WO2019127935A1 - 一种三维超材料吸波体 - Google Patents

一种三维超材料吸波体 Download PDF

Info

Publication number
WO2019127935A1
WO2019127935A1 PCT/CN2018/079764 CN2018079764W WO2019127935A1 WO 2019127935 A1 WO2019127935 A1 WO 2019127935A1 CN 2018079764 W CN2018079764 W CN 2018079764W WO 2019127935 A1 WO2019127935 A1 WO 2019127935A1
Authority
WO
WIPO (PCT)
Prior art keywords
metamaterial
layer
absorbing
absorber
unit array
Prior art date
Application number
PCT/CN2018/079764
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
黄金国
Original Assignee
深圳光启尖端技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启尖端技术有限责任公司 filed Critical 深圳光启尖端技术有限责任公司
Publication of WO2019127935A1 publication Critical patent/WO2019127935A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape

Definitions

  • the present invention relates to the field of electromagnetic communication, and in particular to a three-dimensional metamaterial absorber.
  • Absorbing metamaterial refers to a kind of material that can effectively absorb incident electromagnetic waves and attenuate their scattering. It converts incident electromagnetic waves into thermal energy or other energy forms to achieve the purpose of absorbing waves through various loss mechanisms of materials.
  • "thin thickness, low density, wide frequency band, strong absorption” is the development direction of absorbing materials.
  • existing absorbing materials often have the disadvantages of narrow frequency band, high density and large matching thickness. The current research on absorbing materials is still concentrated on conventional absorbing materials, and it is generally based on groping application research, lacking theoretical guidance, and thus has not made substantial breakthroughs, and traditional absorbing materials or absorbing waves.
  • the structure has a problem that the large-angle effect is drastically reduced, that is, the absorbing effect for the normal incidence is excellent, and the absorbing effect for the oblique incidence is drastically deteriorated, which greatly limits the application of the absorbing material or the absorbing structure.
  • the present invention provides a three-dimensional metamaterial absorbing body which utilizes a absorbing material and an artificial microstructure to form a three-dimensional metamaterial absorbing body, and realizes a good broadband absorption effect under the premise of achieving a good broadband absorption effect.
  • Good wide-angle absorption effect which can maintain an average absorbing effect of 79.5% or more within an incident angle of 60 degrees.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a three-dimensional metamaterial absorber, the three-dimensional metamaterial absorber comprising: a reflection layer; an absorption layer, and the absorption layer is disposed on the top surface of the reflection layer Above; a plurality of metamaterial unit array layers, a plurality of metamaterial unit array layers disposed above the absorber layer, and a plurality of metamaterial unit array layers and a contact edge of the absorber layer are disposed in parallel, each metamaterial unit array layer division Artificial microstructures are attached to a plurality of identical metamaterial units, and in the same direction facing surface of each metamaterial unit.
  • the shape of the artificial microstructure comprises: a square ring, a circular ring, a square shape, a snowflake shape, an I-shape, a cross shape or a circular hole shape.
  • the artificial microstructure includes: a first enclosing area and a second enclosing area, and the first enclosing area and the second enclosing area are both U-shaped structures, and the first enclosing area is formed The first opening formed by the first opening and the second enclosing area are opposed to each other, and the second enclosing area is disposed in the first opening formed by the first enclosing area.
  • the shape of the artificial microstructures on any two metamaterial units is the same.
  • the angle A between the plane of each of the metamaterial unit array layers and the plane of the absorbing layer is in the range of 0° ⁇ A ⁇ 90°.
  • the material of the reflective layer is metal or carbon fiber.
  • the material of the absorbing layer is carbonyl iron powder, or alloy powder, or graphene powder, or carbon nanotubes.
  • the material of the super material unit array layer is carbonyl iron powder, or alloy powder, or graphene powder, or carbon nanotubes.
  • the material of the artificial microstructure is a metal, or a transparent conductive oxide, or a conductive carbon paste.
  • the reflective layer has a thickness between 0.1 mm and 0.5 mm.
  • the thickness of the absorber layer is between 0.2 mm and 2 mm.
  • the artificial microstructure has a thickness between 0.01 mm and 0.5 mm.
  • the invention utilizes a absorbing material and an artificial microstructure to form a three-dimensional metamaterial absorbing body, and achieves a good wide-angle absorption effect under the premise of achieving a good broadband absorption effect, which can be within an incident angle range of 60 degrees. Both can maintain an average absorbing effect of 79.5% or more.
  • FIG. 1 is a schematic view of a three-dimensional metamaterial absorber according to an embodiment of the invention.
  • FIG. 2 is a side view of a metamaterial unit in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a absorbing effect of vertical absorption rate according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an absorbing effect of oblique incident absorptivity according to an embodiment of the invention.
  • a three-dimensional metamaterial absorber is provided.
  • a three-dimensional metamaterial absorber includes: a reflective layer 1; an absorber layer 2, the absorber layer 2 is disposed above a top surface of the reflective layer 1, and a plurality of metamaterial unit arrays.
  • Layer 3, a plurality of metamaterial unit array layers 3 are disposed above the absorbing layer 2, and the contact edges of the plurality of metamaterial unit array layers 3 and the absorbing layer 2 are disposed in parallel, and each of the metamaterial unit array layers 3 is divided into a plurality An identical metamaterial unit, and an artificial microstructure 4 attached to the face of each metamaterial unit facing in the same direction.
  • the three-dimensional metamaterial absorber includes: a reflective layer 1, an absorber layer 2, a metamaterial unit array layer 3, and an artificial microstructure 4, wherein in the z direction, the reflective layer 1 is placed in a three-dimensional metamaterial.
  • the absorber layer 2 is located at the upper portion of the reflection layer 1
  • the metamaterial unit array layer 3 is disposed above the top surface of the absorber layer 2
  • the plurality of metamaterial unit array layers 3 and the absorber layer 2 There are a plurality of contact edges which are arranged in parallel.
  • the three-dimensional metamaterial absorber sequentially divided into a plurality of metamaterial units along the length direction (or y direction) of each of the metamaterial unit array layers 3, and facing each other in the same direction in each of the metamaterial units
  • the artificial microstructure 4 is attached to the surface (or the x direction), so that the electromagnetic wave in a wide frequency range is largely lost by the following two mechanisms by the arrangement of the three-dimensional metamaterial absorber: the electromagnetic wave is incident on Electromagnetic resonance, eddy current effect and magnetic aftereffect loss caused by the internal wave absorbing layer 2 and the super-material element array layer 3 realize electromagnetic wave attenuation; electromagnetic waves are incident on the artificial microstructure 4 to cause electromagnetic resonance to realize localized binding and loss of electromagnetic waves. .
  • the artificial microstructure 4 includes a first enclosing area 41 and a second enclosing area 42.
  • the first enclosing area 41 is disposed below the second enclosing area 42 in the z direction.
  • the first enclosing area 41 and the second enclosing area 42 are both U-shaped, that is, the first enclosing area 41 and the second enclosing area 42 each comprise a horizontal straight strip structure and are vertically disposed thereon. A vertical straight strip structure at both ends of the horizontal straight strip structure.
  • the first opening formed by the first enclosing area 41 and the second opening formed by the second enclosing area 42 are disposed opposite to each other with the second enclosing area 42 in the first opening formed by the first enclosing area 41, and The widths (or the lengths in the y direction) of the first enclosing area 41 and the second enclosing area 42 are equal.
  • the specific shape of the artificial microstructure 4 is defined, a person skilled in the art can also set the specific shape of the artificial microstructure 4 according to actual needs, and at the same time, the geometric pattern of the artificial microstructure 4 can be a computer.
  • the artificial microstructure 4 has a shape of at least one of a square ring shape, a circular ring shape, a square shape, a snowflake shape, an I-shape, a cross shape, or a circular hole shape.
  • the invention is not limited thereto.
  • the artificial microstructures 4 on any two metamaterial units are the same, and all the artificial microstructures 4 are on the metamaterial unit shown in FIG. Artificial microstructure 4.
  • the artificial microstructures 4 on the metamaterial units are all different, and the invention is not limited thereto.
  • the planes of the three metamaterial unit array layers 3 are disposed perpendicular to the plane of the absorbing layer 2, and the spacing between adjacent two metamaterial unit array layers 3 is equal, and of course, It can be understood that those skilled in the art can also set the angle between the plane of each metamaterial unit array layer 3 and the plane of the absorbing layer 2 and the spacing between adjacent metamaterial unit array layers 3 according to actual needs. And the angle A between the plane where each of the metamaterial unit array layers 3 and the plane of the absorbing layer 2 are in the range of 0° ⁇ A ⁇ 90°, for example, according to an embodiment of the present invention, as shown in FIG.
  • the three-dimensional metamaterial absorber comprises a three-cycle supermaterial cell array layer 3 in which the plane of the metamaterial cell array layer 3 on one side and the absorber layer 2 are located.
  • the angle between the planes is 70°
  • the angle between the plane of the metamaterial element array layer 3 on the other side and the plane of the absorbing layer 2 is 80°
  • the plane of the metamaterial element array layer 3 in the middle is in contact with Between the planes of the wave layer 2 Angle of 85 °, which is not limited in the present invention.
  • the material of the reflective layer 1 is made of, but not limited to, metal or carbon fiber.
  • the material of the reflective layer 1 is one of gold, silver, copper, and aluminum.
  • the thickness of the reflective layer 1 is between 0.1 mm and 0.5 mm.
  • the thickness of the reflective layer 1 can be set according to actual needs, which is not limited by the present invention.
  • the materials of the absorbing layer 2 and the metamaterial unit array layer 3 include, but are not limited to, carbonyl iron powder, or alloy powder, or graphene powder, or carbon nanotube powder, etc., while the absorbing layer 2 and the metamaterial
  • the form of the unit array layer 3 may be in the form of an absorbing patch, a absorbing prepreg or the like.
  • the thickness of the absorbing layer 2 is between 0.2 mm and 2 mm.
  • the thickness of the absorbing layer 2 can be set by a person skilled in the art according to actual needs, which is not limited by the present invention.
  • the material of the artificial microstructure 4 includes, but is not limited to, a metal, or a transparent conductive oxide, or a conductive carbon paste.
  • the material of the artificial microstructure 4 is gold, silver, copper, aluminum, At least one of indium tin oxide.
  • the thickness of the artificial microstructure 4 is between 0.01 mm and 0.5 mm.
  • the thickness of the artificial microstructure 4 can be set according to actual needs by those skilled in the art, which is not limited by the present invention. .
  • the three-dimensional metamaterial absorber in the present invention adopts the structure shown in FIG. 1, wherein, as shown in FIG. 1, p x represents the contact edge of the adjacent two metamaterial unit array layers 3.
  • the spacing between p y represents the length of the metamaterial unit, h represents the height of the metamaterial unit, t 1 represents the thickness of the absorbing layer 2, and t 2 represents the thickness of the metamaterial unit, as shown in FIG.
  • wai_z represents the The length of the vertical straight strip structure in the area 41
  • w represents the width of the first enclosed area 41 and the second enclosed area 42
  • wai_y represents the length of the horizontal straight strip structure in the first enclosed area 41
  • Nei_z represents the length of the vertical straight strip structure in the second enclosing area 42
  • nei_y represents the length of the horizontal straight strip structure in the second enclosing area 42
  • the structural size of the three-dimensional metamaterial absorber is set as follows 1 is shown.
  • the reflective layer 1 is made of copper and has a thickness of 0.1 mm
  • the metamaterial unit array layer 3 is selected from a absorbing layer made of carbonyl iron powder, having a thickness of 1 mm
  • the artificial microstructure 4 is made of copper and having a thickness of 0.02 mm.
  • the shape of the artificial microstructure 4 is an open double ring as shown in FIG. 2, and further, the three-dimensional metamaterial absorber has a total thickness of 9.1 mm.
  • the absorption rate of the three-dimensional metamaterial absorber in the frequency range of 2 to 20 GHz is greater than 70%, wherein the absorption rate of 4.6 to 20 GHz is greater than 80%, and the average absorption rate of 2 to 20 GHz is 88.3%. Shows excellent broadband and high efficiency absorbing effect.
  • the three-dimensional metamaterial absorber still exhibits a good absorbing effect when the incident angle reaches 60°, and the absorption rate of 5.5 to 20 GHz is still greater than 70% overall.
  • the average absorption rates were 88.3%, 90.9%, 88.9%, and 79.5%, respectively, when the incident angles were 0°, 20°, 40°, and 60°, respectively.
  • a good wide-angle absorption is achieved under the premise of achieving a good broadband absorption effect.
  • the effect is that it can maintain an average absorbing effect of 79.5% or more within an incident angle of 60 degrees.

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种三维超材料吸波体,该三维超材料吸波体包括:反射层(1);吸波层(2),吸波层(2)设置在反射层(1)的顶部表面的上方;多个超材料单元阵列层(3),多个超材料单元阵列层(3)设置在吸波层(2)上方,以及多个超材料单元阵列层(3)和吸波层(2)的接触边平行设置,每个超材料单元阵列层(3)划分为多个相同的超材料单元,以及在每个超材料单元的面向同一方向的面上,附着有人造微结构(4)。该三维超材料吸波体在实现良好的宽频吸收效果的前提下,还实现了良好的宽角吸收效果,其能在60度的入射角范围内,均能维持79.5%以上的平均吸波效果。

Description

一种三维超材料吸波体 技术领域
本发明涉及电磁通信领域,具体来说,涉及一种三维超材料吸波体。
背景技术
科学技术的发展以及电子技术的进步为人类创造了巨大的物质文明,但同时电子设备产生的不同频率与强度的电磁波也制造了电磁污染。为了防范电磁污染的危害,利用吸波材料吸收电磁波已成为防治电磁污染最为有效的途径。同时,在军事领域,随着探测技术的发展,在现代化战争中利用吸波材料实现目标隐身对提高武器***的生存和突防能力有着重要的意义。电磁波吸波材料的研究已成为当前一个非常重要的科研领域。
吸波超材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸波的目的。同时,“厚度薄、密度低、频段宽、吸收强”是吸波材料的发展方向,然而现有的吸波材料往往存在频带窄、密度大、匹配厚度大等缺点。目前的吸波材料研究仍集中在常规吸波材料上,且普遍以摸索性的应用研究为主,缺乏理论性的指导,因而并未得到实质性的突破,而且传统的吸波材料或者吸波结构存在着大角度效果急剧下降的问题,即对于垂直入射的吸波效果很好,而对于斜入射的吸波效果则急剧变差,这极大地限制了吸波材料或吸波结构的应用。
针对相关技术中的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中的问题,本发明提出一种三维超材料吸波体,其利用吸波材料和人造微结构组成三维超材料吸波体,在实现良好的宽频吸收效果的前提下,还实现了良好的宽角吸收效果,其能在60度的入射角范围内, 均能维持79.5%以上的平均吸波效果。
本发明的技术方案是这样实现的:
本发明解决其技术问题所采用的技术方案是:构造一种三维超材料吸波体,该三维超材料吸波体包括:反射层;吸波层,吸波层设置在反射层的顶部表面的上方;多个超材料单元阵列层,多个超材料单元阵列层设置在吸波层上方,以及多个超材料单元阵列层和吸波层的接触边平行设置,每个超材料单元阵列层划分为多个相同的超材料单元,以及在每个超材料单元的面向同一方向的面上,附着有人造微结构。
根据本发明的一个实施例,人造微结构的形状包括:方环形、圆环形、方块形、雪花形、工字形、十字形或圆孔形。
根据本发明的一个实施例,人造微结构包括:第一围设区域和第二围设区域,并且第一围设区域和第二围设区域均为凵字形结构,以及第一围设区域形成的第一开口和第二围设区域形成的第二开口彼此相对,且第二围设区域设置在第一围设区域形成的第一开口内。
根据本发明的一个实施例,任意两个超材料单元上的人造微结构的形状相同。
根据本发明的一个实施例,每个超材料单元阵列层所在平面和吸波层所在平面之间的夹角A的取值范围为0°<A≤90°。
根据本发明的一个实施例,反射层的材料为金属或碳纤维。
根据本发明的一个实施例,吸波层的材料为羰基铁粉、或合金粉、或石墨烯粉、或碳纳米管。
根据本发明的一个实施例,超材料单元阵列层的材料为羰基铁粉、或合金粉、或石墨烯粉、或碳纳米管。
根据本发明的一个实施例,人造微结构的材料为金属、或透明导电氧化物、或导电碳浆。
根据本发明的一个实施例,反射层的厚度在0.1mm至0.5mm之间。
根据本发明的一个实施例,吸波层的厚度在0.2mm至2mm之间。
根据本发明的一个实施例,人造微结构的厚度在0.01mm到0.5mm之间。
本发明的有益技术效果在于:
本发明通过利用吸波材料和人造微结构组成三维超材料吸波体,在实现良好的宽频吸收效果的前提下,还实现了良好的宽角吸收效果,其能在60度的入射角范围内,均能维持79.5%以上的平均吸波效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一实施例的三维超材料吸波体的示意图;
图2是根据本发明一实施例的超材料单元的侧视图;
图3是根据本发明一实施例的垂直吸收率的吸波效果示意图;
图4是根据本发明一实施例的斜入射吸收率的吸波效果示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明的实施例,提供了一种三维超材料吸波体。
如图1所示,根据本发明实施例的三维超材料吸波体包括:反射层1;吸波层2,吸波层2设置在反射层1的顶部表面的上方;多个超材料单元阵列层3,多个超材料单元阵列层3设置在吸波层2上方,以及多个超材料单元阵列层3和吸波层2的接触边平行设置,每个超材料单元阵列层3划分为多个相同的超材料单元,以及在每个超材料单元的面向同一方向的面上,附着有一个人造微结构4。
借助于本发明的上述技术方案,通过利用吸波材料和人造微结构组成 三维超材料吸波体,在实现良好的宽频吸收效果的前提下,还实现了良好的宽角吸收效果,其能在60度的入射角范围内,均能维持79.5%以上的平均吸波效果。
为了更好的描述本发明的上述技术方案,下面通过具体的实施例进行详细的描述。
如图1所示,三维超材料吸波体包括:反射层1、吸波层2、超材料单元阵列层3、人造微结构4,其中,在z方向上,反射层1置于三维超材料吸波体的最底部,吸波层2位于反射层1的上部,超材料单元阵列层3设置在吸波层2顶部表面的的上方,并且多个超材料单元阵列层3和吸波层2具有多个接触边,该多个接触边平行设置。以及,在该三维超材料吸波体中,沿着每个超材料单元阵列层3的长度方向(或y方向)上依次划分为多个超材料单元,以及在每个超材料单元面向同一方向(或x方向)的面上附着有人造微结构4,从而通过上述三维超材料吸波体的设置,使得一段较宽频率范围内的电磁波通过以下两种机理被大量地损耗掉:电磁波入射到吸波层2和超材料单元阵列层3内部以后引起的铁磁共振、涡流效应以及磁后效损耗实现电磁波的衰减;电磁波入射到人造微结构4中引起电磁谐振实现电磁波的局域束缚并损耗。
此外,如图2所示,该人造微结构4包括:第一围设区域41和第二围设区域42,在z方向上,该第一围设区域41设置在第二围设区域42下方,同时,第一围设区域41和第二围设区域42均为凵字形结构,即该第一围设区域41和第二围设区域42均包括一水平直条形结构以及垂直设置在该水平直条形结构两端的竖直直条形结构。第一围设区域41形成的第一开口和第二围设区域42形成的第二开口彼此相对该第二围设区域42设置在第一围设区域41形成的第一开口内,同时,该第一围设区域41和第二围设区域42的宽度(或在y方向的长度)相等。另外,在本实施例中,虽然限定了人造微结构4的具体形状,本领域的人员还可根据实际需求设置人造微结构4的具体形状,同时,该人造微结构4的几何图案可采用计算机仿真得到,例如,根据本发明的一个实施例,该人造微结构4的形状为方环形、圆环形、方块形、雪花形、工字形、十字形或圆孔形中的至少一种, 本发明对此不作限定。
另外,继续参见图1,在上述超材料单元阵列层3中,任意两个超材料单元上的人造微结构4均相同,并且所有的人造微结构4均为图2所示的超材料单元上的人造微结构4。此外,当然可以理解,其还可根据实际需求设置每个超材料单元上的人造微结构4的形状,例如,根据本发明的一个实施例,在所有的超材料单元阵列层3中,任意两个超材料单元上的人造微结构4均不相同,本发明对此不作限定。
此外,继续参见图1,上述三个超材料单元阵列层3所在平面均与吸波层2所在平面相互垂直设置,并且相邻两个超材料单元阵列层3之间的间距相等,此外,当然可以理解,本领域的技术人员还可根据实际需求设置每个超材料单元阵列层3所在平面和吸波层2所在平面之间的角度以及相邻的超材料单元阵列层3之间的间距,并且每个超材料单元阵列层3所在平面和吸波层2所在平面之间的夹角A的取值范围为0°<A≤90°,例如,根据本发明的一个实施例,如图1所示,该三维超材料吸波体包括三个周期设置的超材料单元阵列层3,在上述超材料单元阵列层3中,一侧的超材料单元阵列层3所在平面与吸波层2所在平面之间的夹角为70°,另一侧的超材料单元阵列层3所在平面与吸波层2所在平面之间的夹角为80°,中间的超材料单元阵列层3所在平面与吸波层2所在平面之间的角度为85°,本发明对此不作限定。
此外,反射层1的材料包括但不限于金属或碳纤维制成,例如,根据本发明的一个实施例,该反射层1的材料为金、银、铜、铝中的一种。同时,该反射层1的厚度介于0.1mm到0.5mm之间,此外,当然可以理解,本领域的技术人员可根据实际需求进行设定反射层1的厚度,本发明对此不做限定。
另外,吸波层2和超材料单元阵列层3的材料包括但不限于羰基铁粉、或合金粉、或石墨烯粉、或碳纳米管粉等制成,同时,吸波层2和超材料单元阵列层3的呈现的形式可以为吸波贴片、吸波预浸料等。此外,吸波层2的厚度介于0.2mm到2mm之间,此外,当然可以理解,本领域的技术人员可根据实际需求进行设定吸波层2的厚度,本发明对此不做限定。
此外,人造微结构4的材料包括但不限于金属、或透明导电氧化物、或导电碳浆,例如,根据本发明的一个实施例,人造微结构4的材料为金、银、铜、铝、氧化铟锡中的至少一种。同时,人造微结构4的厚度介于0.01mm到0.5mm之间,此外,当然可以理解,本领域的技术人员可根据实际需求进行设定人造微结构4的厚度,本发明对此不做限定。
为了更好的描述本发明的技术方案,下面通过一个具体的实施例进行详细的描述。
在本实施例中,本发明中的三维超材料吸波体采用如图1所示的结构,其中,如图1所示,p x表示相邻的两个超材料单元阵列层3的接触边之间的间距,p y表示超材料单元的长度,h表示超材料单元的高度,t 1表示吸波层2的厚度,t 2表示超材料单元的厚度,如图2所示,wai_z表示第一围设区域41中的竖直直条结构的长度,w表示第一围设区域41和第二围设区域42的宽度,wai_y表示第一围设区域41中的水平直条结构的长度,nei_z表示第二围设区域42中的竖直直条结构的长度,nei_y表示第二围设区域42中的水平直条结构的长度,同时,该三维超材料吸波体的结构尺寸设置如下表1所示。
此外,反射层1由铜制成,厚度为0.1mm,超材料单元阵列层3选择由羰基铁粉制作的吸波贴片,厚度为1mm,人造微结构4由铜制成,厚度为0.02mm,并且该人造微结构4的形状为如图2所示的开口双环,此外,该三维超材料吸波体的总厚度为9.1mm。
参数
p x 20mm
p y 20mm
h 8mm
wai_z 7mm
wai_y 16mm
nei_z 5mm
nei_y 10mm
t 1 1mm
t 2 1mm
w 0.8mm
表1
如图3所示,该三维超材料吸波体在2~20GHz频段内的吸收率均大于70%,其中4.6~20GHz的吸收率均大于80%,2~20GHz的平均吸收率为88.3%,表现出了优良的宽频高效吸波效果。同时,如图4所示,该三维超材料吸波体在入射角达到60°时,依然表现出了较好的吸波效果,5.5~20GHz的吸收率依然整体大于70%。另外,经过统计,在入射角分别为0°、20°、40°、60°时,平均吸收率分别为88.3%、90.9%、88.9%和79.5%。
综上所述,借助于本发明的上述技术方案,通过利用吸波材料和人造微结构组成三维超材料吸波体,在实现良好的宽频吸收效果的前提下,还实现了良好的宽角吸收效果,其能在60度的入射角范围内,均能维持79.5%以上的平均吸波效果。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种三维超材料吸波体,其特征在于,包括:
    反射层;
    吸波层,所述吸波层设置在所述反射层的顶部表面的上方;
    多个超材料单元阵列层,多个所述超材料单元阵列层设置在所述吸波层上方,以及多个所述超材料单元阵列层和所述吸波层的接触边平行设置,每个所述超材料单元阵列层划分为多个相同的超材料单元,以及在每个所述超材料单元的面向同一方向的面上,附着有人造微结构。
  2. 根据权利要求1所述的三维超材料吸波体,其特征在于,所述人造微结构的形状包括:方环形、圆环形、方块形、雪花形、工字形、十字形或圆孔形。
  3. 根据权利要求1所述的三维超材料吸波体,其特征在于,所述人造微结构包括:第一围设区域和第二围设区域,并且所述第一围设区域和第二围设区域均为凵字形结构,以及所述第一围设区域形成的第一开口和所述第二围设区域形成的第二开口彼此相对,且所述第二围设区域设置在所述第一围设区域形成的第一开口内。
  4. 根据权利要求1所述的三维超材料吸波体,其特征在于,任意两个所述超材料单元上的人造微结构的形状相同。
  5. 根据权利要求1所述的三维超材料吸波体,其特征在于,每个所述超材料单元阵列层所在平面和所述吸波层所在平面之间的夹角A的取值范围为0°<A≤90°。
  6. 根据权利要求1所述的吸波材料超结构,其特征在于,所述反射层的材料为金属或碳纤维。
  7. 根据权利要求1所述的吸波材料超结构,其特征在于,所述吸波层的材料为羰基铁粉、或合金粉、或石墨烯粉、或碳纳米管。
  8. 根据权利要求1所述的吸波材料超结构,其特征在于,所述超材料单元阵列层的材料为羰基铁粉、或合金粉、或石墨烯粉、或碳纳米管。
  9. 根据权利要求1所述的吸波材料超结构,其特征在于,所述人造微 结构的材料为金属、或透明导电氧化物、或导电碳浆。
  10. 根据权利要求1所述的吸波材料超结构,其特征在于,所述反射层的厚度在0.1mm至0.5mm之间。
  11. 根据权利要求1所述的吸波材料超结构,其特征在于,所述吸波层的厚度在0.2mm至2mm之间。
  12. 根据权利要求1所述的吸波材料超结构,其特征在于,所述人造微结构的厚度在0.01mm到0.5mm之间。
PCT/CN2018/079764 2017-12-29 2018-03-21 一种三维超材料吸波体 WO2019127935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711483471.2 2017-12-29
CN201711483471.2A CN109994839A (zh) 2017-12-29 2017-12-29 一种三维超材料吸波体

Publications (1)

Publication Number Publication Date
WO2019127935A1 true WO2019127935A1 (zh) 2019-07-04

Family

ID=67062956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079764 WO2019127935A1 (zh) 2017-12-29 2018-03-21 一种三维超材料吸波体

Country Status (2)

Country Link
CN (1) CN109994839A (zh)
WO (1) WO2019127935A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024115966A2 (en) 2022-12-01 2024-06-06 Innate Pharma Compositions and methods for neoadjuvant treatment in cancer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111541047A (zh) * 2020-05-12 2020-08-14 南京大学 一种基于损耗型立体单元的多机制复合隐身超构材料
CN114069250A (zh) * 2020-08-07 2022-02-18 香港科技大学 偶极子共振电阻式吸收器
CN111900549B (zh) * 2020-08-31 2021-06-08 西安电子科技大学 基于正六边形排布圆环网栅的高透明度漫反射超表面
CN112702900B (zh) * 2020-11-24 2022-07-15 南京航空航天大学 一种超材料吸波体
CN115084869B (zh) * 2022-06-24 2023-08-01 中国人民解放军空军工程大学 一种超宽带广角域隐身结构材料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617096A (en) * 1994-07-25 1997-04-01 Takahashi; Michiharu Broad-band radio wave absorber
CN102480000A (zh) * 2011-03-18 2012-05-30 深圳光启高等理工研究院 阻抗匹配元件
CN102570048A (zh) * 2011-12-26 2012-07-11 深圳光启高等理工研究院 具有三维微结构的超材料及其制造方法
CN104682013A (zh) * 2015-02-09 2015-06-03 北京理工大学 一种宽角度极化不敏感的低rcs超材料吸波器
CN105552566A (zh) * 2016-02-04 2016-05-04 武汉理工大学 一种立式透明超材料吸波体
CN105789912A (zh) * 2016-03-16 2016-07-20 深圳光启高等理工研究院 吸波超材料、天线罩和天线***
CN106099386A (zh) * 2016-06-02 2016-11-09 南京航空航天大学 一种具有低频吸波与极化转换的装置及工作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525711B1 (en) * 2005-08-31 2009-04-28 The United States Of America As Represented By The Secretary Of The Navy Actively tunable electromagnetic metamaterial
KR101647045B1 (ko) * 2010-11-08 2016-08-10 삼성전자주식회사 3차원 직립형 메타물질 구조물 및 그 제조방법
CN102800991B (zh) * 2012-08-03 2015-03-11 深圳光启创新技术有限公司 一种宽频吸波超材料
CN104347949B (zh) * 2013-07-24 2018-02-16 深圳光启创新技术有限公司 一种超材料
KR101748738B1 (ko) * 2016-04-12 2017-06-19 국방과학연구소 입사 신호의 편광 제어를 활용한 레이더 반사 단면적 저감용 전도체 표면 구조 반사판
CN208014906U (zh) * 2017-12-29 2018-10-26 深圳光启尖端技术有限责任公司 一种三维超材料吸波体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617096A (en) * 1994-07-25 1997-04-01 Takahashi; Michiharu Broad-band radio wave absorber
CN102480000A (zh) * 2011-03-18 2012-05-30 深圳光启高等理工研究院 阻抗匹配元件
CN102570048A (zh) * 2011-12-26 2012-07-11 深圳光启高等理工研究院 具有三维微结构的超材料及其制造方法
CN104682013A (zh) * 2015-02-09 2015-06-03 北京理工大学 一种宽角度极化不敏感的低rcs超材料吸波器
CN105552566A (zh) * 2016-02-04 2016-05-04 武汉理工大学 一种立式透明超材料吸波体
CN105789912A (zh) * 2016-03-16 2016-07-20 深圳光启高等理工研究院 吸波超材料、天线罩和天线***
CN106099386A (zh) * 2016-06-02 2016-11-09 南京航空航天大学 一种具有低频吸波与极化转换的装置及工作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024115966A2 (en) 2022-12-01 2024-06-06 Innate Pharma Compositions and methods for neoadjuvant treatment in cancer

Also Published As

Publication number Publication date
CN109994839A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2019127935A1 (zh) 一种三维超材料吸波体
CN112909571B (zh) 一种兼具多种类型超材料优势的组合吸波复合材料
CN107508017B (zh) 一种带吸型宽带频率选择结构及其应用
CN110137690A (zh) 一种太赫兹频段宽带超材料吸波器
CN109921192A (zh) 一种低频透波高频宽带吸波的频选装置
CN103490171A (zh) 一种复合宽频带吸波材料
CN104682013A (zh) 一种宽角度极化不敏感的低rcs超材料吸波器
CN106450795A (zh) 一种双频极化不敏感单层超材料吸波结构
CN110190407A (zh) 一种基于电阻膜的宽带吸波器及宽带吸波器阵列
CN103427159B (zh) 一种多层复合复式晶格结构左手材料框形贴片天线
CN103913788B (zh) 中红外波段宽频带周期吸波材料
CN109509987B (zh) 新型二/三维结合双极化超宽带吸波结构
CN106025572A (zh) 基于局部非周期结构的石墨烯超宽带吸波器
CN108879109A (zh) 加载FSS的超宽带角度稳定Salisbury吸波屏
CN105097052A (zh) 面电阻型宽带超材料吸收器
CN106058484A (zh) 一种多层结构的宽带电磁吸波材料
CN109742554B (zh) 一种双频Ku波段圆极化敏感吸波器
CN114709624B (zh) 一种具有圆极化波非对称传输与单向吸波双功能的超表面
CN108718006B (zh) 一种三波段拓扑超材料太赫兹吸波器
CN110471137A (zh) 一种双频段红外吸波器
CN108400448B (zh) 糖果型超材料吸波器
CN208014906U (zh) 一种三维超材料吸波体
CN110366361A (zh) 一种基于超表面的吸波器
CN112134025B (zh) 一种多频超材料吸波体
CN214960837U (zh) 一种吸波体结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18896362

Country of ref document: EP

Kind code of ref document: A1