performance in high temperature environments.
  • the first magnetic steel is a rare earth neodymium iron boron magnetic steel
  • the second magnetic steel is a ferrite magnetic steel, that is, the first magnetic steel tank 20 and the second magnetic steel tank 30 are provided with ferrite.
  • the third magnetic steel tank 40 is provided with rare earth neodymium iron boron magnetic steel.
  • the no-load back EMF generated by using such a motor becomes low, so that the safety factor of the controller becomes high, and damage to the IGBT module of the controller can be reduced when an abnormality occurs in the automobile.
  • the arrangement of the triangular magnetic steel grooves makes the corresponding reluctance torque increase, and the motor is more susceptible to weakening of the magnetic force, so that the motor can reach a higher rotational speed.
  • the magnetic properties of the ferrite magnetic steel are weak, and the thickness of the neodymium iron boron magnetic steel is also reduced by 50% compared with the thickness of the magnetic steel in the prior art, which reduces the assembly difficulty and improves the production efficiency.
  • the rotor structure comprises a rotor body, and the rotor body is provided with a magnetic steel groove group, the magnetic steel groove group comprises a plurality of magnetic steel grooves, and the plurality of magnetic steel grooves are independently arranged, and the adjacent two magnetic steels A magnetic conductive path is formed between the grooves.
  • the extension line of the plurality of magnetic steel grooves in the radial direction is surrounded by a triangle.
  • the arrangement of the magnetic steel trough can effectively increase the length of the magnetic isolation bridge formed on the rotor body, reduce the magnetic flux leakage of the adapter structure, and improve the anti-demagnetization capability of the rotor, that is, effectively improve the rotor
  • the utilization of the magnetic field reduces the loss of the rotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

一种转子结构及具有其的电机,转子结构包括转子本体(10),转子本体(10)上开设有磁钢槽组,磁钢槽组包括多个磁钢槽(20、30、40),多个磁钢槽(20、30、40)独立地设置,相邻的两个磁钢槽(20、30、40)之间形成导磁通道。多个磁钢槽(20、30、40)的径向方向的延长线围设成三角形。这种磁钢槽的排布方式,能够有效地增加形成于转子本体(10)上的隔磁桥的长度,减少了转接结构的漏磁量,提升了转子的抗退磁能力,即有效地提高了转子磁场的利用率,并降低了转子的损耗。采用该技术方案使得电机转子的抗退磁能力提高,安全系数提高,装配简易,制造成本下降,并且三角形磁钢槽的排布方式使得相应的磁阻转矩增大,电机更容易弱磁,进而电机可达到更高的转速。

Description

转子结构及具有其的电机 技术领域
本发明涉及电机设备技术领域,具体而言,涉及一种转子结构及具有其的电机。
背景技术
永磁同步电机具有效率高、噪音低及可靠性高等优点,已经成为未来汽车驱动电机的主要趋势,永磁同步电机一般采用稀土材料的钕铁硼磁钢,占整个电机的总成本的20-30%。新能源汽车作为汽车领域全球未来降低碳排放的唯一蓝图及技术方向,将逐步取代燃油车。未来对汽车驱动电机将会有很大的需求,势必造成稀土的大量使用,所以采用现有技术中的电机容易造成成本大的问题。进一步地,现有技术中的电机转子结构具有漏磁量大、抗退磁能力低的问题。
发明内容
本发明的主要目的在于提供一种转子结构及具有其的电机,以解决现有技术中电机转子的抗退磁能力低的问题。
为实现上述目的,根据本发明的一个方面,提供了一种转子结构,包括:转子本体,转子本体上开设有磁钢槽组,磁钢槽组包括多个磁钢槽,多个磁钢槽独立地设置,相邻的两个磁钢槽之间形成导磁通道,多个磁钢槽的径向方向的延长线围设成三角形。
进一步地,多个磁钢槽包括:第一磁钢槽,第一磁钢槽的第一端朝向转子本体的圆心延伸,第一磁钢槽的第二端朝向转子本体的外边沿延伸;第二磁钢槽,第二磁钢槽的第一端朝向转子本体的圆心延伸并与第一磁钢槽的第一端相邻地设置,第二磁钢槽的第二端朝向转子本体的外边沿延伸并逐渐远离第一磁钢槽,第一磁钢槽与第二磁钢槽围成V形结构。
进一步地,多个磁钢槽还包括:第三磁钢槽,第三磁钢槽的第一端朝向第一磁钢槽的第一端延伸设置,第三磁钢槽的第二端朝向第二磁钢槽的第二端延伸设置,第三磁钢槽位于第一磁钢槽和第二磁钢槽形成的夹角内。
进一步地,第三磁钢槽的长度方向的第三几何中心线的中垂线过转子本体的圆心。
进一步地,第三磁钢槽的沿转子本体的径向方向从内到外相对设置的两个侧壁中至少一个侧壁为直面。
进一步地,第三磁钢槽的沿转子本体的径向方向从内到外相对设置的两个侧壁相互平行地设置。
进一步地,第三磁钢槽的远离转子本体的圆心的侧壁与转子本体外边沿具有距离地设置以形成隔磁桥。
进一步地,转子结构还包括:第一磁钢,第一磁钢设置于第三磁钢槽内,第一磁钢的至少一端与第三磁钢槽的内壁具有距离地设置以形成空气槽。
进一步地,转子结构还包括:第二磁钢,设置于第一磁钢槽和第二磁钢槽内,第一磁钢和第二磁钢为铁氧体磁钢,或者,第一磁钢和第二磁钢中的一个为铁氧体磁钢,第一磁钢和第二磁钢中的另一个为稀土钕铁硼磁钢。
根据本发明的另一个方面,提供了一种电机,包括转子结构,转子结构为上述的转子结构。
应用本发明的技术方案,转子结构包括转子本体,转子本体上开设有磁钢槽组,磁钢槽组包括多个磁钢槽,多个磁钢槽独立地设置,相邻的两个磁钢槽之间形成导磁通道。多个磁钢槽的径向方向的延长线围设成三角形。这种磁钢槽的排布方式,能够有效地增加形成于转子本体上的隔磁桥的长度,减少了转接结构的漏磁量,提升了转子的抗退磁能力,即有效地提高了转子磁场的利用率,并降低了转子的损耗。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的转子结构的实施例的结构示意图。
其中,上述附图包括以下附图标记:
10、转子本体;11、隔磁桥;
20、第一磁钢槽;30、第二磁钢槽;40、第三磁钢槽;50、第一磁钢;60、第二磁钢;70、定子;71、线圈;72、定子齿。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
结合图1所示,根据本发明的实施例,提供了一种转子结构。
具体地,该转子结构包括转子本体10,转子本体10上开设有磁钢槽组,磁钢槽组包括多个磁钢槽,多个磁钢槽独立地设置,相邻的两个磁钢槽之间形成导磁通道,多个磁钢槽的径向方向的延长线围设成三角形。
在本实施例中,多个磁钢槽的径向方向的延长线围设成三角形。这种磁钢槽的排布方式,能够有效地增加形成于转子本体上的隔磁桥11的长度,减少了转接结构的漏磁量,提升了转子的抗退磁能力,即有效地提高了转子磁场的利用率,并降低了转子的损耗。
其中,多个磁钢槽包括第一磁钢槽20和第二磁钢槽30。第一磁钢槽20的第一端朝向转子本体10的圆心延伸,第一磁钢槽20的第二端朝向转子本体10的外边沿延伸。第二磁钢槽30的第一端朝向转子本体10的圆心延伸并与第一磁钢槽20的第一端相邻地设置,第二磁钢槽30的第二端朝向转子本体10的外边沿延伸并逐渐远离第一磁钢槽20,第一磁钢槽20与第二磁钢槽30围成V形结构。这样设置便于配合“一”字型第三磁钢槽40,共同形成更稳定的转子磁场。
在本实施例中,多个磁钢槽还包括第三磁钢槽40。第三磁钢槽40的第一端朝向第一磁钢槽20的第一端延伸设置,第三磁钢槽40的第二端朝向第二磁钢槽30的第二端延伸设置,第三磁钢槽40位于第一磁钢槽20和第二磁钢槽30形成的夹角内。这样设置能够有效减少转子结构的漏磁量。
其中,第三磁钢槽40的长度方向的第三几何中心线的中垂线过转子本体10的圆心。这样设置能够保证转子的磁场分布均匀。
如图1所示,第三磁钢槽40的沿转子本体10的径向方向从内到外相对设置的两个侧壁中至少一个侧壁为直面。这样设置便于磁钢安装于磁钢槽内且定位精确。
如图1所示,第三磁钢槽40的沿转子本体10的径向方向从内到外相对设置的两个侧壁相互平行地设置。这样设置便于磁钢安装,且保证了转子在高速旋转过程中受力均匀,保证了转子的使用寿命。
如图1所示,第三磁钢槽40的远离转子本体10的圆心的侧壁与转子本体10外边沿具有距离地设置以形成隔磁桥11。隔磁桥11处于第三磁钢槽40和定子70上的定子齿72之间,其中,定子齿72在定子70上均匀周向排列,且定子齿72之间安有线圈71,这样设置减少了转子磁场的漏磁。
在本实施例中,转子结构还包括第一磁钢50。第一磁钢50设置于第三磁钢槽40内。第一磁钢50的至少一端与第三磁钢槽40的内壁具有距离地设置以形成空气槽。这样设置使得安装磁钢安装更加方便。
其中,转子结构还包括第二磁钢60。第二磁钢60设置于第一磁钢槽20和第二磁钢槽30内。第一磁钢50和第二磁钢60均为铁氧体磁钢。这样设置用铁氧体磁钢代替传统稀土材料的钕铁硼磁钢,使得制造转子的成本大大降低,并且使转子在低温及高温的环境下更能发挥自身的效能。另外,铁氧体磁钢磁性较弱,相较钕铁硼磁钢更易安装。
其中,第一磁钢和第二磁钢中的一个为铁氧体磁钢,第一磁钢和第二磁钢中的另一个为稀土钕铁硼磁钢。这样设置同样能够降低转子的生产成本。
在本实施例中,上述实施例中的转子结构还可以用于电机设备技术领域,即根据本发明的另一个方面,提供了一种电机。该电机包括转子结构,转子结构为上述实施例中的转子结构。这样设置降低了电机的整体成本,增加了隔磁桥11的有效长度,减少了转子漏磁,提高了转子的磁场利用率。现有技术中采用的钕铁硼磁钢适合在低温环境下运行,温度越低性能越佳。而铁氧体磁钢则在高温环境下依然能够具有很好的性能。
具体地,在本实施例中,第一磁钢为稀土钕铁硼磁钢,第二磁钢为铁氧体磁钢,即第一磁钢槽20和第二磁钢槽30内设置铁氧体磁钢,第三磁钢槽40内设置稀土钕铁硼磁钢,两种磁钢的结合使用可扩大电机的使用坏境温度,使电机在低温或高温的恶劣环境下运行均能很好的发挥电机的性能。采用两种磁钢的结合,减少了钕铁硼磁钢在电机转子的使用量,铁氧体磁钢价格便宜降低了成本。进一步地,使用这种电机产生的空载反电势变低,使得控制器安全系数变高,在汽车出现异常情况时可减少对控制器IGBT模块的伤害。并且,三角形磁钢槽的排布方式使得相应的磁阻转矩增大,电机更容易弱磁,进而电机可达到更高的转速。而且铁氧体磁钢磁性较弱,钕铁硼磁钢的厚度也比现有技术中的磁钢的厚度降低50%,降低了装配难度,提高了生产效率。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
应用本发明的技术方案,转子结构包括转子本体,转子本体上开设有磁钢槽组,磁钢槽组包括多个磁钢槽,多个磁钢槽独立地设置,相邻的两个磁钢槽之间形成导磁通道。多个磁钢槽的径向方向的延长线围设成三角形。这种磁钢槽的排布方式,能够有效地增加形成于转子本体上的隔磁桥的长度,减少了转接结构的漏磁量,提升了转子的抗退磁能力,即有效地提高了转子磁场的利用率,降低了转子的损耗。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种转子结构,其特征在于,包括:
    转子本体(10),所述转子本体(10)上开设有磁钢槽组,所述磁钢槽组包括多个磁钢槽,多个所述磁钢槽独立地设置,相邻的两个所述磁钢槽之间形成导磁通道,多个所述磁钢槽的径向方向的延长线围设成三角形。
  2. 根据权利要求1所述的转子结构,其特征在于,多个所述磁钢槽包括:
    第一磁钢槽(20),所述第一磁钢槽(20)的第一端朝向所述转子本体(10)的圆心延伸,所述第一磁钢槽(20)的第二端朝向所述转子本体(10)的外边沿延伸;
    第二磁钢槽(30),所述第二磁钢槽(30)的第一端朝向所述转子本体(10)的圆心延伸并与所述第一磁钢槽(20)的第一端相邻地设置,所述第二磁钢槽(30)的第二端朝向所述转子本体(10)的外边沿延伸并逐渐远离所述第一磁钢槽(20),所述第一磁钢槽(20)与所述第二磁钢槽(30)围成V形结构。
  3. 根据权利要求2所述的转子结构,其特征在于,多个所述磁钢槽还包括:
    第三磁钢槽(40),所述第三磁钢槽(40)的第一端朝向所述第一磁钢槽(20)的第一端延伸设置,所述第三磁钢槽(40)的第二端朝向所述第二磁钢槽(30)的第二端延伸设置,所述第三磁钢槽(40)位于所述第一磁钢槽(20)和所述第二磁钢槽(30)形成的夹角内。
  4. 根据权利要求3所述的转子结构,其特征在于,所述第三磁钢槽(40)的长度方向的第三几何中心线的中垂线过所述转子本体(10)的圆心。
  5. 根据权利要求3所述的转子结构,其特征在于,所述第三磁钢槽(40)的沿所述转子本体(10)的径向方向从内到外相对设置的两个侧壁中至少一个侧壁为直面。
  6. 根据权利要求3所述的转子结构,其特征在于,所述第三磁钢槽(40)的沿所述转子本体(10)的径向方向从内到外相对设置的两个侧壁相互平行地设置。
  7. 根据权利要求3所述的转子结构,其特征在于,所述第三磁钢槽(40)的远离所述转子本体(10)的圆心的侧壁与所述转子本体(10)外边沿具有距离地设置以形成隔磁桥(11)。
  8. 根据权利要求3所述的转子结构,其特征在于,所述转子结构还包括:
    第一磁钢(50),所述第一磁钢(50)设置于所述第三磁钢槽(40)内,所述第一磁钢(50)的至少一端与所述第三磁钢槽(40)的内壁具有距离地设置以形成空气槽。
  9. 根据权利要求8所述的转子结构,其特征在于,所述转子结构还包括:
    第二磁钢(60),设置于所述第一磁钢槽(20)和所述第二磁钢槽(30)内,所述第一磁钢(50)和所述第二磁钢(60)为铁氧体磁钢,或者,
    所述第一磁钢(50)和所述第二磁钢(60)中的一个为铁氧体磁钢,所述第一磁钢 (50)和所述第二磁钢(60)中的另一个为稀土钕铁硼磁钢。
  10. 一种电机,包括转子结构,其特征在于,所述转子结构为权利要求1至9中任一项所述的转子结构。
PCT/CN2018/119877 2018-03-16 2018-12-07 转子结构及具有其的电机 WO2019174328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810218935.5A CN108462272A (zh) 2018-03-16 2018-03-16 转子结构及具有其的电机
CN201810218935.5 2018-03-16

Publications (1)

Publication Number Publication Date
WO2019174328A1 true WO2019174328A1 (zh) 2019-09-19

Family

ID=63236834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119877 WO2019174328A1 (zh) 2018-03-16 2018-12-07 转子结构及具有其的电机

Country Status (2)

Country Link
CN (1) CN108462272A (zh)
WO (1) WO2019174328A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096527A1 (en) * 2020-11-03 2022-05-12 Jaguar Land Rover Limited Apparatus for an electric machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108462272A (zh) * 2018-03-16 2018-08-28 珠海格力节能环保制冷技术研究中心有限公司 转子结构及具有其的电机
CN109245366B (zh) * 2018-11-19 2023-10-03 西安清泰科新能源技术有限责任公司 一种电机转子冲片及采用该冲片的永磁同步电机
CN109660042B (zh) * 2019-01-16 2021-05-11 华中科技大学 一种串联型混合永磁变磁通电机
EP3915182A4 (en) * 2019-03-20 2022-03-02 Magna International Inc PERMANENT MAGNET ASSISTED SYNCHRONOUS RELUCTANCE MOTOR
CN109936230A (zh) * 2019-03-28 2019-06-25 东南大学 一种串联磁路型双层混合永磁记忆电机
CN110224568A (zh) * 2019-06-06 2019-09-10 杭州中科伺尔沃电机技术有限公司 直角坐标机器人的内嵌式转子电机
CN113839480A (zh) * 2021-09-24 2021-12-24 福建中研机电科技有限公司 一种双层分数槽集中绕组永磁同步磁阻带助磁电机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038006A (zh) * 2013-03-08 2014-09-10 通用汽车环球科技运作有限责任公司 具有混合稀土磁体和铁氧体磁体的转子的内置式永磁体电机
CN104242509A (zh) * 2013-06-05 2014-12-24 上海欧普斯达光纤通信设备有限公司 一种永磁复合激磁同步电机转子
CN104638863A (zh) * 2015-01-23 2015-05-20 浙江迈雷科技有限公司 一种永磁同步电机
CN204992999U (zh) * 2015-07-24 2016-01-20 西安正麒电气有限公司 一种内置式永磁电机转子冲片
CN105337434A (zh) * 2015-11-09 2016-02-17 江苏大学 电动汽车用组合励磁永磁无刷电机
CN205070733U (zh) * 2015-09-14 2016-03-02 常州市普世汽车电动***有限公司 一种小尺寸永磁同步电机
CN107528400A (zh) * 2017-09-30 2017-12-29 广东美芝制冷设备有限公司 电机转子、永磁电机和压缩机
CN107666193A (zh) * 2017-10-11 2018-02-06 江苏东航空机械有限公司 一种新能源电动汽车电机转子冲片
CN207098792U (zh) * 2017-06-27 2018-03-13 上海电驱动股份有限公司 一种永磁同步电机的转子冲片
CN108462272A (zh) * 2018-03-16 2018-08-28 珠海格力节能环保制冷技术研究中心有限公司 转子结构及具有其的电机
CN208015474U (zh) * 2018-03-16 2018-10-26 珠海格力节能环保制冷技术研究中心有限公司 转子结构及具有其的电机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203554097U (zh) * 2013-06-05 2014-04-16 上海欧普斯达光纤通信设备有限公司 一种永磁复合激磁同步电机转子
JP6136718B2 (ja) * 2013-07-31 2017-05-31 日産自動車株式会社 回転電機用ロータとその製造方法
CN204928398U (zh) * 2015-08-31 2015-12-30 比亚迪股份有限公司 一种斜极转子组件及电机
CN208015470U (zh) * 2018-03-16 2018-10-26 珠海格力节能环保制冷技术研究中心有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038006A (zh) * 2013-03-08 2014-09-10 通用汽车环球科技运作有限责任公司 具有混合稀土磁体和铁氧体磁体的转子的内置式永磁体电机
CN104242509A (zh) * 2013-06-05 2014-12-24 上海欧普斯达光纤通信设备有限公司 一种永磁复合激磁同步电机转子
CN104638863A (zh) * 2015-01-23 2015-05-20 浙江迈雷科技有限公司 一种永磁同步电机
CN204992999U (zh) * 2015-07-24 2016-01-20 西安正麒电气有限公司 一种内置式永磁电机转子冲片
CN205070733U (zh) * 2015-09-14 2016-03-02 常州市普世汽车电动***有限公司 一种小尺寸永磁同步电机
CN105337434A (zh) * 2015-11-09 2016-02-17 江苏大学 电动汽车用组合励磁永磁无刷电机
CN207098792U (zh) * 2017-06-27 2018-03-13 上海电驱动股份有限公司 一种永磁同步电机的转子冲片
CN107528400A (zh) * 2017-09-30 2017-12-29 广东美芝制冷设备有限公司 电机转子、永磁电机和压缩机
CN107666193A (zh) * 2017-10-11 2018-02-06 江苏东航空机械有限公司 一种新能源电动汽车电机转子冲片
CN108462272A (zh) * 2018-03-16 2018-08-28 珠海格力节能环保制冷技术研究中心有限公司 转子结构及具有其的电机
CN208015474U (zh) * 2018-03-16 2018-10-26 珠海格力节能环保制冷技术研究中心有限公司 转子结构及具有其的电机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022096527A1 (en) * 2020-11-03 2022-05-12 Jaguar Land Rover Limited Apparatus for an electric machine

Also Published As

Publication number Publication date
CN108462272A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
WO2019174328A1 (zh) 转子结构及具有其的电机
EP2741400B1 (en) Motor rotor and motor having same
CN109510353B (zh) 斜极转子及永磁同步电机
KR101534706B1 (ko) 매입형 영구자석 동기모터
KR101655161B1 (ko) 계자권선형 구동모터의 회전자
CN104882978A (zh) 一种低转矩脉动高效率永磁电机定转子结构
CN101707404A (zh) 复合结构永磁电机的Halbach阵列盘式转子
CN112271838A (zh) 一种磁钢成双v排布结构的电机转子
CN111463917A (zh) 一种复合式永磁同步电机定子
CN102790502B (zh) 永磁同步电机
CN207968107U (zh) 电机转子和永磁电机
EP3934062A1 (en) Stator core assembly, and motor and vehicle having same
CN110875656B (zh) 电机转子、电机以及电动汽车
CN208767862U (zh) 一种少永磁体高性能永磁磁阻同步电机
CN108599416B (zh) 一种驱动电机的转子结构
US20210167644A1 (en) Rotor structure, permanent magnet auxiliary synchronous reluctance motor, and electric vehicle
CN208015474U (zh) 转子结构及具有其的电机
CN104734385B (zh) 一种高速永磁同步电机的转子结构
CN110875657A (zh) 电机转子、电机和电动汽车
CN208589818U (zh) 一种磁通反向爪极电机组件
CN202145611U (zh) 永磁同步电机
CN112234732A (zh) 永磁新能源汽车电机定转子铁芯冲片
JP5679695B2 (ja) 永久磁石式回転電機
CN220325361U (zh) 一种永磁同步磁阻电机转子结构
CN112003400A (zh) 转子、电机、压缩机及空调器、车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909303

Country of ref document: EP

Kind code of ref document: A1