WO2019100245A1 - 无人机的通信***、设备、方法以及计算装置 - Google Patents

无人机的通信***、设备、方法以及计算装置 Download PDF

Info

Publication number
WO2019100245A1
WO2019100245A1 PCT/CN2017/112297 CN2017112297W WO2019100245A1 WO 2019100245 A1 WO2019100245 A1 WO 2019100245A1 CN 2017112297 W CN2017112297 W CN 2017112297W WO 2019100245 A1 WO2019100245 A1 WO 2019100245A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
module
drone
signal
Prior art date
Application number
PCT/CN2017/112297
Other languages
English (en)
French (fr)
Inventor
陈颖
吴旭科
马宁
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/112297 priority Critical patent/WO2019100245A1/zh
Priority to CN201780027039.4A priority patent/CN109155666A/zh
Publication of WO2019100245A1 publication Critical patent/WO2019100245A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • H04N7/185Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of wireless control technologies, and in particular, to a communication system, device, method, and computing device for a drone.
  • the picture transmission module on the drone transmits the picture captured by the camera to the ground in real time, and the ground side device uses the receiving module to receive and display on the screen or the head mounted display.
  • the remote control signaling transmission part the remote control information sent by the user operating the remote controller is received by the remote control receiving module on the drone and output to the flight control module through the corresponding interface, and then converted into the electric control command by the flight control module to control the motor speed, etc. parameter.
  • the functions of the above two systems are independent of each other, and they occupy a part of the frequency band resources at their respective frequencies.
  • the two systems mean that two antennas are needed, which not only takes up valuable space resources on the drone, but also the emission patterns of the two antennas are affected by each other.
  • the two systems are usually designed independently by different product suppliers, and it is difficult to consider the structural interference problems that need to be avoided in the future.
  • a communication system for a drone including a drone, a first wireless communication device, and a second wireless communication device, wherein: the first wireless communication device includes a first wireless a communication module, the drone includes a second wireless communication module; the first wireless communication module is configured to receive an external signal of the second wireless communication device, and send to the drone through an uplink channel; The second wireless communication module is set to collect The image signal is sent to the first wireless communication device through a downlink channel; the uplink channel and the downlink channel are located in the same communication frequency band.
  • a drone including a wireless communication module, configured to receive an external signal from a second wireless communication device forwarded by a first wireless communication device through an uplink channel, And transmitting the acquired image signal to the first wireless communication device through a downlink channel.
  • a wireless communication device comprising a wireless communication module configured to receive an external signal of another wireless communication device and transmit to the drone through an uplink channel, and through The downlink channel receives the image signal transmitted by the drone and displays it.
  • a communication method of a drone comprising: receiving, by an uplink channel, an external signal from a second wireless communication device forwarded by the first wireless communication device; and passing the acquired image signal
  • the downlink channel is sent to the first wireless communication device; wherein the uplink channel and the downlink channel are in the same communication frequency band.
  • a communication method of a wireless communication device comprising: receiving an external signal of another wireless communication device and transmitting to the drone through an uplink channel; and receiving the unmanned channel through a downlink channel
  • the image signal sent by the machine is displayed and displayed; wherein the uplink channel and the downlink channel are located in the same communication frequency band.
  • a storage medium storing a computer program that, when executed by a processor of a computer, causes the computer to perform the method as described in the above embodiments.
  • a computing device comprising: a processor; a memory storing instructions executable by the processor; wherein the processor is configured to perform the method as described in the above embodiments .
  • the combination of the downlink communication channel and the uplink external signaling communication channel is implemented in a multi-device interaction scenario of the drone to achieve efficient use of frequency and space resources and save hardware costs.
  • FIG. 1 is a schematic block diagram of a communication system of a drone according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic block diagram of a communication system of a drone according to another embodiment of the present disclosure.
  • FIG. 3 is a schematic block diagram of a drone in accordance with an embodiment of the present disclosure.
  • FIG. 4 is a schematic block diagram of a drone in accordance with another embodiment of the present disclosure.
  • FIG. 5 is a schematic block diagram of a wireless communication device in accordance with an embodiment of the present disclosure.
  • FIG. 6 is a schematic block diagram of a head mounted display device in accordance with an embodiment of the present disclosure.
  • FIG. 7 is a flow chart of a communication method of a drone according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a communication method of a drone according to another embodiment of the present disclosure.
  • FIG. 9 is a flow chart of a communication method of a wireless communication device in accordance with an embodiment of the present disclosure.
  • FIG. 10 is a flow chart of a communication method of a head mounted display device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a computing device in accordance with an embodiment of the present disclosure.
  • embodiments of the present invention can be implemented as a system, apparatus, device, method, or computer program product. Accordingly, the present disclosure may be embodied in the form of full hardware, complete software (including firmware, resident software, microcode, etc.), or a combination of hardware and software.
  • a communication system, apparatus, method, and computing device for a drone are proposed.
  • the principles and spirit of the present invention are explained in detail below with reference to a few representative embodiments of the invention.
  • the communication system of the present embodiment includes a drone 11, a first wireless communication device 12, and a second wireless communication device 13.
  • the first wireless communication device 12 includes a first wireless communication module 120
  • the unmanned aerial vehicle 11 includes a second wireless communication module 110.
  • the first wireless communication module 110 is configured to receive an external signal of the second wireless communication device 13 and The channel 14 is sent to the drone 11; the second wireless communication module 120 is arranged to transmit the acquired image signal to the first wireless communication device 12 via the downlink channel 15.
  • the uplink channel 14 and the downlink channel 15 are located in the same communication band.
  • the second wireless communication device 13 includes a remote controller that controls the drone 11 to collect an analog signal based on the user's operation and digitize it as a remote control signal (ie, the external signal described above) through the PPM of the trainer line (Pulse)
  • the Position Modulation signal is sent to the first wireless communication device 12.
  • the image signal collected by the camera set by the UAV 11 is input to the image transmission module through the interface of the image transmission module, and is encoded and transmitted to the first wireless communication device 12 through the second wireless communication module 110.
  • a wireless communication device 12 displays a video on the screen after decoding of the image signal is completed.
  • the UAV 11 receives the remote control signal forwarded by the first wireless communication device 12 by using the second wireless communication module 110, and outputs the remote control signal to the flight control module of the drone 11 by using the SBUS bus or the PPM interface of the image transmission module.
  • the first wireless communication module 120 includes a radio frequency antenna of the first wireless communication device 12 and the second wireless communication module 110 includes a radio frequency antenna of the drone 11 .
  • the first wireless communication device 12 may include, for example, a wearable device such as a head-mounted display device, or other device capable of communicating with the drone 11 in cooperation with the second wireless communication device 13. The embodiment of the present disclosure is not limited thereto.
  • the uplink channel 14 and the downlink channel 15 may be carried in the same frequency point in a time division manner, or may be carried in two different frequency points in a frequency division manner.
  • the signal transmission signal and the control signal must be different in the 2.4 GHz and 5 GHz communication frequency bands.
  • the uplink channel 14 and the downlink channel 15 of this embodiment can be freely switched on the two communication frequency bands depending on the current wireless channel interference condition. , the reduction of frequency band occupancy and the increase of system capacity are realized.
  • a novel communication extension is provided for a multi-device interaction scenario of a drone
  • the structure of the flutter realizes the combination of the signal transmission path and the external signal path.
  • the two signals can be completed by using the same set of hardware devices and radio frequency devices, achieving efficient use of frequency and space resources and saving hardware costs.
  • the UAV 11 side further includes a picture transmission module 111, a flight control module 112, a cloud platform module 113, and an OSD module 114, and the first wireless communication device.
  • An IMU (Inertial Measurement Unit) 121 is also provided in the 12th.
  • the IMU 121 is configured to collect motion data for the first wireless communication device 12.
  • the above-described action data is transmitted together with the external signal from the second wireless communication device 13 by the first wireless communication module 120 to the drone 11 using the upstream channel 14.
  • the first wireless communication device 12 includes a head mounted display device and the second wireless communication device 13 includes a remote control signal.
  • the IMU 121 can be configured to collect data of the head mounted display device moving with the user's head, and generate head tracking information based on the motion data; the head tracking information and the remote control signal from the remote controller are commonly used by the first wireless communication module 120.
  • the upstream channel 14 is used to transmit to the map transmission module 111 of the drone 11 .
  • the UAV 11 forwards the PTZ control command generated based on the action data to the PTZ module 113 through, for example, a PPM interface; Module 113 performs a corresponding camera pose adjustment based on the received PTZ control commands.
  • the image transmission module 111 of the drone 11 receives the head tracking information sent by the head mounted display device, and then generates the PTZ control command based on the header tracking information.
  • the PTZ module 113 forwards to the PTZ module 113 by, for example, the PPM interface; the PTZ module 113 performs camera posture adjustment corresponding to the user's head motion according to the received PTZ control command, so that the first view flight of the UAV can be realized.
  • the image transmission module 111 receives the forwarding from the head-mounted display device through the second wireless communication module 110.
  • the remote control signal can be output to the flight control module 112 using the SBUS bus or the PPM interface, and the flight control module 11 further performs the corresponding drone attitude adjustment according to the received remote control signal.
  • the OSD module 114 is configured to collect parameter information (such as altitude, latitude and longitude, etc.) related to the drone 11 and generate corresponding OSD information, for example, through a UART (Universal Asynchronous Receiver/Transmitter).
  • the interface is sent to the image transmission module 111 of the drone 11 .
  • the OSD information and the picture transmission signal are jointly transmitted by the second wireless communication module 110 to the first wireless communication device 12 by using the downlink channel 15.
  • the OSD module 114 herein may be disposed in the drone 11 or may be independently developed by a third-party manufacturer to be attached to the drone 11 in an external manner, and the present disclosure is not particularly limited.
  • a novel communication topology is provided for a multi-device interaction scenario of a drone, and the downlink map is transmitted to the OSD signal path and the uplink external signal (for example, a remote control and head tracking signal) path.
  • the two signals can be completed using the same hardware device and RF device, achieving efficient use of frequency and space resources and saving hardware costs.
  • the UAV of the present embodiment includes a wireless communication module 30, a picture transmission module 31, and a flight control module 32, wherein: the wireless communication module 30 is configured to receive, by the uplink channel, the first wireless communication device to forward from the first Two external signals of the wireless communication device and the camera module (not The captured image signal is shown transmitted to the first wireless communication device over the downlink channel.
  • the second wireless communication device includes a remote controller, and the external signal includes a remote control signal, and the wireless communication module 30 is further configured to forward the received remote control signal to the flight control module 32 through the SBUS bus or the PPM interface; Module 32 is configured to control the motion and attitude of the drone based on the received remote control signals.
  • the image transmission module 31 is configured to encode the image signal and transmit it to the first wireless communication device via the wireless communication module 30.
  • the first wireless communication device may include a wearable device such as a head mounted display device, or other device capable of communicating with the drone with the second wireless communication device, which is not limited by the embodiments of the present disclosure.
  • the wireless communication module 30 can include, for example, a radio frequency antenna of a drone.
  • the uplink channel and the downlink channel are located in the same communication band.
  • the uplink channel and the downlink channel may be carried in the same frequency point in a time division manner, or may be carried in two different frequency points in a frequency division manner.
  • the signal transmission signal and the control signal must be different in the 2.4 GHz and 5 GHz communication frequency bands.
  • the uplink channel and the downlink channel in this embodiment can be freely switched on the two communication frequency bands according to the current wireless channel interference condition. The reduction in frequency band occupancy and the increase in system capacity.
  • the downlink picture signal path and the uplink external signal path are combined, and the two signals can be completed by using the same set of hardware devices and radio frequency devices, thereby achieving efficient use of frequency and space resources and saving.
  • the hardware cost of the drone is the same.
  • the drone of the embodiment further includes a pan/tilt module 33 and an OSD module 34.
  • the pan/tilt module 33 is configured to control the action of the pan-tilt module 33 itself based on the pan-tilt control command generated after the drone receives the action data, and the action data is collected by the first wireless communication device based on the IMU and transmitted to the unmanned channel via the uplink channel.
  • the OSD module 34 is arranged to generate OSD information for transmission by the wireless communication module 30 over the downstream channel to the first wireless communication device.
  • the pan/tilt module 33 can receive the pan/tilt control instructions from the map transmission module 31 via the PPM interface.
  • the OSD module 34 can transmit the OSD information to the image transmission module 31 of the drone through the UART interface, for example, and the OSD information is further transmitted by the wireless communication module 30 to the first wireless communication device by the wireless communication module 30 together with the image transmission signal.
  • the downlink picture is combined with the OSD signal path and the uplink external signal (for example, the remote control and the head tracking signal) path, and the two signals can be completed by using the same set of hardware devices and RF devices.
  • only one set of hardware is required to implement two-way communication on the drone side, which can save assembly cost and user system debugging time; avoid structural interference of two system antennas, and the vacated space can be used to further increase the antenna enhanced communication system.
  • Performance, or the installation of other components than the communication and communication functions can effectively ensure the consistency of RF performance, avoiding the system performance bottleneck caused by the difference between the performance of the picture transmission and the remote link.
  • FIG. 5 is a schematic block diagram of a wireless communication device in accordance with an embodiment of the present disclosure.
  • the head mounted display device of the present embodiment includes a wireless communication module 50 composed of a transmitting unit 51 and a receiving unit 52, wherein: the transmitting unit 51 is arranged to pass an external signal from another wireless communication device through an upstream channel. Send to the drone, the receiving unit 52 is set The image signal sent by the drone is received and displayed through the downlink channel.
  • the other wireless communication device described above includes a remote control for controlling the drone, and correspondingly, the external signal includes a remote control signal.
  • the remote control signal described above can be transmitted to the receiving unit 52 of the wireless communication device via a pulse position modulated PPM signal, for example, by a remote controller.
  • the wireless communication device of the present embodiment may include a wearable device such as a head mounted display device, or other device capable of communicating with the drone in cooperation with the other wireless communication device (eg, a remote controller), the present disclosure
  • a wearable device such as a head mounted display device
  • other device capable of communicating with the drone in cooperation with the other wireless communication device (eg, a remote controller)
  • the embodiment is not limited thereto.
  • the uplink channel and the downlink channel are located in the same communication band.
  • the uplink channel and the downlink channel may be carried in the same frequency point in a time division manner, or may be carried in two different frequency points in a frequency division manner.
  • the signal transmission signal and the control signal must be different in the 2.4 GHz and 5 GHz communication frequency bands.
  • the uplink channel and the downlink channel in this embodiment can be freely switched on the two communication frequency bands according to the current wireless channel interference condition. The reduction in frequency band occupancy and the increase in system capacity.
  • the downlink picture signal path and the uplink external signal path are combined, and the two signals can be completed by using the same set of hardware devices and radio frequency devices, thereby achieving efficient use of frequency and space resources and saving.
  • FIG. 6 is a schematic block diagram of a head mounted display device in accordance with an embodiment of the present disclosure. As shown in FIG. 6, on the basis of the wireless communication device shown in the embodiment of FIG. 5, the head mounted display device as a specific example of the wireless communication device in this embodiment further includes an IMU 53 and a display module 54.
  • the IMU 53 is configured to collect data of the head-mounted display device moving with the user's head, and the sending unit 51 of the wireless communication module 50 sends the header tracking information generated based on the motion data to the side of the drone via the uplink channel, a pan/tilt head module for generating a pan/tilt control command to control the drone; the receiving unit 52 of the wireless communication module 50 is further configured to receive OSD information from the drone through the downlink channel, and the display module 54 superimposes and displays the OSD information on the basis of The image signal displayed above is displayed on the video.
  • the downlink picture is combined with the OSD signal path and the uplink remote control and the head tracking signal path, and the two signals can be completed by using the same set of hardware devices and radio frequency devices to achieve frequency and space resources. Effectively utilize and save hardware costs for head-mounted display devices.
  • only one set of hardware is required to implement two-way communication on the head-mounted display device side, which can save assembly cost and user system debugging time; avoid structural interference of two system antennas, and the vacated space can be used to further increase antenna-enhanced communication.
  • System performance, or other components other than the installation and communication functions can effectively ensure the consistency of RF performance, avoiding the system performance bottleneck caused by the difference between the performance of the picture transmission and the remote link.
  • FIG. 7 is a flow chart of a communication method of a drone according to an embodiment of the present disclosure. As shown in FIG. 7, the method of this embodiment includes the following steps S701-S702.
  • step S701 the wireless communication module of the drone receives an external signal from the second wireless communication device forwarded by the first wireless communication device through the uplink channel.
  • step S702 the wireless communication module transmits the collected image signal to the first wireless communication device through the downlink channel.
  • the drone further includes a flight control module.
  • the step S701 may further include: the wireless communication module forwards the received external signal to the flight control module through the SBUS bus or the PPM interface.
  • the first wireless communication device includes a head mounted display device
  • the second wireless communication device includes a remote controller
  • the external signal includes a remote control signal.
  • the uplink channel and the downlink channel are located in the same communication band.
  • the uplink channel and the downlink channel may be carried in the same frequency point in a time division manner, or may be carried in two different frequency points in a frequency division manner.
  • the signal transmission signal and the control signal must be different in the 2.4 GHz and 5 GHz communication frequency bands.
  • the uplink channel and the downlink channel in this embodiment can be freely switched on the two communication frequency bands according to the current wireless channel interference condition. The reduction in frequency band occupancy and the increase in system capacity.
  • the downlink picture signal path and the uplink external signal path are combined, and the two signals can be completed by using the same set of hardware devices and radio frequency devices, thereby achieving efficient use of frequency and space resources and saving.
  • the hardware cost of the drone is the same.
  • FIG. 8 is a flowchart of a communication method of a drone according to another embodiment of the present disclosure.
  • the first wireless communication device includes a head mounted display device
  • the second wireless communication device includes a remote controller
  • the external signal includes a remote control signal as an example.
  • the method of this embodiment includes the following steps S801-S803.
  • step S801 the wireless communication module of the drone receives the remote control signal from the remote controller forwarded by the head mounted display device and the head tracking information generated by the head mounted display device based on the action data collected by the IMU through the uplink channel.
  • step S801 the drone generates a pan-tilt control command based on the header tracking information to control the action of the pan/tilt head module.
  • step S803 the wireless communication module transmits the acquired image signal and the OSD information generated by the OSD module to the head mounted display device through the downlink channel.
  • the pan/tilt head module receives the pan/tilt control command from the map transmitting module through the PPM interface. Additionally, the drone can receive the OSD information from the OSD module via a UART interface.
  • the uplink channel and the downlink channel are located in the same communication band.
  • the uplink channel and the downlink channel may be carried in the same frequency point in a time division manner, or may be carried in two different frequency points in a frequency division manner.
  • the signal transmission signal and the control signal must be different in the 2.4 GHz and 5 GHz communication frequency bands.
  • the uplink channel and the downlink channel in this embodiment can be freely switched on the two communication frequency bands according to the current wireless channel interference condition. The reduction in frequency band occupancy and the increase in system capacity.
  • the downlink picture is combined with the OSD signal path and the uplink remote control and the head tracking signal path, and the two signals can be completed by using the same set of hardware devices and radio frequency devices to achieve frequency and space resources. Effective use and save on the hardware cost of the drone.
  • only one set of hardware is required to implement two-way communication on the drone side, which can save assembly cost and user system debugging time; avoid structural interference of two system antennas, and the vacated space can be used to further increase the antenna enhanced communication system.
  • Performance, or the installation of other components than the communication and communication functions can effectively ensure the consistency of RF performance, avoiding the system performance bottleneck caused by the difference between the performance of the picture transmission and the remote link.
  • FIG. 9 is a flow chart of a communication method of a wireless communication device in accordance with an embodiment of the present disclosure. As shown in FIG. 9, the method of this embodiment includes the following steps S901-S902.
  • step S901 the wireless communication module of the wireless communication device receives an external signal of another wireless communication device and transmits it to the drone through the uplink channel.
  • step S902 the wireless communication module receives the image signal transmitted by the drone through the downlink channel for display.
  • step S901 includes the wireless communication module receiving the external signal based on the PPM signal.
  • the uplink channel and the downlink channel are located in the same communication band.
  • the uplink channel and the downlink channel may be carried in the same frequency point in a time division manner, or may be carried in two different frequency points in a frequency division manner.
  • the signal transmission signal and the control signal must be different in the 2.4 GHz and 5 GHz communication frequency bands.
  • the uplink channel and the downlink channel in this embodiment can be freely switched on the two communication frequency bands according to the current wireless channel interference condition. The reduction in frequency band occupancy and the increase in system capacity.
  • the wireless communication device includes a head mounted display device, and the other wireless communication device includes a remote controller, and the external signal includes a remote control signal.
  • the wireless communication device includes a head mounted display device, and the other wireless communication device includes a remote controller, and the external signal includes a remote control signal.
  • the downlink picture signal path and the uplink external signal path are combined, and the two signals can be completed by using the same set of hardware devices and radio frequency devices, thereby achieving efficient use of frequency and space resources and saving.
  • FIG. 10 is a flow chart of a communication method of a head mounted display device according to an embodiment of the present disclosure.
  • the wireless communication device includes a head mounted display device, another wireless communication device includes a remote controller, and an external signal including a remote control signal is taken as an example for detailed description.
  • the method of this embodiment includes the following steps S1001-S1002.
  • step S1001 the wireless communication module of the head mounted display device transmits the head tracking information generated based on the IMU acquisition motion data and the remote control signal received from the remote controller to the drone through the uplink channel.
  • step S1002 the wireless communication module receives the image signal and the OSD information transmitted by the drone through the downlink channel for superimposed display.
  • the header tracking information is used to generate a pan/tilt control command by the drone to control the pan/tilt head module of the drone.
  • the uplink channel and the downlink channel are located in the same communication band.
  • the uplink channel and the downlink channel may be carried in the same frequency point in a time division manner, or may be carried in two different frequency points in a frequency division manner.
  • the signal transmission signal and the control signal must be different in the 2.4 GHz and 5 GHz communication frequency bands.
  • the uplink channel and the downlink channel in this embodiment can be freely switched on the two communication frequency bands according to the current wireless channel interference condition. The reduction in frequency band occupancy and the increase in system capacity.
  • the downlink picture is combined with the OSD signal path and the uplink remote control and the head tracking signal path, and the two signals can be completed by using the same set of hardware devices and radio frequency devices to achieve frequency and space resources. Effectively utilize and save hardware costs for head-mounted display devices.
  • only one set of hardware is required to implement two-way communication on the head-mounted display device side, which can save assembly cost and user system debugging time; avoid structural interference of two system antennas,
  • the vacated space can be used to further increase the performance of the antenna enhanced communication system, or install other components than the image transmission and communication functions; it can effectively ensure the consistency of the RF performance, and avoid the occurrence of large difference between the performance of the image transmission and the remote control link. System performance bottleneck.
  • modules or units of equipment for action execution are mentioned in the detailed description above, such division is not mandatory. Indeed, in accordance with embodiments of the present disclosure, the features and functions of two or more modules or units described above may be embodied in one module or unit. Conversely, the features and functions of one of the modules or units described above may be further divided into multiple modules or units.
  • the components displayed as modules or units may or may not be physical units, ie may be located in one place or may be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the wood disclosure scheme. Those of ordinary skill in the art can understand and implement without any creative effort.
  • a computer readable storage medium having stored thereon a computer program, the program being executable by the processor to implement the steps of the communication method of any of the above embodiments.
  • the computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a computing device comprising a processor and a memory for storing executable instructions of the processor.
  • the processor is configured to cause the server to perform the steps of the communication method in any one of the above embodiments via execution of the executable instructions.
  • the example embodiments described herein may be implemented by software or by software in combination with necessary hardware. Therefore, the technical solution according to an embodiment of the present disclosure may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.) or on a network.
  • a non-volatile storage medium which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.
  • a number of instructions are included to cause a computing device (which may be a personal computer, server, touch terminal, or network device, etc.) to perform the above-described methods in accordance with embodiments of the present disclosure.
  • FIG. 11 shows a schematic diagram of a computing device 1100 in accordance with an example embodiment of the present disclosure.
  • apparatus 1100 includes a processing component 1101 that further includes one or more processors, and memory resources represented by memory 1102 for storing instructions executable by processing component 1101, such as an application.
  • memory 1102 for storing instructions executable by processing component 1101, such as an application.
  • the stored application may include one or more modules each corresponding to a set of instructions.
  • the processing component 1101 is configured to execute instructions to perform the communication method described above.
  • Apparatus 1100 can also include a power supply component 1103 configured to perform power management of apparatus 1100, a wired or wireless network interface 1104 configured to connect apparatus 1100 to the network, and an input/output (I/O) interface 1105.
  • the device 1100 can operate based on an operating system stored in the memory 1102, such as Windows Server, Mac OS X, Unix, Linux, FreeBSD or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种无人机的通信***,包括无人机、第一无线通信设备和第二无线通信设备,其中:所述第一无线通信设备包括第一无线通信模块,所述无人机包括第二无线通信模块;所述第一无线通信模块设置为接收所述第二无线通信模块的外部信号,并通过上行信道发送至所述无人机;所述第二无线通信模块设置为将采集的图像信号通过下行信道发送至所述第一无线通信设备;所述上行信道和所述下行信道位于同一通信频段。根据本公开的实施例,在无人机的多设备互动场景中实现了下行图像通信通路和上行控制信令通信通路的合并,达到频率和空间资源的有效利用并节省了硬件成本。

Description

无人机的通信***、设备、方法以及计算装置 技术领域
本公开涉及无线控制技术领域,尤其涉及一种无人机的通信***、设备、方法以及计算装置。
背景技术
随着无线控制技术的发展,无人机在生产领域和日常生活中都得到了广泛的应用。除了常见的无人机和遥控器双侧设备构成的通信***外,多设备互动的应用场景在无人机领域也得到越来越多的关注。例如,在地面侧引入头戴式显示器后,通过与遥控器和无人机配合,可以实现无人机的第一视角飞行。又例如,很多第三方设备厂商针对无人机侧开发出独立的OSD(On-Screen Display,屏上显示)和飞控设备,从而为无人机应用提供了丰富的扩展和选择。
另一方面,多设备互动也对无人机应用的通信***提出了挑战。目前通常采用两套硬件***来分别实现无人机的图像传输(以下也称“图传”)和遥控信令传输功能。对于图传部分,无人机上的图传模块将相机拍摄到的画面实时传输到地面,由地面侧设备使用接收模块来接收并显示在屏幕或者头戴式显示器上。对于遥控信令传输部分,用户操作遥控器发出的遥控信息由无人机上的遥控接收模块接收到并通过相应接口输出到飞控模块,进而由飞控模块转化为电调控制指令控制电机转速等参数。
上述两套***的功能彼此独立,在各自的频点上都要占用一部分频带资源。同时,两套***意味着需要两根天线,不仅占用了无人机上宝贵的空间资源,而且两根天线的发射方向图也会受到彼此的影响。另外,两套***通常由不同的产品供应商独立设计,二者很难在设计初就能考虑到将来需要避免的结构干涉问题。
应当理解的是,以上的一般描述仅是对相关技术的示例性解释,并不表示属于本公开的现有技术。
发明内容
本公开的目的是提供一种无人机的通信***、设备、方法以及计算装置,至少在一定程度上克服由于相关技术的限制和缺陷而导致的一个或者多个问题。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开实施例的第一方面,提供一种无人机的通信***,包括无人机、第一无线通信设备和第二无线通信设备,其中:所述第一无线通信设备包括第一无线通信模块,所述无人机包括第二无线通信模块;所述第一无线通信模块设置为接收所述第二无线通信设备的外部信号,并通过上行信道发送至所述无人机;所述第二无线通信模块设置为将采集 的图像信号通过下行信道发送至所述第一无线通信设备;所述上行信道和所述下行信道位于同一通信频段。
根据本公开实施例的第二方面,提供一种无人机,包括无线通信模块,所述无线通信模块设置为通过上行信道接收第一无线通信设备转发的来自第二无线通信设备的外部信号,并将采集的图像信号通过下行信道发送至所述第一无线通信设备。
根据本公开实施例的第三方面,提供一种无线通信设备,包括无线通信模块,所述无线通信模块设置为接收另一无线通信设备的外部信号并通过上行信道发送至无人机,以及通过下行信道接收所述无人机发送的图像信号并加以显示。
根据本公开实施例的第四方面,提供一种无人机的通信方法,包括:通过上行信道接收第一无线通信设备转发的来自第二无线通信设备的外部信号;以及将采集的图像信号通过下行信道发送至所述第一无线通信设备;其中,所述上行信道和所述下行信道位于同一通信频段。
根据本公开实施例的第五方面,提供一种无线通信设备的通信方法,包括:接收另一无线通信设备的外部信号并通过上行信道发送至无人机;以及通过下行信道接收所述无人机发送的图像信号并加以显示;其中,所述上行信道和所述下行信道位于同一通信频段。
根据本公开实施例的第六方面,提供一种存储有计算机程序的存储介质,所述计算机程序在由计算机的处理器运行时,使所述计算机执行如上实施例所述的方法。
根据本公开实施例的第七方面,提供一种计算装置,包括:处理器;存储器,存储有可由所述处理器执行的指令;其中所述处理器被配置为执行如上实施例所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
本公开的一种实施例中,通过在无人机的多设备互动场景中实现下行图传通信通路和上行外部信令通信通路的合并,达到频率和空间资源的有效利用并节省了硬件成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
图1为根据本公开一实施例无人机的通信***示意框图。
图2为根据本公开另一实施例无人机的通信***示意框图。
图3为根据本公开一实施例的无人机示意框图。
图4为根据本公开另一实施例的无人机示意框图。
图5为根据本公开一实施例的无线通信设备示意框图。
图6为根据本公开一实施例的头戴显示设备示意框图。
图7为根据本公开一实施例无人机的通信方法流程图。
图8为根据本公开另一实施例无人机的通信方法流程图。
图9为根据本公开一实施例无线通信设备的通信方法流程图。
图10为根据本公开一实施例头戴显示设备的通信方法流程图。
图11为根据本公开一实施例的计算装置示意图。
具体实施方式
下面将参考若干示例性实施方式来描述本发明的原理和精神。应当理解,给出这些实施方式仅仅是为了使本领域技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。相反,提供这些实施方式是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
本领域技术人员知道,本发明的实施方式可以实现为一种***、装置、设备、方法或计算机程序产品。因此,本公开可以具体实现为以下形式,即:完全的硬件、完全的软件(包括固件、驻留软件、微代码等),或者硬件和软件结合的形式。
根据本发明的实施方式,提出了一种无人机的通信***、设备、方法以及计算装置。下面参考本发明的若干代表性实施方式,详细阐释本发明的原理和精神。
图1为根据本公开一实施例无人机的通信***示意框图。如图1所示,本实施例的通信***包括无人机11、第一无线通信设备12和第二无线通信设备13。其中,第一无线通信设备12包括第一无线通信模块120,无人机11包括第二无线通信模块110;第一无线通信模块110设置为接收第二无线通信设备13的外部信号,并通过上行信道14发送至无人机11;第二无线通信模块120设置为将采集的图像信号通过下行信道15发送至第一无线通信设备12。在一个实施例中,上述的上行信道14和下行信道15位于同一通信频段。
在一个实施例中,第二无线通信设备13包括控制无人机11的遥控器,其基于用户的操作采集模拟信号,并数字化为遥控信号(即上述外部信号)后通过教练线的PPM(Pulse Position Modulation,脉位调制)信号发送至第一无线通信设备12。
在一个实施例中,无人机11所设相机采集的图像信号通过图传模块的接口输入该图传模块,经编码后通过第二无线通信模块110发送到上述第一无线通信设备12,第一无线通信设备12在完成图像信号的解码后在屏幕上显示出图传视频。另外,无人机11还利用上述第二无线通信模块110接收第一无线通信设备12转发的遥控信号,进而利用图传模块的SBUS总线或PPM接口输出至无人机11的飞控模块。在一个实施例中,第一无线通信模块120包括第一无线通信设备12的射频天线,第二无线通信模块110包括无人机11的射频天线。另外,第一无线通信设备12例如可包括头戴显示设备等穿戴式设备,或者其他能够配合第二无线通信设备13与无人机11通信的设备,本公开的实施例对此并无限制。
在一个实施例中,上述的上行信道14与下行信道15可以时分方式承载于同一个频点,也可以频分方式承载于两个不同的频点。与相关技术中图传信号和控制信号须在2.4GHz和5GHz通信频段各占一路不同,本实施例的上行信道14与下行信道15可以视当时无线信道干扰状况自由地在两个通信频段上切换,实现了频段占用的降低和***容量的增加。
根据上述本公开的上述实施例,针对无人机的多设备互动场景提供一种新型的通信拓 扑结构,实现了图传信号通路和外部信号通路的合并,两种信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了硬件成本。
图2为根据本公开另一实施例无人机的通信***示意框图。在图1实施例结构的基础上,本实施例的通信***中,无人机11一侧还包括图传模块111、飞控模块112、云台模块113和OSD模块114,第一无线通信设备12中还设有IMU(Inertial Measurement Unit,惯性测量单元)121。
在一个实施例中,IMU 121设置为采集第一无线通信设备12的动作数据。上述动作数据与来自第二无线通信设备13的外部信号共同由第一无线通信模块120利用上行信道14发送至无人机11。在一个实施例中,第一无线通信设备12包括头戴显示设备,第二无线通信设备13包括遥控信号。相应的,IMU 121可设置为采集头戴显示设备随用户头部动作的数据,并基于该动作数据产生头追信息;上述头追信息与来自遥控器的遥控信号共同由第一无线通信模块120利用上行信道14发送至无人机11的图传模块111。
接续,无人机11在第二无线通信模块110收到第一无线通信设备12发送的动作数据后,将基于动作数据产生的云台控制指令通过例如PPM接口转发至云台模块113;云台模块113根据收到的云台控制指令执行相应的相机姿态调整。在第一无线通信设备12包括头戴显示设备的示例中,无人机11的图传模块111在收到头戴显示设备发送的头追信息后,将基于头追信息产生的云台控制指令通过例如PPM接口转发至云台模块113;云台模块113根据收到的云台控制指令执行与用户头部动作相应的相机姿态调整,从而可实现无人机的第一视角飞行。另外,如图1实施例中所述,在第二无线通信设备13包括遥控器、外部信号包括遥控信号的示例中,图传模块111在通过第二无线通信模块110收到头戴显示设备转发的遥控信号时,可使用SBUS总线或PPM接口输出至飞控模块112,飞控模块11进而根据收到的遥控信号执行相应的无人机姿态调整。
在一个实施例中,OSD模块114用于采集与无人机11有关的参数信息(例如高度、经纬度等等)并产生相应的OSD信息,例如可通过UART(Universal Asynchronous Receiver/Transmitter,通用异步收发器)接口发送至无人机11的图传模块111。上述OSD信息与图传信号共同由第二无线通信模块110利用下行信道15发送至第一无线通信设备12。此处的OSD模块114可设于无人机11中,也可由第三方产商独立开发提供从而以外置的方式附连于无人机11上,本公开并无特别限制。
根据上述本公开的上述实施例,针对无人机的多设备互动场景提供一种新型的通信拓扑结构,将下行的图传与OSD信号通路和上行的外部信号(例如遥控与头追信号)通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了硬件成本。
图3为根据本公开一实施例的无人机示意框图。如图3所示,本实施例的无人机包括无线通信模块30、图传模块31和飞控模块32,其中:无线通信模块30设置为通过上行信道接收第一无线通信设备转发的来自第二无线通信设备的外部信号,并将相机模块(未 示出)采集的图像信号通过下行信道发送至第一无线通信设备。
在一个实施例中,第二无线通信设备包括遥控器,上述外部信号包括遥控信号,无线通信模块30还设置为将接收的上述遥控信号通过SBUS总线或PPM接口转发至飞控模块32;飞控模块32设置为基于接收的遥控信号控制无人机的动作和姿态。
在一个实施例中,图传模块31设置为将上述图像信号编码后通过无线通信模块30发送至上述第一无线通信设备。在一个实施例中,第一无线通信设备可包括头戴显示设备等穿戴式设备,或者其他能够配合第二无线通信设备与无人机通信的设备,本公开的实施例对此并无限制。另外,无线通信模块30例如可包括无人机的射频天线。
在一个实施例中,上述的上行信道和下行信道位于同一通信频段。例如,上述的上行信道与下行信道可以时分方式承载于同一个频点,也可以频分方式承载于两个不同的频点。与相关技术中图传信号和控制信号须在2.4GHz和5GHz通信频段各占一路不同,本实施例的上行信道与下行信道可以视当时无线信道干扰状况自由地在两个通信频段上切换,实现了频段占用的降低和***容量的增加。
根据本公开的上述实施例,将下行的图传信号通路和上行的外部信号通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了无人机的硬件成本。
图4为根据本公开另一实施例的无人机示意框图。如图4所示,在图3实施例的基础上,本实施例的无人机还包括云台模块33和OSD模块34。云台模块33设置为基于无人机接收动作数据后产生的云台控制指令来控制云台模块33自身的动作,上述动作数据由第一无线通信设备基于IMU采集并经上行信道发送至无人机的无线通信模块30。OSD模块34设置为生成OSD信息由无线通信模块30经下行信道发送至第一无线通信设备。
在一个实施例中,云台模块33可通过PPM接口从图传模块31接收上述云台控制指令。另外,OSD模块34例如可通过UART接口将OSD信息发送至无人机的图传模块31,上述OSD信息进而与图传信号共同由无线通信模块30利用上行信道发送至第一无线通信设备。
根据本公开的上述实施例,将下行的图传与OSD信号通路和上行的外部信号(例如遥控与头追信号)通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了无人机的硬件成本。此外,在无人机侧只需一套硬件实施两路通信,能够节省组装成本和用户的***调试时间;避免两个***天线的结构干涉,空出的空间可以用来进一步增加天线增强通信***性能,或者安装图传和通信功能以外的其他组件;可以有效保证射频性能的一致性,避免出现图传与遥控链路性能相差较大造成的***性能瓶颈。
图5为根据本公开一实施例的无线通信设备示意框图。如图5所示,本实施例的头戴显示设备包括由发送单元51和接收单元52构成的无线通信模块50,其中:发送单元51设置为将来自另一无线通信设备的外部信号通过上行信道发送至无人机,接收单元52设 置为通过下行信道接收无人机发送的图像信号并加以显示。
在一个实施例中,上述另一无线通信设备包括用于控制无人机的遥控器,相应的,外部信号包括遥控信号。上述遥控信号例如可由遥控器通过脉位调制PPM信号发送至无线通信设备的接收单元52。
在一个实施例中,本实施例的无线通信设备可包括头戴显示设备等穿戴式设备,或者其他能够配合上述另一无线通信设备(例如遥控器)与无人机通信的设备,本公开的实施例对此并无限制。
在一个实施例中,上述的上行信道和下行信道位于同一通信频段。例如,上述的上行信道与下行信道可以时分方式承载于同一个频点,也可以频分方式承载于两个不同的频点。与相关技术中图传信号和控制信号须在2.4GHz和5GHz通信频段各占一路不同,本实施例的上行信道与下行信道可以视当时无线信道干扰状况自由地在两个通信频段上切换,实现了频段占用的降低和***容量的增加。
根据本公开的上述实施例,将下行的图传信号通路和上行的外部信号通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了头戴显示设备的硬件成本。
图6为根据本公开一实施例的头戴显示设备示意框图。如图6所示,在图5实施例所示无线通信设备的基础上,本实施例作为该无线通信设备一个具体示例的头戴显示设备还包括IMU 53和显示模块54。其中,IMU 53设置为采集头戴显示设备随用户头部动作的数据,无线通信模块50的发送单元51将基于该动作数据产生的头追信息经上行信道发送至无人机的一侧,以用于产生云台控制指令控制无人机的云台模块;无线通信模块50的接收单元52还设置为通过下行信道从无人机接收OSD信息,由显示模块54将上述OSD信息叠加显示在基于上述图像信号显示的图传视频上。
根据本公开的上述实施例,将下行的图传与OSD信号通路和上行的遥控与头追信号通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了头戴显示设备的硬件成本。此外,在头戴显示设备侧只需一套硬件实施两路通信,能够节省组装成本和用户的***调试时间;避免两个***天线的结构干涉,空出的空间可以用来进一步增加天线增强通信***性能,或者安装图传和通信功能以外的其他组件;可以有效保证射频性能的一致性,避免出现图传与遥控链路性能相差较大造成的***性能瓶颈。
图7为根据本公开一实施例无人机的通信方法流程图。如图7所示,本实施例的方法包括以下步骤S701-S702。
在步骤S701中,无人机的无线通信模块通过上行信道接收第一无线通信设备转发的来自第二无线通信设备的外部信号。
在步骤S702中,无线通信模块将采集的图像信号通过下行信道发送至第一无线通信设备。
在一个实施例中,无人机还包括飞控模块,上述步骤S701之后还可包括:无线通信模块将接收的外部信号通过SBUS总线或PPM接口转发至飞控模块。
在一个实施例中,上述第一无线通信设备包括头戴显示设备,上述第二无线通信设备包括遥控器,上述外部信号包括遥控信号,具体示例可参见图8的描述。
在一个实施例中,上述的上行信道和下行信道位于同一通信频段。例如,上述的上行信道与下行信道可以时分方式承载于同一个频点,也可以频分方式承载于两个不同的频点。与相关技术中图传信号和控制信号须在2.4GHz和5GHz通信频段各占一路不同,本实施例的上行信道与下行信道可以视当时无线信道干扰状况自由地在两个通信频段上切换,实现了频段占用的降低和***容量的增加。
根据本公开的上述实施例,将下行的图传信号通路和上行的外部信号通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了无人机的硬件成本。
图8为根据本公开另一实施例无人机的通信方法流程图。在图7所示方法的基础上,本实施例中以第一无线通信设备包括头戴显示设备、第二无线通信设备包括遥控器、外部信号包括遥控信号为例加以详细描述。如图8所示,本实施例的方法包括以下步骤S801-S803。
在步骤S801中,无人机的无线通信模块通过上行信道接收头戴显示设备转发的来自遥控器的遥控信号以及头戴显示设备基于IMU采集的动作数据所产生的头追信息。
在步骤S801中,无人机基于头追信息产生云台控制指令以控制云台模块的动作。
在步骤S803中,无线通信模块将采集的图像信号以及OSD模块生成的OSD信息通过下行信道发送至头戴显示设备。
在一个实施例中,上述云台模块通过PPM接口从图传模块接收云台控制指令。此外,无人机可通过UART接口从所述OSD模块接收所述OSD信息。
在一个实施例中,上述的上行信道和下行信道位于同一通信频段。例如,上述的上行信道与下行信道可以时分方式承载于同一个频点,也可以频分方式承载于两个不同的频点。与相关技术中图传信号和控制信号须在2.4GHz和5GHz通信频段各占一路不同,本实施例的上行信道与下行信道可以视当时无线信道干扰状况自由地在两个通信频段上切换,实现了频段占用的降低和***容量的增加。
根据本公开的上述实施例,将下行的图传与OSD信号通路和上行的遥控与头追信号通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了无人机的硬件成本。此外,在无人机侧只需一套硬件实施两路通信,能够节省组装成本和用户的***调试时间;避免两个***天线的结构干涉,空出的空间可以用来进一步增加天线增强通信***性能,或者安装图传和通信功能以外的其他组件;可以有效保证射频性能的一致性,避免出现图传与遥控链路性能相差较大造成的***性能瓶颈。
图9为根据本公开一实施例无线通信设备的通信方法流程图。如图9所示,本实施例的方法包括以下步骤S901-S902。
在步骤S901中,无线通信设备的无线通信模块接收另一无线通信设备的外部信号并通过上行信道发送至无人机。
在步骤S902中,无线通信模块通过下行信道接收无人机发送的图像信号以用于显示。
在一个实施例中,步骤S901包括无线通信模块基于PPM信号接收所述外部信号。
在一个实施例中,上述的上行信道和下行信道位于同一通信频段。例如,上述的上行信道与下行信道可以时分方式承载于同一个频点,也可以频分方式承载于两个不同的频点。与相关技术中图传信号和控制信号须在2.4GHz和5GHz通信频段各占一路不同,本实施例的上行信道与下行信道可以视当时无线信道干扰状况自由地在两个通信频段上切换,实现了频段占用的降低和***容量的增加。
在一个实施例中,上述无线通信设备包括头戴显示设备,上述另一无线通信设备包括遥控器,上述外部信号包括遥控信号,具体示例可参见图10的描述。
根据本公开的上述实施例,将下行的图传信号通路和上行的外部信号通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了头戴显示设备的硬件成本。
图10为根据本公开一实施例头戴显示设备的通信方法流程图。在图9所示方法的基础上,本实施例中以无线通信设备包括头戴显示设备、另一无线通信设备包括遥控器、外部信号包括遥控信号为例加以详细描述。如图10所示,本实施例的方法包括以下步骤S1001-S1002。
在步骤S1001中,头戴显示设备的无线通信模块将基于IMU采集动作数据所产生的头追信息以及接收自遥控器的遥控信号通过上行信道发送至无人机。
在步骤S1002中,无线通信模块通过下行信道接收无人机发送的图像信号及OSD信息以用于叠加显示。
在一个实施例中,上述头追信息用于由无人机产生云台控制指令以控制无人机的云台模块。
在一个实施例中,上述的上行信道和下行信道位于同一通信频段。例如,上述的上行信道与下行信道可以时分方式承载于同一个频点,也可以频分方式承载于两个不同的频点。与相关技术中图传信号和控制信号须在2.4GHz和5GHz通信频段各占一路不同,本实施例的上行信道与下行信道可以视当时无线信道干扰状况自由地在两个通信频段上切换,实现了频段占用的降低和***容量的增加。
根据本公开的上述实施例,将下行的图传与OSD信号通路和上行的遥控与头追信号通路进行合并,两路信号可以使用同一套硬件设备和射频设备来完成,达到频率和空间资源的有效利用并节省了头戴显示设备的硬件成本。此外,在头戴显示设备侧只需一套硬件实施两路通信,能够节省组装成本和用户的***调试时间;避免两个***天线的结构干涉, 空出的空间可以用来进一步增加天线增强通信***性能,或者安装图传和通信功能以外的其他组件;可以有效保证射频性能的一致性,避免出现图传与遥控链路性能相差较大造成的***性能瓶颈。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。另外,也易于理解的是,这些步骤可以是例如在多个模块/进程/线程中同步或异步执行。
关于上述实施例中的方法,其中各个步骤的具体执行主体和操作方式已经在有关无人机和头戴显示设备的实施例中进行了详细描述,此处将不做详细阐述说明。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。作为模块或单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现木公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本示例实施方式中,还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述任意一个实施例中通信方法的步骤。所述通信方法的具体步骤可参考前述图7-图10任一实施例中各步骤的详细描述,此处不再赘述。所述计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本示例实施方式中,还提供一种计算装置,该计算装置包括处理器,以及用于存储所述处理器的可执行指令的存储器。其中,所述处理器配置为经由执行所述可执行指令来使所述服务端执行上述任意一个实施例中所述通信方法的步骤。该通信方法的步骤可参考前述图7-图10任一实施例中的详细描述,此处不再赘述。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、触控终端、或者网络设备等)执行根据本公开实施方式的上述方法。
图11示出根据本公开示例实施方式中一种计算装置1100的示意图。参照图11,装置1100包括处理组件1101,其进一步包括一个或多个处理器,以及由存储器1102所代表的存储器资源,用于存储可由处理组件1101的执行的指令,例如应用程序。存储器1102 中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1101被配置为执行指令,以执行上述的通信方法。
装置1100还可以包括一个电源组件1103被配置为执行装置1100的电源管理,一个有线或无线网络接口1104被配置为将装置1100连接到网络,和一个输入输出(I/O)接口1105。装置1100可以操作基于存储在存储器1102的操作***,例如Windows Server,Mac OS X,Unix,Linux,FreeBSD或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离申请的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (45)

  1. 一种无人机的通信***,包括无人机、第一无线通信设备和第二无线通信设备,其中:
    所述第一无线通信设备包括第一无线通信模块,所述无人机包括第二无线通信模块;
    所述第一无线通信模块设置为接收所述第二无线通信设备的外部信号,并通过上行信道发送至所述无人机;
    所述第二无线通信模块设置为将采集的图像信号通过下行信道发送至所述第一无线通信设备;
    所述上行信道和所述下行信道位于同一通信频段。
  2. 如权利要求1所述的通信***,其中,
    所述第一无线通信设备设有惯性测量单元IMU,所述第一无线通信模块还设置为将基于所述IMU采集的动作数据经所述上行信道发送至所述无人机;
    所述无人机设有云台模块,并设置为基于接收的所述动作数据产生云台控制指令以控制所述云台模块的动作。
  3. 如权利要求2所述的通信***,其中,所述云台模块设置为通过PPM接口接收所述云台控制指令。
  4. 如权利要求1所述的通信***,其中,所述无人机连接有屏上显示OSD模块,所述第二无线通信模块还设置为将所述OSD模块产生的OSD信息经所述下行信道发送至所述第一无线通信设备。
  5. 如权利要求4所述的通信***,其中,所述OSD模块设置为通过通用异步收发器UART接口将所述OSD信息发送至所述无人机。
  6. 如权利要求1所述的通信***,其中,所述第二无线通信设备设置为通过脉位调制PPM信号将所述外部信号发送至所述第一无线通信设备。
  7. 如权利要求1所述的通信***,其中,所述无人机还包括飞控模块,所述第二无线通信模块将接收的所述外部信号通过SBUS总线或PPM接口转发至所述飞控模块。
  8. 如权利要求1所述的通信***,其中,所述无人机还包括图传模块,所述图传模块设置为将所述图像信号编码后通过所述第二无线通信模块发送至所述第一无线通信设备。
  9. 如权利要求1至8任一项所述的通信***,其中,所述上行信道与所述下行信道以时分方式承载于同一个频点,或者以频分方式承载于两个不同的频点。
  10. 如权利要求1至8任一项所述的通信***,其中,所述第一无线通信设备包括头戴显示设备,所述第二无线通信设备包括遥控器,所述外部信号包括遥控信号。
  11. 一种无人机,包括无线通信模块,所述无线通信模块设置为通过上行信道接收第一无线通信设备转发的来自第二无线通信设备的外部信号,并将采集的图像信号通过下行 信道发送至所述第一无线通信设备。
  12. 如权利要求11所述的无人机,还包括飞控模块,所述无线通信模块将接收的所述外部信号通过SBUS总线或PPM接口转发至所述飞控模块。
  13. 如权利要求11所述的无人机,还包括图传模块,所述图传模块设置为将所述图像信号编码后通过所述无线通信模块发送至所述第一无线通信设备。
  14. 如权利要求11所述的无人机,包括:
    云台模块,设置为基于所述无人机接收动作数据后产生的云台控制指令来控制所述云台模块自身的动作,所述动作数据息由所述第一无线通信设备基于IMU采集并经所述上行信道发送至所述无人机。
  15. 如权利要求14所述的无人机,其中,所述云台模块设置为通过PPM接口接收所述云台控制指令。
  16. 如权利要求11所述的无人机,设置为与OSD模块连接,所述OSD模块设置为生成OSD信息由所述无线通信模块经所述下行信道发送至所述第一无线通信设备。
  17. 如权利要求16所述的无人机,其中,所述OSD模块设置为通过UART接口将所述OSD信息发送至所述无人机。
  18. 如权利要求11至17任一项所述的无人机,其中,所述上行信道和所述下行信道位于同一通信频段。
  19. 如权利要求18所述的无人机,其中,所述上行信道与所述下行信道以时分方式承载于同一个频点,或者以频分方式承载于两个不同的频点。
  20. 如权利要求11至17任一项所述的无人机,其中,所述第一无线通信设备包括头戴显示设备,所述第二无线通信设备包括遥控器,所述外部信号包括遥控信号。
  21. 一种无线通信设备,包括无线通信模块,所述无线通信模块设置为接收另一无线通信设备的外部信号并通过上行信道发送至无人机,以及通过下行信道接收所述无人机发送的图像信号并加以显示。
  22. 如权利要求21所述的无线通信设备,还包括:
    惯性测量单元IMU,设置为采集所述无线通信设备的动作数据,所述无线通信模块还设置为将所述动作数据经所述上行信道发送至所述无人机,以用于产生云台控制指令控制所述无人机的云台模块。
  23. 如权利要求21所述的无线通信设备,还包括:显示模块,
    所述无线通信模块还设置为通过所述下行信道从所述无人机接收OSD信息,所述显示模块设置为将所述OSD信息叠加显示在基于所述图像信号显示的图传视频上。
  24. 如权利要求21所述的无线通信设备,其中,所述外部信号由所述另一无线通信设备通过脉位调制PPM信号发送至所述无线通信设备。
  25. 如权利要求21至24任一项所述的无线通信设备,其中,所述上行信道和所述下行信道位于同一通信频段。
  26. 如权利要求25所述的无线通信设备,其中,所述上行信道与所述下行信道以时分方式承载于同一个频点,或者以频分方式承载于两个不同的频点。
  27. 如权利要求21至24任一项所述的无线通信设备,其中,所述无线通信设备包括头戴显示设备,所述另一无线通信设备包括遥控器,所述外部信号包括遥控信号。
  28. 一种无人机的通信方法,包括:
    通过上行信道接收第一无线通信设备转发的来自第二无线通信设备的外部信号;以及
    将采集的图像信号通过下行信道发送至所述第一无线通信设备;
    其中,所述上行信道和所述下行信道位于同一通信频段。
  29. 如权利要求28所述的通信方法,其中所述无人机还包括飞控模块,所述通过上行信道接收外部信号之后还包括:
    将所述外部信号通过SBUS总线或PPM接口输出至所述飞控模块。
  30. 如权利要求28所述的通信方法,其中所述无人机还包括云台模块,所述方法还包括:
    通过所述上行信道接收所述第一无线通信设备基于IMU采集的动作数据;以及
    基于所述动作数据产生云台控制指令以控制所述云台模块的动作。
  31. 如权利要求30所述的通信方法,其中,所述方法还包括:
    通过PPM接口将所述云台控制指令输出至所述云台模块。
  32. 如权利要求28所述的通信方法,还包括:
    经所述下行信道将OSD模块生成的OSD信息发送至所述第一无线通信设备。
  33. 如权利要求32所述的通信方法,其中,所述方法还包括:
    通过UART接口从所述OSD模块接收所述OSD信息。
  34. 如权利要求28-33任一项所述的通信方法,其中,所述上行信道与所述下行信道以时分方式承载于同一个频点,或者以频分方式承载于两个不同的频点。
  35. 如权利要求28-33任一项所述的通信方法,其中,所述通过上行信道接收第一无线通信设备转发的来自第二无线通信设备的外部信号以及所述将采集的图像信号通过下行信道发送至所述第一无线通信设备由所述无人机的一个无线通信模块完成。
  36. 如权利要求28-33任一项所述的通信方法,其中,所述第一无线通信设备包括头戴显示设备,所述第二无线通信设备包括遥控器,所述外部信号包括遥控信号。
  37. 一种无线通信设备的通信方法,包括:
    接收另一无线通信设备的外部信号并通过上行信道发送至无人机;以及
    通过下行信道接收所述无人机发送的图像信号并加以显示;
    其中,所述上行信道和所述下行信道位于同一通信频段。
  38. 如权利要求37所述的通信方法,还包括:
    基于IMU采集动作数据;以及
    经所述上行信道将所述动作数据发送至所述无人机,所述动作数据用于产生云台控制 指令以控制所述无人机的云台模块。
  39. 如权利要求37所述的通信方法,还包括:
    通过所述下行信道从所述无人机接收OSD信息;以及
    将所述OSD信息叠加显示在基于所述图像信号显示的图传视频上。
  40. 如权利要求37所述的通信方法,其中,所述接收另一无线通信设备的外部信号包括:
    基于PPM信号接收所述另一无线通信设备发送的所述外部信号。
  41. 如权利要求37-39任一项所述的通信方法,其中,所述上行信道与所述下行信道以时分方式承载于同一个频点,或者以频分方式承载于两个不同的频点。
  42. 如权利要求37-39任一项所述的通信方法,其中,所述将外部信号通过上行信道发送至无人机以及所述通过下行信道接收所述无人机发送的图像信号由所述无线通信设备的一个无线通信模块完成。
  43. 如权利要求37-39任一项所述的通信方法,其中,所述无线通信设备包括头戴显示设备,所述另一无线通信设备包括遥控器,所述外部信号包括遥控信号。
  44. 一种存储有计算机程序的存储介质,所述计算机程序在由计算机的处理器运行时,使所述计算机执行如权利要求28-43中任一项所述的通信方法。
  45. 一种计算装置,包括:
    处理器;
    存储器,存储有可由所述处理器执行的指令;
    其中所述处理器被配置为执行如权利要求28-43中任一项所述的通信方法。
PCT/CN2017/112297 2017-11-22 2017-11-22 无人机的通信***、设备、方法以及计算装置 WO2019100245A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/112297 WO2019100245A1 (zh) 2017-11-22 2017-11-22 无人机的通信***、设备、方法以及计算装置
CN201780027039.4A CN109155666A (zh) 2017-11-22 2017-11-22 无人机的通信***、设备、方法以及计算装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/112297 WO2019100245A1 (zh) 2017-11-22 2017-11-22 无人机的通信***、设备、方法以及计算装置

Publications (1)

Publication Number Publication Date
WO2019100245A1 true WO2019100245A1 (zh) 2019-05-31

Family

ID=64803838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112297 WO2019100245A1 (zh) 2017-11-22 2017-11-22 无人机的通信***、设备、方法以及计算装置

Country Status (2)

Country Link
CN (1) CN109155666A (zh)
WO (1) WO2019100245A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020248285A1 (zh) * 2019-06-14 2020-12-17 深圳市大疆创新科技有限公司 移动平台控制***、方法、终端设备及遥控设备
US11789857B2 (en) 2021-08-11 2023-10-17 International Business Machines Corporation Data transfer with continuous weighted PPM duration signal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217661A1 (en) * 2007-03-08 2008-09-11 Teledyne Licensing, Llc Two-dimensional time delay integration visible cmos image sensor
CN104718509A (zh) * 2013-10-09 2015-06-17 深圳市大疆创新科技有限公司 遥控方法和***
CN105843245A (zh) * 2015-11-27 2016-08-10 深圳市星图智控科技有限公司 无人机控制***及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100277121A1 (en) * 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
CN103426282A (zh) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 遥控方法及终端
US10185316B2 (en) * 2015-08-10 2019-01-22 Edward Kablaoui System and method for drone connectivity and communication over a cellular network
WO2017185316A1 (zh) * 2016-04-29 2017-11-02 深圳市大疆创新科技有限公司 一种无人机第一视角飞行的控制方法及***、智能眼镜
CN106228615A (zh) * 2016-08-31 2016-12-14 陈昊 基于增强现实的无人飞行器体验***及其体验方法
CN106950998A (zh) * 2017-05-11 2017-07-14 高域(北京)智能科技研究院有限公司 空中景观实时显示***和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217661A1 (en) * 2007-03-08 2008-09-11 Teledyne Licensing, Llc Two-dimensional time delay integration visible cmos image sensor
CN104718509A (zh) * 2013-10-09 2015-06-17 深圳市大疆创新科技有限公司 遥控方法和***
CN105843245A (zh) * 2015-11-27 2016-08-10 深圳市星图智控科技有限公司 无人机控制***及控制方法

Also Published As

Publication number Publication date
CN109155666A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US10454564B2 (en) Facilitating communication with a vehicle via a UAV
US10440323B2 (en) Facilitating wide view video conferencing through a drone network
KR102138267B1 (ko) 무선 통신 시스템에서 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
CN106331613B (zh) 一种基于无人机的通信方法及***
WO2018094747A1 (zh) 控制方法、遥控器及无人机
WO2017114504A1 (en) Facilitating wide-view video conferencing through a uav network
US20160309124A1 (en) Control system, a method for controlling an uav, and a uav-kit
WO2019047502A1 (zh) 无人机控制***及实现方法、地面控制设备和中继站
WO2021096244A1 (ko) 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법
WO2018177268A1 (zh) 通过4g网络与无人机进行远距离信息交互的装置及方法
WO2017148155A1 (zh) 无线充电***及方法
WO2019023902A1 (zh) 通信方式控制方法及设备
WO2021060921A1 (ko) 무선통신시스템에서 단말의 신호 송수신 방법
JP7338066B2 (ja) 無線通信システムにおいて端末が信号を送受信する方法
US20230242273A1 (en) Detection and signaling of conditions of an unmanned aerial vehicle
WO2019095738A1 (zh) 一种无人机的通信方法、通信装置及无人机
CN110636255A (zh) 一种基于4g网络的无人机图像、视频传输分发***及方法
WO2020154959A1 (zh) 多负载图传方法、控制***、控制终端、无人机和服务器
WO2018058575A1 (zh) 一种飞行图像数据的处理方法、***及地面端设备
WO2019100245A1 (zh) 无人机的通信***、设备、方法以及计算装置
WO2018209575A1 (zh) 数据传输方法、设备、机器可读存储介质以及***
WO2018177269A1 (zh) 通过移动网络与无人机进行远距离通信的装置及方法
CN108370597B (zh) 一种控制可操控设备的方法及装置
WO2021040361A1 (ko) 무선통신시스템에서 단말의 신호 송수신 방법
CN114614880B (zh) 一种低时延远距离的无人机信号中继***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932791

Country of ref document: EP

Kind code of ref document: A1