WO2019128762A1 - 含酰胺键基团的聚合物、混合物、组合物及其应用 - Google Patents

含酰胺键基团的聚合物、混合物、组合物及其应用 Download PDF

Info

Publication number
WO2019128762A1
WO2019128762A1 PCT/CN2018/121557 CN2018121557W WO2019128762A1 WO 2019128762 A1 WO2019128762 A1 WO 2019128762A1 CN 2018121557 W CN2018121557 W CN 2018121557W WO 2019128762 A1 WO2019128762 A1 WO 2019128762A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
organic
atoms
aromatic
Prior art date
Application number
PCT/CN2018/121557
Other languages
English (en)
French (fr)
Inventor
潘君友
杨曦
温华文
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201880069942.1A priority Critical patent/CN111278892B/zh
Publication of WO2019128762A1 publication Critical patent/WO2019128762A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of electroluminescent materials, and more particularly to an amide-containing group-containing polymer, mixture, composition and use thereof.
  • OLEDs Organic light-emitting diodes
  • Organic electroluminescence refers to the phenomenon of converting electrical energy into light energy using organic matter.
  • An organic electroluminescence device utilizing an organic electroluminescence phenomenon generally has a structure in which a positive electrode and a negative electrode and an organic layer are contained therebetween.
  • the organic layer has a multilayer structure, and each layer contains a different organic substance. Specifically, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, an electron injection layer, and the like may be included.
  • Such an organic electroluminescence device when a voltage is applied between the two electrodes, holes are injected from the positive electrode into the organic layer, electrons are injected from the negative electrode into the organic layer, and excitons are formed when the injected holes meet the electrons. The excitons emit light when they transition back to the ground state.
  • Such an organic electroluminescence device has characteristics such as self-luminescence, high luminance, high efficiency, low driving voltage, wide viewing angle, high contrast, and high responsiveness.
  • general polymer optoelectronic materials have similar compatibility characteristics, namely polymer luminescent materials, hole injection/transport materials, electron injection/transport materials in toluene, chloroform, chlorobenzene, o-dichlorobenzene, o-xylene, tetrahydrofuran and the like. It has good solubility, so when preparing multi-layer, complex polymer light-emitting diodes by solution processing, there are problems such as interface miscibility and interface erosion. In order to solve the problem of interface erosion in solution processing, it is currently possible to develop a crosslinkable polymer photoelectric material by a cross-linking method, which has excellent solubility before crosslinking, and can be formed into a film by a solution processing method.
  • the crosslinking groups of the polymer side chains are chemically reacted with each other to form an insoluble and infusible three-dimensional interpenetrating network polymer, which has excellent solvent resistance and facilitates solution processing of subsequent functional layers.
  • Preparation J. Mater. Chem. 2008, 18, 4495.
  • the performance of processing OLEDs based on the solution of crosslinked polymers of these crosslinking groups has yet to be improved.
  • the existing crosslinkable polymers are all conjugated polymers, and their triplet energy levels are low. When used for phosphorescent green light, they do not play a good exciton blocking effect, causing a decrease in efficiency. Yes, the existing crosslinkable polymer itself has limited stability, resulting in a low lifetime of the OLED device.
  • o is the number of repetitions of the repeating unit, is an integer greater than or equal to 1;
  • Ar 1 and Ar 2 are each independently selected from aromatic, heteroaromatic aromatic or heteroaromatic groups having 5 to 50 ring atoms, said aromatic group, heteroaromatic group and non-aromatic group The group is optionally further substituted with one or more R 1 substituents;
  • T 1 and T 2 are each independently an amide group; and when a plurality of T 1 are present, a plurality of said T 1 are the same or different, and when a plurality of T 2 are present, a plurality of said T 2 are the same or different;
  • a, b are each independently 0 or 1, and at least one of a and b is 1;
  • a plurality of the R 1 are the same or different.
  • An amide bond group-containing mixture comprising at least one of the above-described amide bond group-containing polymers, and at least one other organic functional material selected from the group consisting of hole injection materials, hole transport Materials, electron transport materials, electron injecting materials, electron blocking materials, hole blocking materials, luminescent materials, host materials, and organic dyes.
  • a composition comprising at least one of the above-described amide bond group-containing polymers or the above-described amide bond group-containing mixture, and at least one organic solvent.
  • An organic electronic device comprising at least one of the above-described amide bond group-containing polymers or the above-described amide bond group-containing mixture.
  • the above amide bond group-containing polymer has a conjugated structural unit, it imparts rich optical and electrical properties to the polymer.
  • the polymer material undergoes chemical reaction cross-linking under heating to form an insoluble and infusible interpenetrating network polymer film, which has excellent solvent resistance and is suitable for fabricating complex multilayer organic electronic devices. specifically:
  • the amide bond group-containing polymer of the present invention wherein the conjugated structural unit imparts rich optical (photoluminescence, electroluminescence, photovoltaic effect, etc.), electrical (semiconductor characteristics, carrier transport) to the polymer Properties such as properties, etc., and its polymer properties have both good solubility and film forming properties. Under heating conditions, the polymer can undergo a chemical reaction to form a three-dimensional insoluble and infusible interpenetrating network polymer film with excellent solvent resistance.
  • the solution processing characteristics of the polymer can be utilized, and the polymer optoelectronic device can be prepared by solution processing such as inkjet printing, screen printing, spin coating, etc., and intermolecular crosslinking can be formed to form insoluble.
  • the molten three-dimensional interpenetrating polymer film has excellent solvent resistance and is advantageous for solution processing of multilayer polymer optoelectronic devices, especially organic electroluminescent devices.
  • the amide-bond-containing polymer of the present invention has a weak conjugate ability of an amide group, resulting in a polymer
  • the lowest unoccupied molecular orbital (LUMO) and triplet energy levels (E T ) have little effect as the degree of polymerization becomes larger, which is beneficial to the restriction of excitons in the luminescent layer, which is beneficial to the application in polymer optoelectronic devices. Especially for the application of hole transport materials.
  • FIG. 1 is a structural view of a preferred light-emitting device according to the present invention, in which 101 is a substrate, 102 is an anode, 103 is a hole injection layer (HIL) or a hole transport layer (HTL), and 104 is a light-emitting layer, 105 It is an electron injection layer (EIL) or an electron transport layer (ETL), and 106 is a cathode.
  • HIL hole injection layer
  • HTL hole transport layer
  • ETL electron transport layer
  • ETL electron transport layer
  • the present invention provides a class of polymers containing amide bond groups and their use in organic electronic devices.
  • the present invention will be further described in detail below. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the host material, the matrix material, the Host material, and the Matrix material have the same meaning and are interchangeable.
  • the singlet states and the singlet states have the same meaning and are interchangeable.
  • the triplet state and the triplet state have the same meaning and are interchangeable.
  • composition and the printing ink, or ink have the same meaning and are interchangeable.
  • the polymer that is, the polymer, includes a homopolymer, a copolymer, and a block copolymer.
  • the high polymer also includes a dendrimer.
  • the conjugated polymer is a high polymer, and its backbone backbone is mainly composed of sp2 hybrid orbitals of C atoms.
  • Famous examples are: polyacetylene polyacetylene and poly(phenylene vinylene), the main chain thereof.
  • the C atom on it can also be replaced by other non-C atoms, and when the sp2 hybrid on the main chain is interrupted by some natural defects, it is still considered to be a conjugated polymer.
  • the conjugated high polymer also includes an aryl amine, an aryl phosphine and other heteroarmotics, and an organometallic complexes in the main chain. )Wait.
  • the energy level structure of the organic material the triplet energy levels E T , HOMO, and LUMO play a key role.
  • the following is an introduction to the determination of these energy levels.
  • the HOMO and LUMO levels can be measured by photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effect such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • quantum chemical methods such as density functional theory (hereinafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • the triplet energy level E T of organic materials can be measured by low temperature time-resolved luminescence spectroscopy, or by quantum simulation calculations (eg by Time-dependent DFT), as by commercial software Gaussian 03W (Gaussian Inc.), specific simulation methods. See WO2011141110 or as described below in the examples.
  • the absolute values of HOMO, LUMO, E T depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as starting point and peak point on the CV curve, can give different HOMO/ LUMO value. Therefore, reasonable and meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital level
  • (HOMO-2) is the third highest occupied orbital level
  • (LUMO+1) is defined as the second lowest unoccupied orbital level
  • (LUMO+2) is the third lowest occupied orbital level, and so on.
  • the present invention provides a polymer of the formula (I):
  • o is the number of repetitions of the repeating unit, is an integer greater than or equal to 1;
  • Ar 1 and Ar 2 are each independently selected from aromatic, heteroaromatic aromatic or heteroaromatic groups having 5 to 50 ring atoms, said aromatic group, heteroaromatic group and non-aromatic group The group is optionally further substituted with one or more R 1 substituents;
  • T 1 and T 2 are each independently an amide group; and when a plurality of T 1 are present, a plurality of said T 1 are the same or different, and when a plurality of T 2 are present, a plurality of said T 2 are the same or different;
  • a, b are each independently 0 or 1, and at least one of a and b is 1;
  • a plurality of the R 1 are the same or different.
  • said T 1 and T 2 comprise a structure as shown in formula (II):
  • R 3 has the same meaning as R 1 above.
  • said T 1 or T 2 contains one or more of the following structural formulas:
  • N1 represents an integer from 0-30.
  • the polymer according to the invention has a molecular weight Mw ⁇ 10000 g/mol, preferably ⁇ 50000 g/mol, more preferably ⁇ 100000 g/mol, more preferably ⁇ 150000 g/mol Preferably, it is ⁇ 200,000 g/mol.
  • each of Ar 1 and Ar 2 is independently selected from an aromatic group or a heteroaromatic group having 6 to 50 ring atoms, each occurrence; in a more preferred embodiment, Ar 1 and Ar 2 are each independently selected from an aromatic group or an aromatic hetero group having a ring number of 6 to 45; in a highly preferred embodiment, Ar 1 and Ar 2 are Each occurrence is independently selected from an aromatic group or a heteroaromatic group having a ring number of from 6 to 40; in a most preferred embodiment, Ar 1 and Ar 2 are each independently present at each occurrence. It is selected from an aromatic group or a heteroaromatic group having a ring number of 6 to 30. One or more of the groups may be further substituted.
  • An aromatic ring system or an aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • Heteroaromatic or heteroaromatic groups refer to hydrocarbyl groups (containing heteroatoms) comprising at least one heteroaromatic ring, including monocyclic groups and polycyclic ring systems.
  • the heteroatoms are preferably selected from the group consisting of Si, N, P, O, S and/or Ge, particularly preferably selected from the group consisting of Si, N, P, O and/or S.
  • These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring.
  • At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • an aromatic group or a heteroaromatic group includes not only an aromatic or heteroaromatic system, but also a plurality of aryl or heteroaromatic groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic groups for the purposes of this invention.
  • examples of the aromatic group are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzopyrene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, hydrazine, hydrazine Oxazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, Pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • the Ar 1 has a larger energy gap ⁇ -conjugated structural unit, also called a Backbone Unit, preferably ⁇ 2.2 eV; more preferably ⁇ 2.5 eV; more preferably ⁇ 3.0 eV; most preferably ⁇ 3.5 eV.
  • the Ar 1 comprises one or more combinations of the following structural groups:
  • the polymer according to the present invention wherein Ar 1 or Ar 2 may be the same or different in multiple occurrences, is selected from the group consisting of a cyclic aromatic group, including benzene, biphenyl, Triphenyl, benzo, anthracene, anthracene and derivatives thereof; aromatic heterocyclic groups including triphenylamine, dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran , benzothiophene, benzoselenophene, carbazole, carbazole, pyridinium, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, triazole, dioxin, Thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine,
  • the polymer according to formula (I) wherein Ar 1 or Ar 2 when multiple occurrences, may be the same or differently selected from one or the following of the following structural groups; Combination of, which can be further arbitrarily replaced:
  • u is 1 or 2 or 3 or 4.
  • the conjugated polymer comprises at least one backbone structural unit.
  • the main chain structural unit generally has a larger energy gap ⁇ -conjugated structural unit, also called a Backbone Unit, and may be selected from a monocyclic or polycyclic aryl or heteroaryl group.
  • the conjugated polymer may contain two or more main chain structural units.
  • the content of the main chain structural unit is ⁇ 40 mol%, preferably ⁇ 50 mol%, more preferably ⁇ 55 mol%, most preferably ⁇ 60 mol%.
  • Ar 1 is a polymer backbone structural unit selected from the group consisting of benzene, biphenyl, triphenyl, benzo, anthracene, pyrene, oxazole, Carbazole, dibenzothiol, dithienocyclopentadiene, dithienothiolan, thiophene, anthracene, naphthalene, benzodithiophene, benzofuran, benzothiophene, benzoselenophene and derivative.
  • Ar 1 is a polymer backbone structural unit selected from the group consisting of benzene, biphenyl, triphenyl, benzo, anthracene, pyrene, oxazole, Carbazole, dibenzothiol, dithienocyclopentadiene, dithienothiolan, thiophene, anthracene, naphthalene, benzodithiophene, benzofuran,
  • the Ar 1 is selected from the group consisting of benzene, Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthracene, diterpene, snail.
  • the polymers of the present invention have hole transport properties.
  • said Ar 2 has a smaller energy gap ⁇ -conjugated structural unit, preferably ⁇ 3.5 eV; more preferably ⁇ 3.2 eV; most preferably ⁇ 3.0 eV
  • the conjugated structure containing a small energy gap in the polymer allows the polymer to generate charges more easily under the action of an electric field.
  • the polymer according to the invention wherein Ar 2 is selected from the group having the hole transporting property, and the preferred hole transporting unit is selected from the group consisting of aromatic amines, triphenylamines, naphthylamines, thiophenes, carbazoles. , dibenzothiophene, dithienocyclopentadiene, dithienothiolan, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, carbazole And its derivatives.
  • Ar 2 has the structure represented by Chemical Formula 1:
  • Ar1, Ar2, and Ar3 can independently select the same or different forms when appearing multiple times.
  • Ar1 selected from a single bond, a mononuclear aryl group, a polynuclear aryl group, a mononuclear heteroaryl group or a polynuclear heteroaryl group, and this aryl or heteroaryl group may be substituted with other side chains.
  • Ar2 selected from mononuclear aryl, polynuclear aryl, mononuclear heteroaryl or polynuclear heteroaryl, this aryl or heteroaryl may be substituted by other side chains.
  • Ar3 selected from mononuclear aryl, polynuclear aryl, mononuclear heteroaryl or polynuclear heteroaryl, this aryl or heteroaryl may be substituted by other side chains. Ar3 may also be linked to other moieties in Formula 1 via a bridging group.
  • n selected from 1, 2, 3, 4, or 5.
  • the structural unit represented by the preferred chemical formula 1 is the chemical formula 2
  • Ar4, Ar6, Ar7, Ar10, Ar11, Ar13, Ar14: are defined as Ar2 in Chemical Formula 1,
  • Ar5, Ar8, Ar9, Ar12: are defined as Ar3 in Chemical Formula 1.
  • Ar1-Ar14 in Chemical Formula 1 and Chemical Formula 2 is preferably selected from the group consisting of phenylene, naphthalene, anthracene, fluorene, spirobifluorene, hydrazine ( Indenofuorene), phenanthrene, thiophene, pyrrole, carbazole, binaphthalene, dehydrophenanthrene, and the like.
  • R is selected from H, or D, or an aliphatic alkane having 1 to 10 carbon atoms, an aromatic hydrocarbon, a substituted or unsubstituted aromatic or heteroaromatic group having 5 to 10 ring atoms.
  • the plurality of Rs are the same or different.
  • HTM hole transport material small molecule hole transport material
  • Suitable HTM materials may optionally include compounds having the following structural units: phthlocyanine, porphyrine, amine, aromatic amine, triarylamine, thiophene, thiophene. (fused thiophene) (such as dithienothiophene and dibenzothiphene), pyrrole, aniline, carbazole, indolocarbazole, and their derivatives Things.
  • the Ar 2 comprises one or more combinations of the following structural groups:
  • each occurrence of Ar 3 -Ar 11 is independently selected from an aromatic or heteroaromatic ring system of 5 to 40 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 40 ring atoms a group, or a non-aromatic group having 5 to 40 ring atoms, or a combination of these systems, wherein one or more groups may be further substituted;
  • each occurrence of Ar 3 -Ar 11 is independently selected from an aromatic or heteroaromatic ring system of 5 to 20 ring atoms, or an aryloxy or heteroaryloxy group having 5 to 20 ring atoms. a group, or a non-aromatic group having 5 to 20 ring atoms, or a combination of these systems, wherein one or more groups may be further substituted;
  • the polymers of the present invention have electron transport properties.
  • the polymer according to the invention wherein Ar 2 is selected from units having electron transport properties, and the preferred electron transport unit may be selected from pyrazole, imidazole, triazole, oxazole, thiazole , oxadiazole, triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxazine, oxadiazines, hydrazine, benzimidazole, carbazole, Indoxazine, bisbenzoxazoles, isoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthalene, anthracene, pteridine, xanthene, acridine, phenazine, phenothiazine, Phenoxazines,
  • ETM electron transport materials
  • ETM can be used as the unit of the invention with electron transport properties.
  • ETM is sometimes referred to as an n-type organic semiconductor material.
  • suitable ETM materials are not particularly limited, and any metal complex or organic compound may be used as the ETM as long as they can transport electrons.
  • Preferred organic ETM materials may be selected from the group consisting of tris(8-hydroxyquinoline)aluminum (AlQ3), phenazine, Phenanthroline, Anthracene, Phenanthrene, Fluorene, and Bifluorene, Spiro-bifluorene, Phenylene-vinylene, triazine, triazole, imidazole, pyrene, Perylene, Trans-Indenofluorene, cis-Indenon fluorene, Dibenzol-indenofluorene, Indenonaphthalene, Benzanthracene and their derivatives .
  • AlQ3 tris(8-hydroxyquinoline)aluminum
  • phenazine Phenanthroline
  • Anthracene Phenanthrene
  • Fluorene and Bifluorene
  • Spiro-bifluorene Phenylene-vinylene
  • triazine triazole
  • the Ar 2 having electron transporting property may be selected from the group having any one of the following formulas:
  • t represents an integer from 1-20;
  • R 7 is independently selected from the group consisting of hydrogen, deuterium, halogen atoms (F, Cl, Br, I), cyano, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl , aryl or heteroaryl;
  • Each occurrence of X 1 -X 8 is independently selected from CR 8 or N, and at least one is N;
  • Ar 12 -Ar 16 has the same meaning as Ar 3 ;
  • R 8 has the same meaning as R 1 .
  • the polymer of the present invention contains a crosslinkable group; the crosslinkable group is preferably selected from a linear or cyclic alkenyl group, a linear dienyl group, an alkynyl group.
  • the crosslinkable group is selected from one of the following structures:
  • the dotted line represents the position at which the crosslinking monomer is bonded to a functional group on other monomers or monomers in the polymer, and t and t1 represent an integer greater than or equal to zero.
  • Ar 17 comprises an aromatic ring system or a heteroaromatic ring system having 5 to 40 ring atoms
  • R 9 to R 11 are independently selected from the group consisting of H, D, F, CN, alkyl chain, fluoroalkyl chain, aromatic ring, aromatic heterocyclic ring, amino group, silicon group, and Mercapto, alkoxy, aryloxy, fluoroalkoxy, siloxane, siloxy, deuterated alkyl chain, deuterated partially fluorinated alkyl chain, deuterated aromatic ring, deuterated aromatic Heterocyclic, deuterated amino, deuterated silyl, deuterated indenyl, deuterated alkoxy, deuterated aryloxy, deuterated fluoroalkoxy, deuterated siloxane, deuterated silyloxy Base, crosslinkable group.
  • the adjacent R 9 , R 10 , R 11 may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other or a ring bonded to the group;
  • crosslinkable groups can be present in the polymer in a variety of forms.
  • the crosslinkable group is substituted in the form of a substituent for each repeating unit on the polymer, such as the following formula:
  • Q is a crosslinkable group as described above, Ar is a repeating unit on the polymer, and x is a mole fraction
  • the crosslinkable group is attached to Ar 1 .
  • the crosslinkable group is attached to T 1 or T 2 .
  • the crosslinkable group is attached to Ar 2 .
  • the molar fraction x of the repeating unit comprising the crosslinkable group is: 0.02 ⁇ x ⁇ 0.30, preferably 0.05 ⁇ x ⁇ 0.25, more preferably 0.08 ⁇ x ⁇ 0.20, Preferably, it is 0.10 ⁇ x ⁇ 0.18.
  • the number of moles of Ar 2 having a hole transporting property is yh, wherein 0.02 ⁇ yh ⁇ 0.30, preferably 0.05 ⁇ yh ⁇ 0.25, more Preferably, 0.08 ⁇ yh ⁇ 0.20, preferably 0.10 ⁇ yh ⁇ 0.18.
  • the number of moles of Ar 2 having electron transport properties is ye, wherein 0.02 ⁇ ye ⁇ 0.30, preferably 0.05 ⁇ ye ⁇ 0.25, more preferably 0.08 ⁇ ye ⁇ 0.20, preferably 0.10 ⁇ ye ⁇ 0.18.
  • the best eV is ⁇ 0.5eV.
  • HOMO indicates that the polymer has the highest occupied orbital
  • HOMO-1 indicates that the polymer has the second highest occupied orbit.
  • the polymer according to the invention has a higher LUMO, preferably LUMO ⁇ -2.7 eV, more preferably ⁇ -2.6 eV, more preferably ⁇ -2.5 eV, most preferably ⁇ -2.4 eV.
  • the polymer according to the invention has a lower HOMO, preferably HOMO ⁇ -5.0 eV, more preferably ⁇ -5.1 eV, most preferably ⁇ - 5.2 eV.
  • the polymer according to the invention has a relatively large triplet energy level E T , preferably E T ⁇ 2.5 eV, more preferably ⁇ 2.6 eV, most preferably ⁇ 2.7 eV.
  • the polymer according to the invention is a conjugated polymer.
  • a is 1, b is 1, o is 1, and p is 1.
  • the polymer has a structural unit represented by any one of the following formulas (II-1) to (II-10):
  • R 11 , R 12 and R 13 have the same meaning as R 3 ;
  • A is a substituted or unsubstituted aromatic group having 5 to 30 ring atoms, a substituted or unsubstituted heteroaromatic group having 5 to 30 ring atoms, or 5 to 30 substituted or unsubstituted a non-aromatic group of a ring atom;
  • L does not exist, or is CH 2 ;
  • W is O or S
  • a in the formula (II-1) to the formula (II-10) is selected from the group consisting of:
  • Y is CR 14 R 15 , SiR 14 R 15 , NR 14 , O, S or Se;
  • R 14 and R 15 are each independently H, C1-C20 alkyl, vinyl,
  • R 11 is H, C1-C20 alkyl, vinyl, ethynyl, When there are a plurality of R 11 , a plurality of the R 11 are the same or different;
  • R 12 and R 13 are each independently selected from the group consisting of H, C1-C20 alkyl, 3-10 membered cycloalkyl, phenyl or
  • R 12 or R 13 When a plurality of said R 12 or R 13 are present, a plurality of said R 12 or R 13 are the same or different.
  • the above polymer has a structural unit represented by the formula (III-1)
  • R 14 and R 15 are each independently H or a C1-C10 alkyl group
  • R 11 is H, C1-C20 alkyl or vinyl; when a plurality of R 11 are present, a plurality of said R 11 are the same or different;
  • n 1 or 2.
  • the above polymer has a structure represented by the formula (III-2)
  • R 16 and R 17 are each independently selected from: R 11 is H, C1-C6 alkyl or vinyl, and the R 16 and R 17 are not the same.
  • the invention further relates to a process for the synthesis of a polymer according to formula (I), wherein the reaction is carried out using a starting material containing a reactive group.
  • the polymer may pass through at least one monomer having a lactam, or an amine group and an acid group (including a carboxylic acid, an acid halide, etc.), or at least two kinds of a diamine and a dibasic acid group respectively (including a carboxylic acid)
  • the monomer of the acid halide or the like is obtained by polycondensation.
  • the polymer of the present invention may be a homopolymer or a copolymer.
  • the copolymer may be a disordered, alternating, block, comb or dendritic copolymer.
  • the processes used to form polymers of these various structures are well known in the art, such as George Odian (John Wiley & Sons, New York, NY, 1991), Principles Of Polymerization, Third Edition; Chemical Reactions by M. Lazer et al. Of Natural and Synthetic Polymers; and Chemical Reactions on Polymers (1988) by Benham and Kinstle.
  • the synthesis method of the polymer according to formula (I) is selected from the group consisting of SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the above polymer has a glass transition temperature (Tg) ⁇ 100 ° C, preferably ⁇ 120 ° C, more preferably ⁇ 140 ° C, more preferably ⁇ 160 ° C, and most preferably ⁇ 180 ° C. .
  • Tg glass transition temperature
  • the molecular weight distribution (PDI) of the above polymer preferably ranges from 1 to 5; more preferably from 1 to 4; more preferably from 1 to 3, still more preferably from 1 to 2, most preferably It is 1 to 1.5.
  • the weight average molecular weight (Mw) of the above polymer is preferably in the range of 10,000 to 1,000,000; more preferably 50,000 to 500,000; more preferably 100,000 to 400,000, still more preferably It is 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the present invention also provides a mixture comprising at least one of the above-described polymers, and at least one other organic functional material, the at least another organic functional material being selectable from a hole injecting material (HIM), hole transport material (HTM), electron transport material (ETM), electron injecting material (EIM), electron blocking material (EBM), hole blocking material (HBM), luminescent material (Emitter), host material ( Host) and organic dyes.
  • HIM hole injecting material
  • HTM hole transport material
  • ETM electron transport material
  • EIM electron injecting material
  • EBM electron blocking material
  • Emitter hole blocking material
  • Host host material
  • organic dyes organic dyes.
  • organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO 2011110277A1, the entire disclosure of which is hereby incorporated by reference.
  • the mixture comprises a polymer according to the invention, and a fluorescent illuminant (or singlet illuminant).
  • the polymer according to the invention may be used herein as a host, wherein the weight percentage of the fluorescent illuminant is ⁇ 15% by weight, preferably ⁇ 12% by weight, more preferably ⁇ 9% by weight, still more preferably ⁇ 8% by weight, most preferably ⁇ 7wt %.
  • the mixture comprises a polymer in accordance with the present invention, and a TADF material.
  • the mixture comprises a polymer according to the invention, and a phosphorescent emitter (or triplet emitter).
  • the polymer according to the invention may be used herein as the host, wherein the weight percentage of the phosphorescent emitter is ⁇ 30% by weight, preferably ⁇ 25% by weight, more preferably ⁇ 20% by weight, most preferably ⁇ 18% by weight.
  • the mixture comprises a polymer according to the invention, and an HTM material.
  • the singlet emitter, triplet emitter and TADF material are described in more detail below (but are not limited thereto).
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1, indenoindoles and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847, and disclosed in US Pat. No. 7,233,019, KR2006-0006760 A quinone triarylamine derivative.
  • the singlet emitter can be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and aromatic amine.
  • a monostyrylamine refers to a compound comprising an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the fused ring system and preferably has at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • An aromatic amide refers to a compound in which a diaryl arylamine group is attached directly to the oxime, preferably at the position of 9.
  • An aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is preferably bonded to the 1 or 1,6 position of hydrazine.
  • Examples of singlet emitters based on vinylamines and arylamines are also preferred examples and can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1, the entire contents of which are hereby incorporated by reference. This article is incorporated herein by reference.
  • Further preferred singlet emitters can be selected from indenoindole-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindoloindole-amines and benzoindenoindole-diamines , as disclosed in WO 2008/006449, dibenzoindolo-amine and dibenzoindeno-diamine, as disclosed in WO 2007/140847.
  • Further preferred singlet emitters are selected from the group consisting of ruthenium-based fused ring systems as disclosed in US2015333277A1, US2016099411A1, US2016204355A1.
  • More preferred singlet emitters may be selected from the derivatives of hydrazine, such as those disclosed in US2013175509A1; triarylamine derivatives of hydrazine, such as triarylamine derivatives of hydrazine containing dibenzofuran units disclosed in CN102232068B; A triarylamine derivative of hydrazine having a specific structure, as disclosed in CN105085334A, CN105037173A.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1 '-biphenyl), indenyl hydrazine, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine (such as US20060222886), arylene vinyl (such as US5121029, US5130603), cyclopentane Alkene such as tetraphenylcyclopentadiene, rub
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)u, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and u is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd, Au or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from a transition metal element or a lanthanide or actinide element, particularly preferably Ir, Pt, Au;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar 2 may be the same or different each time it appears, is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal; Ar 1 and Ar 2 are bonded by a covalent bond Together, each may carry one or more substituent groups, which may also be joined together by a substituent group; L' may be the same or different at each occurrence, and is a bidentate chelate auxiliary ligand, preferably Is a monoanionic bidentate chelate ligand; q can be 0, 1, 2 or 3, preferably 2 or 3; p can be 0, 1, 2 or 3, preferably 1 or 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below:
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ E st ), and triplet excitons can be converted into singlet exciton luminescence by inter-system crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the OLED field is broad.
  • the TADF material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3 eV, and secondarily ⁇ Est ⁇ 0.25 eV, more preferably ⁇ Est ⁇ 0.20 eV, and most preferably ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, the TADF has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • Another object of the invention is to provide a material solution for printing OLEDs.
  • the polymer according to the invention has a solubility in toluene of > 5 mg/ml, preferably > 7 mg/ml, most preferably > 10 mg/ml at 25 °C.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic, ester, aromatic ketone or aromatic ether, aliphatic ketone or aliphatic ether, alicyclic or olefinic a compound, or a borate or phosphate compound, or a mixture of two or more solvents.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents.
  • aromatic or heteroaromatic solvents suitable for the present invention are, but are not limited to, p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene.
  • aromatic ketone solvents suitable for the present invention are, but are not limited to, 1-tetralone, 2-tetralone, 2-(phenyl epoxy) tetralone, 6-(methoxy Tetrendanone, acetophenone, propiophenone, benzophenone, and derivatives thereof, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone, etc.;
  • aromatic ether-based solvents suitable for the present invention are, but are not limited to, 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H -pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-ethyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene, diphenyl ether
  • the at least one organic solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-fluorenone, 3-fluorenone, 5-fluorenone, 2 - anthrone, 2,5-hexanedione, 2,6,8-trimethyl-4-indanone, anthrone, phorone, isophorone, di-n-pentyl ketone, etc.; or an aliphatic ether
  • the at least one organic solvent may be selected from ester-based solvents: alkyl octanoate, alkyl sebacate, alkyl stearate, benzene. Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkanolide, alkyl oleate, and the like. Particularly preferred are octyl octanoate, diethyl sebacate, diallyl phthalate, isodecyl isononanoate.
  • the solvent may be used singly or as a mixture of two or more organic solvents.
  • a composition according to the present invention comprises a polymer or mixture as described above and at least one organic solvent, which may further comprise another organic solvent, and another organic
  • solvents include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o- Xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1- Trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, decalin
  • the solvent particularly suitable for the present invention is a solvent having Hansen solubility parameters in the following ranges:
  • ⁇ d (dispersion force) is in the range of 17.0 to 23.2 MPa 1/2 , especially in the range of 18.5 to 21.0 MPa 1/2 ;
  • ⁇ p polar forces in the range of 0.2 ⁇ 12.5MPa 1/2, especially in the 2.0 ⁇ 6.0MPa 1/2;
  • the organic solvent is selected in consideration of its boiling point parameter.
  • the organic solvent has a boiling point of ⁇ 150 ° C; preferably ⁇ 180 ° C; more preferably ⁇ 200 ° C; more preferably ⁇ 250 ° C; optimally ⁇ 275 ° C or ⁇ 300 ° C.
  • the boiling points within these ranges are beneficial for preventing nozzle clogging of the inkjet printhead.
  • the organic solvent can be evaporated from the solvent system to form a film comprising the functional material.
  • the invention further relates to the use of a composition as a printing ink for the preparation of organic electronic devices, particular preference being given to a preparation process by printing or coating.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, twist roll printing, lithography, flexography Printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc.
  • Preferred are gravure, screen printing and inkjet printing. Gravure printing, ink jet printing will be applied in embodiments of the invention.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the invention further relates to an organic electronic device comprising at least one polymer or mixture as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc., particularly preferred are organic electroluminescent devices such as OLED, OLEEC, organic light-emitting field effect transistors.
  • the electroluminescent device has an electron transport layer or a hole transport layer comprising a polymer or mixture as described above.
  • the invention further comprises a method for preparing a functional layer comprising the polymer of the invention in an organic electronic device, comprising at least the following steps:
  • the first step dissolving the polymer of the present invention in an organic solvent or a mixed solvent to prepare a solution;
  • the second step coating the solution onto a functional layer of the device by printing or coating, wherein the printing or coating method can be selected from, but not limited to, inkjet printing, printing (Nozzle Printing) ), typography, screen printing, dip coating, spin coating, knife coating, roller printing, torsion roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit extrusion Pressure coating, etc.;
  • the printing or coating method can be selected from, but not limited to, inkjet printing, printing (Nozzle Printing) ), typography, screen printing, dip coating, spin coating, knife coating, roller printing, torsion roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit extrusion Pressure coating, etc.;
  • the third step heat-treating the obtained film at a temperature of at least 100 degrees Celsius, optionally by adding ultraviolet light to cause cross-linking reaction.
  • the crosslinked cured film is washed with an organic solvent to remove residual compounds which are not crosslinked and cured.
  • the resulting crosslinked cured film (after solvent cleaning) has a thickness of at least 50%, preferably at least 60%, more preferably at least 70%, preferably at least 70%, prior to crosslinking. At least 85%.
  • a substrate an anode, at least one light-emitting layer, and a cathode are included.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-na
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an electroluminescent device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • reaction was quenched by the addition of water, extracted with ethyl acetate, and the organic phase was evaporated to remove the solvent, and the mixture was applied to silica gel to obtain the product intermediate 4, weight 2.95 g, yield 76%.
  • reaction was quenched by the addition of water, extracted with ethyl acetate, and the organic phase was evaporated to remove the solvent, and the mixture was applied to silica gel to obtain a product intermediate 8, weight 3.69 g, yield 83%.
  • intermediate 3 (733 mg, 1 mmol), intermediate 7 (119 mg, 0.3 mmol) and intermediate 9 (298 mg, 0.7 mmol) were added to a 25 mL reaction flask, and dissolved in 10 ml of DMAc. The solution was poured into a large amount of water, and the precipitate was filtered, washed with methanol and acetone, and dried in vacuo to give a polymer P.
  • the organic small molecule energy structure can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the energy structure of the polymer can be obtained by calculating the trimer.
  • the compound P1, the trimer M1-M2-M1 and/or M2-M1-M2 obtained by polymerizing the monomers M1 and M2 shown below are used to calculate the energy level in which the alkyl chain is substituted with a methyl group. .
  • the HOMO and LUMO energy levels calculated above are calculated according to the following calibration formula, and S1 and T1 are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 09W, and the unit is eV.
  • H1 is a co-host material, and its synthesis is referred to the Chinese patent of CN201510889328.8; H2 is a co-host material, and its synthesis refers to the patent WO201034125A1; E1 is a phosphorescent guest, and its synthesis refers to the patent CN102668152; Comp A to Comp C and Poly-TFB is a device HTL comparative material in which the synthesis of Comp A, Comp B and Comp C is similar to that of a similar structural compound of this patent; Poly-TFB (CAS: 223569-31-1) is purchased from Lumtec.Corp.
  • OLED-Ref The device structure of the OLED device (OLED-Ref) is: ITO/PEDOT: PSS (80 nm) / Poly-TFB (20 nm) / EML / cathode; OLED device (OLED-Ref) preparation steps are as follows:
  • ITO transparent electrode (anode) glass substrate cleaning ultrasonic treatment with 5% Decon90 cleaning solution for 30 minutes, then ultrasonic cleaning with deionized water several times, then ultrasonic cleaning with isopropanol, nitrogen drying; in oxygen plasma Under treatment for 5 minutes to clean the ITO surface and enhance the work function of the ITO electrode;
  • All devices are packaged in a UV glove box with UV curable resin and glass cover.
  • OLED-1 to OLED-3 and OLED-A to OLED-C are prepared as above, but in the preparation of the HTL layer, P1 to P3 and Comp A to Comp C are used instead of Poly-TFB, respectively. After cross-linking, the solution was washed twice with toluene and the film thickness was measured.
  • the current-voltage characteristics, luminous intensity and external quantum efficiency of the device were measured by a Keithley 236 current-voltage-measurement system and a calibrated silicon photodiode.
  • the efficiency is particularly improved compared to other comparative device properties. This may be due to two reasons.
  • the amide bond group-containing polymer HTM according to the present invention has a higher triplet energy level, thereby having a better blocking effect on the triplet state.
  • the amide bond group-containing polymer has good solubility and is suitable for solution processing, and the insolubility after cross-linking curing is also suitable for subsequent processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明提供一种含酰胺键基团的聚合物,包含其的混合物、组合物、有机电子器件及其应用。所述聚合物包含有以酰胺键连接的主链结构及功能化的侧链基团;所述的聚合物进一步包含可交联基团,在加热的条件下交联生成不溶不熔的聚合物薄膜,具有优异的抗溶剂性能,适于通过溶液加工制作复杂的多层有机电子器件。本发明还涉及所述聚合物在有机场效应晶体管、有机发光二极管、聚合物太阳电池、钙钛矿太阳电池等光电器件中的应用。

Description

含酰胺键基团的聚合物、混合物、组合物及其应用
本申请要求于2017年12月28日提交中国专利局、申请号为201711461881.7发明名称为“含酰胺键基团的聚合物及其在有机电子器件中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电致发光材料领域,尤其涉及一种含酰胺键基团的聚合物、混合物、组合物及其应用。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低和优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
有机电致发光现象是指利用有机物质将电能转化为光能的现象。利用有机电致发光现象的有机电致发光元件通常具有正极与负极以及在它们中间包含有机物层的结构。为了提高有机电致发光元件的效率与寿命,有机物层具有多层结构,每一层包含有不同的有机物质。具体的,可以包括空穴注入层、空穴传输层、发光层、电子传输层、电子注入层等。在这种有机电致发光元件中,在两个电极之间施加电压,则由正极向有机物层注入空穴,由负极向有机物层注入电子,当注入的空穴与电子相遇时形成激子,该激子跃迁回基态时发出光。这种有机电致发光元件具有自发光、高亮度、高效率、低驱动电压、广视角、高对比度、高响应性等特性。
为了实现高效的有机电致发光器件,除了开发高性能的发光材料外,电子和空穴分别从阴极和阳极高效的注入是其中的关键。目前大部分传输材料都是小分子材料,适合于蒸镀型OLED的制备。通过真空蒸镀方法容易制备多层、复杂的高效OLED器件,但是生产成本昂贵、耗时、材料利用率不高;特别是对RGB side-by-side技术由于要用到精密金属掩膜(FMM),难以实现大尺寸显示器的生产。相比而言,溶液加工型OLEDs能够通过低廉的喷墨打印、印刷等溶液加工方法制备大面积、柔性器件等优点,具有广泛的应用前景和商业价值。
由于一般聚合物光电材料具有相似相溶特性,即聚合物发光材料、空穴注入/传输材料、电子注入/传输材料在甲苯、氯仿、氯苯、邻二氯苯、邻二甲苯、四氢呋喃等溶剂中具有良好的溶解性,因此在溶液加工法制备多层、复杂的聚合物发光二极管时,存在界面混溶、界面侵蚀等问题。为了解决溶液加工存在的界面侵蚀问题,目前可以通过交联的方法,即开发可交联的聚合物光电材料,这种材料在交联前具有优异的溶解性,可采用溶液加工方法成膜,随后在光照、热等条件下引发聚合物侧链的交联基团相互发生化学反应,形成不溶不熔的三维互穿网状聚合物,具有优异的抗溶剂性能,便于后续功能层的溶液加工制备(J.Mater.Chem.2008,18,4495)。但是基于这些交联基团的交联高聚物的溶液加工OLED的性能还有待提高。首先是,现有的可交联聚合物都是共轭高聚物,其三线态能级较低,用于磷光绿光时,不能起到很好的激子阻挡作用,引起效率下降;其次是,现有的可交联聚合物本身的稳定性有限,造成OLED器件寿命的低下。
因此新的高性能的可交联的高聚物电荷传输材料急需要开发出来。
发明内容
基于此,有必要提供一种含酰胺键基团的聚合物、混合物、组合物及其应用,以解决现有共轭高聚物传输材料三线态低,稳定性差的问题,提高器件性能。
本发明的技术方案如下:
一种如通式(I)所示的聚合物:
Figure PCTCN2018121557-appb-000001
其中:
o,p为重复单元的重复数,是大于或等于1的整数;
Ar 1和Ar 2各自独立地选自具有5-50个环原子的芳香族、杂芳香族芳香基团或杂芳香基团,所述芳香族基团、杂芳香族基团和非芳香族基团任选进一步被一个或多个R 1取代基取代;
T 1和T 2各自独立地为酰胺基团;且当存在多个T 1,多个所述T 1相同或不同,当存在多个T 2,多个所述T 2相同或不同;
a,b各自独立地为0或1,且a和b中至少有一个为1;
R 1选自H,或D,或具有1至20个C原子的直链烷基、或具有1至20个C原子的烷氧基、或具有1至20个C原子的硫代烷氧基,或具有3至20个C原子的支链或环状的烷基、或具有3至20个C原子的支链或环状的烷氧基、或具有3至20个C原子的支链或环状的硫代烷氧基,或是取代或无取代的甲硅烷基,或具有1至20个C原子的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,或氰基(-CN),酰胺基(-C(=O)N(R) 2),卤甲酰基,甲酰基(-C(=O)-H),异氰基,异氰酸酯,硫氰酸酯,异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,可交联的基团,或者具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团,或具有5至40个环原子的芳氧基团或杂芳氧基基团,或这些体系的组合。
且当存在多个R 1时,多个所述R 1相同或不同。
一种含酰胺键基团的混合物,包含至少一种上述的含酰胺键基团的聚合物,及至少一种其他有机功能材料,所述其他有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料、主体材料和有机染料。
一种组合物,包含至少一种上述的含酰胺键基团的聚合物或上述的含酰胺键基团的混合物,及至少一种有机溶剂。
一种有机电子器件,包含至少一种上述的含酰胺键基团的聚合物或上述的含酰胺键基团的混合物。
由于上述含酰胺键基团的聚合物具有共轭的结构单元,赋予聚合物丰富的光学、电学性能。该聚合物材料在加热的条件下发生化学反应交联生成不溶不熔的互穿网络聚合物薄膜,具有优异的抗溶剂性能,适于制作复杂的多层有机电子器件。具体地:
(1)本发明的含酰胺键基团的聚合物,其中共轭结构单元赋予聚合物具有丰富的光学(光致发光、电致发光、光伏效应等)、电学(半导体特性、载流子传输特性等)等性能,其高分子性质同时具有好的溶解性和成膜性。在加热条件下,聚合物可发生化学反应可形成三维的不溶不熔的互穿网络聚合物薄膜,具有优异的抗溶剂性能。在制备复杂多层光电器件时即可利用聚合物的溶液加工特性,通过喷墨打印、丝网印刷、旋涂等溶液加工工艺制备聚合物光电器件,又可分子间交联使之形成不溶不熔的三维互穿网络聚合物薄膜,具有优异的抗溶剂性能,有利于进行多层聚合物光电器件,特别是有机电致发光器件,的溶液加工。
(2)和传统的碳碳单双键交替连接的共轭聚合物光电材料相比,本发明的含酰胺键基团的聚合物,由于酰胺基团较弱的共轭能力,使得聚合物的最低未占分子轨道(LUMO)和三线态能级(E T)随聚合度变大而影响不大,从而对限制激子在发光层中产生有益帮助,有利于在聚合物光电器件中的应用,特别是作为空穴传输材料的应用。
附图说明
图1是按照本发明的一种优先的发光器件结构图,图中101是基板,102是阳极,103是空穴注入层(HIL)或空穴传输层(HTL),104是发光层,105是电子注入层(EIL)或电子传输层(ETL),106是阴极。
具体实施方式
本发明提供一类含酰胺键基团的聚合物及其在有机电子器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明实施例中,单线态,单重态具有相同的含义,可以互换。
在本发明实施例中,三线态,三重态具有相同的含义,可以互换。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,可以互换。
高聚物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包括树状物(dendrimer),有关树状物的合成及应用请参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
共轭高聚物(conjugated polymer)是一高聚物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭高聚物。另外在本发明中共轭高聚物也包括主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
在本发明实施例中,有机材料的能级结构,三线态能级E T、HOMO、LUMO起着关键的作用。以下对这些能级的确定做一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级E T可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。
应该注意,HOMO、LUMO、E T的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、E T的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
本发明提供一种如通式(I)所示的聚合物:
Figure PCTCN2018121557-appb-000002
其中:
o,p为重复单元的重复数,是大于或等于1的整数;
Ar 1和Ar 2各自独立地选自具有5-50个环原子的芳香族、杂芳香族芳香基团或杂芳香基团,所述芳香族基团、杂芳香族基团和非芳香族基团任选进一步被一个或多个R 1取代基取代;
T 1和T 2各自独立地为酰胺基团;且当存在多个T 1,多个所述T 1相同或不同,当存在多个T 2,多个所述T 2相同或不同;
a,b各自独立地为0或1,且a和b中至少有一个是1;
R 1选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或无取代的甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基(-CN)、酰胺基(-C(=O)N(R) 2),卤甲酰基、甲酰基(-C(=O)-H)、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团、具有5至40个环原子的取代或未取代的芳氧基团或杂芳氧基基团,或这些体系的组合。
且当存在多个R 1时,多个所述R 1相同或不同。
在一个优选的实施例中,所述的T 1和T 2包含如通式(II)所示的结构:
Figure PCTCN2018121557-appb-000003
其中:R 3的含义同上述的R 1
在一个更优选的实施例中,所述的T 1或T 2含有以下结构式的一种或多种:
Figure PCTCN2018121557-appb-000004
n1表示0-30的整数。
在某些实施例中,按照本发明的聚合物,其分子量Mw≥10000克/摩尔,较好是≥50000克/摩尔,更好是≥100000克/摩尔,更更好是≥150000克/摩尔,最好是≥200000克/摩尔。
在一个优选的实施例中,所述的Ar 1和Ar 2在每次出现时,分别独立地选自环原子数为6~50的芳香基团或杂芳香基团;在更加优选的实施例中,Ar 1和Ar 2在每次出现时,分别独立地选自为环原子数为6~45的芳香基团或芳杂基团;在非常优选的实施例中,Ar 1和Ar 2在每次出现时,分别独立地选自为环原子数为6~40的芳香基团或杂芳香基团;在最为优选的实施例中,Ar 1和Ar 2在每次出现时,分别独立地选自为环原子数为6~30的芳香基团或杂芳香基团。其中一个或多个基团可进一步被取代。
芳香环系或芳香基团指至少包含一个芳环的烃基,包括单环基团和多环的环***。杂 芳香环系或杂芳香基团指包含至少一个杂芳香环的烃基(含有杂原子),包括单环基团和多环的环***。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳香基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族基团。
具体地,芳香基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳香族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、***、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在一些优选的实施例中,按照本发明的聚合物,所述的Ar 1具有较大能隙的π-共轭结构单元,也称骨干单元(Backbone Unit),优选≥2.2eV;较优选≥2.5eV;更优选≥3.0eV;最优选≥3.5eV。
在一个优选的实施例中,所述的Ar 1包含如下结构基团的一种或多种组合:
Figure PCTCN2018121557-appb-000005
其中:当X存在多个时,多个所述X相同或不同;所述X为CR 4或N;
当Y存在多个时,多个所述Y相同或不同;所述Y为CR 4R 5、SiR 4R 5、NR 4、C(=O)、S或O;R 4、R 5、R 6含义同R 1
在某些优先的实施例中,按照本发明的聚合物,其中Ar 1或Ar 2在多次出现时可相同或者不同的选于如下结构基团:环芳香基团,包括苯、联苯、三苯基、苯并、芴、吲哚芴及其衍生物;芳香杂环基团,包括三苯胺、二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、pyrrolodipyridine、吡唑、咪唑、***类、恶唑、噻唑、恶二唑、恶***、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪,恶噻嗪、oxadiazines、吲哚、苯并咪唑、吲唑、indoxazine、bisbenzoxazoles、异恶唑、苯并噻唑、喹啉、异喹啉、cinnoline、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、phenoxazines、benzofuropyridine、furodipyridine、benzothienopyridine、thienodipyridine、benzoselenophenopyridine和selenophenodipyridine等。
在另一些较为优先的实施例中,按照通式(I)的聚合物,其中Ar 1或Ar 2在多次出现时,可相同或不同地选自如下结构基团中的一种或它们中的组合,其可以进一步被任意取代:
Figure PCTCN2018121557-appb-000006
其中u是1或2或3或4。
一般地,共轭聚合物包含有至少一个主链结构单元。主链结构单元一般具有较大的能隙的π-共轭结构单元,也称骨干单元(Backbone Unit),可选自单环或多环芳基或杂芳基。本发明中,共轭聚合物可以包含两个或以上的主链结构单元。一般的,主链结构单元的含量是≥40mol%,较好是≥50mol%,更好是≥55mol%,最好是≥60mol%。
在一个优先的实施例中,按照本发明的聚合物,其中Ar 1是高聚物主链结构单元,选于苯、联苯、三苯基、苯并、芴、吲哚芴、咔唑、吲哚咔唑、二苯并噻咯、二噻吩并环戊二烯、二噻吩并噻咯、噻吩、蒽、萘、苯并二噻吩、苯并呋喃、苯并噻吩、苯并硒吩及其衍生物。
在一个最优选的实施例中,所述的Ar 1选自苯,联二亚苯(Biphenylene),萘,蒽,菲,二氢菲,9,10-二氢菲,芴,二芴,螺二芴,对苯乙炔,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘及它们的衍生物。
在某些较为优先的实施例中,本发明的聚合物具有空穴传输特性。
在某些优选的实施例中,按照本发明的聚合物,所述的Ar 2具有较小能隙的π-共轭结构单元,优选≤3.5eV;较优选≤3.2eV;最优选≤3.0eV;聚合物中含有能隙较小的共轭结构可以使聚合物在电场的作用下更易产生电荷。
在一个优先的实施例中,按照本发明的聚合物,其中Ar 2选于具有空穴传输特性的单元,优先的空穴传输单元可选于芳香胺、三苯胺、萘胺、噻吩、咔唑、二苯并噻吩、二噻吩并环戊二烯、二噻吩并噻咯、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑及其衍生物。
在另一个优先的实施例中,Ar 2具有化学式1表示的结构:
Figure PCTCN2018121557-appb-000007
化学式1
其中Ar1,Ar2,Ar3在多次出现时可独立选择相同或不同的形式
Ar1:选自单键、单核芳基、多核芳基、单核杂芳基或多核杂芳基,此芳基或杂芳基可以被其他侧链取代的。
Ar2:选自单核芳基、多核芳基、单核杂芳基或多核杂芳基,此芳基或杂芳基可以是被其他侧链取代的。
Ar3:选自单核芳基、多核芳基、单核杂芳基或多核杂芳基,此芳基或杂芳基可以是被其他侧链取代的。Ar3也可以通过一桥接基团与化学式1中的其他部分相联接。
n:选自1,2,3,4,或5。
优先选择的化学式1所表示的结构单元为化学式2
Figure PCTCN2018121557-appb-000008
化学式2
其中Ar4,Ar6,Ar7,Ar10,Ar11,Ar13,Ar14:的定义如化学式1中的Ar2,
Ar5,Ar8,Ar9,Ar12:的定义如化学式1中的Ar3。
在化学式1和化学式2中的Ar1-Ar14优先从如下基团中选择:苯(phenylene),萘(naphthalene),蒽(anthracene),芴(fluorene),螺双芴(spirobifluorene),吲哚芴(indenofuorene),菲(phenanthrene),噻吩(thiophene),吡咯(pyrrole),咔唑(carbazole),联萘(binaphthalene),dehydrophenanthrene等。
化学式1和化学式2所表示的结构单元中特别优先的选择列于,其中的每个化合物都可以被一个或多个取代基取代,R为一取代基。
表1
Figure PCTCN2018121557-appb-000009
R选自H、或D,或含1至10个碳原子脂肪族烷烃,芳香碳氢化合物,含5至10个环原子的被取代或者未被取代的芳香环或杂芳香基团。当存在多个R时,多个R相同或不同。
进一步的合适的有空穴传输特性的单元对应于空穴传输材料小分子空穴传输材料(HTM)。合适的HTM材料可选包含有如下结构单元的化合物:酞菁(phthlocyanine)、卟啉(porphyrine)、胺(amine)、芳香胺、联苯类三芳胺(triarylamine)、噻吩(thiophene)、并噻吩(fused thiophene)(如二噻吩并噻吩(dithienothiophene)和并噻吩(dibenzothiphene))、吡咯(pyrrole)、苯胺(aniline)、咔唑(carbazole)、氮茚并氮芴(indolocarbazole),及它们的衍生物。
在某些特别优选的实施例中,所述的Ar 2包含如下结构基团的一种或多种组合:
Figure PCTCN2018121557-appb-000010
Figure PCTCN2018121557-appb-000011
其中:Ar 3-Ar 11每次出现时,独立地选自5至40个环原子的芳族或杂芳族环系,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或是具有5至40个环原子的非芳香族基团,或这些体系的组合,其中一个或多个基团可进一步被取代;
优选地,Ar 3-Ar 11每次出现时,独立地选自5至20个环原子的芳族或杂芳族环系,或是具有5至20个环原子的芳氧基或杂芳氧基基团,或是具有5至20个环原子的非芳香族基团,或这些体系的组合,其中一个或多个基团可进一步被取代;
在某些较为优先的实施例中,本发明的聚合物具有电子传输特性。
在某些更优选的实施例中,按照本发明的聚合物,其中Ar 2选于具有电子传输特性的单元,优先的电子传输单元可选于吡唑、咪唑、***类、恶唑、噻唑、恶二唑、恶***、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪,恶噻嗪、oxadiazines、吲哚、苯并咪唑、吲唑、indoxazine、bisbenzoxazoles、异恶唑、苯并噻唑、喹啉、异喹啉、cinnoline、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、phenoxazines、benzofuropyridine、furodipyridine、benzothienopyridine、thienodipyridine、benzoselenophenopyridine和selenophenodipyridine及其衍生物。
原则上,所有的电子传输材料ETM可以用作本发明的具有电子传输特性的单元。ETM有时也称n型有机半导体材料。原则上,合适的ETM材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为ETM,只要它们可以传输电子。优选的有机ETM材料可选自三(8-羟基喹啉)铝(AlQ3)、吩嗪(Phenazine)、菲罗啉(Phenanthroline)、蒽(Anthracene)、菲(Phenanthrene)、芴(Fluorene)、二芴(Bifluorene)、螺二芴(Spiro-bifluorene)、对苯乙炔(Phenylene-vinylene)、三嗪(triazine)、***(triazole)、咪唑(imidazole)、芘(Pyrene)、苝(Perylene)、反茚并芴(trans-Indenofluorene)、顺茚并(cis-Indenonfluorene)、二苯并-茚并芴(Dibenzol-indenofluorene)、茚并萘(Indenonaphthalene)、苯并蒽(benzanthracene)及它们的衍生物。
另一方面,所述的具有电子传输特性的Ar 2可选自具有以下通式中任一骨架的基团:
Figure PCTCN2018121557-appb-000012
Figure PCTCN2018121557-appb-000013
其中:t表示1-20的整数;
R 7每次出现时,独立地选自氢、氘、卤原子(F,Cl,Br,I)、氰基、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基或杂芳基;
X 1-X 8每次出现时,独立地选自CR 8或N,且至少有一个为N;
M 1、M 2、M 3分别独立表示N(R 8)、C(R 8) 2、Si(R 8) 2、O、C=N(R 8)、C=C(R 8) 2、P(R 8)、P(=O)R 8、S、S=O、SO 2或无;Ar 12-Ar 16含义同Ar 3;R 8含义同R 1
在一个特别优选的实施例中,本发明所述的聚合物含有可交联基团;所述的可交联基团优先选自线状或环状烯基、线状二烯基、炔基基团、烯氧基、二烯氧基、丙烯酸基、环氧丙烷基、环氧丁烷基、硅烷基、环丁烷基。
在一个最优选的实施例中,所述的可交联基团选自如下结构中的一个:
Figure PCTCN2018121557-appb-000014
Figure PCTCN2018121557-appb-000015
Figure PCTCN2018121557-appb-000016
其中虚线代表交联单体与聚合物中其他单体或单体上的官能团键联的位置,t和t1表示大于等于0的整数。
Ar 17包含有5-40个环原子的芳香族环系或杂芳族环系;
R 9~R 11每次出现时,独立的选自以下基团:H、D、F、CN、烷基链、氟代烷基链、芳环、芳香性杂环、氨基、硅基、甲锗基、烷氧基、芳氧基、氟代烷氧基、硅氧烷、甲硅烷氧基、氘代烷基链、氘代部分氟代的烷基链、氘代芳环、氘代芳香性杂环、氘代氨基、氘代硅基、氘代甲锗基、氘代烷氧基、氘代芳氧基、氘代氟代烷氧基、氘代硅氧烷、氘代甲硅烷氧基、可交联基团。并且相邻的R 9、R 10、R 11之间可以彼此或与所述基团键合的环形成单环或多环的脂族或芳族环系;
所述的可交联基团可以各种形式出现在聚合物里。优先的,所述的可交联基团以取代基的形式对聚合物上的各重复单元进行取代,如下面的通式:
Figure PCTCN2018121557-appb-000017
其中,Q是如上所述的可交联基,Ar是聚合物上的一重复单元,x为摩尔分数
在一个优先的实施例中,所述的可交联基团连接在Ar 1上。
在另一个优先的实施例中,所述的可交联基团连接在T 1或T 2上。
在一个最优先的实施例中,所述的可交联基团连接在Ar 2上。
在某些的实施例中,包含所述的可交联基团的重复单元的摩尔分数x为:0.02≤x≤0.30,较好是0.05≤x≤0.25,更好是0.08≤x≤0.20,最好是0.10≤x≤0.18。
在某些优先的实施例中,按照通式(I)的聚合物,具有空穴传输特性的Ar 2的摩尔数为yh,其中0.02≤yh≤0.30,较好是0.05≤yh≤0.25,更好是0.08≤yh≤0.20,最好是0.10≤yh≤0.18。
在另一些实施例中,按照通式(I)的聚合物,具有电子传输特性的Ar 2的摩尔数为ye,其中0.02≤ye≤0.30,较好是0.05≤ye≤0.25,更好是0.08≤ye≤0.20,最好是0.10≤ye≤0.18。
在一个优选的实施例中,本发明所述的聚合物∣(HOMO-1)-HOMO∣≥0.3eV,较好的是≥0.35eV,很好的是≥0.4eV,更好的是≥0.45eV,最好的是≥0.5eV。其中HOMO表示聚合物最高占有轨道,HOMO-1表示聚合物第二高占有轨道。
在一个优先的实施例中,按照本发明的聚合物,具有较高的LUMO,优选LUMO≥-2.7eV,较优选≥-2.6eV,更优选≥-2.5eV,最优选≥-2.4eV。
在某些优先的实施例中,按照本发明的聚合物,具有较低的HOMO,优选HOMO≤-5.0eV,较优选≤-5.1eV,最优选≤-5.2eV。
在某些优先的实施例中,按照本发明的聚合物,具有较大的三线态能级E T,优选E T≥2.5eV,较优选≥2.6eV,最优选≥2.7eV。
在一个更优选的实施例中,按照本发明的聚合物是共轭聚合物。
在一实施例中,所述通式(I)中,a为1,b为1,o为1,p为1;
在一实施例中,上述聚合物具有以下通式(II-1)~通式(II-10)任一通式所示的结构单元:
Figure PCTCN2018121557-appb-000018
其中,R 11、R 12和R 13的定义同R 3
A为取代或未取代的具有5-30个环原子的芳香族基团、取代或未取代的具有5-30个环原子的杂芳香族基团、或取代或未取代的具有5-30个环原子的非芳香族基团;
L不存在,或为CH 2
W为O或S;
0<e<1,0<f<1,且e+f=1。
在一实施例中,通式(II-1)~通式(II-10)中的A选自以下基团:
Figure PCTCN2018121557-appb-000019
其中,Y为CR 14R 15、SiR 14R 15、NR 14、O、S或Se;
R 14、R 15各自独立地为H、C1-C20烷基、乙烯基、
Figure PCTCN2018121557-appb-000020
R 11为H、C1-C20烷基、乙烯基、乙炔基、
Figure PCTCN2018121557-appb-000021
当存在多个R 11时,多个所述R 11相同或不同;
R 12和R 13各自独立地选自以下基团:H、C1-C20烷基、3-10元环烷基、苯基或
Figure PCTCN2018121557-appb-000022
当存在多个所述R 12或R 13时,多个所述R 12或R 13相同或不同。
在一实施例中,上述聚合物具有通式(III-1)所示的结构单元
Figure PCTCN2018121557-appb-000023
R 14、R 15各自独立地为H或C1-C10烷基;
R 11为H、C1-C20烷基或乙烯基;当存在多个R 11时,多个所述R 11相同或不同;
n为1或2。
在一实施例中,上述聚合物具有通式(III-2)所示的结构
Figure PCTCN2018121557-appb-000024
所述R 16和R 17各自独立地选自:R 11为H、C1-C6烷基或乙烯基,且所述R 16和R 17不相同。
下面列出按照本发明的聚合物的例子,但不限于:
Figure PCTCN2018121557-appb-000025
Figure PCTCN2018121557-appb-000026
Figure PCTCN2018121557-appb-000027
Figure PCTCN2018121557-appb-000028
本发明还涉及按照化学式(I)聚合物的合成方法,其中使用含有活性基团的原料进行反应。聚合物可以通过至少一种含有内酰胺,或胺基和酸基(包括羧酸、酰卤等)兼具的单体,或至少两种分别含有二元胺和二元酸基(包括羧酸、酰卤等)的单体经缩聚而得到。
本发明的聚合物可以是均聚物,也可以是共聚物。共聚物可以是无序、交替、嵌段、梳型或树枝状共聚物。形成这些不同结构的聚合物所用工艺在专业领域是众所周知的,如George Odian(John Wiley&Sons,New York,NY,1991)所著的Priciples Of Polymerization,第三版;M.Lazer等所著的Chemical Reactions of Natural and Synthetic Polymers;和Benham and Kinstle所著的Chemical Reactions on Polymers(1988)。
按照通式(I)聚合物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优先的实施例中,上述高聚物的玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优先的实施例中,上述聚合物的分子量分布(PDI)取值范围优选为1~5;较优选为1~4;更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优先的实施例中,上述聚合物的重均分子量(Mw)取值范围优选为1万~100万;较优选为5万~50万;更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
本发明还提供一种混合物,其特征在于,包含有至少一种以上所述的聚合物,及至少另一种有机功能材料,所述至少另一种的有机功能材料可选于空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。
在一个优先优选的实施例中,所述的混合物包含一种按照本发明的聚合物,和一种荧光发光体(或单重态发光体)。这里按照本发明的聚合物可以作为主体,其中荧光发光体的重量百分比≤15wt%,较好是≤12wt%,更好是≤9wt%,,更更好是≤8wt%,最好是≤7wt%。
某些实施例中,所述的混合物包含一种按照本发明的聚合物,和一种TADF材料。
在另一个优先优选的实施例中,所述的混合物包含一种按照本发明的聚合物,和一种磷光发光体(或三重态发光体)。这里按照本发明的聚合物可以作为主体,其中磷光发光体的重量百分比≤30wt%,较好是≤25wt%,更好是≤20wt%,最好是≤18wt%。
在另一些优选的实施例中,所述的混合物包含一种按照本发明的聚合物,和一种HTM材料。
下面对单重态发光体,三重态发光体和TADF材料作一些较详细的描述(但不限于此)。
1.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子***。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物及在US7233019、KR2006-0006760中公开的芘的三芳胺衍生物。
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环***。这些芳香族或杂环的环***中至少有一个优先选于稠环***,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出 的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
进一步优选的单重态发光体可选于基于芴的稠环体系,如US2015333277A1、US2016099411A1、US2016204355A1所公开的。
更加优选的单重态发光体可选于芘的衍生物,如US2013175509A1所公开的结构;芘的三芳胺衍生物,如CN102232068B所公开的含有二苯并呋喃单元的芘的三芳胺衍生物;其它具有特定结构的芘的三芳胺衍生物,如CN105085334A、CN105037173A所公开的。其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子:
Figure PCTCN2018121557-appb-000029
Figure PCTCN2018121557-appb-000030
2.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)u的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,u是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Au或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2018121557-appb-000031
其中M是一金属,选于过渡金属元素或镧系或锕系元素,特别优先的是Ir,Pt,Au;
Ar 1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar 2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar 1和Ar 2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L’每次出现时可以是相同或不同,是一个双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;q可以是0,1,2或3,优先地是2或3;p可以是0,1,2或3,优先地是1或0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US  20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1,WO 2013107487A1,WO 2013094620A1,WO 2013174471A1,WO 2014031977A1,WO 2014112450A1,WO 2014007565A1,WO 2014038456A1,WO 2014024131A1,WO 2014008982A1,WO2014023377A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2018121557-appb-000032
Figure PCTCN2018121557-appb-000033
3.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔE st),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.25eV,更好是ΔEst<0.20eV,最好是ΔEst<0.1eV。在一个优先的实施方案中,TADF材料有比较小的ΔEst,在另一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全 部内容并入本文作为参考。
Figure PCTCN2018121557-appb-000034
Figure PCTCN2018121557-appb-000035
本发明的另一个目的是为印刷OLED提供材料解决方案。
在另一些实施例中,按照本发明的聚合物,在25℃时,在甲苯中的溶解度≥5mg/ml,优选≥7mg/ml,最优选≥10mg/ml。
按照本发明的一种组合物,所述的至少一种有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在一个优选的实施例中,按照本发明的一种组合物,所述的至少一种有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4- 二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等;
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等;
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本***、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚;
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二***、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,包含有一种如上所述的聚合物或混合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂,另一种有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
本发明还涉及所述的一种组合物作为印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,丝网印刷及喷墨印刷。凹版印刷,喷墨印刷将在本发明的实施例中应用。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的 详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
如上所述的制备方法,其特征在于,所述的形成的一功能层,其厚度在5nm-1000nm。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的聚合物或混合物。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在某些特别优先的实施例中,所述的电致发光器件,其电子传输层或空穴传输层包含一种如上所述的聚合物或混合物。
本发明进一步包含有机电子器件中包含本发明聚合物的功能层的制备方法,至少包含如下步骤:
第一步:将本发明的聚合物溶于一有机溶剂或混合溶剂中,制得一溶液;
第二步:用印刷或涂布的方法将所述的溶液涂布于器件某一功能层上,其中印刷或涂布的方法可选于,但不限于,喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等;
第三步:将所得的薄膜在至少100摄氏度热处理,可选择性的加上紫外光照,使之发生交联反应,固化薄膜。
可选步骤:将交联固化后薄膜用有机溶剂清洗,除去未交联固化的残余化合物。
在某些实施例中,所得的交联固化后的薄膜(溶剂清洗后)的厚度是交联固化前的薄膜至少50%,较好是至少60%,更好是至少70%,最好是至少85%。
在以上所述的发光器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于: Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的电致发光器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1.聚合物的合成
Figure PCTCN2018121557-appb-000036
实施例1:聚合物P1的合成
Figure PCTCN2018121557-appb-000037
Figure PCTCN2018121557-appb-000038
中间体2的合成
在250ml圆底烧瓶中将化合物1(7.03g,10mmol)溶于80ml乙酸,滴加80ml发烟硝酸和20ml浓硫酸,搅拌,氮气氛围下加热至90℃,反应15h,反应物冷却后倒入冰水中,产物用二氯甲烷萃取,有机相依次用NaHCO 3饱和溶液、饱和食盐水和水洗涤,蒸除溶剂干燥得到粗品,经层析柱得到中间体2,其重量4.83g,产率61%。
中间体3的合成
将中间体2(1.59g,2mmol)在氮气保护下溶于50ml乙醇,接着加入一水合肼(1.02g,20mmol)和钯碳(0.1g(10%w/w)),搅拌,回流反应2h,反应结束过滤,滤液用二氯甲烷萃取,有机相用饱和食盐水和水洗涤,干燥得到粗品,经层析柱得到中间体3,重量1.24g,产率85%。
中间体4的合成
将苯胺(0.93g,0.01mol)和4-溴苯甲酸乙酯(4.58g,0.02mol),叔丁基醇钠(8.45g,0.088mol),催化剂双(二亚苄基丙酮)钯(1.27g,0.0022mol)加入到双口瓶中,以干燥甲苯作为反应溶剂,鼓氮气除氧30min,然后打入三叔丁基膦13ml。跟踪反应进程,反应完毕后加入水终止反应,用乙酸乙酯萃取,有机相旋蒸除去溶剂,加入硅胶拌粉上样过硅胶柱,得到产物中间体4,重量2.95g,产率76%。
中间体5的合成
氮气保护下,50毫升的三口瓶中加入新蒸DMF 5ml,(64mmol)。冰浴下慢慢滴加三氯氧磷6ml(64mmol)并迅速搅拌。三氯氧磷滴完后慢慢滴加中间体4(8.95g,23mmol)的55ml DMF溶液。滴完后氮气保护下加热至35-40℃搅拌过夜。所得溶液倒入200ml水中。过滤后所得滤饼经乙醇重结晶得到中间体5,重量9.20g,产率96%。
中间体6的合成
冰浴并氮气保护下,干燥的250毫升双口瓶中加入叔丁醇钾(2.24g,20mmol)、甲基三苯基溴化鏻(4.28g,12mmol)和40mL新蒸四氢呋喃。搅拌半小时后加入中间体5(4.17g,10mmol)的20ml四氢呋喃溶液,滴完后缓慢升至室温并在氮气保护下继续搅拌4小时。加入水淬灭反应后,用石油醚萃取并无水硫酸钠干燥。以石油醚为展开剂柱层析得到中间体6,重量2.49g,产率60%。
中间体7的合成
将中间体6(0.415g,1mmol)溶于6ml甲醇,并加入7ml(6M)氢氧化钠水溶液,室温反应2h后,加入盐酸至pH=1,用乙酸乙酯萃取并用饱和食盐水洗涤,干燥后真空除去溶剂,将所得固体溶于20ml无水二氯甲烷,氮气保护下加入0.34ml(4mmol)草酰氯,并滴入催化量的DMF,室温搅拌反应2h,真空除去溶剂,得到中间体7,重量0.18g,产率46%。
聚合物P1的合成
氮气保护下,在25mL的反应瓶中加入中间体3(733mg,1mmol)和中间体7(396mg,1mmol),并溶于10ml DMAc,室温搅拌反应12h,将溶液倒入大量水中,过滤沉淀,并用甲醇和丙酮洗涤,真空干燥,得到聚合物P1,重量898mg。
实施例2:聚合物P2的合成
Figure PCTCN2018121557-appb-000039
中间体8的合成
将4-叔丁基苯胺(1.49g,0.01mol)和4-溴苯甲酸乙酯(4.58g,0.02mol),叔丁基醇钠(8.45g,0.088mol),催化剂双(二亚苄基丙酮)钯(1.27g,0.0022mol)加入到双口瓶中,以干燥甲苯作为反应溶剂,鼓氮气除氧30min,然后注入三叔丁基膦13ml。跟踪反应进程,反应完毕后加入水终止反应,用乙酸乙酯萃取,有机相旋蒸除去溶剂,加入硅胶拌粉上样过硅胶柱,得到产物中间体8,重量3.69g,产率83%。
中间体9的合成
将中间体8(0.445g,1mmol)溶于6ml甲醇,并加入7ml(6M)氢氧化钠水溶液,室温反应2h后,加入盐酸至pH=1,用乙酸乙酯萃取并用饱和食盐水洗涤,干燥后除去溶剂,将所得固体溶于20ml无水二氯甲烷,氮气保护下加入草酰氯(0.34ml,4mmol),并滴入催化量的DMF,室温搅拌反应2h,真空除去溶剂,得中间体9,重量0.22g,产率51%。
聚合物P2的合成
氮气保护下,在25mL的反应瓶中加入中间体3(733mg,1mmol)、中间体7(119mg,0.3mmol)和中间体9(298mg,0.7mmol),并溶于10ml DMAc,室温搅拌反应12h,将溶液倒入大量水中,过滤沉淀,并用甲醇和丙酮洗涤,真空干燥,得到聚合物P2,重量761mg。
实施例3:聚合物P3的合成
Figure PCTCN2018121557-appb-000040
氮气保护下,将化合物a(370mg,1mmol)和化合物b(141mg,1mmol)溶于无水二氯甲烷中,冰浴下再加入22ml 1-羟基苯并***溶液(1M,DMF/CH 2Cl 2,1:1)和20ml二环己基碳二亚胺溶液(1M,CH 2Cl 2),室温搅拌反应2天,过滤沉淀,滤液真空干燥,固体用二氯甲烷溶解,并用10%的NaHCO 3水溶液洗涤,再干燥,得到聚合物P3,重量327mg。
2.化合物的能级结构
有机小分子能量结构可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。
对共轭高聚物,可以通过计算三聚体来得到高聚物的能量结构。例如通过如下所示的单体M1和M2聚合而得的化合物P1,三聚体M1-M2-M1和/或M2-M1-M2被用来计算能级,其中烷基链均用甲基取代。
Figure PCTCN2018121557-appb-000041
三聚体M1-M2-M1:
Figure PCTCN2018121557-appb-000042
三聚体M2-M1-M2:
Figure PCTCN2018121557-appb-000043
以上计算得到的HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为eV。结果如表一所示,其中ΔHOMO=HOMO-(HOMO-1):
Figure PCTCN2018121557-appb-000044
3.OLED器件的制备方式
Figure PCTCN2018121557-appb-000045
其中,H1是共主体材料,其合成参照申请号为CN201510889328.8的中国专利;H2是共主体材料,其合成参照专利WO201034125A1;E1是磷光客体,其合成参照专利CN102668152;Comp A至Comp C和Poly-TFB是一器件HTL对比材料,其中Comp A、Comp B和Comp C的合成与本专利相似结构化合物类似;Poly-TFB(CAS:223569-31-1)购自Lumtec.Corp。
OLED器件(OLED-Ref)的器件结构为:ITO/PEDOT:PSS(80nm)/Poly-TFB(20nm)/EML/阴极;OLED器件(OLED-Ref)制备步骤如下:
1)ITO透明电极(阳极)玻璃衬底的清洗:使用5%Decon90清洗液的水溶液超声处理30分钟,之后去离子水超声清洗数次,然后异丙醇超声清洗,氮气吹干;在氧气等离子下处理5分钟,以清洁ITO表面并提升ITO电极的功函;
2)HIL及HTL的制备:在经过氧气等离子体处理过的玻璃衬底上旋涂PEDOT:PSS(Clevios TM PEDOT:PSS Al4083),得到80nm的薄膜,旋涂完成后在空气中150℃退火20分钟;然后在PEDOT:PSS层上旋涂得到20nm的Poly-TFB薄膜(5mg/mL甲苯溶液),随后在180℃的热板上处理60分钟;
3)发光层制备:先将H1、H2、E1按照40:40:20的重量比例溶于甲苯中,溶液的浓度为20mg/mL,将此溶液在氮气手套箱中旋涂得到60nm薄膜,然后在120℃退火10分钟。
4)阴极制备:将旋涂完成的器件放入真空蒸镀腔体,依次蒸镀2nm钡和100nm铝,完成发光器件。
5)所有器件在氮气手套箱中采用紫外固化树脂加玻璃盖板封装。
其他OLED器件(OLED-1至OLED-3和OLED-A至OLED-C)制备步骤同上,但在HTL层制备时,分别用P1至P3和Comp A至Comp C去替代Poly-TFB,并在交联固化后用甲苯冲洗两次,再测膜厚。
器件的电流-电压特性,发光强度和外量子效率由Keithley236电流电压-测量***及一个经校正的硅光二极管测得。
  HTL厚度(nm) 效率(cd/A)@1000nits相对于OLED-Ref
OLED-Ref 20 1
OLED-1 20 1.33
OLED-2 20 1.57
OLED-3 20 1.45
OLED-A 20 1.02
OLED-B 20 0.85
OLED-C 20 0.94
按照本发明的聚合物用于HTL时,相比其他对比器件性能,特别是效率有了很大的提升。这可能是因为两个原因,一,按照本发明的含酰胺键基团的聚合物HTM具有较高的三线态能级,从而对三线态有了较好的阻挡作用;二,按照本发明的含酰胺键基团的聚合物有较好的溶解度,适合溶液加工,同时交联固化后的不溶性也适合后续加工。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (17)

  1. 一种含酰胺键基团的聚合物,其特征在于,具有如通式(I)所示的结构单元:
    Figure PCTCN2018121557-appb-100001
    其中:
    o,p为重复单元的重复数,是大于或等于1的整数;
    Ar 1和Ar 2各自独立地选自具有5-50个环原子的芳香族基团、具有5-50个环原子的杂芳香族基团或具有5-50个环原子的非芳香族基团,所述芳香族基团、杂芳香族基团和非芳香族基团任选进一步被一个或多个R 1取代基取代;
    T 1和T 2各自独立地为酰胺基团;且当存在多个T 1,多个所述T 1相同或不同,当存在多个T 2,多个所述T 2相同或不同;
    a,b各自独立地为0或1,且a和b中至少有一个是1;
    R 1选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基、取代或无取代的甲硅烷基、具有1至20个C原子的酮基、具有2至20个C原子的烷氧基羰基、具有7至20个C原子的芳氧基羰基、氰基、酰胺基、卤甲酰基、甲酰基、异氰基、异氰酸酯、硫氰酸酯、异硫氰酸酯、羟基、硝基、CF 3、Cl、Br、F、可交联的基团,或者具有5至40个环原子的取代或未取代的芳香基团或杂芳香基团、或具有5至40个环原子的取代或未取代的芳氧基团或杂芳氧基基团,或这些体系的组合。
  2. 根据权利要求1所述的聚合物,其特征在于,所述的T 1和T 2选自如通式(II)所示的结构:
    Figure PCTCN2018121557-appb-100002
    其中,R 3的含义同R 1,虚线表示在聚合物里的连接键。
  3. 根据权利要求2所述的聚合物,其特征在于,所述T 1和T 2各自独立地含有一种或多种以下结构:
    Figure PCTCN2018121557-appb-100003
    n 1表示0-30的整数。
  4. 根据权利要求1-3任一项所述的聚合物,其特征在于,所述的Ar 1选自包含有如下结构的基团:
    Figure PCTCN2018121557-appb-100004
    其中,当X存在多个时,多个所述X相同或不同;所述X为CR 4或N;
    当Y存在多个时,多个所述Y相同或不同;所述Y为CR 4R 5、SiR 4R 5、NR 4、C(=O)、S或O;R 4、R 5、R 6含义同R 1
  5. 根据权利要求1-4任一项所述的聚合物,其特征在于,所述通式(I)中至少有一个Ar 2含有空穴传输单元,所述空穴传输单元选自:芳香胺、三苯胺、萘胺、噻吩、咔唑、二苯并噻吩、二噻吩并环戊二烯、二噻吩并噻咯、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑和吲哚咔唑及其衍生物。
  6. 根据权利要求1-5任一项所述的聚合物,其特征在于,至少有一个Ar 2选自包含一种或多种如下结构的基团:
    Figure PCTCN2018121557-appb-100005
    其中,Ar 3-Ar 11每次出现时,独立地选自取代或未取代的具有5至40个环原子的芳族、取代或未取代的具有5至40个环原子的杂芳族基团、取代或未取代的具有5至40个环原子的芳氧基团、取代或未取代的具有5至40个环原子的杂芳氧基基团、或取代或未取代的具有5至40个环原子的非芳香族基团。
  7. 根据权利要求1-5任一项所述的聚合物,其特征在于,所述通式(I)中至少有一个Ar 2含有电子传输单元,所述电子传输单元选自:吡唑、咪唑、***类、恶唑、噻唑、恶二唑、恶***、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪,恶噻嗪、噁二嗪类、吲哚、苯并咪唑、吲唑、苯并异恶唑、双苯并恶唑类、异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃并吡啶、二吡啶并呋喃、苯并噻吩并吡啶、二吡啶并噻吩、苯硒吩并吡啶 和二吡啶并硒吩及其衍生物。
  8. 根据权利要求7所述的聚合物,其特征在于,所述电子传输单元为具有以下结构式中任一骨架的基团:
    Figure PCTCN2018121557-appb-100006
    其中,t表示1-20的整数;R 7每次出现时,独立地选自氢、氘、卤原子(F,Cl,Br,I)、氰基、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基或杂芳基;
    X 1-X 8每次出现时,独立地选自CR 8或N,且至少有一个为N;
    M 1、M 2和M 3中至少一个为不存在,或M 1、M 2或M 3存在时,各自独立地选自:N(R 8)、C(R 8) 2、Si(R 8) 2、O、C=N(R 8)、C=C(R 8) 2、P(R 8)、P(=O)R 8、S、S=O或SO 2
    Ar 12-Ar 16含义同Ar 3;R 8含义同R 1
  9. 根据权利要求1-8任一项所述的聚合物,其特征在于,至少包含有一个可交联基团;所述的可交联基团选自:线状烯基、环状烯基、线状二烯基、炔基基团、烯氧基、二烯氧基、丙烯酸基、环氧丙烷基、环氧丁烷基、硅烷基、环丁烷基。
  10. 根据权利要求1-8任一项所述的聚合物,其特征在于,含有以下通式(II-1)~通式(II-10)任一通式所示的结构单元:
    Figure PCTCN2018121557-appb-100007
    Figure PCTCN2018121557-appb-100008
    其中,R 11、R 12和R 13的定义同R 3
    A为取代或未取代的具有5-30个环原子的芳香族基团、取代或未取代的具有5-30个环
    原子的杂芳香族基团、或取代或未取代的具有5-30个环原子的非芳香族基团;L不存在,或为CH 2;0<e<1,0<f<1,且e+f=1。
  11. 根据权利要求1-10任一项所述的聚合物,其特征在于,含有通式(III-1)所示的结构单元:
    Figure PCTCN2018121557-appb-100009
    R 14、R 15各自独立地为H或C1-C10烷基;R 11为H、C1-C20烷基或乙烯基;当存在多个R 11时,多个所述R 11相同或不同。
  12. 根据权利要求11所述的聚合物,其特征在于,具有通式(III-2)所示的结构:
    Figure PCTCN2018121557-appb-100010
    所述R 16和R 17各自独立地选自:R 11为H、C1-C6烷基或乙烯基,且所述R 16和R 17不相同。
  13. 根据权利要求1-12任一项所述的聚合物,其特征在于,所述的聚合物的∣
    (HOMO-1)-HOMO∣≥0.3eV,其中HOMO表示聚合物的最高占有轨道,HOMO-1表示所述聚合物的第二高占有轨道。
  14. 一种混合物,其特征在于,包含至少一种权利要求1-13中任一项所述的聚合物,及至少另一种的有机功能材料,所述另一种的有机功能材料可选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料、主体材料或有机染料。
  15. 一种组合物,其特征在于,包含至少一种权利要求1-13中任一项所述的聚合物或权利要求14所述的混合物,及至少一种有机溶剂。
  16. 一种有机电子器件,至少包含一种如权利要求1-13任一项所述的聚合物或权利要求14所述的混合物。
  17. 根据权利要求16所述的有机电子器件,其特征在于,所述的有机电子器件选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器或有机等离激元发射二极管。
PCT/CN2018/121557 2017-12-28 2018-12-17 含酰胺键基团的聚合物、混合物、组合物及其应用 WO2019128762A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880069942.1A CN111278892B (zh) 2017-12-28 2018-12-17 含酰胺键基团的聚合物、混合物、组合物及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711461881 2017-12-28
CN201711461881.7 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019128762A1 true WO2019128762A1 (zh) 2019-07-04

Family

ID=67066541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121557 WO2019128762A1 (zh) 2017-12-28 2018-12-17 含酰胺键基团的聚合物、混合物、组合物及其应用

Country Status (2)

Country Link
CN (1) CN111278892B (zh)
WO (1) WO2019128762A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246922A (zh) * 2021-04-28 2022-10-28 财团法人工业技术研究院 聚合物及包含其的发光装置
US11912816B2 (en) 2021-04-28 2024-02-27 Industrial Technology Research Institute Polymer and light-emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778518B (zh) * 2020-12-30 2022-07-22 天津理工大学 一种酰胺桥联有机聚合物空穴传输材料及其合成方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039863A1 (ja) * 2002-10-31 2004-05-13 Toray Industries, Inc. 脂環式または芳香族のポリアミド、ポリアミドフィルム、それらを用いた光学用部材およびポリアミドのコポリマ
CN101490862A (zh) * 2006-07-25 2009-07-22 默克专利有限公司 聚合物共混物和它们在有机发光器件中的用途
CN104718239A (zh) * 2012-09-24 2015-06-17 艾克伦聚合物***公司 用于制造显示、光学或照明元件的芳香族聚酰胺
CN105348518A (zh) * 2015-12-07 2016-02-24 中北大学 耐高温尼龙及其合成方法
CN105504270A (zh) * 2016-01-14 2016-04-20 郑州大学 交联聚亚苯基苯并二噁唑薄膜的制备方法
CN105658701A (zh) * 2013-06-12 2016-06-08 巴斯夫欧洲公司 使用高过量二胺制备半芳族共聚酰胺的方法
CN105960436A (zh) * 2013-10-23 2016-09-21 亚克朗聚合物***公司 树脂组合物、制造树脂组合物的方法、基底、制造电子装置的方法和电子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090066239A1 (en) * 2006-03-07 2009-03-12 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
DE102010048498A1 (de) * 2010-10-14 2012-04-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR20150014778A (ko) * 2013-07-30 2015-02-09 삼성디스플레이 주식회사 유기 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004039863A1 (ja) * 2002-10-31 2004-05-13 Toray Industries, Inc. 脂環式または芳香族のポリアミド、ポリアミドフィルム、それらを用いた光学用部材およびポリアミドのコポリマ
CN101490862A (zh) * 2006-07-25 2009-07-22 默克专利有限公司 聚合物共混物和它们在有机发光器件中的用途
CN104718239A (zh) * 2012-09-24 2015-06-17 艾克伦聚合物***公司 用于制造显示、光学或照明元件的芳香族聚酰胺
CN105658701A (zh) * 2013-06-12 2016-06-08 巴斯夫欧洲公司 使用高过量二胺制备半芳族共聚酰胺的方法
CN105960436A (zh) * 2013-10-23 2016-09-21 亚克朗聚合物***公司 树脂组合物、制造树脂组合物的方法、基底、制造电子装置的方法和电子装置
CN105348518A (zh) * 2015-12-07 2016-02-24 中北大学 耐高温尼龙及其合成方法
CN105504270A (zh) * 2016-01-14 2016-04-20 郑州大学 交联聚亚苯基苯并二噁唑薄膜的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246922A (zh) * 2021-04-28 2022-10-28 财团法人工业技术研究院 聚合物及包含其的发光装置
US11912816B2 (en) 2021-04-28 2024-02-27 Industrial Technology Research Institute Polymer and light-emitting device
CN115246922B (zh) * 2021-04-28 2024-06-04 财团法人工业技术研究院 聚合物及包含其的发光装置

Also Published As

Publication number Publication date
CN111278892A (zh) 2020-06-12
CN111278892B (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN108003365B (zh) 有机复合薄膜及其在有机电子器件中的应用
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
CN107001380B (zh) 化合物、包含其的混合物、组合物和有机电子器件
WO2018095394A1 (zh) 有机混合物、组合物及有机电子器件和应用
WO2017092508A1 (zh) D-a型化合物及其应用
EP3547385B1 (en) Organic mixture, composition, and organic electronic component
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
US11289654B2 (en) Polymers containing furanyl crosslinkable groups and uses thereof
CN110746405B (zh) 一种含吡咯基团的化合物及其在有机电子器件中的应用
CN110760164B (zh) 一种有机混合物、包含其的组合物、有机电子器件及应用
WO2017118209A1 (zh) 含硅的有机化合物及其应用
WO2018113786A1 (zh) 基于狄尔斯–阿尔德反应的可交联聚合物及其在有机电子器件中的应用
CN109970660B (zh) 含稠杂环的螺芴类有机化合物及其应用
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2018095389A1 (zh) 含氮稠杂环的化合物及其应用
CN109843854B (zh) 含有交联基团的化合物及其应用
CN107978692B (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2019128762A1 (zh) 含酰胺键基团的聚合物、混合物、组合物及其应用
EP3401317B1 (en) Sulfone-containing fused heterocyclic compounds and applications thereof
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN109369891B (zh) 含碱基基团的聚合物及其应用
CN110669048A (zh) 基于含氮稠环的有机化合物及其应用
CN115925719A (zh) 一种有机化合物、组合物及其在有机电子器件中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894083

Country of ref document: EP

Kind code of ref document: A1