WO2019090467A1 - 电子装置、无线通信方法以及计算机可读介质 - Google Patents

电子装置、无线通信方法以及计算机可读介质 Download PDF

Info

Publication number
WO2019090467A1
WO2019090467A1 PCT/CN2017/109691 CN2017109691W WO2019090467A1 WO 2019090467 A1 WO2019090467 A1 WO 2019090467A1 CN 2017109691 W CN2017109691 W CN 2017109691W WO 2019090467 A1 WO2019090467 A1 WO 2019090467A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
uplink reference
base station
uplink
electronic device
Prior art date
Application number
PCT/CN2017/109691
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼公司
曹建飞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020510525A priority Critical patent/JP7268676B2/ja
Priority to EP17931537.9A priority patent/EP3709526A1/en
Priority to PCT/CN2017/109691 priority patent/WO2019090467A1/zh
Priority to CN202211174205.2A priority patent/CN115459822A/zh
Priority to RU2020112381A priority patent/RU2748615C1/ru
Priority to CN201780093093.9A priority patent/CN110870212B/zh
Application filed by 索尼公司, 曹建飞 filed Critical 索尼公司
Priority to MX2020002170A priority patent/MX2020002170A/es
Priority to KR1020207007801A priority patent/KR102524879B1/ko
Priority to US16/638,154 priority patent/US11451352B2/en
Priority to AU2017438883A priority patent/AU2017438883A1/en
Publication of WO2019090467A1 publication Critical patent/WO2019090467A1/zh
Priority to US17/868,782 priority patent/US11641257B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the present disclosure generally relates to the field of wireless communications, and more particularly, to an electronic device and a wireless communication method for a user equipment side, an electronic device and a wireless communication method for a base station side, and a computer readable medium.
  • 3GPP 3rd Generation Partnership Project
  • Massive MIMO technology in which a large number of antenna elements (Antenna Elements) are set at a base station or user equipment (UE) to perform beaming. Shape to compensate for the fading loss of the high-band channel.
  • TXRUs transceiver units
  • antenna elements there is a trade-off between analog beamforming and digital beamforming. The more TXRUs, the stronger the digital beamforming capability that can be performed, but the weaker the RF beamforming capability; the more antenna arrays, the stronger the RF beamforming capability, but the corresponding the digital beamforming capability weak.
  • an electronic device for a user equipment side includes processing circuitry.
  • the processing circuit is configured to control to: transmit the non-precoded first uplink reference signal; receive feedback from the base station on the first uplink reference signal; and transmit the precoded second uplink reference signal based on the feedback.
  • a method for wireless communication on a user equipment side including: transmitting a non-precoded first uplink reference signal; receiving a feedback of a base station on a first uplink reference signal; and transmitting based on the feedback The encoded second uplink reference signal.
  • an electronic device for a base station side includes processing circuitry.
  • the processing circuit is configured to control to: receive a non-precoded first uplink reference signal from the user equipment; send feedback to the user equipment based on the first uplink reference signal; and receive, from the user equipment, the precoded transmission based on the feedback Second uplink reference signal.
  • a method for wireless communication on a base station side including: receiving a non-precoded first uplink reference signal from a user equipment; transmitting feedback to a user equipment based on the first uplink reference signal; and from the user The device receives the precoded second uplink reference signal transmitted based on the feedback.
  • an electronic device for a user equipment side includes processing circuitry.
  • the processing circuit is configured to control to: transmit the precoded first uplink reference signal with two or more uplink reference signal resources; receive feedback from the base station on the first uplink reference signal; and transmit the precode based on the feedback The second upstream reference signal.
  • a method for wireless communication on a user equipment side including: transmitting a precoded first uplink reference signal by using two or more uplink reference signal resources; and receiving a base station to the first uplink reference Feedback of the signal; and transmitting the precoded second uplink reference signal based on the feedback.
  • an electronic device for a base station side includes a processing circuit.
  • the processing circuit is configured to control to: receive, from the user equipment, the precoded first uplink reference signal transmitted using the two or more uplink reference signal resources; and send feedback to the user equipment based on the first uplink reference signal; Receiving, by the user equipment, the precoded second uplink reference signal sent according to the feedback.
  • a method for wireless communication for a base station side comprising: receiving, from a user equipment, a precoded first uplink reference signal transmitted using two or more uplink reference signal resources; An uplink reference signal, sending feedback to the user equipment; and receiving a precoded second uplink reference signal sent by the user equipment based on the feedback.
  • the embodiment of the invention further includes a computer readable medium comprising executable instructions that, when executed by the information processing device, cause the information processing device to perform the method according to the above embodiments.
  • Embodiments of the present invention can improve the accuracy of uplink channel state information (CSI) and reduce the system The overhead.
  • CSI channel state information
  • FIG. 1 is a block diagram showing a configuration example of an electronic device for a user device side according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration example of an electronic device for a user equipment side according to another embodiment of the present invention
  • FIG. 3 is a flowchart showing an example of a procedure for a wireless communication method on a user equipment side according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing a configuration example of an electronic device for a base station side according to an embodiment of the present invention
  • FIG. 5 is a flowchart showing an example of a procedure of a wireless communication method for a base station side according to an embodiment of the present invention
  • FIG. 6 is a block diagram showing a configuration example of an electronic device for a user device side according to an embodiment of the present invention.
  • FIG. 7 is a flowchart showing an example of a procedure for a wireless communication method on a user equipment side according to an embodiment of the present invention.
  • FIG. 8 is a flowchart showing an example of a procedure of a wireless communication method for a base station side according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing a configuration example of a wireless communication device for a user equipment side according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing a configuration example of a wireless communication device for a base station side according to an embodiment of the present invention.
  • SRS uplink sounding reference signal
  • 12A through 12D are diagrams for explaining uplink mixed channel state information according to an exemplary embodiment
  • FIG. 13 is a schematic diagram for explaining a power boosting manner according to an exemplary embodiment
  • FIG. 14 is a schematic diagram for explaining a power boosting manner according to another exemplary embodiment.
  • 15 is a schematic diagram for explaining user equipment transmitting an analog beam and digital precoding according to an exemplary embodiment
  • 16 shows a schematic diagram of signaling interactions for uplink hybrid channel state information, according to an example embodiment
  • 17A through 17D are schematic diagrams for explaining uplink mixed channel state information according to another exemplary embodiment
  • 18 is a schematic diagram for explaining user equipment transmitting an analog beam and digital precoding according to another exemplary embodiment
  • 19 is a schematic diagram for explaining a case where K uplink reference signal resources coexist in a physical resource block
  • 20 shows a schematic diagram of signaling interactions for uplink hybrid channel state information in accordance with another example embodiment
  • 21 is a block diagram showing an exemplary structure of a computer that implements the method and apparatus of the present disclosure
  • 22 is a block diagram showing an example of a schematic configuration of a smartphone that can apply the technology of the present disclosure
  • FIG. 23 is a block diagram showing an example of a schematic configuration of a gNB (base station in a 5G system) to which the technology of the present disclosure can be applied.
  • a gNB base station in a 5G system
  • the electronic device 100 for the user equipment side includes a processing circuit 110.
  • the processing circuit 110 can be implemented, for example, as a specific chip, chipset, or central processing unit. Yuan (CPU) and so on.
  • the processing circuit 110 includes a transmission control unit 111 and a reception control unit 113. It should be noted that although the transmission control unit 111 and the reception control unit 113 are shown in the form of functional blocks in the drawings, it should be understood that the functions of these units may also be implemented by the processing circuit 110 as a whole, and not necessarily This is accomplished by processing the discrete actual components in circuit 110. In addition, although the processing circuit 110 is illustrated in a block in the drawing, the electronic device 100 may include a plurality of processing circuits, and may distribute the functions of the transmission control unit 111 and the reception control unit 113 into a plurality of processing circuits so as to be composed of a plurality of Processing circuitry works in concert to perform these functions.
  • the transmission control unit 111 is configured to perform control to transmit the non-precoded first uplink reference signal.
  • the receiving control unit 113 is configured to perform control to receive feedback from the base station on the first uplink reference signal.
  • the feedback of the base station to the first uplink reference signal may include a precoding matrix indication determined by the base station based on the first uplink reference signal.
  • the transmission control unit 111 is further configured to perform control to transmit the precoded second uplink reference signal based on the feedback.
  • the reception control unit 113 may be further configured to perform control to receive uplink channel state information determined by the base station based on the second uplink reference signal.
  • the uplink channel state information may include, for example, an uplink precoding matrix index and a rank index.
  • the transmission control unit 111 is configured to perform control to transmit the first uplink reference signal in a first period and to transmit a second uplink reference signal in a second period that is less than the first period.
  • Type 1 SRS (the first type of uplink reference signal) corresponds to the first uplink reference signal
  • Type 2 SRS (the second type of uplink reference signal) corresponds to the second uplink reference signal.
  • Type 1 SRS is transmitted in a Type 1 SRS period, and in each Type 1 SRS period, a plurality of Type 2 SRSs may be transmitted in a Type 2 SRS period.
  • the base station acquires the uplink CSI, it is necessary to establish an appropriate beam pair link (BPL) or a transmit and receive beam (Tx-Rx Beam) between the base station and the UE, that is, an uplink transmit beam and a base station on the user side.
  • BPL beam pair link
  • Tx-Rx Beam transmit and receive beam
  • the base station can learn the appropriate receiving beam at the base station and the transmitting beam of the UE by measuring the uplink reference signal, and notify the UE through the downlink control channel.
  • the transmit beam can be used to inform the UE of its transmit beam, for example, by a downlink control channel on another base station low-band carrier that is dual-connected before the downlink beam pair is established.
  • the user can know the appropriate transmit beam at the base station and the receive beam of the UE by measuring the downlink reference signal, and notify the base station of the transmit beam through the uplink control channel, for example, by double-connecting before the uplink beam pair link is established.
  • the uplink control channel on the low-band carrier of the other base station informs the base station of its transmit beam.
  • the purpose of the process is to enable the UE to know which beam to use for uplink transmission and downlink reception, so that the base station knows which corresponding beam to use for uplink reception and downlink transmission.
  • the electronic device 200 for the user equipment side includes a processing circuit 210.
  • the processing circuit 210 includes a transmission control unit 211, a reception control unit 213, and a scan control unit 215.
  • the scan control unit 215 is configured to control beam scanning, and the transmission control unit 211 is configured to perform control to transmit the first uplink reference signal on the beam determined by the beam scan.
  • the UE sends an uplink reference signal and the base station measures the signal, which is performed on the determined BPL.
  • the UL beam scan shown in Figure 11 corresponds to an uplink beam scanning process.
  • the uplink beam scanning process may include, for example, the following steps: a base station (TRP, Transmission/Reception Point) performs measurement to determine an uplink transmit beam of the UE or an uplink receive beam of the base station; the base station performs measurement to select or change a receive beam of the base station; The measurement is performed to change the uplink transmit beam of the UE.
  • TRP Transmission/Reception Point
  • the transmission of the first uplink reference signal can be performed on a beam determined by the initial access phase (Initial Access).
  • the beam for transmitting the first uplink reference signal may be a beam determined by performing uplink beam scanning by the UE, or may be a coarse beam determined by the UE in an initial access phase.
  • coarse beam as used herein with respect to a beamlet means that the beam has a wide spatial directivity, but the beamforming gain is small.
  • a transmit (Tx) beam of a UE and a receive (Rx) beam of a base station (TRP) are determined based on beam scanning.
  • the UE transmits a non-precoded SRS signal (Class A (non-pre-coded SRS)) on the already selected beam, and the base station calculates a partial precoding matrix indication by measurement (partial The PMI, which is an index of the codeword W1 in the primary codebook representing the channel long-term characteristics, is fed back to the UE.
  • Class A non-pre-coded SRS
  • the UE performs precoding on the SRS and transmits the precoded SRS through the precoding matrix W1 indicated by the partial PMI fed back by the base station, and the base station performs representative on the UE by measuring the precoded SRS.
  • the feedback of the codeword W2 in the secondary codebook of the channel narrowband short-term characteristic is such that it acquires the uplink channel CSI.
  • the UE precodes the data symbols on the uplink data channel PUSCH (Physical Uplink Shared Channel) by the channel condition reflected by the uplink channel CSI to transmit the uplink data.
  • the precoding of the data is performed, for example, by the precoding matrix W obtained by W1*W2.
  • the UE may transmit a full-port Class A SRS on the beam, where the Class A SRS refers to a non-precoded SRS. That is to say, how many TXRUs the UE has or how many SRS ports are configured, how many ports of SRS are transmitted.
  • the UE transmits all non-precoded SRS ports within the corresponding SRS resources.
  • precoding refers to digital multi-antenna precoding.
  • a Class B (Class B) CSI measurement can also be defined, which is based on a downlink precoded reference signal.
  • first-class CSI long-period and wide-band channel CSI
  • second-class CSI short-period and sub-band CSI
  • the purpose of the first type of CSI is to collect the long-term characteristics of the channel, and to perform precoding for transmitting the reference signal of the second type of CSI.
  • the second type of CSI is the short period and subband CSI, with the goal of obtaining the final CSI.
  • the UE can transmit the concentrated power of each port of the SRS.
  • the transmission control unit 111 may be configured to transmit the first uplink reference signal by means of Power Boosting.
  • the power boosting method may include concentrating power on a resource unit (RE) carrying the first uplink reference signal within an Orthogonal Frequency Division Multiplexing (OFDM) symbol including the first uplink reference signal.
  • RE resource unit
  • OFDM Orthogonal Frequency Division Multiplexing
  • the power boosting method may include transmitting only one uplink reference signal port within an orthogonal frequency division multiplexing symbol including the first uplink reference signal.
  • the power boosting manner may further include configuring a zero power of the resource unit of the non-uplink reference signal in the orthogonal frequency division multiplexing symbol including the first uplink reference signal.
  • FIG. 13 is a schematic diagram showing one example of performing a power boosting operation on an SRS port.
  • the horizontal axis t represents time (i.e., OFDM symbol)
  • the vertical axis f represents frequency (i.e., subcarrier).
  • the UE concentrates all power on the RE carrying the SRS and zero power at the RE position of the non-SRS.
  • the power boosting scheme can increase the transmission power of each SRS port by a factor of three.
  • FIG. 14 is a schematic diagram showing an SRS Port Switch operation.
  • the horizontal axis t represents time (i.e., OFDM symbol), and the vertical axis f represents frequency (i.e., subcarrier).
  • the horizontal axis t represents time (i.e., OFDM symbol)
  • the vertical axis f represents frequency (i.e., subcarrier).
  • only one SRS port is transmitted in one OFDM symbol containing SRS, and another SRS port is transmitted in the next OFDM symbol containing SRS. To put it simply, each SRS port is transmitted in turn.
  • One SRS port in an OFDM symbol can occupy more REs and transmit the uplink transmit power.
  • the power boosting scheme can be used in combination in the scheme of port switching, that is, one OFDM symbol transmits only one SRS port, and the power of other REs in the symbol is set to 0, and the saved power can be used for the SRS port.
  • the occupied RE is used. The purpose of this is to enable the non-precoded SRS signal transmitted by the UE to be received by the base station with sufficient power.
  • the UE may need to report to the base station SRS port whether a power boosting scheme is used.
  • Path Loss uplink path loss
  • Rate Matching rate matching
  • the transmission control unit 111 may be configured to perform control to report to the base station indication information as to whether to use the power boost mode.
  • the SRS transmission period of Class A is long, and the purpose is to make the base station know the general situation of the UE uplink channel.
  • the time relationship is as shown in FIG. 11, for example.
  • the base station After measuring the Class A SRS, the base station can learn the precoding matrix that is suitable for the UE, and notify the UE by, for example, the uplink codeword W1.
  • Precoding codeword for channel population W W1*W2, where the function of W2 is equivalent to selecting one codeword among the M secondary codewords included in W1.
  • the UE can infer a more suitable precoding matrix through W1, and precodes the Class B SRS using the precoding matrix in a subsequent process, so that the SRS has stronger beamforming gain, that is, spatial directivity.
  • the number of Class B SRS ports is also significantly reduced compared to the previous Class A SRS ports, thereby reducing the system's reference signal overhead.
  • the UE transmits a non-precoded SRS
  • the base station measures the SRS
  • decomposes the entire channel that is,
  • h ver and h hor represent the channels of the UE “vertical dimension” and “horizontal dimension” ports, respectively, and their Cronet's product represents the entire channel.
  • the "vertical dimension” and the “horizontal dimension” are not necessarily perpendicular to the ground and the horizontal and the ground, but are intended to be Indicates that there are mutually perpendicular relationships between different SRS ports within one antenna panel of the UE.
  • the base station needs to select one of the K vertical dimension precoding matrices included in the codebook to perform vertical dimension precoding on the SRS.
  • the base station can calculate among them It is one of the kth vertical dimension precoding matrix, and the largest one can be selected as the precoding used next.
  • the channel is decomposed into a vertical dimension and a horizontal dimension and fed back to the precoding matrix respectively, but the disclosure is not limited thereto, and the channel decomposition may not be performed, and the base station feeds back the indication of the precoding matrix representing the entire uplink channel to the UE. .
  • the base station measures the precoded Class B SRS, calculates an uplink precoding matrix index (TPMI) and a rank index (TRI), and notifies the UE.
  • the base station can inform the UE of the modulation coding scheme (MCS) level that should be used by UL Grant (uplink grant) signaling.
  • MCS modulation coding scheme
  • the base station may also notify the UE of a channel quality indicator (CQI).
  • CQI channel quality indicator
  • the UE after a relatively fine beam pair link is established between the base station and the UE, for example, by using a beam scanning process, if only the SRS of the Type 1 Class A is configured for the UE only through high layer signaling such as RRC signaling, Then the UE only sends the SRS of Class A and sends the data through the TPMI fed back by the base station.
  • high layer signaling such as RRC signaling
  • the UE performs a beam scanning process with the base station, and the base station measures the SRS reference signal, performs uplink transmission (UL Tx) beam selection, for example, selects the uplink transmit beam with the strongest received power (RSRP), and sends a message indicating the selected beam to the UE.
  • UL Tx uplink transmission
  • RSRP received power
  • An SRS resource indication (Type I SRI). Since all uplink transmit beams transmit SRS carried by different resources, both the base station and the UE can identify the corresponding beams through the resource indication of the SRS.
  • the UE transmits over all SRS ports, the base station measures all SRS ports and calculates a preferred UL precoder, and sends a partial PMI indicating the preferred UL Tx precoder (W1) to the UE.
  • the UE pre-codes the SRS according to the UL Tx precoder W1 fed back by the base station and transmits the pre-coded SRS, and the base station performs measurement and calculates uplink channel state information (UL CSI) capable of indicating a finer precoding matrix W2, thereby The uplink TPMI, TRI, and/or CQI are fed back to the UE.
  • UL CSI uplink channel state information
  • the UE precodes the data symbols with the precoder W1*W2 indicated by the base station to perform PUSCH transmission, and the base station performs data detection and performs hybrid automatic repeat request (HARQ) feedback.
  • HARQ hybrid automatic repeat request
  • a wireless communication method for a user equipment side includes the following steps:
  • embodiments of the present invention also include an electronic device for the base station side.
  • an electronic device 400 for a base station side includes a processing circuit 410 including a reception control unit 411 and a transmission control unit 413.
  • the receive control unit 411 is configured to control to receive the non-precoded first uplink reference signal from the user equipment.
  • the transmission control unit 413 is configured to perform control to transmit feedback to the user equipment based on the first uplink reference signal.
  • the receive control unit 411 is further configured to control to receive a precoded second uplink reference signal transmitted based on the feedback from the user equipment.
  • FIG. 5 illustrates a method of wireless communication for a base station side, including the following steps, in accordance with one embodiment:
  • S530 Receive, from the user equipment, a precoded second uplink reference signal that is sent according to the feedback.
  • the electronic device 100 includes a processing circuit 110 including a transmission control unit 111 and a reception control unit 113.
  • the transmission control unit 111 is configured to perform control to transmit the precoded first uplink reference signal using two or more uplink reference signal resources.
  • the receiving control unit 113 is configured to perform control to receive feedback from the base station on the first uplink reference signal.
  • the feedback may include indication information of the reference signal resource selected by the base station by measuring the two or more uplink reference signal resources.
  • the feedback may include a channel quality indication by the base station for each precoded uplink reference signal resource.
  • the transmission control unit 111 is further configured to perform control to transmit the precoded second uplink reference signal based on the feedback.
  • the transmission control unit 111 may also be configured to perform control to transmit the first uplink reference signal in a first cycle. And transmitting the second uplink reference signal in a second period that is less than the first period.
  • the reception control unit 113 may be further configured to perform control to receive uplink channel state information determined by the base station based on the second uplink reference signal.
  • the uplink channel state information may include an uplink precoding matrix index.
  • the UE may perform beam scanning in a manner similar to the previous embodiment, the base station notifying the UE of its uplink transmit beam, for example by feedback SRI (SRS Resource Indication).
  • SRI SRS Resource Indication
  • the UE can then transmit K>1 Class B SRS resources by precoding within the selected analog beam range.
  • FIG. 6 shows a configuration example of an electronic device 600 for a user device side according to another embodiment.
  • the electronic device 600 includes a processing circuit 610 including a determining unit 615, a transmitting control unit 611, and a receiving control unit 613.
  • the configurations of the transmission control unit 611 and the reception control unit 613 are similar to the above-described transmission control unit and reception control unit.
  • the determining unit 615 is configured to determine the number of uplink reference signal resources for the first uplink reference signal based on the spatial coverage of the beam, which beam may be determined by beam scanning or determined during the initial access phase.
  • the transmit beam of the UE and the receive beam of the base station are first determined based on beam scanning.
  • the UE transmits K separately precoded SRSs using K resources within the determined analog beam range (eg, transmitting precoded SRS ports 1 to 4 on the first SRS resource, second.
  • the SRS resources are transmitted on the pre-coded SRS ports 5-8, and so on.
  • the base station measures K SRS resources, for example, selects one of the pre-coded resources with the strongest received power based on the RSRP and notifies the UE through the SRI, or the base station can Direct feedback to each precoded SRS resource The corresponding CQI is given to the UE for the UE to select.
  • the UE collects uplink CSI through a precoding matrix corresponding to the selected precoding resource, for example, including TPMI and TRI.
  • the UE determines a precoding matrix for data transmission by using the collected uplink CSI to transmit uplink data on the uplink data channel PUSCH.
  • FIG. 19 shows a schematic diagram of coexistence of K SRS resources in a physical resource block (PRB).
  • PRB physical resource block
  • the horizontal axis t represents time (i.e., OFDM symbol)
  • the vertical axis f represents frequency (i.e., subcarrier).
  • the SRS transmission period of K>1 Class B is long, and the purpose is to make the base station know the general situation of the uplink channel of the UE, that is, which reference signal under the precoder is more suitable for acquiring CSI.
  • the base station After measuring the K>1 Class B SRS, the base station can obtain, for example, the RSRP of each SRS resource, and can use the precoder of the SRS carried by the largest SRS resource of the RSRP as the selected precoder, and can notify by SRI.
  • UE The UE identifies the precoder indicated by the base station by the SRI and precodes the SRS and performs denser transmission than the K>1 Class B SRS, so that the base station measures the precoded SRS and obtains uplink CSI.
  • the base station can notify the UE of the uplink transmit beam through the SRI, and the base station can also notify the UE of the alternative precoding by the SRI. Accordingly, the following example approaches can be used to distinguish the use of SRI.
  • the base station may notify the UE of the SRS resource associated with the SRI in advance, and the base station may configure the SRS resource for the UE by using the high layer signaling, such as the RRC. For example, some resources are only used for uplink beam scanning, and some resources are only used for uplink prediction.
  • the transmission of the SRS is encoded, so that the purpose of the SRS resource corresponding to the SRI can be clarified, that is, used for beam scanning or for uplink CSI acquisition.
  • the base station can notify the UE of the use of the SRI by, for example, using 1 bit of indication information along with the SRI. For example, if bit "0" indicates that the SRS resource indicated by the SRI is an SRS for beam scanning; bit "1" represents that the SRS resource indicated by the SRI is an SRS for CSI acquisition.
  • the receiving control unit 113 may be configured to perform control to receive an uplink reference signal resource notified by the base station, in which a part of resources may be used only for uplink beam scanning, and a part of resources may only be used. Used to send an uplink reference signal.
  • the uplink reference signal resource indication may be determined according to the indication bit sent by the base station along with the uplink reference signal resource indication for the resource for uplink beam scanning or the resource for transmitting the uplink reference signal.
  • the beam pair link determined by the initial access phase can be communicated only, and the UE can use the precoding SRS technique instead of the fine beam pair link.
  • the transmission control unit 111 may be configured to control to transmit the first uplink reference signal through the beam pair link determined by the initial access phase.
  • FIG. 20 shows an example of an acquisition process of channel state information.
  • the UE transmits K precoded SRS resources, and the base station measures K SRS resources to determine the beam with the strongest gain. And indicate the corresponding type II SRI to the UE.
  • FIG. 7 shows an example of a procedure for a wireless communication method on the user equipment side according to an embodiment of the second aspect of the present invention, the method comprising the following steps:
  • the electronic device 400 includes a processing circuit 410 including a reception control unit 411 and a transmission control unit 413.
  • the receive control unit 411 is configured to control to receive from the user equipment a precoded first uplink reference signal transmitted using two or more uplink reference signal resources.
  • the transmission control unit 413 is configured to perform control to transmit feedback to the user equipment based on the first uplink reference signal.
  • the receiving control unit 411 is further configured to control to receive the precoded second uplink reference signal transmitted by the user equipment based on the feedback.
  • FIG. 8 shows wireless communication for a base station side according to an embodiment of the second aspect of the present invention.
  • An example of a process of a method that includes the following steps:
  • S810 Receive, from a user equipment, a precoded first uplink reference signal that is sent by using two or more uplink reference signal resources.
  • a wireless communication device for a user equipment side includes: a transmission control device 910 configured to transmit a non-precoded first uplink reference signal; and a reception control device 920 configured to Receiving feedback from the base station on the first uplink reference signal; the transmission control device 910 is further configured to transmit the precoded second uplink reference signal based on the feedback.
  • a wireless communication device for a user equipment side includes: a transmission control device 910 configured to transmit a precoded first uplink reference using two or more uplink reference signal resources And a receive control device 920 configured to receive feedback from the base station on the first uplink reference signal; the transmit control device 910 is further configured to transmit the precoded second uplink reference signal based on the feedback.
  • a wireless communication device for a base station side includes: a receiving control device 1010 configured to receive a non-precoded first uplink reference signal from a user equipment; and a transmission control device 1020 The method is configured to send feedback to the user equipment based on the first uplink reference signal; the receiving control apparatus 1010 is further configured to receive, from the user equipment, the precoded second uplink reference signal transmitted based on the feedback.
  • a wireless communication device for a base station side includes: a receiving control device 1010 configured to receive, from a user equipment, precoded transmissions using two or more uplink reference signal resources a first uplink reference signal; and a transmission control device 1020 configured to send feedback to the user equipment based on the first uplink reference signal; the reception control device 1010 is further configured to receive the precoded second transmitted by the user equipment based on the feedback Uplink reference signal.
  • embodiments of the present invention also include a computer readable medium including executable instructions that, when executed by an information processing apparatus, cause an information processing apparatus to perform the method according to the above embodiments.
  • the various steps of the above methods, as well as the various constituent modules and/or units of the above-described apparatus may be implemented as software, firmware, hardware or a combination thereof.
  • a program constituting software for implementing the above method may be installed from a storage medium or a network to a computer having a dedicated hardware structure (for example, the general-purpose computer 2100 shown in FIG. 21), which is installed.
  • a dedicated hardware structure for example, the general-purpose computer 2100 shown in FIG. 21
  • a central processing unit (i.e., CPU) 2101 executes various processes in accordance with a program stored in a read only memory (ROM) 2102 or a program loaded from a storage portion 2108 to a random access memory (RAM) 2103.
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 2101 executes various processes and the like is also stored as needed.
  • the CPU 2101, the ROM 2102, and the RAM 2103 are linked to each other via a bus 2104.
  • Input/output interface 2105 is also linked to bus 2104.
  • the following components are linked to an input/output interface 2105: an input portion 2106 (including a keyboard, a mouse, etc.), an output portion 2107 (including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.)
  • the storage portion 2108 (including a hard disk or the like), the communication portion 2109 (including a network interface card such as a LAN card, a modem, etc.).
  • the communication section 2109 performs communication processing via a network such as the Internet.
  • the driver 2110 can also be linked to the input/output interface 2105 as needed.
  • a removable medium 2111 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory or the like is mounted on the drive 2110 as needed, so that the computer program read therefrom is installed into the storage portion 2108 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the detachable medium 2111.
  • such a storage medium is not limited to the removable medium 2111 shown in FIG. 21 in which a program is stored and distributed separately from the device to provide a program to the user.
  • Examples of the detachable medium 2111 include a magnetic disk (including a floppy disk (registered trademark)), an optical disk (including a compact disk read only memory (CD-ROM) and a digital versatile disk (DVD)), and a magneto-optical disk (including a mini disk (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 2102, a hard disk included in the storage portion 2108, and the like, in which programs are stored, and distributed to the user together with the device containing them.
  • Embodiments of the present invention also relate to a program product for storing a machine readable instruction code.
  • the instruction code is read and executed by a machine, the above-described method according to an embodiment of the present invention can be performed.
  • a storage medium for carrying a program product storing the above-described storage machine readable instruction code is also included in the disclosure of the present invention.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • Embodiments of the present application also relate to the following electronic devices.
  • the electronic device can be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the electronic device can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the electronic device can be implemented It is a gNB in a 5G system.
  • the electronic device can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the electronic device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or Vehicle terminal (such as car navigation equipment).
  • the electronic device may be a wireless communication module (such as an integrated circuit module including a single or a plurality of wafers) mounted on each of the above terminals.
  • FIG. 22 is a block diagram showing an example of a schematic configuration of a smartphone 2500 to which the technology of the present disclosure can be applied.
  • the smart phone 2500 includes a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, and one or more An antenna switch 2515, one or more antennas 2516, a bus 2517, a battery 2518, and an auxiliary controller 2519.
  • the processor 2501 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 2500.
  • the memory 2502 includes a RAM and a ROM, and stores data and programs executed by the processor 2501.
  • the storage device 2503 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2504 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 2500.
  • USB universal serial bus
  • the image pickup device 2506 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 2507 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 2508 converts the sound input to the smartphone 2500 into an audio signal.
  • the input device 2509 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives an operation or information input from a user.
  • the display device 2510 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2500.
  • the speaker 2511 converts the audio signal output from the smartphone 2500 into a sound.
  • the wireless communication interface 2512 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 2512 may generally include, for example, a baseband (BB) processor 2513 and radio frequency (RF) circuitry 2514.
  • the BB processor 2513 can perform, for example, encoding/decoding, Modulation/demodulation and multiplexing/demultiplexing, and performing various types of signal processing for wireless communication.
  • the RF circuit 2514 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2516.
  • the wireless communication interface 2512 can be a chip module on which the BB processor 2513 and the RF circuit 2514 are integrated. As shown in FIG.
  • the wireless communication interface 2512 can include a plurality of BB processors 2513 and a plurality of RF circuits 2514.
  • FIG. 22 illustrates an example in which the wireless communication interface 2512 includes a plurality of BB processors 2513 and a plurality of RF circuits 2514, the wireless communication interface 2512 may also include a single BB processor 2513 or a single RF circuit 2514.
  • wireless communication interface 2512 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2512 can include a BB processor 2513 and RF circuitry 2514 for each wireless communication scheme.
  • Each of the antenna switches 2515 switches the connection destination of the antenna 2516 between a plurality of circuits included in the wireless communication interface 2512, such as circuits for different wireless communication schemes.
  • Each of the antennas 2516 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 2512 to transmit and receive wireless signals.
  • smart phone 2500 can include multiple antennas 2516.
  • FIG. 22 shows an example in which the smartphone 2500 includes a plurality of antennas 2516, the smartphone 2500 may also include a single antenna 2516.
  • smart phone 2500 can include an antenna 2516 for each wireless communication scheme.
  • the antenna switch 2515 can be omitted from the configuration of the smartphone 2500.
  • the bus 2517 has a processor 2501, a memory 2502, a storage device 2503, an external connection interface 2504, an imaging device 2506, a sensor 2507, a microphone 2508, an input device 2509, a display device 2510, a speaker 2511, a wireless communication interface 2512, and an auxiliary controller 2519. connection.
  • Battery 2518 provides power to various blocks of smart phone 2500 shown in FIG. 22 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 2519 operates the minimum required function of the smartphone 2500, for example, in a sleep mode.
  • the transceiver of the wireless communication device on the user equipment side can be implemented by the wireless communication interface 2512.
  • the processing circuitry of the user device side or the processing circuitry of the wireless communication device and/or at least a portion of the functions of the various units in accordance with embodiments of the present invention may also be implemented by the processor 2501 or the secondary controller 2519.
  • the power consumption of the battery 2518 can be reduced by performing a portion of the functions of the processor 2501 by the auxiliary controller 2519. Consumption.
  • the processor 2501 or the auxiliary controller 2519 may execute the processing circuit of the electronic device or the wireless communication device on the user equipment side and/or the respective units of the user equipment side according to the embodiment of the present invention by executing the program stored in the memory 2502 or the storage device 2503. At least part of the function.
  • the gNB 2300 includes a plurality of antennas 2310 and base station devices 2320.
  • the base station device 2320 and each antenna 2310 may be connected to each other via a radio frequency (RF) cable.
  • RF radio frequency
  • Each of the antennas 2310 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 2320 to transmit and receive wireless signals.
  • the gNB 2300 may include a plurality of antennas 2310.
  • multiple antennas 2310 can be compatible with multiple frequency bands used by gNB 2300.
  • the base station device 2320 includes a controller 2321, a memory 2322, a network interface 2323, and a wireless communication interface 2325.
  • the controller 2321 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2320. For example, controller 2321 generates data packets based on data in signals processed by wireless communication interface 2325 and delivers the generated packets via network interface 2323. The controller 2321 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 2321 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2322 includes a RAM and a ROM, and stores programs executed by the controller 2321 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 2323 is a communication interface for connecting the base station device 2320 to the core network 2324. Controller 2321 can communicate with a core network node or another gNB via network interface 2323. In this case, the gNB 2300 and the core network node or other gNBs may be connected to each other through a logical interface such as an NG interface and an Xn interface.
  • the network interface 2323 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 2323 is a wireless communication interface, the network interface 2323 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2325.
  • the wireless communication interface 2325 supports any cellular communication schemes, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the gNB 2300 via the antenna 2310.
  • Wireless communication interface 2325 may typically include, for example, BB processor 2326 and RF power Road 2327.
  • the BB processor 2326 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 2326 may have some or all of the above described logic functions.
  • the BB processor 2326 can be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 2326 to change.
  • the module can be a card or blade that is inserted into the slot of the base station device 2320. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 2327 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 2310.
  • the wireless communication interface 2325 can include a plurality of BB processors 2326.
  • multiple BB processors 2326 can be compatible with multiple frequency bands used by gNB 2300.
  • the wireless communication interface 2325 can include a plurality of RF circuits 2327.
  • multiple RF circuits 2327 can be compatible with multiple antenna elements.
  • FIG. 23 shows an example in which the wireless communication interface 2325 includes a plurality of BB processors 2326 and a plurality of RF circuits 2327, the wireless communication interface 2325 may also include a single BB processor 2326 or a single RF circuit 2327.
  • the transceiver of the wireless communication device on the base station side can be implemented by the wireless communication interface 2325.
  • the processing circuitry of the base station side or the processing circuitry of the wireless communication device and/or at least a portion of the functions of the various units may also be implemented by the controller 2321 in accordance with an embodiment of the present invention.
  • the controller 2321 may perform at least a part of the functions of the processing circuit and/or each unit of the electronic device or the wireless communication device on the base station side according to an embodiment of the present invention by executing a program stored in the memory 2322.
  • the method of the present invention is not limited to being performed in the chronological order described in the specification, and may be performed in other chronological order, in parallel, or independently. Therefore, the order of execution of the methods described in the present specification does not limit the technical scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)
  • User Interface Of Digital Computer (AREA)
  • Magnetic Heads (AREA)

Abstract

本公开涉及电子装置、无线通信方法以及计算机可读介质。根据一个实施例,一种用于用户设备侧的电子装置包括处理电路,处理电路被配置为进行控制以发送非预编码的第一上行参考信号,接收基站对第一上行参考信号的反馈,以及基于该反馈发送经预编码的第二上行参考信号。 (摘要附图:图1)

Description

电子装置、无线通信方法以及计算机可读介质 技术领域
本公开一般涉及无线通信领域,更具体地,涉及用于用户设备侧的电子装置和无线通信方法、用于基站侧的电子装置和无线通信方法、以及计算机可读介质。
背景技术
随着无线通信使用的频段的增加,无线信道将承受比低频段更大的路径损耗,大气吸收损耗等负面影响。为了解决例如高频段信道的问题,3GPP(第三代合作伙伴计划)引入了大规模天线(Massive MIMO)技术,即在基站或用户设备(UE)设置大量的天线阵子(Antenna Elements)来进行波束赋形来弥补高频段信道存在的衰落损失。
尽管UE的尺寸较小,但也可以设置多个天线阵子。然而,鉴于射频器件的成本较高,收发单元(TXRU)一般不会和天线阵子一比一配置。考虑到不同TXRU和天线阵子之间的比例,模拟波束赋形和数字波束赋形之间存在着折中。TXRU越多,可以进行的数字波束赋形能力越强,但相应地射频波束赋形的能力越弱;天线阵子越多,射频波束赋形的能力越强,但相应地数字波束赋形能力越弱。
发明内容
在下文中给出了关于本发明实施例的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,以下概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
根据一个实施例,提供一种用于用户设备侧的电子装置,其包括处理电路。处理电路被配置为进行控制以:发送非预编码的第一上行参考信号;接收基站对第一上行参考信号的反馈;以及基于该反馈发送经预编码的第二上行参考信号。
根据另一个实施例,提供一种用于用户设备侧的无线通信方法,包括:发送非预编码的第一上行参考信号;接收基站对第一上行参考信号的反馈;以及基于该反馈发送经预编码的第二上行参考信号。
根据又一个实施例,提供一种用于基站侧的电子装置,其包括处理电路。处理电路被配置为进行控制以:从用户设备接收非预编码的第一上行参考信号;基于第一上行参考信号,向用户设备发送反馈;以及从用户设备接收基于该反馈发送的经预编码的第二上行参考信号。
根据再一个实施例,提供一种用于基站侧的无线通信方法,包括:从用户设备接收非预编码的第一上行参考信号;基于第一上行参考信号,向用户设备发送反馈;以及从用户设备接收基于该反馈发送的经预编码的第二上行参考信号。
根据另一个实施例,提供一种用于用户设备侧的电子装置,其包括处理电路。处理电路被配置为进行控制以:利用两个或更多个上行参考信号资源发送经预编码的第一上行参考信号;接收基站对第一上行参考信号的反馈;以及基于该反馈发送经预编码的第二上行参考信号。
根据又一个实施例,提供一种用于用户设备侧的无线通信方法,包括:利用两个或更多个上行参考信号资源发送经预编码的第一上行参考信号;接收基站对第一上行参考信号的反馈;以及基于该反馈发送经预编码的第二上行参考信号。
根据再一个实施例,提供一种用于基站侧的电子装置,其包括处理电路。处理电路被配置为进行控制以:从用户设备接收利用两个或更多个上行参考信号资源发送的经预编码的第一上行参考信号;基于第一上行参考信号,向用户设备发送反馈;以及接收用户设备基于该反馈发送的经预编码的第二上行参考信号。
根据另一个实施例,提供一种用于基站侧的无线通信方法,包括:从用户设备接收利用两个或更多个上行参考信号资源发送的经预编码的第一上行参考信号;基于第一上行参考信号,向用户设备发送反馈;以及接收用户设备基于该反馈发送的经预编码的第二上行参考信号。
本发明实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据上述实施例的方法。
本发明的实施例能够提高上行信道状态信息(CSI)的准确性并降低系 统开销。
附图说明
本发明可以通过参考下文中结合附图所给出的描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的部件。所述附图连同下面的详细说明一起包含在本说明书中并且形成本说明书的一部分,而且用来进一步举例说明本发明的优选实施例和解释本发明的原理和优点。在附图中:
图1是示出根据本发明一个实施例的用于用户设备侧的电子装置的配置示例的框图;
图2是示出根据本发明另一个实施例的用于用户设备侧的电子装置的配置示例的框图;
图3是示出根据本发明一个实施例的用于用户设备侧的无线通信方法的过程示例的流程图;
图4是示出根据本发明一个实施例的用于基站侧的电子装置的配置示例的框图;
图5是示出根据本发明一个实施例的用于基站侧的无线通信方法的过程示例的流程图;
图6是示出根据本发明一个实施例的用于用户设备侧的电子装置的配置示例的框图;
图7是示出根据本发明一个实施例的用于用户设备侧的无线通信方法的过程示例的流程图;
图8是示出根据本发明一个实施例的用于基站侧的无线通信方法的过程示例的流程图;
图9是示出根据本发明的一个实施例的用于用户设备侧的无线通信设备的配置示例的框图;
图10是示出根据本发明的一个实施例的用于基站侧的无线通信设备的配置示例的框图;
图11是用于说明上行探测参考信号(Sounding Reference Signal,SRS)的发送周期的示意图;
图12A至图12D是用于说明根据一个示例实施例的上行混合信道状态信息的示意图;
图13是用于说明根据一个示例实施例的功率提升方式的示意图;
图14是用于说明根据另一个示例实施例的功率提升方式的示意图;
图15是用于说明根据一个示例实施例的用户设备发射模拟波束和数字预编码的示意图;
图16示出了用于根据一个示例实施例的上行混合信道状态信息的信令交互的示意图;
图17A至图17D是用于说明根据另一个示例实施例的上行混合信道状态信息的示意图;
图18是用于说明根据另一个示例实施例的用户设备发射模拟波束和数字预编码的示意图;
图19是用于说明K个上行参考信号资源在物理资源块中共存的情况的示意图;
图20示出了用于根据另一个示例实施例的上行混合信道状态信息的信令交互的示意图;
图21是示出实现本公开的方法和设备的计算机的示例性结构的框图;
图22是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;以及
图23是示出可以应用本公开内容的技术的gNB(5G***中的基站)的示意性配置的示例的框图。
具体实施方式
下面将参照附图来说明本发明的实施例。在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,附图和说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。
如图1所示,根据本实施例的用于用户设备侧的电子装置100包括处理电路110。处理电路110例如可以实现为特定芯片、芯片组或者中央处理单 元(CPU)等。
处理电路110包括发送控制单元111和接收控制单元113。需要指出,虽然附图中以功能块的形式示出了发送控制单元111和接收控制单元113,然而应理解,这些单元的功能也可以由处理电路110作为一个整体来实现,而并不一定是通过处理电路110中分立的实际部件来实现。另外,虽然图中以一个框示出处理电路110,然而电子装置100可以包括多个处理电路,并且可以将发送控制单元111和接收控制单元113的功能分布到多个处理电路中从而由多个处理电路协同操作来执行这些功能。
发送控制单元111被配置为进行控制以发送非预编码的第一上行参考信号。
接收控制单元113被配置为进行控制以接收基站对第一上行参考信号的反馈。
根据一个实施例,基站对第一上行参考信号的反馈可以包括基站基于第一上行参考信号确定的预编码矩阵指示。
发送控制单元111还被配置为进行控制以基于该反馈发送经预编码的第二上行参考信号。
根据一个实施例,接收控制单元113还可以被配置为进行控制以接收基站基于第二上行参考信号确定的上行信道状态信息。作为示例而非限制,上行信道状态信息例如可以包括上行预编码矩阵索引和秩索引。
另外,根据一个实施例,发送控制单元111被配置为进行控制来以第一周期发送第一上行参考信号,并且以小于第一周期的第二周期发送第二上行参考信号。
在图11所示的示例中,Type 1 SRS(第一类上行参考信号)对应于上述第一上行参考信号,Type 2 SRS(第二类上行参考信号)对应于上述第二上行参考信号。如图11所示,以Type 1 SRS周期发送Type 1 SRS,并且在每个Type 1 SRS周期内,可以以Type 2 SRS周期发送多个Type 2 SRS。
此外,在基站获取上行的CSI之前,需要在基站和UE之间建立适当的波束对链接(Beam Pair Link,BPL)或者说收发波束(Tx-Rx Beam),即用户侧的上行发射波束和基站侧的上行接收波束以及用户侧的下行接收波束和基站侧的下行发射波束。基站可以通过测量上行参考信号来得知基站处的合适的接收波束以及UE的发射波束,并通过下行的控制信道通知UE其 发射波束,在下行波束对链接建立之前例如可以通过双连接的另一基站低频段载波上的下行控制信道来通知UE其发射波束。相应的,用户可以通过测量下行参考信号来得知基站处的合适的发射波束以及UE的接收波束,并通过上行的控制信道通知基站其发射波束,在上行波束对链接建立之前例如可以通过双连接的另一基站低频段载波上的上行控制信道来通知基站其发射波束。该过程的目的是使得UE知道该用哪个波束进行上行发送、下行接收,使得基站知道该用哪个相应的波束进行上行接收、下行发射。
相应地,如图2所示,根据一个实施例的用于用户设备侧的电子装置200包括处理电路210。处理电路210包括发送控制单元211、接收控制单元213以及扫描控制单元215。
扫描控制单元215被配置为控制进行波束扫描,并且发送控制单元211被配置为进行控制以在通过波束扫描确定的波束上进行第一上行参考信号的发送。
在下文中,我们假设基站与UE之间已经建立起了波束赋形增益足够强的BPL。后续的CSI获取,即UE发送上行参考信号并且基站测量该信号,是在所确定的BPL上进行的。作为示例,图11中所示的UL波束扫描对应于上行波束扫描过程。
上行波束扫描过程例如可以包括以下过程:基站端(TRP,Transmission/Reception Point)进行测量来确定UE的上行发射波束或基站端的上行接收波束;基站端进行测量来选择或改变基站端的接收波束;基站端进行测量来改变UE的上行发射波束。
此外,根据另一个实施例,可以在初始接入阶段(Initial Access)确定的波束上进行第一上行参考信号的发送。
换句话说,发送第一上行参考信号的波束可以是通过UE进行上行波束扫描后确定的波束,也可以是通过UE在初始接入阶段确定的粗波束。这里所说的粗波束相对于细波束而言,是指该波束的空间指向性较宽,但波束赋形增益较小。
接下来,参照图12A至图12D说明获取上行混合信道状态信息的示例方式。
首先,如图12A所示,基于波束扫描来确定UE的发射(Tx)波束和基站(TRP)的接收(Rx)波束。
接下来,如图12B所示,UE在已经选定的波束上发送非预编码的SRS信号(Class A(A类)非预编码SRS),并且基站通过测量来计算部分预编码矩阵指示(部分PMI,即代表信道宽带长时特性的一级码本中的码字W1的索引),并将其反馈给UE。
然后,如图12C所示,UE通过基站反馈的部分PMI所指示的预编码矩阵W1来进行对SRS的预编码并发射经预编码的SRS,并且基站通过测量预编码的SRS来向UE进行代表信道窄带短时特性的二级码本中的码字W2的反馈以使其获取上行信道CSI。
最终,如图12D所示,UE通过上行信道CSI所反映的信道情况对上行数据信道PUSCH(物理上行共享信道)上的数据符号进行预编码以发送上行数据。例如通过W1*W2得到的预编码矩阵W来进行数据的预编码。
需要指出,上述示例中给出的具体细节仅仅是说明性的而非限制性的。
在上述示例过程中,在确定了上行发射波束后,UE可以在该波束上发射全端口的Class A SRS,这里的Class A SRS是指非预编码(Non-Precoded)的SRS。也就是说,UE具有多少个TXRU或者被配置了多少个SRS的端口数,就发射多少个端口的SRS。UE在相应SRS资源内发送非预编码的全部SRS端口。本公开的各个示例中,预编码指代数字的多天线预编码。
与上述Class A的CSI测量相对地,也可以定义Class B(B类)的CSI测量,该测量是基于下行预编码(Precoded)的参考信号进行的。此外,还可以定义长周期和宽带的信道CSI(称为第一类CSI,对应于图11中的Type 1 SRS而测得)以及短周期和子带的CSI(称为第二类CSI,对应于图11中的Type 2 SRS而测得)。第一类CSI的目的是收集信道的长期特征,为了发送第二类CSI的参考信号做预编码。第二类CSI是短周期和子带的CSI,目的是获得最终的CSI。
为了使得基站可以收到接收功率足够的SRS信号,尤其是例如在高于6GHz的频率范围内,UE可以将SRS的各个端口进行集中功率的发送。
相应地,根据一个实施例,发送控制单元111可以被配置为通过功率提升(Power Boosting)方式发送第一上行参考信号。
功率提升方式可以包括在含有第一上行参考信号的正交频分多路复用(OFDM)符号内,将功率集中到承载第一上行参考信号的资源单元(RE)上。
或者,功率提升方式可以包括在一个含有第一上行参考信号的正交频分多路复用符号内仅发送一个上行参考信号端口。
此外,功率提升方式还可以包括在含有第一上行参考信号的正交频分多路复用符号内非上行参考信号的资源单元配置零功率。
图13是示出对SRS端口(port)进行功率提升操作的一个示例的示意图。图13中横轴t代表时间(即OFDM符号),纵轴f代表频率(即子载波)。如图所示,在某个含有SRS的OFDM符号内,UE将所有功率集中到承载SRS的RE上,并在非SRS的RE位置上配置零功率。
以4个SRS端口占用1个OFDM符号为例,功率提升方案可以使得每个SRS端口的发送功率增加为原来的3倍。
图14是示出对SRS端口的切换(SRS Port Switch)操作的示意图。图14中横轴t代表时间(即OFDM符号),纵轴f代表频率(即子载波)。如图14所示,在某个含有SRS的OFDM符号内仅发送一个SRS端口,在下一个含有SRS的OFDM符号内发送另一个SRS端口。简单来说,就是各个SRS端口进行轮流发送,在一个OFDM符号之中一个SRS端口可以占用更多的RE被发送并独占上行的发射功率。
需要说明的是,功率提升方案可以在端口切换的方案中组合使用,即一个OFDM符号仅发送一个SRS端口,并且该符号中的其他RE的功率置0,并将节省下来的功率可以供SRS端口所占用的RE使用。这样做的目的是使得UE发送的非预编码的SRS信号可以被基站已足够强的功率接收到。
此外,例如由于上行路径损耗(Path Loss)测量以及速率匹配(Rate Matching)等问题,UE可能需要上报给基站SRS端口是否使用了功率提升方案。
相应地,根据一个实施例,发送控制单元111可以被配置为进行控制以向基站上报关于是否使用功率提升方式的指示信息。
接下来,进一步参照图15对上述示例过程进行总体说明。
从时间的角度看,Class A的SRS发送周期较长,其目的是使得基站了解UE上行信道的大概情况。其时间关系例如如图11所示。
基站在测量Class A SRS后,可以得知该UE较为合适的预编码矩阵,并且例如通过上行码字W1的方式通知UE。信道总体的预编码码字 W=W1*W2,其中W2的功能相当于在W1包含的M个二级码字中选择一个码字。
UE通过W1可以推断出较合适的预编码矩阵,并在随后的过程中使用该预编码矩阵对Class B SRS进行预编码,使得该SRS具有更强的波束赋形增益,即空间指向性。同时,Class B SRS端口数量也较之前的Class A SRS端口数有明显的减少,从而减少了***的参考信号开销。
接下来,对预编码的计算进行简要说明。
UE发射非预编码的SRS,基站测量该SRS,并将整个信道进行分解,即
Figure PCTCN2017109691-appb-000001
,这里hver和hhor分别代表UE“垂直维”和“水平维”端口的信道,它们的克罗内科积即代表整个信道。需要说明的是,因为UE的天线面板是随UE的空间位置移动和旋转的,“垂直维”和“水平维”并不一定是真正意义上的垂直于地面和水平与地面,而是意在表示在UE的一个天线面板内不同的SRS端口之间具有相互垂直的关系。以垂直维的信道为例,基站需要在码本包含的K个垂直维的预编码矩阵中选择一个来对SRS进行垂直维预编码。基站可以计算
Figure PCTCN2017109691-appb-000002
其中
Figure PCTCN2017109691-appb-000003
是第k个垂直维预编码矩阵中的一个,可以选择最大的一个作为接下来使用的预编码。这个示例中将信道分解为垂直维与水平维并分别反馈预编码矩阵,但本公开并不限于此,亦可以不进行信道分解,而基站将代表整个上行信道的预编码矩阵的指示反馈给UE。
基站测量预编码后的Class B SRS,计算得到上行预编码矩阵索引(TPMI)和秩索引(TRI)并通知给UE。基站可以通过UL Grant(上行授权)信令告知UE应使用的调制编码方案(MCS)等级。可选地,基站也可以将信道质量指示(CQI)通知给UE。
在上述示例过程中,当基站和UE之间例如通过波束扫描过程建立起了较为精细的波束对链接后,如果仅通过高层信令如RRC信令仅为UE配置了Type 1 Class A的SRS,那么UE则只发送Class A的SRS,并通过基站反馈的TPMI来发送数据。另一方面,当基站和UE之间例如仅通过初始接入过程建立起较为粗糙的波束对链接后,如果基站通过高层信令如RRC层信令不但为UE配置了Type 1 Class A的SRS,还为该UE配置了Class B K=1 个资源的SRS,则UE通过上述流程进行混合上行CSI获取。
接下来,结合图16说明信道状态信息的获取过程的示例。
首先,UE与基站进行波束扫描过程,基站测量SRS参考信号,进行上行发射(UL Tx)波束选择,例如选择接收功率(RSRP)最强的上行发射波束,并且向UE发送指示所选波束的第一SRS资源指示(Type I SRI)。由于所有上行发射波束传输由不同资源承载的SRS,基站与UE都可以通过SRS的资源指示来识别相应的波束。
接下来,UE通过全部SRS端口进行发送,基站测量全部SRS端口并计算优选的UL预编码器,并且向UE发送指示优选UL Tx预编码器(W1)的部分PMI。
接下来,UE根据基站反馈的UL Tx预编码器W1对SRS进行预编码并发送预编码SRS,基站进行测量并计算能够指示更精细的预编码矩阵W2的上行信道状态信息(UL CSI),从而向UE反馈上行TPMI、TRI以及/或CQI。
最后,UE利用基站指示的预编码器W1*W2对数据符号进行预编码以进行PUSCH发送,基站进行数据检测并且进行混合自动重传请求(HARQ)反馈。
在前面对于根据本发明实施例的用于用户设备侧的电子装置的描述过程中,显然也公开了一些过程和方法。接下来,在不重复前面已经描述的细节的情况下,给出对根据本发明一个实施例的用于用户设备侧的无线通信方法的说明。
如图3所示,根据一个实施例,用于用户设备侧的无线通信方法包括以下步骤:
S310,发送非预编码的第一上行参考信号;
S320,接收基站对第一上行参考信号的反馈;以及
S330,基于该反馈,发送经预编码的第二上行参考信号。
此外,本发明实施例还包括用于基站侧的电子装置。
如图4所示,根据一个实施例的用于基站侧的电子装置400包括处理电路410,处理电路410包括接收控制单元411和发送控制单元413。
接收控制单元411被配置为进行控制以从用户设备接收非预编码的第一上行参考信号。
发送控制单元413被配置为进行控制以基于第一上行参考信号向该用户设备发送反馈。
接收控制单元411还被配置为进行控制以从该用户设备接收基于该反馈发送的经预编码的第二上行参考信号。
图5示出了根据一个实施例的用于基站侧的无线通信方法,其包括以下步骤:
S510,从用户设备接收非预编码的第一上行参考信号;
S520,基于第一上行参考信号,向该用户设备发送反馈;以及
S530,从该用户设备接收基于该反馈发送的经预编码的第二上行参考信号。
在以上描述的根据本发明的第一方面的实施方式中,采用了Class A+K=1 Class B的混合CSI机制,其中Class A表示非预编码SRS,K=1 Class B表示预编码SRS资源数量为1的预编码SRS。
根据本发明的另一方面的实施方式,提供一种K>1 Class B+K=1 Class B的混合CSI机制,K>1 Class B表示预编码SRS资源数量大于1的预编码SRS。接下来,将描述该方面的实施例。
仍然参照图1说明根据本发明第二方面的一个实施例的用于用户设备侧的电子装置。根据本实施例的电子装置100包括处理电路110,处理电路110包括发送控制单元111和接收控制单元113。
发送控制单元111被配置为进行控制以利用两个或更多个上行参考信号资源发送经预编码的第一上行参考信号。
接收控制单元113被配置为进行控制以接收基站对第一上行参考信号的反馈。
根据一个实施例,该反馈可以包括基站通过测量上述两个或更多个上行参考信号资源而选择的参考信号资源的指示信息。或者,该反馈可以包括基站对于每个预编码的上行参考信号资源的信道质量指示。
发送控制单元111还被配置为进行控制以基于该反馈发送经预编码的第二上行参考信号。
与图11所示的情形类似,在根据本发明第二方面的一个实施例中,发送控制单元111也可以被配置为进行控制来以第一周期发送第一上行参考信 号,并且以小于第一周期的第二周期发送第二上行参考信号。
根据一个实施例,接收控制单元113还可以被配置为进行控制以接收基站基于第二上行参考信号确定的上行信道状态信息。
作为示例,上行信道状态信息可以包括上行预编码矩阵索引。
在根据第二方面的实施例中,UE可以通过与前述实施例类似的方式进行波束扫描,基站例如通过反馈SRI(SRS资源指示)来通知UE其上行的发射波束。随后,UE可以在选定的模拟波束范围内通过预编码来发送K>1 Class B SRS资源。
特别地,UE可以根据所确定的上行发射波束来确定K>1个预编码SRS的预编码矩阵。例如,如果UE确定的上行波束在水平维度覆盖了60度到100度的40度空间,则UE可以选择K=4个预编码矩阵在水平空间上发射出分别覆盖60度到70度、70度到80度、80度到90度、90度到100度预编码的SRS。本领域技术人员可以理解,数字预编码亦可以使得无线电波具有一定的指向性,从而不同的预编码矩阵和相同的模拟波束叠加使用能够发射出分别覆盖不同角度的SRS。
图6示出了根据另一个实施例的用于用户设备侧的电子装置600的配置示例。电子装置600包括处理电路610,处理电路610包括确定单元615、发送控制单元611和接收控制单元613。发送控制单元611和接收控制单元613的配置与前面描述的发送控制单元和接收控制单元类似。
确定单元615被配置为根据波束的空间覆盖范围确定用于第一上行参考信号的上行参考信号资源的数量,该波束可以是通过波束扫描确定的或者是在初始接入阶段确定的。
接下来,参照图17A至图17D说明获取上行混合信道状态信息的示例方式。
如图17A所示,首先基于波束扫描来确定UE的发射波束和基站的接收波束。
接下来,如图17B所示,UE在所确定的模拟波束范围内利用K个资源发送K个分别预编码的SRS(例如第一个SRS资源上传输预编码的SRS端口1~4,第二个SRS资源上传输预编码的SRS端口5~8,以此类推),基站通过测量K个SRS资源,例如基于RSRP选择接收功率最强的一个预编码资源并通过SRI通知给UE,或者基站可以直接反馈每个预编码SRS资源所 对应的CQI给UE以让UE自行选择。
接下来,如图17C所示,UE通过所选的预编码资源所对应的预编码矩阵来收集上行CSI,例如包括TPMI、TRI。
最后,如图17D所示,UE通过收集到的上行CSI来确定用于数据传输的预编码矩阵以在上行数据信道PUSCH发送上行数据。
接下来,进一步参照图18说明上行K>1 Class B CSI的获取。
在确定了上行发射波束后,UE开始在该波束上发射预编码后的K>1资源的Class B SRS。预编码后的SRS端口数往往小于UE具有的TXRU个数。作为示例,图19示出了物理资源块(PRB)中K个SRS资源共存的示意图。图19中横轴t代表时间(即OFDM符号),纵轴f代表频率(即子载波)。
从时间的角度看,K>1 Class B的SRS发送周期较长,其目的是使得基站了解UE上行信道的大概情况,即哪个预编码器下的参考信号更为合适获取CSI。
基站在测量K>1 Class B SRS后,例如可以得到每个SRS资源的RSRP,并且可以将RSRP最大的SRS资源所承载的SRS的预编码器作为选定的预编码器,并且可以通过SRI通知UE。UE通过该SRI来识别基站所指示的预编码器并对SRS进行预编码并进行相较于K>1 Class B SRS更密集的发送,以便基站对该预编码的SRS进行测量并得到上行CSI。
如前所述,基站可以通过SRI来通知UE上行发射波束,此外基站也可以通过SRI来通知UE备选的预编码。相应地,可以采用以下示例方式来区别SRI的用途。
方式1:基站可以将SRI关联的SRS资源提前通知UE,基站可以通过高层信令如RRC来为UE配置SRS资源,例如使一部分资源仅用来进行上行波束扫描,一部分资源仅用来进行上行预编码SRS的发送,从而能够明确SRI对应的SRS资源的目的,即用于波束扫描还是用于上行CSI获取。
方式2:基站例如可以使用1比特(bit)的指示信息伴随SRI来通知UE该SRI的用途。例如,如bit“0”代表该SRI所指的SRS资源为用于波束扫描的SRS;bit“1”代表该SRI所指的SRS资源为用于CSI获取的SRS。
相应地,根据一个实施例,接收控制单元113可以被配置为进行控制以接收基站通知的上行参考信号资源,在该上行参考信号资源中,一部分资源可以仅用于上行波束扫描,一部分资源可以仅用于发送上行参考信号。
在一个实施例中,可以根据基站伴随上行参考信号资源指示发送的指示位来确定上行参考信号资源指示针对的是用于上行波束扫描的资源还是用于发送上行参考信号的资源。
此外,为了加快或免除上行的波束扫描的过程,可以仅通过初始接入阶段确定的波束对链接进行通信,UE可以使用预编码SRS技术来代替精细的波束对链接。
相应地,根据一个实施例,发送控制单元111可以被配置为进行控制以通过初始接入阶段确定的波束对链接来发送第一上行参考信号。
此后,可以进行上行K=1 Class B CSI获取。基站可以测量预编码后的K=1 Class B SRS,计算得到TPMI并通知UE。
作为示例,图20示出了信道状态信息的获取过程的示例。与图16所示的示例过程相比,图20所示的示例过程中在确定的UL Tx波束之后,UE发送K个预编码SRS资源,基站测量K个SRS资源,确定其中增益最强的波束,并且把对应的type II SRI指示至UE。
图7示出了根据本发明第二方面的一个实施例的用于用户设备侧的无线通信方法的过程示例,该方法包括以下步骤:
S710,利用两个或更多个上行参考信号资源发送经预编码的第一上行参考信号;
S720,接收基站对第一上行参考信号的反馈;以及
S730,基于反馈发送经预编码的第二上行参考信号。
接下来,仍然参照图4说明根据本发明第二方面的一个实施例的用于基站侧的电子装置的配置示例。根据本实施例的电子装置400包括处理电路410,处理电路410包括接收控制单元411和发送控制单元413。
接收控制单元411被配置为进行控制以从用户设备接收利用两个或更多个上行参考信号资源发送的经预编码的第一上行参考信号。
发送控制单元413被配置为进行控制以基于第一上行参考信号向用户设备发送反馈。
接收控制单元411还被配置为进行控制以接收用户设备基于该反馈发送的经预编码的第二上行参考信号。
图8示出了根据本发明第二方面的一个实施例的用于基站侧的无线通信 方法的过程示例,该方法包括以下步骤:
S810,从用户设备接收利用两个或更多个上行参考信号资源发送的经预编码的第一上行参考信号;
S820,基于第一上行参考信号向用户设备发送反馈;以及
S830,接收用户设备基于该反馈发送的经预编码的第二上行参考信号。
如图9所示,根据一个实施例,用于用户设备侧的无线通信设备包括:发送控制装置910,被配置为发送非预编码的第一上行参考信号;以及接收控制装置920,被配置成接收基站对第一上行参考信号的反馈;发送控制装置910还被配置成基于该反馈发送经预编码的第二上行参考信号。
仍然参照图9,根据另一个实施例,用于用户设备侧的无线通信设备包括:发送控制装置910,被配置为利用两个或更多个上行参考信号资源发送经预编码的第一上行参考信号;以及接收控制装置920,被配置为接收基站对第一上行参考信号的反馈;发送控制装置910还被配置为基于该反馈发送经预编码的第二上行参考信号。
如图10所示,根据一个实施例,用于基站侧的无线通信设备包括:接收控制装置1010,被配置为从用户设备接收非预编码的第一上行参考信号;以及发送控制装置1020,被配置为基于第一上行参考信号,向用户设备发送反馈;接收控制装置1010还被配置为从用户设备接收基于该反馈发送的经预编码的第二上行参考信号。
仍然参照图10,根据另一个实施例,用于基站侧的无线通信设备包括:接收控制装置1010,被配置为从用户设备接收利用两个或更多个上行参考信号资源发送的经预编码的第一上行参考信号;以及发送控制装置1020,被配置为基于第一上行参考信号,向用户设备发送反馈;接收控制装置1010还被配置为接收用户设备基于该反馈发送的经预编码的第二上行参考信号。
此外,本发明实施例还包括计算机可读介质,其包括可执行指令,当可执行指令被信息处理设备执行时,使得信息处理设备执行根据上述实施例的方法。
作为示例,上述方法的各个步骤以及上述装置的各个组成模块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可以从存储介质或网络向具有专用硬件结构的计算机(例如图21所示的通用计算机2100)安装构成用于实施上述方法的软件的程序,该计算机在安装 有各种程序时,能够执行各种功能等。
在图21中,中央处理单元(即CPU)2101根据只读存储器(ROM)2102中存储的程序或从存储部分2108加载到随机存取存储器(RAM)2103的程序执行各种处理。在RAM 2103中,也根据需要存储当CPU 2101执行各种处理等等时所需的数据。CPU 2101、ROM 2102和RAM 2103经由总线2104彼此链路。输入/输出接口2105也链路到总线2104。
下述部件链路到输入/输出接口2105:输入部分2106(包括键盘、鼠标等等)、输出部分2107(包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等)、存储部分2108(包括硬盘等)、通信部分2109(包括网络接口卡比如LAN卡、调制解调器等)。通信部分2109经由网络比如因特网执行通信处理。根据需要,驱动器2110也可链路到输入/输出接口2105。可拆卸介质2111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器2110上,使得从中读出的计算机程序根据需要被安装到存储部分2108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质2111安装构成软件的程序。
本领域的技术人员应当理解,这种存储介质不局限于图21所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质2111。可拆卸介质2111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 2102、存储部分2108中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本发明的实施例还涉及一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本发明实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本发明的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
本申请的实施例还涉及以下电子设备。在电子设备用于基站侧的情况下,电子设备可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,电子设备可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。优选地电子设备可以被实现 为5G***中的gNB。电子设备可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
电子设备用于用户设备侧的情况下,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。此外,电子设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个或多个晶片的集成电路模块)。
[关于终端设备的应用示例]
图22是示出可以应用本公开内容的技术的智能电话2500的示意性配置的示例的框图。智能电话2500包括处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512、一个或多个天线开关2515、一个或多个天线2516、总线2517、电池2518以及辅助控制器2519。
处理器2501可以为例如CPU或片上***(SoC),并且控制智能电话2500的应用层和另外层的功能。存储器2502包括RAM和ROM,并且存储数据和由处理器2501执行的程序。存储装置2503可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2504为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2500的接口。
摄像装置2506包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2507可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2508将输入到智能电话2500的声音转换为音频信号。输入装置2509包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2500的输出图像。扬声器2511将从智能电话2500输出的音频信号转换为声音。
无线通信接口2512支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2512通常可以包括例如基带(BB)处理器2513和射频(RF)电路2514。BB处理器2513可以执行例如编码/解码、 调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2514可以包括例如混频器、滤波器和放大器,并且经由天线2516来传送和接收无线信号。无线通信接口2512可以为其上集成有BB处理器2513和RF电路2514的一个芯片模块。如图22所示,无线通信接口2512可以包括多个BB处理器2513和多个RF电路2514。虽然图22示出其中无线通信接口2512包括多个BB处理器2513和多个RF电路2514的示例,但是无线通信接口2512也可以包括单个BB处理器2513或单个RF电路2514。
此外,除了蜂窝通信方案之外,无线通信接口2512可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2512可以包括针对每种无线通信方案的BB处理器2513和RF电路2514。
天线开关2515中的每一个在包括在无线通信接口2512中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2516的连接目的地。
天线2516中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2512传送和接收无线信号。如图22所示,智能电话2500可以包括多个天线2516。虽然图22示出其中智能电话2500包括多个天线2516的示例,但是智能电话2500也可以包括单个天线2516。
此外,智能电话2500可以包括针对每种无线通信方案的天线2516。在此情况下,天线开关2515可以从智能电话2500的配置中省略。
总线2517将处理器2501、存储器2502、存储装置2503、外部连接接口2504、摄像装置2506、传感器2507、麦克风2508、输入装置2509、显示装置2510、扬声器2511、无线通信接口2512以及辅助控制器2519彼此连接。电池2518经由馈线向图22所示的智能电话2500的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2519例如在睡眠模式下操作智能电话2500的最小必需功能。
在图22所示的智能电话2500中,根据本发明实施例的用户设备侧的无线通信设备的收发装置可以由无线通信接口2512实现。根据本发明实施例的用户设备侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由处理器2501或辅助控制器2519实现。例如,可以通过由辅助控制器2519执行处理器2501的部分功能而减少电池2518的电力消 耗。此外,处理器2501或辅助控制器2519可以通过执行存储器2502或存储装置2503中存储的程序而执行根据本发明实施例的用户设备侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
[关于基站的应用示例]
图23是示出可以应用本公开内容的技术的gNB的示意性配置的示例的框图。gNB 2300包括多个天线2310以及基站设备2320。基站设备2320和每个天线2310可以经由射频(RF)线缆彼此连接。
天线2310中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2320发送和接收无线信号。如图23所示,gNB 2300可以包括多个天线2310。例如,多个天线2310可以与gNB 2300使用的多个频带兼容。
基站设备2320包括控制器2321、存储器2322、网络接口2323以及无线通信接口2325。
控制器2321可以为例如CPU或DSP,并且操作基站设备2320的较高层的各种功能。例如,控制器2321根据由无线通信接口2325处理的信号中的数据来生成数据分组,并经由网络接口2323来传递所生成的分组。控制器2321可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器2321可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2322包括RAM和ROM,并且存储由控制器2321执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2323为用于将基站设备2320连接至核心网2324的通信接口。控制器2321可以经由网络接口2323而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2300与核心网节点或其他gNB可以通过逻辑接口(诸如NG接口和Xn接口)而彼此连接。网络接口2323还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2323为无线通信接口,则与由无线通信接口2325使用的频带相比,网络接口2323可以使用较高频带用于无线通信。
无线通信接口2325支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线2310来提供到位于gNB 2300的小区中的终端的无线连接。无线通信接口2325通常可以包括例如BB处理器2326和RF电 路2327。BB处理器2326可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2321,BB处理器2326可以具有上述逻辑功能的一部分或全部。BB处理器2326可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2326的功能改变。该模块可以为***到基站设备2320的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2327可以包括例如混频器、滤波器和放大器,并且经由天线2310来传送和接收无线信号。
如图23所示,无线通信接口2325可以包括多个BB处理器2326。例如,多个BB处理器2326可以与gNB 2300使用的多个频带兼容。如图23所示,无线通信接口2325可以包括多个RF电路2327。例如,多个RF电路2327可以与多个天线元件兼容。虽然图23示出其中无线通信接口2325包括多个BB处理器2326和多个RF电路2327的示例,但是无线通信接口2325也可以包括单个BB处理器2326或单个RF电路2327。
在图23所示的gNB 2300中,根据本发明实施例的基站侧的无线通信设备的收发装置可以由无线通信接口2325实现。根据本发明实施例的基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分也可以由控制器2321实现。例如,控制器2321可以通过执行存储在存储器2322中的程序而执行根据本发明实施例的基站侧的电子装置或无线通信设备的处理电路和/或各单元的功能的至少一部分。
在上面对本发明具体实施例的描述中,针对一种实施方式描述和/或示出的特征可以用相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、要素、步骤或组件的存在,但并不排除一个或更多个其它特征、要素、步骤或组件的存在或附加。
在上述实施例和示例中,采用了数字组成的附图标记来表示各个步骤和/或单元。本领域的普通技术人员应理解,这些附图标记只是为了便于叙述和绘图,而并非表示其顺序或任何其他限定。
此外,本发明的方法不限于按照说明书中描述的时间顺序来执行,也可以按照其他的时间顺序地、并行地或独立地执行。因此,本说明书中描述的方法的执行顺序不对本发明的技术范围构成限制。
尽管上面已经通过对本发明的具体实施例的描述对本发明进行了披露,但是,应该理解,上述的所有实施例和示例均是示例性的,而非限制性的。本领域的技术人员可在所附权利要求的精神和范围内设计对本发明的各种修改、改进或者等同物。这些修改、改进或者等同物也应当被认为包括在本发明的保护范围内。

Claims (27)

  1. 一种用于用户设备侧的电子装置,其包括处理电路,
    所述处理电路被配置为进行控制以:
    发送非预编码的第一上行参考信号;
    接收基站对所述第一上行参考信号的反馈;以及
    基于所述反馈,发送经预编码的第二上行参考信号。
  2. 根据权利要求1所述的电子装置,其中,所述处理电路被配置为进行控制来以第一周期发送所述第一上行参考信号,并且以小于所述第一周期的第二周期发送所述第二上行参考信号。
  3. 根据权利要求1所述的电子装置,其中,所述处理电路还被配置为控制进行波束扫描,并且在通过所述波束扫描确定的波束上进行所述第一上行参考信号的发送。
  4. 根据权利要求1所述的电子装置,其中,所述处理电路被配置为进行控制以在初始接入阶段确定的波束上进行所述第一上行参考信号的发送。
  5. 根据权利要求1所述的电子装置,其中,所述反馈包括所述基站基于所述第一上行参考信号确定的预编码矩阵指示。
  6. 根据权利要求1所述的电子装置,其中,所述处理电路还被配置为进行控制以接收所述基站基于所述第二上行参考信号确定的上行信道状态信息。
  7. 根据权利要求6所述的电子装置,其中,所述上行信道状态信息包括上行预编码矩阵索引和秩索引。
  8. 根据权利要求1所述的电子装置,其中,所述处理电路被配置为通过功率提升方式发送所述第一上行参考信号,所述功率提升方式包括:
    在含有所述第一上行参考信号的正交频分多路复用符号内,将功率集中到承载所述第一上行参考信号的资源单元上。
  9. 根据权利要求1所述的电子装置,其中,所述处理电路被配置为通过功率提升方式发送所述第一上行参考信号,所述功率提升方式包括:
    在一个含有所述第一上行参考信号的正交频分多路复用符号内仅发送一个上行参考信号端口。
  10. 根据权利要求8或权利要求9所述的电子装置,其中,所述功率提升方式还包括:
    在含有所述第一上行参考信号的正交频分多路复用符号内非上行参考信号的资源单元配置零功率。
  11. 根据权利要求8或权利要求9所述的电子装置,其中,所述处理电路被配置为进行控制以向所述基站上报关于是否使用所述功率提升方式的指示信息。
  12. 一种用于用户设备侧的无线通信方法,包括:
    发送非预编码的第一上行参考信号;
    接收基站对所述第一上行参考信号的反馈;以及
    基于所述反馈,发送经预编码的第二上行参考信号。
  13. 一种用于基站侧的电子装置,其包括处理电路,
    所述处理电路被配置为进行控制以:
    从用户设备接收非预编码的第一上行参考信号;
    基于所述第一上行参考信号,向所述用户设备发送反馈;以及
    从所述用户设备接收基于所述反馈发送的经预编码的第二上行参考信号。
  14. 一种用于基站侧的无线通信方法,包括:
    从用户设备接收非预编码的第一上行参考信号;
    基于所述第一上行参考信号,向所述用户设备发送反馈;以及
    从所述用户设备接收基于所述反馈发送的经预编码的第二上行参考信号。
  15. 一种用于用户设备侧的电子装置,其包括处理电路,
    所述处理电路被配置为进行控制以:
    利用两个或更多个上行参考信号资源发送经预编码的第一上行参考信号;
    接收基站对所述第一上行参考信号的反馈;以及
    基于所述反馈,发送经预编码的第二上行参考信号。
  16. 根据权利要求15所述的电子装置,其中,所述处理电路被配置为进行控制来以第一周期发送所述第一上行参考信号,并且以小于所述第一周期的第二周期发送所述第二上行参考信号。
  17. 根据权利要求15所述的电子装置,其中,所述处理电路还被配置为根据波束的空间覆盖范围确定用于所述第一上行参考信号的上行参考信号资源的数量,其中所述波束是通过波束扫描确定的或者是在初始接入阶段确定的。
  18. 根据权利要求15所述的电子装置,其中,所述反馈包括:
    所述基站通过测量所述两个或更多个上行参考信号资源而选择的参 考信号资源的指示信息;或者
    所述基站对于每个预编码的上行参考信号资源的信道质量指示。
  19. 根据权利要求15所述的电子装置,其中,所述处理电路被配置为进行控制以接收所述基站通知的上行参考信号资源,其中,一部分资源仅用于上行波束扫描,一部分资源仅用于发送上行参考信号。
  20. 根据权利要求15所述的电子装置,其中,所述处理电路被配置为根据所述基站伴随上行参考信号资源指示发送的指示位来确定所述上行参考信号资源指示针对的是用于上行波束扫描的资源还是用于发送上行参考信号的资源。
  21. 根据权利要求15所述的电子装置,其中,所述处理电路被配置为进行控制以通过初始接入阶段确定的波束对链接来发送所述第一上行参考信号。
  22. 根据权利要求15所述的电子装置,其中,所述处理电路还被配置为进行控制以接收所述基站基于所述第二上行参考信号确定的上行信道状态信息。
  23. 根据权利要求22所述的电子装置,其中,所述上行信道状态信息包括上行预编码矩阵索引。
  24. 一种用于用户设备侧的无线通信方法,包括:
    利用两个或更多个上行参考信号资源发送经预编码的第一上行参考信号;
    接收基站对所述第一上行参考信号的反馈;以及
    基于所述反馈,发送经预编码的第二上行参考信号。
  25. 一种用于基站侧的电子装置,其包括处理电路,
    所述处理电路被配置为进行控制以:
    从用户设备接收利用两个或更多个上行参考信号资源发送的经预编码的第一上行参考信号;
    基于所述第一上行参考信号,向所述用户设备发送反馈;以及
    接收所述用户设备基于所述反馈发送的经预编码的第二上行参考信号。
  26. 一种用于基站侧的无线通信方法,包括:
    从用户设备接收利用两个或更多个上行参考信号资源发送的经预编码的第一上行参考信号;
    基于所述第一上行参考信号,向所述用户设备发送反馈;以及
    接收所述用户设备基于所述反馈发送的经预编码的第二上行参考信号。
  27. 一种计算机可读介质,其包括可执行指令,当所述可执行指令被信息处理设备执行时,使得所述信息处理设备执行根据权利要求12、14、24或26所述的方法。
PCT/CN2017/109691 2017-11-07 2017-11-07 电子装置、无线通信方法以及计算机可读介质 WO2019090467A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP17931537.9A EP3709526A1 (en) 2017-11-07 2017-11-07 Electronic device, wireless communication method, and computer-readable medium
PCT/CN2017/109691 WO2019090467A1 (zh) 2017-11-07 2017-11-07 电子装置、无线通信方法以及计算机可读介质
CN202211174205.2A CN115459822A (zh) 2017-11-07 2017-11-07 电子装置、无线通信方法以及计算机可读介质
RU2020112381A RU2748615C1 (ru) 2017-11-07 2017-11-07 Электронное устройство, способ беспроводной связи и машиночитаемый носитель информации
CN201780093093.9A CN110870212B (zh) 2017-11-07 2017-11-07 电子装置、无线通信方法以及计算机可读介质
JP2020510525A JP7268676B2 (ja) 2017-11-07 2017-11-07 電子装置
MX2020002170A MX2020002170A (es) 2017-11-07 2017-11-07 Dispositivo electronico, metodo de comunicacion inalambrica, y medio legible por computadora.
KR1020207007801A KR102524879B1 (ko) 2017-11-07 2017-11-07 전자 디바이스, 무선 통신 방법, 및 컴퓨터 판독가능 매체
US16/638,154 US11451352B2 (en) 2017-11-07 2017-11-07 Electronic device, wireless communication method, and computer-readable medium
AU2017438883A AU2017438883A1 (en) 2017-11-07 2017-11-07 Electronic device, wireless communication method, and computer-readable medium
US17/868,782 US11641257B2 (en) 2017-11-07 2022-07-20 Electronic device, wireless communication method, and computer-readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109691 WO2019090467A1 (zh) 2017-11-07 2017-11-07 电子装置、无线通信方法以及计算机可读介质

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/638,154 A-371-Of-International US11451352B2 (en) 2017-11-07 2017-11-07 Electronic device, wireless communication method, and computer-readable medium
US17/868,782 Continuation US11641257B2 (en) 2017-11-07 2022-07-20 Electronic device, wireless communication method, and computer-readable medium

Publications (1)

Publication Number Publication Date
WO2019090467A1 true WO2019090467A1 (zh) 2019-05-16

Family

ID=66438752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109691 WO2019090467A1 (zh) 2017-11-07 2017-11-07 电子装置、无线通信方法以及计算机可读介质

Country Status (9)

Country Link
US (2) US11451352B2 (zh)
EP (1) EP3709526A1 (zh)
JP (1) JP7268676B2 (zh)
KR (1) KR102524879B1 (zh)
CN (2) CN110870212B (zh)
AU (1) AU2017438883A1 (zh)
MX (1) MX2020002170A (zh)
RU (1) RU2748615C1 (zh)
WO (1) WO2019090467A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3895333A1 (en) 2018-12-11 2021-10-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for configuring beamforming operations in a wireless communication network
WO2020119892A1 (en) 2018-12-11 2020-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for beamforming control in a wireless communication network
US11444740B2 (en) * 2019-07-09 2022-09-13 Qualcomm Incorporated Event-triggered reference signal transmission for carrier selection
US11696312B2 (en) * 2020-11-24 2023-07-04 Qualcomm Incorporated Frequency and state dependent user equipment beam patterns
US20230291612A1 (en) * 2022-03-09 2023-09-14 Qualcomm Incorporated Channel state feedback using demodulation reference signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064924A (zh) * 2009-11-16 2011-05-18 株式会社Ntt都科摩 一种上行数据重传时的中继方法及移动通信***
CN103312393A (zh) * 2012-03-14 2013-09-18 中兴通讯股份有限公司 一种上行协作多点方法及***
CN106160952A (zh) * 2015-04-17 2016-11-23 ***通信集团公司 一种信道信息反馈方法及装置
CN106301490A (zh) * 2015-05-15 2017-01-04 索尼公司 无线通信***以及无线通信***中的装置和方法
CN106941368A (zh) * 2016-01-04 2017-07-11 ***通信集团公司 一种数据传输方法及基站

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166052B (zh) * 2006-10-19 2012-05-23 株式会社Ntt都科摩 一种多输入多输出***的预编码方法及使用该方法的设备
US8369450B2 (en) * 2007-08-07 2013-02-05 Samsung Electronics Co., Ltd. Pilot boosting and traffic to pilot ratio estimation in a wireless communication system
EP2430769B1 (en) * 2009-03-16 2017-09-13 BlackBerry Limited Transmission using common and dedicated pilots
US8693429B2 (en) 2009-03-31 2014-04-08 Qualcomm Incorporated Methods and apparatus for generation and use of reference signals in a communications system
EP2486710B1 (en) * 2009-10-05 2024-06-05 Nokia Solutions and Networks Oy Uplink transmission mode switching in single user multiple- input communication
US8526519B2 (en) * 2009-12-14 2013-09-03 Texas Instruments Incorporated Multi-rank precoding matrix indicator (PMI) feedback in a multiple-input multiple-output (MIMO) system
WO2011131127A1 (zh) * 2010-04-20 2011-10-27 ***通信集团公司 发送与接收信道探测参考信号的方法、装置与***
CN112448747A (zh) * 2014-09-12 2021-03-05 索尼公司 无线通信设备和无线通信方法
US10826661B2 (en) * 2015-08-10 2020-11-03 Apple Inc. Enhanced sounding reference signaling for uplink beam tracking
CN108289330B (zh) * 2017-01-09 2022-12-02 中兴通讯股份有限公司 上行参考信号信息的指示方法及装置
US11444674B2 (en) * 2017-08-11 2022-09-13 Telefonaktiebolaget Lm Ericsson (Publ) Precoding in a multi-user multiple-input multiple-output wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064924A (zh) * 2009-11-16 2011-05-18 株式会社Ntt都科摩 一种上行数据重传时的中继方法及移动通信***
CN103312393A (zh) * 2012-03-14 2013-09-18 中兴通讯股份有限公司 一种上行协作多点方法及***
CN106160952A (zh) * 2015-04-17 2016-11-23 ***通信集团公司 一种信道信息反馈方法及装置
CN106301490A (zh) * 2015-05-15 2017-01-04 索尼公司 无线通信***以及无线通信***中的装置和方法
CN106941368A (zh) * 2016-01-04 2017-07-11 ***通信集团公司 一种数据传输方法及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709526A4 *

Also Published As

Publication number Publication date
US11451352B2 (en) 2022-09-20
AU2017438883A1 (en) 2020-04-16
EP3709526A4 (en) 2020-09-16
RU2748615C1 (ru) 2021-05-28
KR20200080222A (ko) 2020-07-06
JP7268676B2 (ja) 2023-05-08
US11641257B2 (en) 2023-05-02
US20220376862A1 (en) 2022-11-24
MX2020002170A (es) 2020-07-14
EP3709526A1 (en) 2020-09-16
JP2021510940A (ja) 2021-04-30
CN110870212A (zh) 2020-03-06
CN115459822A (zh) 2022-12-09
US20200228268A1 (en) 2020-07-16
CN110870212B (zh) 2022-10-14
KR102524879B1 (ko) 2023-04-25

Similar Documents

Publication Publication Date Title
US10630363B2 (en) Electronic device in wireless communication system, and wireless communication method
CN106470096B (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
WO2019090467A1 (zh) 电子装置、无线通信方法以及计算机可读介质
WO2019029515A1 (zh) 用于无线通信的电子设备、方法和介质
WO2017076250A1 (zh) 无线通信设备和无线通信方法
US10194333B2 (en) Terminal apparatus, base station, and program
CA2981197A1 (en) Wireless communication system, and device and method in wireless communication system
EP4114083A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
CN106416346B (zh) 设备和方法
WO2018205972A1 (zh) 电子设备和通信方法
CN111656845A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN112514433B (zh) 通信设备、通信控制方法和记录介质
WO2021088797A1 (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
US20220094402A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
CN108111210B (zh) 无线通信方法和无线通信设备
EP3280071A1 (en) Wireless communication device and method
WO2016121252A1 (ja) 装置及び方法
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
WO2022267910A1 (zh) 用于无线通信***的基站侧电子设备和终端侧电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510525

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017438883

Country of ref document: AU

Date of ref document: 20171107

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017931537

Country of ref document: EP

Effective date: 20200608