WO2019085408A1 - 磁控管温度调节方法、装置及***、变频电源及微波设备 - Google Patents

磁控管温度调节方法、装置及***、变频电源及微波设备 Download PDF

Info

Publication number
WO2019085408A1
WO2019085408A1 PCT/CN2018/083390 CN2018083390W WO2019085408A1 WO 2019085408 A1 WO2019085408 A1 WO 2019085408A1 CN 2018083390 W CN2018083390 W CN 2018083390W WO 2019085408 A1 WO2019085408 A1 WO 2019085408A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetron
variable frequency
anode
power supply
frequency power
Prior art date
Application number
PCT/CN2018/083390
Other languages
English (en)
French (fr)
Inventor
官继红
Original Assignee
深圳麦格米特电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦格米特电气股份有限公司 filed Critical 深圳麦格米特电气股份有限公司
Priority to JP2020524364A priority Critical patent/JP6987989B2/ja
Priority to KR1020207014410A priority patent/KR102319930B1/ko
Priority to EP18873316.6A priority patent/EP3706512B1/en
Publication of WO2019085408A1 publication Critical patent/WO2019085408A1/zh
Priority to US16/857,314 priority patent/US11696376B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/666Safety circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/664Aspects related to the power supply of the microwave heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/043Methods or circuits intended to extend the life of the magnetron

Definitions

  • the present application relates to the field of microwave devices, and in particular, to a magnetron temperature adjustment method and device thereof, a controller, a frequency conversion power supply, a magnetron temperature adjustment system, and a microwave device.
  • Microwave equipment is widely used in various fields, including industrial, military, and civilian fields.
  • Conventional microwave devices are capable of driving a magnetron to generate microwaves that cause microwaves to affect the load of the microwave device.
  • the purpose of the embodiments of the present application is to provide a method for controlling the temperature of a magnetron, a device thereof, a controller, a variable frequency power supply, a temperature control system for a magnetron, and a microwave device, which solve the problem that the magnetron is easy to work in the conventional technology.
  • the embodiment of the present application provides the following technical solutions:
  • an embodiment of the present application provides a method for adjusting a temperature of a magnetron, the method comprising: determining an anode current flowing through a magnetron or an input power of a variable frequency power source or an anode voltage applied to both ends of the magnetron, The input power or output power of the variable frequency power supply is used to drive the magnetron to operate; and the output power of the variable frequency power supply is adjusted according to the anode current or the input power or the anode voltage.
  • the adjusting the output power of the variable frequency power supply according to the anode voltage comprises: determining an anode voltage applied to both ends of the magnetron, an equivalent resistance of the magnetron, and the variable frequency power supply Output power; calculating an anode threshold voltage of the magnetron according to an anode voltage of the magnetron, an equivalent resistance of the magnetron, and an output power of the variable frequency power supply; according to the magnetron The anode threshold voltage adjusts the output power of the variable frequency power supply.
  • the determining the output power of the variable frequency power supply comprises: acquiring an input power and an input voltage of the variable frequency power supply; and calculating a corresponding relationship according to an input power, an input voltage, and a power efficiency of the variable frequency power supply. The output power of the variable frequency power supply.
  • the adjusting the output power of the variable frequency power supply according to the anode threshold voltage of the magnetron comprises: calculating an anode temperature of the magnetron according to an anode threshold voltage of the magnetron; The anode temperature of the magnetron adjusts the output power of the variable frequency power supply.
  • the adjusting the output power of the variable frequency power supply according to the anode temperature of the magnetron comprises: determining whether the anode temperature of the magnetron is greater than a preset temperature threshold; if greater than, reducing the output of the variable frequency power supply Power; if less than, maintain the operation of the variable frequency power supply.
  • the reducing the output power of the variable frequency power supply includes: determining an output power of the variable frequency power supply; determining whether an output power of the variable frequency power supply is greater than a preset minimum power; if greater than, maintaining the variable frequency power supply The work; if less than, stop the work of the variable frequency power supply.
  • the adjusting the output power of the variable frequency power supply according to the anode threshold voltage of the magnetron comprises: acquiring a preset association table, wherein the correlation table prestores an anode threshold voltage of the magnetron and the variable frequency power supply a mapping relationship between output powers; finding an output power corresponding to an anode threshold voltage of the magnetron from the preset correlation table; and adjusting an output power of the variable frequency power supply to the found output power.
  • the determining an anode voltage applied to both ends of the magnetron includes: determining an anode voltage corresponding to an input power of the variable frequency power source as an anode when an input power of the variable frequency power source falls within a preset power range Threshold voltage.
  • an embodiment of the present application provides a magnetron temperature adjustment device, the device comprising: a determining module, configured to determine an anode current flowing through a magnetron or an input power of a variable frequency power source or loaded on a magnetron An anode voltage at both ends, an input power or an output power of the variable frequency power source for driving the magnetron to operate; an adjustment module, configured to adjust the frequency conversion according to the anode current or the input power or the anode voltage The output power of the power supply.
  • an embodiment of the present application provides a controller, where the controller includes: at least one processor; and a memory communicatively coupled to the at least one processor; wherein the memory is stored with the At least one processor executes instructions that are executed by the at least one processor to enable the at least one processor to perform the magnetron temperature adjustment method of any of the above.
  • an embodiment of the present application provides a variable frequency power supply for driving a magnetron, the variable frequency power supply comprising: an inverter circuit for driving the magnetron; and a first voltage sampling circuit for sampling a first output voltage of the inverter circuit, wherein the first output voltage has a corresponding relationship with an anode voltage applied across the magnetron, the first voltage sampling circuit including a first input end, a second input end, and a first input voltage An output end, the first input end is connected to a first node between the frequency conversion circuit and the magnetron, and the second input end is connected between the frequency conversion circuit and the magnetron a second node; the controller is respectively connected to the first output end of the first voltage sampling circuit and the frequency conversion circuit, and the controller is loaded on the magnetron according to the first output voltage
  • the anode voltage of the magnetron is calculated by the correspondence of the anode voltages at both ends.
  • variable frequency power supply further includes an amplifying circuit, an input end of the amplifying circuit is connected to a first output end of the first voltage sampling circuit, and an output end of the amplifying circuit is connected to the controller.
  • an embodiment of the present application provides a magnetron temperature adjustment system, the system comprising: a magnetron; a variable frequency power supply connected to the magnetron for driving the magnetron; a voltage sampling circuit coupled between the variable frequency power supply and the magnetron for sampling a second output voltage of the variable frequency power supply, the second output voltage and an anode voltage applied to both ends of the magnetron Corresponding relationship; the controller is respectively connected to the output end of the second voltage sampling circuit and the variable frequency power supply, and the controller is loaded on both ends of the magnetron according to the second output voltage Based on the corresponding relationship of the anode voltages, the anode voltage across the magnetron is calculated.
  • an embodiment of the present application provides a microwave device, where the microwave device includes the foregoing controller.
  • an embodiment of the present application provides a non-transitory computer readable storage medium, where the non-transitory computer readable storage medium stores computer executable instructions for causing a microwave device to execute The magnetron temperature adjustment method according to any of the above.
  • the input current of the anode current or the variable frequency power source flowing through the magnetron or the anode voltage applied to both ends of the magnetron is determined, and the input power or output power of the variable frequency power source is used to drive the magnetron.
  • Work secondly, adjust the output power of the variable frequency power supply based on the anode current or input power or anode voltage. Therefore, it can adjust the output power of the variable frequency power supply in time to adjust the anode temperature of the magnetron to avoid excessive temperature damage of the magnetron.
  • FIG. 1 is a schematic structural diagram of a microwave device according to an embodiment of the present application.
  • 1a is a schematic diagram of an equivalent circuit model of a magnetron according to an embodiment of the present application
  • FIG. 1b is a schematic diagram showing changes in an anode voltage applied to both ends of a magnetron and an anode current following a change in a magnetron according to an embodiment of the present application;
  • FIG. 2 is a schematic structural diagram of another microwave device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram showing the relationship between the anode temperature and the anode voltage of a 1KW, 2450M magnetron according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram showing the relationship between power efficiency, input power, and input voltage of a variable frequency power supply according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a first voltage sampling circuit according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a first voltage sampling circuit according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a microwave device according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a microwave device according to still another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second voltage sampling circuit according to an embodiment of the present application.
  • FIG. 8a is a schematic diagram showing changes in an anode voltage applied to both ends of a magnetron and a second output voltage sampled by a second voltage sampling circuit according to an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of a controller according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a magnetron temperature adjusting device according to an embodiment of the present application.
  • Figure 10a is a schematic structural view of the adjustment module of Figure 10;
  • Figure 11 is a schematic structural view of the determining unit of Figure 10a;
  • Figure 12 is a schematic structural view of the adjusting unit of Figure 10a;
  • Figure 13 is another schematic structural view of the adjusting unit of Figure 10a;
  • Figure 14 is a schematic structural view of the first regulating subunit of Figure 12;
  • 15 is a schematic flow chart of a method for adjusting a temperature of a magnetron according to an embodiment of the present application
  • Figure 15a is a schematic flow chart of step 52 in Figure 15;
  • Figure 16 is a schematic flow chart of step 521 in Figure 15a;
  • Figure 17 is a schematic flow chart of step 523 of Figure 15a;
  • FIG 18 is another schematic flow chart of step 523 of Figure 15a;
  • FIG. 19 is a schematic flow chart of step 5233 in FIG. 17;
  • FIG. 20 is a schematic flow chart of step 52332 in FIG. 19.
  • the microwave device provided by the embodiment of the present application includes an industrial microwave device, a medical microwave device, a civilian microwave device, a military microwave device, and the like.
  • industrial microwave equipment can be used to rapidly heat, dry, and modify materials.
  • medical microwave equipment can be used for sterilization of drugs and ablation of lesions.
  • civilian microwave equipment can be used for micro-heated food and the like.
  • microwave devices can be used as target detection to navigate and the like.
  • the microwave device provided by the embodiment of the present application may be a variable frequency microwave device, or may be other types of microwave devices.
  • FIG. 1 is a schematic structural diagram of a microwave device according to an embodiment of the present application.
  • the microwave device 10 includes a variable frequency power supply 11 , a magnetron 12 , a working cavity 13 , and a cooling unit 14 .
  • the variable frequency power supply 11 is connected to the magnetron 12 .
  • the variable frequency power supply 11 includes a rectification filtering unit 111, a power conversion unit 112, a high voltage transformer 113, a high voltage rectification filtering unit 114, and an internal controller 116.
  • the input end of the rectifying and filtering unit 111 is used for accessing an external power source, the output end of the rectifying and filtering unit 111 is connected to the input end of the power converting unit 112, and the output end of the power converting unit 112 is connected to the primary winding of the high voltage transformer 113, and the high voltage transformer
  • the secondary winding of 113 is connected to the input of the high voltage rectification filtering unit 114, the output of the high voltage rectification filtering unit 114 is connected to the magnetron 12, and the controller 115 is connected to the power conversion unit 112.
  • the variable frequency power supply 11 is capable of driving the magnetron 12 to operate to provide the desired voltage and current to the magnetron 12.
  • the rectifying and filtering unit 111 is configured to access an external power source, and perform rectification and filtering processing on the external power source to output a DC voltage.
  • the external power source may be a mains voltage or an industrial voltage.
  • the internal controller 116 collects input voltage, current and other information, calculates the actual operating input power, and converts it into a required pulse width modulation signal (Pulse Width Modulation, PWM) or pulse frequency modulation signal (Pulse Frequency Modulation (PFM) or The mixed wave of the two is used to drive the power conversion unit 112 to operate at the rated power.
  • PWM pulse width modulation signal
  • PFM pulse frequency modulation signal
  • the mixed wave of the two is used to drive the power conversion unit 112 to operate at the rated power.
  • the high voltage rectifying and filtering unit 114 After the output of the high voltage transformer 113 is processed by the high voltage rectifying and filtering unit 114, the high voltage rectifying and filtering unit 114 outputs a smooth DC high voltage supply to the anode of the magnetron 12, and at the same time, it also supplies a filament voltage to the filament of the magnetron 12. .
  • the magnetron 12 is capable of converting the electrical energy provided by the variable frequency power supply 11 into a corresponding microwave, and heating the load 131 placed in the working cavity 13, for example, when the microwave device is a microwave oven, the working cavity 13 is placed to be slightly heated. food.
  • FIG. 1a is a schematic diagram of an equivalent circuit model of a magnetron according to an embodiment of the present application.
  • the equivalent circuit model can be equivalent to a circuit model in which the Zener diode ZD is connected in series with the equivalent resistor R.
  • the stable voltage of the Zener diode ZD is magnetic.
  • the anode threshold voltage of the control tube 12 and the equivalent resistance R are the equivalent internal resistance of the magnetron 12.
  • FIG. 1b is a schematic diagram of a variation of an anode voltage applied to both ends of a magnetron and an anode current following a change in a magnetron according to an embodiment of the present application.
  • the ordinate of the coordinate axis is the anode voltage
  • the anode voltage is Ebm
  • the abscissa is time
  • the time is t.
  • the anode threshold voltage is VT.
  • the ordinate of the coordinate axis 1b2 is the anode current
  • the anode current is It
  • the abscissa is time t.
  • the grid side power supply is gradually increased, and the absolute value of the anode output voltage of the variable frequency power source 11 is gradually increased, and gradually increases to the anode voltage corresponding to point a, that is, reaching the magnetron 12
  • the anode threshold voltage VT at which point the anode current It begins to flow through the magnetron 12.
  • the power frequency power supply continues to increase, the absolute value of the anode current It gradually increases, and the absolute value of the anode voltage also gradually increases.
  • the power-on time exceeds 5 microseconds, the power frequency power supply starts to drop, and the anode voltage Ebm decreases accordingly, until the anode voltage corresponding to point b is reached. After the point b, since the anode voltage Ebm is insufficient to drive the magnetron 12, The anode current It drops to zero.
  • the anode voltage is equal to the anode threshold voltage, and the user can choose to collect the anode voltage at point a or b to quickly calculate the anode threshold voltage.
  • Ebm VT + R * It, where a ⁇ t ⁇ b.
  • the cooling unit 14 can take away the heat generated when the variable frequency power supply 11 and the magnetron 12 operate, so that the variable frequency power supply 11 and the magnetron 12 can operate reliably and stably.
  • the rectifying and filtering unit 111, the power converting unit 112, the high voltage transformer 113, and the high voltage rectifying and filtering unit 114 may be summarized as an inverter circuit, that is, a rectifying and filtering unit 111, a power converting unit 112, a high voltage transformer 113, and a high voltage rectification unit.
  • the function of the filtering unit 114 can be implemented in the form of an inverter circuit.
  • variable frequency driving power source for driving the magnetron 12 in addition to the various electrical units (for example, the rectifying and filtering unit 111, the power converting unit 112, the high voltage transformer 113, and the high voltage rectifying and filtering unit 114) described above, in addition, it can also add other electrical units to the inverter circuit according to business needs to further realize other application requirements.
  • the microwave device 10 is liable to cause the easy operation of the magnetron 12 in an over-temperature state due to the uncertainty of the load 131.
  • the moisture of the corn is still acceptable, and the microwave output from the magnetron is mostly absorbed by the corn, and the temperature rise of the magnetron at this time is relatively low.
  • the popcorn process is about to end, the moisture content of the corn is small, and most of the microwaves are not absorbed by the corn and are reflected back into the magnetron, which causes the magnetron temperature to rise sharply.
  • the proportion of magnetron damage in household microwave oven damage is 50%, and the main cause of magnetron damage is over temperature.
  • industrial microwave equipment is often used for drying materials.
  • the material has sufficient water content, and the temperature rise of the magnetron is controllable.
  • the water content of the material is low, and a large amount of microwaves are reflected back into the magnetron, causing the magnetron to heat up violently, which may easily cause overheating damage of the magnetron.
  • the common 2450M industrial microwave equipment has a higher proportion of magnetron damage, and the annual damage rate is as high as 15%. The main reason is over temperature.
  • the embodiment of the present application provides another microwave device.
  • the variable frequency power supply in the microwave device 10 further includes a first voltage sampling circuit 117, and the first voltage sampling circuit 117 includes a first input end 117a, The second input end 117b and the first output end 117c are connected to the first node 116a between the frequency conversion circuit and the magnetron 12, and the second input end 117b is connected between the frequency conversion circuit and the magnetron 12.
  • the second node 116b is connected to the first node 116a between the frequency conversion circuit and the magnetron 12.
  • the specific working principle of the microwave device adjusting the anode temperature of the magnetron is as follows:
  • variable frequency power supply 11 operates in accordance with the set power.
  • the set power can be the default initial power inside the variable frequency power supply 11 .
  • internal controller 116 receives the anode voltage of the magnetron fed back by first voltage sampling circuit 117.
  • the internal controller 116 can then calculate the anode temperature of the magnetron 12 based on the anode voltage of the magnetron 12.
  • FIG. 3 is a schematic diagram showing the relationship between the anode temperature and the anode threshold voltage of a 1KW, 2450M magnetron according to an embodiment of the present application.
  • the abscissa represents the anode threshold voltage of the magnetron 12
  • the ordinate represents the anode temperature of the magnetron 12.
  • the anode temperature of the magnetron 12 is gradually increased, and the corresponding anode threshold voltage is correspondingly increased.
  • the anode threshold voltage of the magnetron light 12 has risen to about -3100 volts. At this time, the life of the magnetron 12 is drastically shortened, and the magnet attached to the anode of the magnetron is also at risk of detonation at any time.
  • the anode temperature ta of the magnetron 12 has a positive correlation with the anode threshold voltage VT, and such a relationship can be described by the following formula (1):
  • FIG. 4 is a schematic diagram showing the relationship between power efficiency, input power, and input voltage of a variable frequency power supply according to an embodiment of the present application.
  • the abscissa represents the input power of the variable frequency power supply
  • the ordinate represents the power efficiency of the variable frequency power supply.
  • the power efficiency of the variable frequency power supply is positively correlated with the input power.
  • the power efficiency of the variable frequency power supply is positively correlated with the input voltage.
  • variable frequency power supply operates in the set power operation mode, and the actual operating input power Pin is known.
  • output power Po can be calculated by the following formula (3):
  • the anode voltage Ebm can be calculated by the following equation (4) by collecting the anode current It of the magnetron:
  • the internal controller 116 calculates the anode voltage Ebm across the magnetron 12 based on the first output voltage V0 of the first voltage sampling circuit 117 sampling the frequency conversion circuit, that is, the anode voltage Ebm is known.
  • the anode voltage of the magnetron 12 is generally greater than 1000 volts, and the collection cost of the anode voltage Ebm of the magnetron 12 directly collected by the external voltage detecting device is relatively high, and the collection difficulty is high. Therefore, in this embodiment, the anode voltage Ebm is indirectly derived by collecting the first output voltage of the frequency conversion circuit, which is simple and easy to implement and saves cost.
  • the internal controller 116 acquires the input power Pin of the variable frequency power supply 11 and the input voltage Vin, according to the correspondence between the input power Pin, the input voltage Vin, and the power efficiency EFF of the variable frequency power supply 11 (in combination with the equation shown in FIG. 4 (2) )), determined to the power efficiency EFF. Then, the internal controller 116 calculates the output power Po of the variable frequency power supply 11 based on the equation (3). Next, the internal controller 116 is based on the following equation:
  • the internal controller 116 combines the equation (1) to calculate the anode temperature of the magnetron 12 based on the anode threshold voltage of the magnetron 12.
  • the internal controller 116 adjusts the output power Po of the variable frequency power supply 11 according to the anode temperature of the magnetron 12, wherein the output power Po is used to drive the magnetron 11 to operate to change the anode temperature of the magnetron 11.
  • the internal controller 116 determines whether the anode temperature of the magnetron 12 is greater than a preset temperature threshold. If it is greater than, reduces the output power Po of the variable frequency power source 11 to lower the anode temperature of the magnetron 12. If it is less than, the operation of the variable frequency power supply 11 is maintained, that is, the original output power Po of the variable frequency power supply 11 can be maintained, and the output of the variable frequency power supply 11 can be improved under the premise that the anode temperature of the magnetron 12 is less than the preset temperature threshold. Power Po.
  • the preset temperature threshold here is set by the user according to the business needs.
  • the internal controller 116 when the internal controller 116 reduces the output power Po of the variable frequency power supply 11 when the anode temperature of the magnetron 12 is greater than the preset temperature threshold, the internal controller 116 determines whether the output power Po of the variable frequency power supply 11 is greater than The preset minimum power, if greater, maintains the operation of the variable frequency power supply 11 and continues to detect the anode temperature of the magnetron 12. If it is smaller, it indicates that the variable frequency power supply 11 has lost the ability to control the anode temperature of the magnetron 12. At this time, even if the variable frequency power supply 11 is operated at the preset minimum power, the anode temperature of the magnetron 12 will still be over temperature.
  • the internal controller 116 should stop the operation of the variable frequency power supply 11 to ensure that the magnetron 12 is protected from operating in an over temperature condition.
  • the cooling unit 14 in the microwave device 10 fails, for example, a malfunction of a cooling water pump, a fan, or the like, it is extremely easy to cause the variable frequency power supply 11 to operate at the minimum power set by it, and the magnetron 12 will also Over temperature, therefore, it is very necessary to adopt a shutdown strategy for the variable frequency power supply at this time.
  • the above embodiments illustrate an adjustment method by "calculating the anode temperature of the magnetron according to the anode voltage of the magnetron and further adjusting the output power of the variable frequency power source according to the anode temperature of the magnetron",
  • the internal controller 116 can also directly determine the output power of the variable frequency power supply 11 according to the anode voltage of the magnetron 12 to further adjust the output power of the variable frequency power supply 11. Therefore, first, the internal controller 116 acquires a preset association table.
  • the preset association table is obtained by the user in advance according to practical experience, wherein the association table prestores a mapping relationship between the anode threshold voltage of the magnetron 12 and the output power of the variable frequency power source 11.
  • the internal controller 116 traverses the preset correlation table according to the calculated anode threshold voltage of the magnetron, and finds the magnetron 12 from the preset correlation table. The output power of the variable frequency power supply 11 corresponding to the anode threshold voltage. Finally, the internal controller 116 adjusts the current output power of the variable frequency power supply 11 to the found output power, thereby completing the adjustment of the anode temperature of the magnetron 12.
  • the embodiment of the present application directly collects the anode voltage capable of accurately reflecting the magnetron 12 to indirectly obtain the anode threshold voltage of the magnetron 12, thereby accurately determining the anode temperature, it has at least the following advantages:
  • the temperature parameter detected by the temperature sensor disposed in the outer casing of the magnetron 12 is used to directly detect the temperature of the magnetron. Since the outer casing of the magnetron 12 is an iron shell, the thermal conductivity is not good, and is different. Under the cooling conditions, the temperature of the outer casing does not truly reflect the true anode temperature of the magnetron 12.
  • the cost of setting the temperature probe is relatively high, and the corresponding circuit is needed to process the temperature information. Therefore, such a method has no cost advantage.
  • the output power of the variable frequency power supply 11 is adjusted to adjust the anode temperature of the magnetron 12 to ensure that the magnetron 12 avoids over temperature damage.
  • the anode threshold voltage applied across the magnetron it is also possible to determine the anode by the correspondence between the anode threshold voltage of the magnetron and the input power of the variable frequency power source. Threshold voltage. For example, when the input power of the variable frequency power supply falls within a preset power range, it is determined that the anode voltage corresponding to the input power of the variable frequency power source is the anode threshold voltage.
  • the preset power range is determined according to the design of the product, and the preset power range may also be a single point input power value, for example, an instantaneous power value at a specific moment.
  • the following embodiments may be used to adjust the output power of the variable frequency power supply, for example, by determining the anode current flowing through the magnetron, according to the anode current. Adjust the output power of the variable frequency power supply.
  • the anode current is Ia or Ib or is located in the vicinity of Ia or Ib
  • the anode voltage corresponding to Ia or Ib is the anode threshold voltage VT
  • the anode current corresponding to the region near Ia or Ib corresponds to
  • the anode voltage can be estimated to be equivalent to the anode threshold voltage VT.
  • the user can establish a mapping table between the anode threshold voltage VT and the anode current Ia or Ib, by passing the sampled anode current Ia or Ib looks up the mapping table to determine the anode threshold voltage VT.
  • the input power of the variable frequency power supply can also adjust the input power of the variable frequency power supply according to the input power of the variable frequency power supply.
  • the input power of the variable frequency power supply is functionally related to the anode current Ia or Ib, and the anode threshold voltage VT of each magnetron is mapped to the anode current Ia or Ib.
  • the user can establish a mapping table for the anode threshold voltage VT and the input power, and determine the anode threshold voltage VT by looking up the mapping table according to the input power.
  • the user can establish a mapping table between the anode threshold voltage VT and the anode voltage, and determine the anode threshold voltage VT by looking up the mapping table according to the anode voltage.
  • the high voltage rectification filtering unit 114 includes a first diode D1, a second diode D2, a first capacitor C1, and a second capacitor C2.
  • the first voltage sampling circuit 117 includes a first resistor R1 and a second resistor R2. One end of the first resistor R1 is connected to the first node 116a, and the other end of the first resistor R1 and one end of the second resistor R2 are connected to the second node. 116b, the other end of the second resistor R2 is grounded, wherein the first output voltage V0 is collected from the second node 116b.
  • V0 Ebm * R2 / (R1 + R2). Therefore, by obtaining V0, Ebm can be calculated.
  • variable frequency power supply 11 in order to increase the amplitude of the sampled voltage and the carrying capacity, as shown in FIG. 5a, the difference from the embodiment shown in FIG. 5 is that the variable frequency power supply 11 further includes an amplifying circuit 118, an amplifying circuit.
  • the input of the 118 is coupled to the first output of the first voltage sampling circuit 117, and the output of the amplifying circuit 118 is coupled to the internal controller 116.
  • the amplification current 118 can be an operational amplifier that can increase the voltage amplitude of the first output voltage and improve the carrying capacity.
  • the microwave device 10 further includes an external controller 15 that is connected to the variable frequency power supply 11.
  • the external controller 15 transmits the target power information to the variable frequency power supply 11 to convert the power conversion unit 112 in the variable frequency power supply 11 into a desired pulse width modulation signal (Pulse Width Modulation, PWM) or a pulse frequency modulation signal (Pulse Frequency Modulation, PFM). ) or a mixture of the two, working at rated power.
  • PWM pulse width modulation signal
  • PFM pulse frequency modulation signal
  • the external controller 15 also receives various types of control information fed back by the variable frequency power supply 11 to adjust the output power of the variable frequency power supply, thereby achieving the purpose of flexibly adjusting the system power and monitoring the operating condition of the variable frequency power supply 11.
  • control logics for adjusting the temperature of the magnetron described in the above various embodiments may exist in the form of software modules, and the software modules may not only store in the form of instructions.
  • the internal controller 116 in the variable frequency power supply 11 is also stored in the external controller 15.
  • the embodiment of the present application further provides a magnetron temperature adjustment system.
  • the magnetron temperature adjustment system 20 includes a magnetron 21, a variable frequency power supply 22, a second voltage sampling circuit 23, an external controller 24, a working chamber 25, and a cooling unit 26.
  • the variable frequency power supply 22 is connected to the magnetron 21 for driving the magnetron 21;
  • the second voltage sampling circuit 23 is coupled between the variable frequency power supply 22 and the magnetron 21 for sampling the second output voltage of the variable frequency power supply 22,
  • the two output voltages correspond to the anode voltages applied across the magnetron 21 for sampling the anode current flowing through the magnetron 21.
  • the external controller 24 is connected to the output of the second voltage sampling circuit 23 and the variable frequency power supply 22, respectively.
  • the magnetron 21, the variable frequency power supply 22, the second voltage sampling circuit 23, and the external controller 24 can refer to the explanations made in the above embodiments without causing content conflicts. Narration.
  • the external controller 24 herein stores a plurality of instructions for adjusting various control logics of the magnetron temperature, and the internal controller of the variable frequency power supply 22 serves as a control core for the normal operation of the variable frequency power supply 22. .
  • the second voltage sampling circuit 23 includes: a first winding W1, a third capacitor C3, a fourth capacitor C4, and a third a diode D3, a fourth diode D4, and a third resistor R3, wherein the first winding W1 and the secondary winding W2 and W3 of the high voltage rectifying and filtering unit of the variable frequency power supply 22 have a proportional relationship, so that the third resistor is obtained.
  • the voltage V0 at both ends of R3 (that is, the second output voltage) can calculate the anode voltage Ebm according to the proportional relationship.
  • the voltage waveform of the second output voltage V0 and the voltage waveform of the anode voltage Ebm are both sinusoidal.
  • Ebm can be calculated by obtaining V0.
  • the anode threshold voltage can be calculated, and the temperature of the magnetron can be adjusted according to the anode threshold voltage.
  • the magnetron temperature adjustment system 20 can be applied to any type of microwave device.
  • the internal controller or the external controller functions as a controller, which may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), A microcontroller, ARM (Acorn RISC Machine) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination of these components.
  • the controller can be any conventional processor, controller, microcontroller or state machine.
  • the controller can also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • FIG. 9 is a schematic structural diagram of a controller according to an embodiment of the present application.
  • the controller 30 includes: at least one processor 31 and a memory 32 communicatively coupled to the at least one processor 31; wherein, a processor 31 is shown in FIG.
  • the processor 31 and the memory 32 may be connected by a bus or other means, as exemplified by a bus connection in FIG.
  • the memory 32 stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor 31 to perform the magnetron temperature adjustment described above Control logic.
  • the controller 30 can adjust the output power of the variable frequency power supply in time to adjust the anode temperature of the magnetron to ensure that the magnetron avoids over temperature damage.
  • an embodiment of the present application provides a magnetron temperature adjustment device.
  • the magnetron temperature adjustment device is a software system that can be stored in the internal controller 116 in the variable frequency power supply 11 illustrated in Figures 2 and 6, or in the external controller illustrated in Figure 7.
  • the magnetron temperature adjustment device includes a plurality of instructions stored in a memory, the processor can access the memory, and invoke instructions to perform the control logic of the magnetron temperature adjustment.
  • the magnetron temperature adjustment device 40 includes a determination module 41 and an adjustment module 42.
  • the determining module 41 is configured to determine an input current of the anode current or the variable frequency power source flowing through the magnetron or an anode voltage applied to both ends of the magnetron, and the input power or output power of the variable frequency power source is used to drive the magnetron to operate.
  • the adjustment module 42 is configured to adjust the output power of the variable frequency power supply according to the anode current or the input power or the anode voltage.
  • the adjustment module 42 includes a determining unit 421, a calculating unit 422, and an adjusting unit 423.
  • the determining unit 421 is configured to determine an anode voltage applied to both ends of the magnetron, an equivalent resistance of the magnetron, and an output power of the variable frequency power source
  • the calculating unit 422 is configured to calculate an anode voltage according to the magnetron, a magnetron equivalent resistance, and
  • the output power of the variable frequency power supply calculates the anode threshold voltage of the magnetron
  • the adjusting unit 423 is configured to adjust the output power of the variable frequency power supply according to the anode threshold voltage of the magnetron.
  • the magnetron temperature adjusting device 40 can adjust the output power of the variable frequency power supply in time to adjust the anode temperature of the magnetron to avoid excessive temperature damage of the magnetron.
  • the determining unit 421 includes a first obtaining subunit 4211 and a first calculating subunit 4212.
  • the first obtaining subunit 4211 is configured to obtain the input power and the input voltage of the variable frequency power supply; the first calculating subunit 4212 is configured to calculate the output power of the variable frequency power supply according to the corresponding relationship between the input power, the input voltage, and the power efficiency of the variable frequency power supply.
  • the adjustment unit 423 includes a second calculation subunit 4231 and a first adjustment subunit 4232.
  • the second calculating subunit 4231 is configured to calculate the anode temperature of the magnetron according to the anode threshold voltage of the magnetron; the first regulating subunit 4232 is configured to adjust the output power of the variable frequency power source according to the anode temperature of the magnetron.
  • the adjustment unit 423 includes a second acquisition subunit 4233, a lookup subunit 4234, and a second adjustment subunit 4235.
  • the second obtaining subunit 4233 is configured to obtain a preset association table, where the association table prestores a mapping relationship between an anode threshold voltage of the magnetron and an output power of the variable frequency power source; the searching subunit 4234 is configured to use the preset association table. Finding the output power of the variable frequency power supply corresponding to the anode threshold voltage of the magnetron; the second regulating subunit 4235 is for adjusting the output power of the variable frequency power supply to the found output power.
  • the first adjustment subunit 4232 includes a determination subunit 42321, a reduction subunit 42322, and a maintenance subunit 42323.
  • the determining subunit 42321 is configured to determine whether the anode temperature of the magnetron is greater than a preset temperature threshold, and the reducing subunit 42322 is configured to reduce the output power of the variable frequency power supply if greater than, and maintain the subunit 42233 for less than, maintain the operation of the variable frequency power supply. .
  • the reducing subunit 42322 is specifically configured to: determine an output power of the variable frequency power supply; determine whether the output power of the variable frequency power supply is greater than a preset minimum power; if greater than, maintain the operation of the variable frequency power supply; if less, stop the frequency conversion power supply work.
  • the device embodiment and the foregoing embodiments are based on the same concept, and the content of the device embodiment may refer to the foregoing embodiments, and the details are not described herein.
  • an embodiment of the present application provides a method for adjusting a temperature of a magnetron.
  • the function of the magnetron temperature adjustment method of the embodiment of the present application is performed by the software system of the magnetron temperature adjustment device described above with reference to FIGS. 10 to 14, which can also be performed by means of a hardware platform.
  • the magnetron temperature adjustment method can be performed in an electronic device of a suitable type of processor having a computing capability, such as a single chip microcomputer, a digital signal processing (DSP), a programmable logic controller (Programmable Logic Controller, PLC). )and many more.
  • DSP digital signal processing
  • PLC programmable Logic Controller
  • the function corresponding to the magnetron temperature adjustment method of each of the following embodiments is stored in the form of an instruction on the memory of the electronic device, and when the function corresponding to the magnetron temperature adjustment method of each of the following embodiments is to be performed, the electronic device
  • the processor accesses the memory, retrieves and executes the corresponding instructions to implement the functions corresponding to the magnetron temperature adjustment methods of the various embodiments described below.
  • the memory is a non-volatile computer readable storage medium that can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as the magnetron temperature adjustment device 40 in the above embodiments.
  • Program instructions/modules e.g., the various modules and units described in Figures 10-14
  • the processor performs various functional applications and data processing of the magnetron temperature adjustment device 40 by executing non-volatile software programs, instructions, and modules stored in the memory, that is, implementing the magnetron temperature adjustment device of the following embodiment
  • the memory may include a high speed random access memory, and may also include a non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the memory optionally includes a memory remotely located relative to the processor, the remote memory being connectable to the processor over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the program instructions/modules are stored in the memory, and when executed by the one or more processors, perform a magnetron temperature adjustment method in any of the above method embodiments, for example, performing the following embodiments
  • the various steps shown in Figures 15 through 20; the functions of the various modules and units described in Figures 10 through 14 can also be implemented.
  • the magnetron temperature adjustment method 50 includes:
  • Step 51 determining an anode current flowing through the magnetron or an input power of the variable frequency power source or an anode voltage applied to both ends of the magnetron, and input power or output power of the variable frequency power source is used to drive the magnetron to operate;
  • Step 52 Adjust the output power of the variable frequency power supply according to the anode current or the input power or the anode voltage.
  • step 51 during the process of determining the anode voltage applied to both ends of the magnetron, it is also possible to determine the anode voltage corresponding to the input power of the variable frequency power source as the anode threshold when the input power of the variable frequency power source falls within the preset power range. Voltage.
  • the output power of the variable frequency power supply can be adjusted in time to adjust the anode temperature of the magnetron to avoid excessive temperature damage of the magnetron.
  • step 52 includes:
  • Step 521 determining an anode voltage applied to both ends of the magnetron, an equivalent resistance of the magnetron, and an output power of the variable frequency power source;
  • Step 522 Calculate an anode threshold voltage of the magnetron according to an anode voltage of the magnetron, an equivalent resistance of the magnetron, and an output power of the variable frequency power source.
  • Step 523 Adjust the output power of the variable frequency power supply according to the anode threshold voltage of the magnetron.
  • step 521 includes:
  • Step 5211 Obtain an input power and an input voltage of the variable frequency power supply
  • Step 5222 Calculate the output power of the variable frequency power supply according to the corresponding relationship between the input power, the input voltage, and the power efficiency of the variable frequency power supply.
  • step 523 includes:
  • Step 5231 calculating an anode temperature of the magnetron according to an anode threshold voltage of the magnetron
  • Step 5233 adjusting the output power of the variable frequency power supply according to the anode temperature of the magnetron
  • step 523 includes:
  • Step 5232 Obtain a preset association table, and the association table prestores a mapping relationship between an anode threshold voltage of the magnetron and an output power of the variable frequency power supply;
  • Step 5234 Find, from a preset association table, an output power of the variable frequency power supply corresponding to an anode threshold voltage of the magnetron;
  • Step 5236 Adjust the output power of the variable frequency power supply to the found output power.
  • step 5233 includes:
  • Step 52331 determining whether the anode temperature of the magnetron is greater than a preset temperature threshold
  • Step 52332 if greater than, reduce the output power of the variable frequency power supply
  • Step 52333 if less than, maintain the operation of the variable frequency power supply.
  • step 52332 includes:
  • Step 523321 determining an output power of the variable frequency power supply
  • Step 523322 Determine whether the output power of the variable frequency power supply is greater than a preset minimum power
  • Step 523323 if greater than, maintaining the operation of the variable frequency power supply
  • Step 523324 if less than, stops the operation of the variable frequency power supply.
  • the device embodiment and the method embodiment are based on the same concept, and the content of the method embodiment may refer to the device embodiment, and details are not described herein.
  • an embodiment of the present application provides a non-transitory computer readable storage medium storing computer executable instructions, the computer executable instructions A method for causing a microwave device to perform a magnetron temperature adjustment method according to any one of the preceding claims, for example, performing a magnetron temperature adjustment method in any of the above method embodiments, for example, performing a magnetron temperature in any of the above device embodiments Adjustment device.
  • the output power of the variable frequency power supply can be adjusted in time to adjust the anode temperature of the magnetron to avoid excessive temperature damage of the magnetron.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Microwave Tubes (AREA)

Abstract

一种磁控管温度调节方法及其装置、控制器、变频电源、磁控管温度调节***及微波设备。其中,该磁控管温度调节方法,包括:确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,变频电源的输入功率或输出功率用于驱动磁控管工作(51);根据阳极电流或输入功率或阳极电压,调节变频电源的输出功率(52)。因此,其能够及时地调节变频电源的输出功率以调节磁控管的阳极温度,避免磁控管过温损坏。

Description

磁控管温度调节方法、装置及***、变频电源及微波设备 技术领域
本申请涉及微波设备领域,特别是涉及一种磁控管温度调节方法及其装置、控制器、变频电源、磁控管温度调节***及微波设备。
背景技术
微波设备在各个领域皆有广泛的应用,包括工业领域、军事领域、民用领域等等。
传统微波设备能够驱动磁控管产生微波,使微波影响微波设备的负载。
申请人在实现本申请的过程中,发现传统技术至少存在以下问题:微波设备影响负载的过程中,由于负载存在不确定性,其会引起磁控管温度急剧上升,此时若没有采取相应措施,磁控管极易过温损坏,从而极大缩短磁控管的使用寿命。
发明内容
本申请实施例目的旨在提供一种磁控管温度调节方法及其装置、控制器、变频电源、磁控管温度调节***及微波设备,其解决了传统技术存在着磁控管容易工作在过温状态而缩短使用寿命的技术问题。
为解决上述技术问题,本申请实施例提供以下技术方案:
在第一方面,本申请实施例提供一种磁控管温度调节方法,所述方法包括:确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,所述变频电源的输入功率或输出功率用于驱动所述磁控管工作;根据所述阳极电流或所述输入功率或所述阳极电压,调节所述变频电源的输出功率。
可选地,所述根据所述阳极电压,调节所述变频电源的输出功率,包括:确定加载于所述磁控管两端的阳极电压、所述磁控管的等效电阻以及所述变频电源的输出功率;根据所述磁控管的阳极电压、所述磁控管等效电阻以及所述 变频电源的输出功率,计算出所述磁控管的阳极阈值电压;根据所述磁控管的阳极阈值电压调节所述变频电源的输出功率。
可选地,所述确定所述变频电源的输出功率,包括:获取所述变频电源的输入功率与输入电压;根据所述变频电源的输入功率、输入电压及功率效率的对应关系,计算出所述变频电源的输出功率。
可选地,所述根据所述磁控管的阳极阈值电压调节所述变频电源的输出功率,包括:根据所述磁控管的阳极阈值电压,计算出所述磁控管的阳极温度;根据所述磁控管的阳极温度调节变频电源的输出功率。
可选地,所述根据所述磁控管的阳极温度调节变频电源的输出功率,包括:判断所述磁控管的阳极温度是否大于预设温度阈值;若大于,降低所述变频电源的输出功率;若小于,维持所述变频电源的工作。
可选地,所述降低所述变频电源的输出功率,包括:确定所述变频电源的输出功率;判断所述变频电源的输出功率是否大于预设的最小功率;若大于,维持所述变频电源的工作;若小于,停止所述变频电源的工作。
可选地,所述根据所述磁控管的阳极阈值电压调节所述变频电源的输出功率,包括:获取预设的关联表,所述关联表预存有磁控管的阳极阈值电压与变频电源的输出功率之间的映射关系;从所述预设的关联表查找出与所述磁控管的阳极阈值电压对应的输出功率;调节所述变频电源的输出功率至查找出的输出功率。
可选地,所述确定加载于磁控管两端的阳极电压,包括:在所述变频电源的输入功率落入预设功率范围时,确定与所述变频电源的输入功率对应的阳极电压为阳极阈值电压。
在第二方面,本申请实施例提供一种磁控管温度调节装置,所述装置包括:确定模块,用于确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,所述变频电源的输入功率或输出功率用于驱动所述磁控管工作;调节模块,用于根据所述阳极电流或所述输入功率或所述阳极电压,调节所述变频电源的输出功率。
在第三方面,本申请实施例提供一种控制器,所述控制器包括:至少一个 处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行上述任一项的磁控管温度调节方法。
在第四方面,本申请实施例提供一种变频电源,用于驱动磁控管,所述变频电源包括:变频电路,用于驱动所述磁控管;第一电压采样电路,用于采样所述变频电路的第一输出电压,所述第一输出电压与加载于所述磁控管两端的阳极电压存在对应关系,所述第一电压采样电路包括第一输入端、第二输入端及第一输出端,所述第一输入端连接在所述变频电路与所述磁控管之间的第一节点,所述第二输入端连接在所述变频电路与所述磁控管之间的第二节点;上述的控制器,其分别与所述第一电压采样电路的第一输出端和所述变频电路连接,所述控制器根据所述第一输出电压与加载于所述磁控管两端的阳极电压的对应关系,计算出所述磁控管两端的阳极电压。
可选地,所述变频电源还包括放大电路,所述放大电路的输入端与所述第一电压采样电路的第一输出端连接,所述放大电路的输出端与所述控制器连接。
在第五方面,本申请实施例提供一种磁控管温度调节***,所述***包括:磁控管;变频电源,其与所述磁控管连接,用于驱动所述磁控管;第二电压采样电路,其耦合于所述变频电源与磁控管之间,用于采样所述变频电源的第二输出电压,所述第二输出电压与加载于所述磁控管两端的阳极电压存在对应关系;上述的控制器,其分别与所述第二电压采样电路的输出端和所述变频电源连接,所述控制器根据所述第二输出电压与加载于所述磁控管两端的阳极电压的对应关系,计算出所述磁控管两端的阳极电压。
在第六方面,本申请实施例提供一种微波设备,所述微波设备包括上述的控制器。
在第七方面,本申请实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使微波设备执行如上任一项所述的磁控管温度调节方法。
在本申请各个实施例中,首先,确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,变频电源的输入功率或输出功率用于驱动磁控管工作,其次,根据阳极电流或输入功率或阳极电压,调节变频电 源的输出功率。因此,其能够及时地调节变频电源的输出功率以调节磁控管的阳极温度,避免磁控管过温损坏。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供一种微波设备的结构示意图;
图1a是本申请实施例提供一种磁控管的等效电路模型示意图;
图1b是本申请实施例提供一种加载于磁控管两端的阳极电压与流经磁控管的阳极电流跟随时间变化而变化的示意图;
图2是本申请实施例提供另一种微波设备的结构示意图;
图3是本申请实施例提供1KW、2450M的磁控管的阳极温度与阳极电压之间的关系示意图;
图4是本申请实施例提供变频电源的功率效率、输入功率以及输入电压之间的关系示意图;
图5是本申请实施例提供一种第一电压采样电路的结构示意图;
图5a是本申请另一实施例提供一种第一电压采样电路的结构示意图;
图6是本申请另一实施例提供一种微波设备的结构示意图;
图7是本申请又另一实施例提供一种微波设备的结构示意图;
图8是本申请实施例提供一种第二电压采样电路的结构示意图;
图8a是本申请实施例提供一种加载于磁控管两端的阳极电压与第二电压采样电路采样到的第二输出电压跟随时间变化而变化的示意图;
图9是本申请实施例提供一种控制器的结构示意图;
图10是本申请实施例提供一种磁控管温度调节装置的结构示意图;
图10a是图10中调节模块的结构示意图;
图11是图10a中确定单元的结构示意图;
图12是图10a中调节单元的一种结构示意图;
图13是图10a中调节单元的另一种结构示意图;
图14是图12中第一调节子单元的结构示意图;
图15是本申请实施例提供一种磁控管温度调节方法的流程示意图;
图15a是图15中步骤52的流程示意图;
图16是图15a中步骤521的流程示意图;
图17是图15a中步骤523的一种流程示意图;
图18是图15a中步骤523的另一种流程示意图;
图19是图17中步骤5233的流程示意图;
图20是图19中步骤52332的流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的微波设备包括工业微波设备、医用微波设备、民用微波设备、军事微波设备等等。在工业领域,工业微波设备可以用于对材料进行快速加热、干燥以及材料改性等等。在医用领域,医用微波设备可以用于对药品进行杀菌及对病灶部位消融等等。在民用领域,民用微波设备可以用于微热食物等等。在军事领域,微波设备可以用于作为目标探测以导航等等。
本申请实施例提供的微波设备可以为变频微波设备,亦可以为其它类型微波设备。
请参阅图1,图1是本申请实施例提供一种微波设备的结构示意图。如图1所示,该微波设备10包括:变频电源11、磁控管12、工作腔体13及冷却单元14,变频电源11与磁控管12连接。
请再参阅图1,变频电源11包括整流滤波单元111、功率变换单元112、高压变压器113、高压整流滤波单元114及内部控制器116。整流滤波单元111的输入端用于接入外部电源,整流滤波单元111的输出端与功率变换单元112的输入端连接,功率变换单元112的输出端与高压变压器113的原边绕组连接,高压变压器113的副边绕组与高压整流滤波单元114的输入端连接,高压整流滤波单元114的输出端与磁控管12连接,控制器115与功率变换单元112连接。
变频电源11能够驱动磁控管12工作,为磁控管12提供所需的电压与电流。其中,整流滤波单元111用于接入外部电源,并且对外部电源进行整流与滤波 处理,输出直流电压。其中,该外部电源可以为市电电压,亦可以为工业电压。
内部控制器116采集输入电压、电流等信息,计算出实际运行的输入功率,并转换为所需的脉冲宽度调制信号(Pulse Width Modulation,PWM)或者脉冲频率调制信号(Pulse Frequency Modulation,PFM)或者两者的混合波,用于驱动功率变换单元112按额定功率工作。
高压变压器113的输出经过高压整流滤波单元114处理后,由高压整流滤波单元114输出平滑的直流高压供给磁控管12的阳极,与此同时,其还提供一路灯丝电压供给磁控管12的灯丝。
磁控管12能够将变频电源11提供的电能转换成相应的微波,对放置在工作腔体13内的负载131进行加热,例如:当微波设备为微波炉时,工作腔体13放置待微热的食物。
请参阅图1a,图1a是本申请实施例提供一种磁控管的等效电路模型示意图。如图1a所示,由于磁控管12为真空电子管,其等效电路模型可以等同于稳压管ZD与等效电阻R串联而成的电路模型,其中,稳压管ZD的稳定电压为磁控管12的阳极阈值电压,等效电阻R为磁控管12的等效内阻。
请参阅图1b,图1b是本申请实施例提供一种加载于磁控管两端的阳极电压与流经磁控管的阳极电流跟随时间变化而变化的示意图。如图1b所示,坐标轴的纵坐标为阳极电压,记阳极电压为Ebm,横坐标为时间,记时间为t。进一步的,记阳极阈值电压为VT。坐标轴1b2的纵坐标为阳极电流,记阳极电流为It,横坐标为时间t。
由图1b可知,当磁控管12接入工频电源时,在坐标轴的零点处,工频电源位于过零点时,变频电源11的阳极输出电压的绝对值较小,其未能够驱动磁控管12,于是,磁控管12处于截止状态。当工频电源超过过零点后,网侧电源逐步升高,变频电源11的阳极输出电压的绝对值也逐渐增大,并且逐渐增大至a点对应的阳极电压,亦即到达磁控管12的阳极阈值电压VT,此时,阳极电流It开始流经磁控管12。随着工频电源的不断升高,阳极电流It的绝对值也逐步增大,同时,阳极电压的绝对值也逐步增大。当通电时间超过5微秒后,工频电源开始下降,阳极电压Ebm随之下降,一直将至b点对应的阳极电压,在b点后,由于阳极电压Ebm已不足以驱动磁控管12,阳极电流It下降到零。
进一步的,当时间为a或b时,阳极电压等于阳极阈值电压,用户可以选 择在a或b点采集阳极电压以快速计算出阳极阈值电压。
此处,阳极电压Ebm、阳极阈值电压VT以及等效电阻R之间的函数关系为:
Ebm=VT+R*It,其中,a<t<b。
冷却单元14能够带走变频电源11与磁控管12工作时产生的热量,从而使变频电源11与磁控管12能够可靠稳定的工作。
在一些实施例中,整流滤波单元111、功率变换单元112、高压变压器113及高压整流滤波单元114可以概括为变频电路,亦即,整流滤波单元111、功率变换单元112、高压变压器113及高压整流滤波单元114所具备的功能可以以变频电路的形式进行实现。本领域技术人员应当明白:作为驱动磁控管12的变频驱动电源,除了上述所阐述的各个电学单元(例如:整流滤波单元111、功率变换单元112、高压变压器113及高压整流滤波单元114)之外,其还可以根据业务需求自行在变频电路中添加其它电学单元,以进一步实现其它应用需求。
基于上述所示的微波设备10,微波设备10在加热负载131的过程中,由于负载131具有不确定性,容易导致磁控管12的容易工作在过温状态。例如:使用微波炉做爆米花时,在最初的阶断,玉米的水分尚可,磁控管输出的微波大部分被玉米所吸收,此时的磁控管的温升相对较低。但当爆米花过程快要结束时,玉米的水分含量较少,大部分微波不能被玉米吸收,会反射回磁控管内,其会引起磁控管温度急剧上升。根据市场统计数据,家用微波炉损坏原因中磁控管损坏的占比达到五成,而磁控管损坏的主要原因为过温。
再例如:工业微波设备常用于物料的干燥,在初始阶断,物料含水充足,磁控管的温升是可控的。当物料干燥即将结束时,物料含水较低,大量微波反射回磁控管内,引起磁控管剧烈发热,极易造成磁控管过热损坏。根据市场统计数据,普通2450M工业微波设备的磁控管损坏比例更高,通常每年损坏率高达15%,主要原因也是过温。
并且,当微波设备10中的冷却单元14出现故障后,由于未能够及时带走磁控管12的热量,容易导致磁控管12的温度急剧上升,从而造成磁控管12的损坏。
基于上述微波设备的各种缺陷,本申请实施例提供另一种微波设备。与图1所示的微波设备的不同点在于,如图2所示,该微波设备10中的变频电源还包 括第一电压采样电路117,第一电压采样电路117包括第一输入端117a、第二输入端117b及第一输出端117c,第一输入端117a连接在变频电路与磁控管12之间的第一节点116a,第二输入端117b连接在变频电路与磁控管12之间的第二节点116b。第一电压采样电路117用于采样变频电路的第一输出电压V0,其中,第一输出电压V0与加载于磁控管两端的阳极电压Ebm=f(V0)存在对应关系,内部控制器116根据第一输出电压与加载于磁控管12两端的阳极电压的对应关系,计算出磁控管12两端的阳极电压。进一步的,内部控制器116根据阳极电压调节磁控管的阳极温度。
具体的,微波设备调节磁控管的阳极温度的具体工作原理如下:
首先,变频电源11按照设定功率进行运行。该设定功率可以为变频电源11内部默认的初始功率。在运行过程中,内部控制器116接收第一电压采样电路117反馈的磁控管的阳极电压。
然后,内部控制器116可以根据磁控管12的阳极电压计算出磁控管12的阳极温度。
具体的,请参阅图3,图3是本申请实施例提供1KW、2450M的磁控管的阳极温度与阳极阈值电压之间的关系示意图。如图3所示,横坐标代表磁控管12的阳极阈值电压,纵坐标代表磁控管12的阳极温度。在磁控管12工作时,磁控管12的阳极温度逐步升高,其所对应的阳极阈值电压也随之相应升高。显然,当磁控管12的阳极温度达到350摄氏度时,磁控管光12的阳极阈值电压已升高到-3100伏左右。此时,磁控管12的寿命急剧缩短,安装在磁控管阳极的磁铁也随时出现爆磁的风险。
总体而言,如图3所示,磁控管12的阳极温度ta与阳极阈值电压VT具有正相关关系,可以用以下式子(1)描述此类关系:
ta=f(VT)………….(1)
请参阅图4,图4是本申请实施例提供变频电源的功率效率、输入功率以及输入电压之间的关系示意图。如图4所示,横坐标代表变频电源的输入功率,纵坐标代表变频电源的功率效率。对于同一输入电压,变频电源的功率效率与输入功率呈正相关关系。对于同一输入功率,变频电源的功率效率与输入电压呈正相关关系。
总体而言,如图4所示,变频电源的功率效率EFF、输入功率Pin以及输入 电压Vin之间的关系可以用以下式子(2)描述:
EFF=f(Vin,Pin)………….(2)
变频电源工作于设定的功率工作模式,其实际运行输入功率Pin是已知的,在知悉功率效率Eff后,可以通过以下式子(3)计算出输出功率Po:
Po=Pin*Eff………….(3)
输出功率Po计算出来后,可以通过采集到磁控管的阳极电流It,结合以下式子(4)计算出阳极电压Ebm:
Ebm=Po/It………….(4)
如前所述,内部控制器116根据第一电压采样电路117采样变频电路的第一输出电压V0计算出磁控管12两端的阳极电压Ebm,亦即,阳极电压Ebm是已知的。一般的,在实际应用过程中,磁控管12的阳极电压一般大于1000伏,通过外部电压检测设备直接采集磁控管12的阳极电压Ebm的采集成本比较高,并且采集难度高。因此,本实施例通过采集变频电路的第一输出电压,间接推算出阳极电压Ebm,此类方式简单易行,节约成本。
当内部控制器116获取到变频电源11的输入功率Pin与输入电压Vin,根据变频电源11的输入功率Pin、输入电压Vin及功率效率EFF的对应关系(结合如图4所示的式子(2)),确定到功率效率EFF。然后,内部控制器116根据式子(3)计算出变频电源11的输出功率Po。紧接着,内部控制器116根据下面式子:
Ebm=VT+R*It
It=Po/Ebm
Po=Pin*Eff
Ebm=f(V0)
其中,R为磁控管的等效电阻,R、Pin、Eff、V0以及f(V0)是已知的,因此,联合上面式子,便可以计算出阳极阈值电压VT。
最后,内部控制器116结合式子(1),根据磁控管12的阳极阈值电压,计算出磁控管12的阳极温度。
内部控制器116根据磁控管12的阳极温度调节变频电源11的输出功率Po,其中,该输出功率Po用于驱动磁控管11工作,以改变磁控管11的阳极温度。
具体的:内部控制器116判断磁控管12的阳极温度是否大于预设温度阈值, 若大于,降低变频电源11的输出功率Po,以降低磁控管12的阳极温度。若小于,维持变频电源11的工作,亦即:可以维持变频电源11的原有输出功率Po,可以在保证磁控管12的阳极温度小于预设温度阈值的前提下,提高变频电源11的输出功率Po。此处的预设温度阈值由用户根据业务需求自行设置。
在一些实施例中,当磁控管12的阳极温度大于预设温度阈值,内部控制器116降低变频电源11的输出功率Po的过程中,内部控制器116判断变频电源11的输出功率Po是否大于预设的最小功率,若大于,维持变频电源11的工作,并且继续检测磁控管12的阳极温度。若小于,其说明变频电源11已经丧失对磁控管12的阳极温度的控制能力了,此时即使令变频电源11按照预设的最小功率运行,磁控管12的阳极温度依然会出现过温现象,于是,内部控制器116应该停止变频电源11的工作,以保证磁控管12免于工作在过温状态。并且,当微波设备10中的冷却单元14出现故障,例如:冷却水泵、风扇等等出现的故障,其极易造成变频电源11按其所设定的最小功率运行,并且磁控管12也会过温,因此,此时对变频电源采用关机策略是非常有必要的。
总体而言,上述各个实施例阐述了通过“根据磁控管的阳极电压计算出磁控管的阳极温度,再进一步根据磁控管的阳极温度调节变频电源的输出功率”的一种调节方式,在一些实施例中,内部控制器116还可以根据磁控管12的阳极电压直接查表确定变频电源11的输出功率,以进一步调节变频电源11的输出功率。因此,首先,内部控制器116获取预设的关联表。该预设的关联表由用户根据实践经验,预先创建而得到的,其中,该关联表预存有磁控管12的阳极阈值电压与变频电源11的输出功率之间的映射关系。然后,在调节磁控管12的阳极温度时,内部控制器116根据计算出的磁控管的阳极阈值电压,遍历预设的关联表,从预设的关联表查找出与磁控管12的阳极阈值电压对应的变频电源11的输出功率。最后,内部控制器116将变频电源11的当前输出功率调节至查找出的输出功率,从而完成磁控管12的阳极温度的调节。
综上所述,由于本申请实施例是直接采集能够精确反映磁控管12的阳极电压,以间接得到磁控管12的阳极阈值电压,进而精确地确定阳极温度,其至少有以下优点:相对于通过设置在磁控管12的外壳的温度传感器检测出的温度参数,以直接检测磁控管的温度的方式,由于磁控管12的外壳为一铁壳,其导热性不好,在不同的冷却条件下,外壳的温度未能够真实地反映出磁控管12真实 的阳极温度。另外需要设置温度探头的成本相对较高,同时还需要相应的电路来对温度信息做处理,因此,此类方式不具有成本优势。然而,在本申请实施例中,其能够直接采集能够精确反映磁控管12的阳极电压,以间接得到磁控管12的阳极阈值电压,进而精确地确定阳极温度,以精确、可靠地通过调节变频电源11的输出功率以调节磁控管12的阳极温度,保证磁控管12避免过温损坏。
在一些实施例中,除了上述确定加载于磁控管两端的阳极阈值电压的方式之外,其还可以通过磁控管的阳极阈值电压与变频电源的输入功率之间的对应关系,以确定阳极阈值电压。例如:在变频电源的输入功率落入预设功率范围时,确定与变频电源的输入功率对应的阳极电压为阳极阈值电压。该预设功率范围根据产品的设计以确定,并且,该预设功率范围还可以为单点的输入功率值,例如,特定时刻的瞬时功率值。
在调节变频电源的输出功率时,除了上述的实施方式之外,其还可以采用以下实施方式调节变频电源的输出功率,例如:其可以通过确定流经磁控管的阳极电流,根据该阳极电流调节变频电源的输出功率。具体的,从图1b可知,当阳极电流为Ia或Ib或位于Ia或Ib附近区域时,Ia或Ib对应的阳极电压为阳极阈值电压VT,或者,位于Ia或Ib附近区域的阳极电流对应的阳极电压可以估算地等同于阳极阈值电压VT。由于每个磁控管的阳极阈值电压VT与阳极电流Ia或Ib有着映射关系,因此,用户可以对阳极阈值电压VT与阳极电流Ia或Ib建立起映射表,通过根据采样回的阳极电流Ia或Ib查找映射表,从而确定阳极阈值电压VT。
再例如:其还可以通过确定变频电源的输入功率,根据变频电源的输入功率调节变频电源的输出功率。具体的,由图1b与图4可知,变频电源的输入功率与阳极电流Ia或Ib存在函数关系的,并且每个磁控管的阳极阈值电压VT与阳极电流Ia或Ib有着映射关系的,因此,用户可以对阳极阈值电压VT与输入功率建立起映射表,通过根据输入功率查找映射表,从而确定阳极阈值电压VT。
又再例如:其还可以通过确定加载于磁控管两端的阳极电压,根据该阳极电压调节变频电源的输出功率。具体的,用户可以对阳极阈值电压VT与阳极电压建立起映射表,通过根据阳极电压查找映射表,从而确定阳极阈值电压VT。
总之,调节变频电源的输出功率的方式多种多样,应当理解,本领域技术人员根据本申请实施例所训导的内容,作出其它替换或者变形方式调节变频电 源的输出功率,其应当落入本申请的保护范围之内,在此不赘述。
请参阅图5,高压整流滤波单元114包括第一二极管D1、第二二极管D2、第一电容C1及第二电容C2。第一电压采样电路117包括第一电阻R1与第二电阻R2,第一电阻R1的一端连接至第一节点116a,第一电阻R1的另一端与第二电阻R2的一端皆连接至第二节点116b,第二电阻R2的另一端接地,其中,从第二节点116b输出采集到第一输出电压V0。显然,V0=Ebm*R2/(R1+R2)。因此,通过获得到V0,便可以计算出Ebm。
在一些实施例中,为了提高采样到的电压的幅值与携带负载能力,如图5a所示,与图5所示的实施例的不同点在于,变频电源11还包括放大电路118,放大电路118的输入端与第一电压采样电路117的第一输出端连接,放大电路118的输出端与内部控制器116连接。放大电流118可以为运算放大器,其能够提高第一输出电压的电压幅值与提高携带负载能力。
与上述各个实施例的不同点在于,如图6所示,微波设备10还包括外部控制器15,外部控制器15与变频电源11连接。外部控制器15向变频电源11发送目标功率信息,使变频电源11中的功率变换单元112转换为所需的脉冲宽度调制信号(Pulse Width Modulation,PWM)或者脉冲频率调制信号(Pulse Frequency Modulation,PFM)或者两者的混合波,按照额定功率进行工作。并且,外部控制器15还接收变频电源11所反馈的各类控制信息,以调节变频电源的输出功率,达到灵活调节***功率并监测变频电源11运行状况的目的。
在上述各个实施例中,可以理解的是:上述各个实施例所阐述的用于调节磁控管温度的各个控制逻辑可以以软件模块的形式存在,并且该软件模块可以以指令的形式不仅仅存储于变频电源11中的内部控制器116内,而且,其还可以存储于外部控制器15内。
于是,为了与上述各个实施例有所区别,作为本申请实施例的另一方面,本申请实施例还提供一种磁控管温度调节***。如图7所示,该磁控管温度调节***20包括:磁控管21、变频电源22、第二电压采样电路23、外部控制器24、工作腔体25及冷却单元26。变频电源22与磁控管21连接,用于驱动磁控管21;第二电压采样电路23耦合于变频电源22与磁控管21之间,用于采样变频电源22的第二输出电压,第二输出电压与加载于磁控管21两端的阳极电压存在对应关系,用于采样流经磁控管21的阳极电流。外部控制器24分别与第 二电压采样电路23的输出端和变频电源22连接。
在本实施例中,在不引起内容互相冲突的前提下,磁控管21、变频电源22、第二电压采样电路23及外部控制器24可以引用上述各个实施例所作出的阐述,在此不赘述。
如前所述,如图7所示,此处的外部控制器24存储有用于调节磁控管温度的各个控制逻辑的若干指令,变频电源22的内部控制器作为变频电源22正常运作的控制核心。
同理:上述各个实施例对内部控制器116所作出的介绍皆适用于外部控制器24,在此不赘述。
与图5或图5a或图6所示的实施例的不同点在于,如图8所示,第二电压采样电路23包括:第一绕组W1、第三电容C3、第四电容C4、第三二极管D3、第四二极管D4以及第三电阻R3,其中,第一绕组W1与变频电源22中高压整流滤波单元的副边绕组W2与W3存在比例关系,于是,通过获得第三电阻R3的两端电压V0(亦即:第二输出电压),根据比例关系,便可以计算出阳极电压Ebm。
如图8a所示,第二输出电压V0的电压波形与阳极电压Ebm的电压波形皆为正弦波性。由图8a可知,通过获得V0,便可以计算出Ebm。于是,根据上述各个实施例提供的式子,便可以计算出阳极阈值电压,进而可以根据阳极阈值电压调节磁控管的温度。
在本实施例中,该磁控管温度调节***20能够应用于任何类型的微波设备中。
在上述各个实施例中,内部控制器或外部控制器作为一控制器,其可以为通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、单片机、ARM(Acorn RISC Machine)或其它可编程逻辑器件、分立门或晶体管逻辑、分立的硬件组件或者这些部件的任何组合。还有,控制器还可以是任何传统处理器、控制器、微控制器或状态机。控制器也可以被实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、一个或多个微处理器结合DSP核、或任何其它这种配置。
作为本申请实施例的又另一方面,本申请实施例提供一种控制器。请参阅图9,图9是本申请实施例提供一种控制器的结构示意图。如图9所示,控制器30(内部控制器或外部控制器)包括:至少一个处理器31以及与所述至少一个 处理器31通信连接的存储器32;其中,图9中以一个处理器31为例。处理器31和存储器32可以通过总线或者其他方式连接,图9中以通过总线连接为例。
其中,存储器32存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器31能够用于执行上述磁控管温度调节的控制逻辑。
因此,控制器30能够及时地调节变频电源的输出功率以调节磁控管的阳极温度,保证磁控管避免过温损坏。
作为本申请实施例的另一方面,本申请实施例提供一种磁控管温度调节装置。该磁控管温度调节装置作为软件***,其可以存储在图2与图6所阐述的变频电源11中的内部控制器116内,亦可以存储在图7所阐述的外部控制器内。该磁控管温度调节装置包括若干指令,该若干指令存储于存储器内,处理器可以访问该存储器,调用指令进行执行,以完成上述磁控管温度调节的控制逻辑。
如图10所示,该磁控管温度调节装置40包括:确定模块41与调节模块42。
确定模块41用于确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,变频电源的输入功率或输出功率用于驱动磁控管工作。
调节模块42用于根据阳极电流或输入功率或阳极电压,调节变频电源的输出功率。
因此,其能够及时地调节变频电源的输出功率以调节磁控管的阳极温度,避免磁控管过温损坏。
在一些实施例中,如图10a所示,该调节模块42包括:确定单元421、计算单元422及调节单元423。
确定单元421用于确定加载于磁控管两端的阳极电压、磁控管的等效电阻以及变频电源的输出功率,计算单元422用于根据磁控管的阳极电压、磁控管等效电阻以及变频电源的输出功率,计算出磁控管的阳极阈值电压,调节单元423用于根据磁控管的阳极阈值电压调节变频电源的输出功率。
该磁控管温度调节装置40能够及时地调节变频电源的输出功率以调节磁控管的阳极温度,避免磁控管过温损坏。
在一些实施例中,如图11所示,确定单元421包括:第一获取子单元4211与第一计算子单元4212。
第一获取子单元4211用于获取变频电源的输入功率与输入电压;第一计算子单元4212用于根据变频电源的输入功率、输入电压及功率效率的对应关系,计算出变频电源的输出功率。
在一些实施例中,如图12所示,调节单元423包括:第二计算子单元4231与第一调节子单元4232。
第二计算子单元4231用于根据磁控管的阳极阈值电压,计算出磁控管的阳极温度;第一调节子单元4232用于根据磁控管的阳极温度调节变频电源的输出功率。
与图12所示的实施例不同点在于,如图13所示,该调节单元423包括第二获取子单元4233、查找子单元4234及第二调节子单元4235。
第二获取子单元4233用于获取预设的关联表,关联表预存有磁控管的阳极阈值电压与变频电源的输出功率之间的映射关系;查找子单元4234用于从预设的关联表查找出与磁控管的阳极阈值电压对应的变频电源的输出功率;第二调节子单元4235用于调节变频电源的输出功率至所查找出的输出功率。
在一些实施例中,如图14所示,第一调节子单元4232包括:判断子单元42321、降低子单元42322及维持子单元42323。
判断子单元42321用于判断磁控管的阳极温度是否大于预设温度阈值,降低子单元42322用于若大于,降低变频电源的输出功率,维持子单元42323用于若小于,维持变频电源的工作。
在一些实施例中,降低子单元42322具体用于:确定变频电源的输出功率;判断变频电源的输出功率是否大于预设的最小功率;若大于,维持变频电源的工作;若小于,停止变频电源的工作。
由于装置实施例和上述各个实施例是基于同一构思,在内容不互相冲突的前提下,装置实施例的内容可以引用上述各个实施例的,在此不赘述。
作为本申请实施例的又另一方面,本申请实施例提供一种磁控管温度调节方法。本申请实施例的磁控管温度调节方法的功能除了借助上述图10至图14所述的磁控管温度调节装置的软件***来执行,其亦可以借助硬件平台来执行。例如:磁控管温度调节方法可以在合适类型具有运算能力的处理器的电子设备中执行,例如:单片机、数字处理器(Digital Signal Processing,DSP)、可编程逻辑控制器(Programmable Logic Controller,PLC)等等。
下述各个实施例的磁控管温度调节方法对应的功能是以指令的形式存储在电子设备的存储器上,当要执行下述各个实施例的磁控管温度调节方法对应的功能时,电子设备的处理器访问存储器,调取并执行对应的指令,以实现下述各个实施例的磁控管温度调节方法对应的功能。
存储器作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如上述实施例中的磁控管温度调节装置40对应的程序指令/模块(例如,图10至图14所述的各个模块和单元),或者下述实施例磁控管温度调节方法对应的步骤。处理器通过运行存储在存储器中的非易失性软件程序、指令以及模块,从而执行磁控管温度调节装置40的各种功能应用以及数据处理,即实现下述实施例磁控管温度调节装置40的各个模块与单元的功能,或者下述实施例磁控管温度调节方法对应的步骤的功能。
存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令/模块存储在所述存储器中,当被所述一个或者多个处理器执行时,执行上述任意方法实施例中的磁控管温度调节方法,例如,执行下述实施例描述的图15至图20所示的各个步骤;也可实现附图10至图14所述的各个模块和单元的功能。
如图15所示,该磁控管温度调节方法50包括:
步骤51、确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,变频电源的输入功率或输出功率用于驱动磁控管工作;
步骤52、根据阳极电流或输入功率或阳极电压,调节变频电源的输出功率。
在步骤51中,确定加载于磁控管两端的阳极电压的过程中,其还可以在变频电源的输入功率落入预设功率范围时,确定与变频电源的输入功率对应的阳极电压为阳极阈值电压。
通过采用该方法,其能够及时地调节变频电源的输出功率以调节磁控管的阳极温度,避免磁控管过温损坏。
在一些实施例中,如图15a所示,步骤52包括:
步骤521、确定加载于磁控管两端的阳极电压、磁控管的等效电阻以及变频电源的输出功率;
步骤522、根据磁控管的阳极电压、磁控管等效电阻以及变频电源的输出功率,计算出磁控管的阳极阈值电压;
步骤523、根据磁控管的阳极阈值电压调节变频电源的输出功率。
在一些实施例中,如图16所示,步骤521包括:
步骤5211、获取变频电源的输入功率与输入电压;
步骤5212、根据变频电源的输入功率、输入电压及功率效率的对应关系,计算出变频电源的输出功率。
在一些实施例中,如图17所示,步骤523包括:
步骤5231、根据磁控管的阳极阈值电压,计算出磁控管的阳极温度;
步骤5233、根据磁控管的阳极温度调节变频电源的输出功率;
与图17所示的实施例不同点在于,如图18所示,步骤523包括:
步骤5232、获取预设的关联表,关联表预存有磁控管的阳极阈值电压与变频电源的输出功率之间的映射关系;
步骤5234、从预设的关联表查找出与磁控管的阳极阈值电压对应的变频电源的输出功率;
步骤5236、调节变频电源的输出功率至所查找出的输出功率。
在一些实施例中,如图19所示,步骤5233包括:
步骤52331、判断磁控管的阳极温度是否大于预设温度阈值;
步骤52332、若大于,降低变频电源的输出功率;
步骤52333、若小于,维持变频电源的工作。
在一些实施例中,如图20所示,步骤52332包括:
步骤523321、确定变频电源的输出功率;
步骤523322、判断变频电源的输出功率是否大于预设的最小功率;
步骤523323、若大于,维持变频电源的工作;
步骤523324、若小于,停止变频电源的工作。
由于装置实施例和方法实施例是基于同一构思,在内容不互相冲突的前提下,方法实施例的内容可以引用装置实施例的,在此不赘述。
作为本申请实施例的又另一方面,本申请实施例提供一种非暂态计算机可 读存储介质,所述非暂态计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使微波设备执行如上任一项所述的磁控管温度调节方法,例如执行上述任意方法实施例中的磁控管温度调节方法,例如,执行上述任意装置实施例中的磁控管温度调节装置。
通过采用该方法,其能够及时地调节变频电源的输出功率以调节磁控管的阳极温度,避免磁控管过温损坏。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (14)

  1. 一种磁控管温度调节方法,其特征在于,包括:
    确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,所述变频电源的输入功率或输出功率用于驱动所述磁控管工作;
    根据所述阳极电流或所述输入功率或所述阳极电压,调节所述变频电源的输出功率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述阳极电压,调节所述变频电源的输出功率,包括:
    确定加载于所述磁控管两端的阳极电压、所述磁控管的等效电阻以及所述变频电源的输出功率;
    根据所述磁控管的阳极电压、所述磁控管等效电阻以及所述变频电源的输出功率,计算出所述磁控管的阳极阈值电压;
    根据所述磁控管的阳极阈值电压调节所述变频电源的输出功率。
  3. 根据权利要求2所述的方法,其特征在于,所述确定所述变频电源的输出功率,包括:
    获取所述变频电源的输入功率与输入电压;
    根据所述变频电源的输入功率、输入电压及功率效率的对应关系,计算出所述变频电源的输出功率。
  4. 根据权利要求2或3所述的方法,其特征在于,所述根据所述磁控管的阳极阈值电压调节所述变频电源的输出功率,包括:
    根据所述磁控管的阳极阈值电压,计算出所述磁控管的阳极温度;
    根据所述磁控管的阳极温度调节变频电源的输出功率。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述磁控管的阳极温度调节变频电源的输出功率,包括:
    判断所述磁控管的阳极温度是否大于预设温度阈值;
    若大于,降低所述变频电源的输出功率;
    若小于,维持所述变频电源的工作。
  6. 根据权利要求5所述的方法,其特征在于,所述降低所述变频电源的输出功率,包括:
    确定所述变频电源的输出功率;
    判断所述变频电源的输出功率是否大于预设的最小功率;
    若大于,维持所述变频电源的工作;
    若小于,停止所述变频电源的工作。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述磁控管的阳极阈值电压调节所述变频电源的输出功率,包括:
    获取预设的关联表,所述关联表预存有磁控管的阳极阈值电压与变频电源的输出功率之间的映射关系;
    从所述预设的关联表查找出与所述磁控管的阳极阈值电压对应的输出功率;
    调节所述变频电源的输出功率至所查找出的输出功率。
  8. 根据权利要求1所述的方法,其特征在于,所述确定加载于磁控管两端的阳极电压,包括:
    在所述变频电源的输入功率落入预设功率范围时,确定与所述变频电源的输入功率对应的阳极电压为阳极阈值电压。
  9. 一种磁控管温度调节装置,其特征在于,包括:
    确定模块,用于确定流经磁控管的阳极电流或变频电源的输入功率或加载于磁控管两端的阳极电压,所述变频电源的输入功率或输出功率用于驱动所述磁控管工作;
    调节模块,用于根据所述阳极电流或所述输入功率或所述阳极电压,调节所述变频电源的输出功率。
  10. 一种控制器,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够用于执行如权利要求1至7任一项所述的磁控管温度调节方法。
  11. 一种变频电源,用于驱动磁控管,其特征在于,包括:
    变频电路,用于驱动所述磁控管;
    第一电压采样电路,用于采样所述变频电路的第一输出电压,所述第一输出电压与加载于所述磁控管两端的阳极电压存在对应关系,所述第一电压采样电路包括第一输入端、第二输入端及第一输出端,所述第一输入端连接在所述变频电路与所述磁控管之间的第一节点,所述第二输入端连接在所述变频电路与所述磁控管之间的第二节点;
    如权利要求10所述的控制器,其分别与所述第一电压采样电路的第一输出端和所述变频电路连接,所述控制器根据所述第一输出电压与加载于所述磁控管两端的阳极电压的对应关系,计算出所述磁控管两端的阳极电压。
  12. 根据权利要求11所述的变频电源,其特征在于,所述变频电源还包括放大电路,所述放大电路的输入端与所述第一电压采样电路的第一输出端连接,所述放大电路的输出端与所述控制器连接。
  13. 一种磁控管温度调节***,其特征在于,包括:
    磁控管;
    变频电源,其与所述磁控管连接,用于驱动所述磁控管;
    第二电压采样电路,其耦合于所述变频电源与磁控管之间,用于采样所述变频电源的第二输出电压,所述第二输出电压与加载于所述磁控管两端的阳极电压存在对应关系;
    如权利要求10所述的控制器,其分别与所述第二电压采样电路的输出端和所述变频电源连接,所述控制器根据所述第二输出电压与加载于所述磁控管两端的阳极电压的对应关系,计算出所述磁控管两端的阳极电压。
  14. 一种微波设备,其特征在于,包括如权利要求10所述的控制器。
PCT/CN2018/083390 2017-10-30 2018-04-17 磁控管温度调节方法、装置及***、变频电源及微波设备 WO2019085408A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020524364A JP6987989B2 (ja) 2017-10-30 2018-04-17 マグネトロン温度調節方法、装置及びシステム、可変周波数電源及びマイクロ波機器
KR1020207014410A KR102319930B1 (ko) 2017-10-30 2018-04-17 마그네트론 온도 조절 방법, 장치 및 시스템, 가변 주파수 전원 및 마이크로파 기기
EP18873316.6A EP3706512B1 (en) 2017-10-30 2018-04-17 Magnetron temperature regulating method, device, and system, variable-frequency power supply, and microwave device
US16/857,314 US11696376B2 (en) 2017-10-30 2020-04-24 Method, device, and system for regulating temperature of magnetron, variable-frequency power supply, and microwave apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711035721.6A CN107896393B (zh) 2017-10-30 2017-10-30 磁控管温度调节方法、装置及***、变频电源及微波设备
CN201711035721.6 2017-10-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/857,314 Continuation US11696376B2 (en) 2017-10-30 2020-04-24 Method, device, and system for regulating temperature of magnetron, variable-frequency power supply, and microwave apparatus

Publications (1)

Publication Number Publication Date
WO2019085408A1 true WO2019085408A1 (zh) 2019-05-09

Family

ID=61804095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083390 WO2019085408A1 (zh) 2017-10-30 2018-04-17 磁控管温度调节方法、装置及***、变频电源及微波设备

Country Status (6)

Country Link
US (1) US11696376B2 (zh)
EP (1) EP3706512B1 (zh)
JP (1) JP6987989B2 (zh)
KR (1) KR102319930B1 (zh)
CN (1) CN107896393B (zh)
WO (1) WO2019085408A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107896393B (zh) * 2017-10-30 2020-01-03 深圳麦格米特电气股份有限公司 磁控管温度调节方法、装置及***、变频电源及微波设备
CN110530553B (zh) * 2019-08-07 2020-11-06 深圳麦格米特电气股份有限公司 一种磁控管状态检测方法、装置、控制器、电路及***
CN112714528B (zh) * 2020-12-31 2023-04-21 广东美的厨房电器制造有限公司 变频器电路的控制方法、控制装置、磁控管驱动电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835354A (en) * 1987-03-30 1989-05-30 Cem Corporation Microwave heating apparatus for laboratory analyses
CN103906285A (zh) * 2014-03-26 2014-07-02 广东美的厨房电器制造有限公司 功率调整电路、微波炉和功率调整方法
CN104090624A (zh) * 2014-04-03 2014-10-08 湖南华冶微波科技有限公司 控制工业微波设备的功率的方法及装置
CN104968061A (zh) * 2015-07-20 2015-10-07 广东美的厨房电器制造有限公司 微波炉及微波炉变频电源的启动控制装置和方法
CN105142254A (zh) * 2015-07-20 2015-12-09 广东美的厨房电器制造有限公司 微波炉中磁控管工作状态的检测装置、方法和微波炉
CN107896393A (zh) * 2017-10-30 2018-04-10 深圳麦格米特电气股份有限公司 磁控管温度调节方法、装置及***、变频电源及微波设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876956A (en) * 1968-06-25 1975-04-08 Melvin L Levinson Regulated power supply circuit for a heating magnetron
US4481447A (en) * 1982-06-21 1984-11-06 U.S. Philips Corporation Power supply for a magnetron
US4777575A (en) * 1986-03-25 1988-10-11 Hitachi Ltd. Switching power supply
US5274208A (en) * 1990-03-28 1993-12-28 Kabushiki Kaisha Toshiba High frequency heating apparatus
US5571439A (en) * 1995-04-27 1996-11-05 Fusion Systems Corporation Magnetron variable power supply with moding prevention
US5642268A (en) * 1995-10-30 1997-06-24 Xerox Corporation Power supply for a magnetron having controlled output power and narrow bandwidth
KR20030091221A (ko) * 2002-05-25 2003-12-03 삼성전자주식회사 전자렌지의 고출력 제어방법 및 그 제어장치
JP4356618B2 (ja) * 2005-01-25 2009-11-04 パナソニック株式会社 マグネトロン駆動用電源
CN2884685Y (zh) * 2006-03-09 2007-03-28 美的集团有限公司 微波炉磁控管变频电源
CN105744667B (zh) * 2015-07-20 2019-07-02 广东美的厨房电器制造有限公司 微波炉及微波炉变频电源的启动控制装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835354A (en) * 1987-03-30 1989-05-30 Cem Corporation Microwave heating apparatus for laboratory analyses
CN103906285A (zh) * 2014-03-26 2014-07-02 广东美的厨房电器制造有限公司 功率调整电路、微波炉和功率调整方法
CN104090624A (zh) * 2014-04-03 2014-10-08 湖南华冶微波科技有限公司 控制工业微波设备的功率的方法及装置
CN104968061A (zh) * 2015-07-20 2015-10-07 广东美的厨房电器制造有限公司 微波炉及微波炉变频电源的启动控制装置和方法
CN105142254A (zh) * 2015-07-20 2015-12-09 广东美的厨房电器制造有限公司 微波炉中磁控管工作状态的检测装置、方法和微波炉
CN107896393A (zh) * 2017-10-30 2018-04-10 深圳麦格米特电气股份有限公司 磁控管温度调节方法、装置及***、变频电源及微波设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706512A4 *

Also Published As

Publication number Publication date
EP3706512A4 (en) 2021-08-11
US20200253006A1 (en) 2020-08-06
CN107896393A (zh) 2018-04-10
JP6987989B2 (ja) 2022-01-05
KR20200074182A (ko) 2020-06-24
KR102319930B1 (ko) 2021-10-29
CN107896393B (zh) 2020-01-03
US11696376B2 (en) 2023-07-04
EP3706512B1 (en) 2024-05-22
JP2021501452A (ja) 2021-01-14
EP3706512A1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2019033772A1 (zh) 磁控管温度调节方法、装置及***、变频电源及微波设备
WO2019085408A1 (zh) 磁控管温度调节方法、装置及***、变频电源及微波设备
WO2018094912A1 (zh) 压缩机的控制方法、装置和家用电器
JP2005333793A (ja) インバータ制御回路の力率補償制御装置及び方法
WO2011019727A2 (en) System and method for rejecting dc current in power factor correction systems
US9407094B2 (en) Systems and methods for adaptive load control
CN102882288A (zh) 一种无线电力传输***及其控制方法
WO2022142924A1 (zh) 蒸汽消融设备
TW201724684A (zh) 切換式電源供應器及使用其之電源供應設備
WO2014173363A1 (zh) 开关整流器启动控制方法及其装置、存储介质
CN105223989A (zh) 一种可调温度的恒温加热***
CN110530553B (zh) 一种磁控管状态检测方法、装置、控制器、电路及***
CN105307293A (zh) 220v交流电压供电的电饭锅加热电路
CN205427663U (zh) 一种可调温度的恒温加热电路
CN110456190B (zh) 一种磁控管状态检测方法、控制器、电路及***
CN209673992U (zh) 一种温度调节装置及一种激光测距传感器
CN105323875A (zh) 12v~24v直流电压供电的电饭锅加热电路
US20230130591A1 (en) Heating system and method of heating a process medium
US11973409B2 (en) Heating system and method of heating a process fluid
CN113300359B (zh) 交流负载匹配方法及装置
CN108011515A (zh) 一种电流可调自适应负载的电路结构
CN202798429U (zh) 采用变频控制的开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18873316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020524364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207014410

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018873316

Country of ref document: EP

Effective date: 20200602