WO2019047783A1 - 同步信号块测量方法、终端及网络设备 - Google Patents

同步信号块测量方法、终端及网络设备 Download PDF

Info

Publication number
WO2019047783A1
WO2019047783A1 PCT/CN2018/103567 CN2018103567W WO2019047783A1 WO 2019047783 A1 WO2019047783 A1 WO 2019047783A1 CN 2018103567 W CN2018103567 W CN 2018103567W WO 2019047783 A1 WO2019047783 A1 WO 2019047783A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
synchronization signal
signal block
transmission resource
indication information
Prior art date
Application number
PCT/CN2018/103567
Other languages
English (en)
French (fr)
Inventor
刘思綦
丁昱
纪子超
潘学明
郑倩
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to US16/645,359 priority Critical patent/US11363552B2/en
Priority to EP18853333.5A priority patent/EP3681192A4/en
Publication of WO2019047783A1 publication Critical patent/WO2019047783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a synchronization signal block measurement method, a terminal, and a network device.
  • the network device needs to send a Synchronized Signal Block (SS block) for the terminal to synchronize, the system Information acquisition or measurement evaluation, etc.
  • the SS block is composed of a New Radio Synchronized Signal (NR-SS) and a New Radio Physical Broadcast Channel (NR-PBCH) signal.
  • NR-SS includes a New Radio Primary Synchronized Signal (NR-PSS) and a New Radio Secondary Synchronized Signal (NR-SSS).
  • the generation of the NR-SS sequence is related to the Physical Cell Identifier (PCI), and the NR-PBCH signal is mainly used to acquire the System Information Block (MIB).
  • PCI Physical Cell Identifier
  • MIB System Information Block
  • the multiple SS blocks form a Synchronized Signal burst set (SS burst set), and the maximum number of SS blocks included in an SS burst set is related to the carrier frequency used by the system. For example, when the frequency is less than 3 GHz, an SS burst set can contain up to 4 SS blocks; when the carrier frequency ranges from 3 GHz to 6 GHz, an SS burst set can contain up to 8 SS blocks; the carrier frequency ranges from 6 GHz to 52.6 GHz. At most, an SS burst set can contain up to 64 SS blocks.
  • the period of the NR-PBCH signal is 80 ms, and multiple SS burst sets are repeatedly transmitted in one NR-PBCH period, that is, the content of the SS block with the same index (index) is consistent in one NR-PBCH period.
  • the terminal can be soft-combined to achieve coverage enhancement, but the content of the NR-PBCH signal between different Transmission Time Intervals (TTIs) may change.
  • TTIs Transmission Time Intervals
  • an SS burst set contains 4 SS blocks.
  • the TTI period of an NR-PBCH signal is 80 ms, SS burst.
  • the set period can be configured as ⁇ 5, 10, 20, 40, 80, 160 ⁇ ms, assuming each SS burst set period is 20 ms, and an NR-PBCH signal includes 4 SS burst sets in the TTI period.
  • all SS blocks in an SS burst set must be sent in the 5ms time window.
  • the terminal In order to avoid the effects of short-term fluctuations such as fast fading of the signal, the terminal needs to perform multiple measurements on the SS block in the time domain and the frequency domain within a set measurement period, and calculate a series of evenly distributed in the measurement period.
  • the average of the samples is measured, which can be used as a reference for the process of cell selection/switching/reselection.
  • the measurement period is determined by the performance requirements of the relevant wireless scenario, and may reach several hundred milliseconds, for example, the measurement period of the same reference signal receiving power (RSRP) in the Long Term Evolution (LTE) communication system. Can be 200ms.
  • RSRP reference signal receiving power
  • the terminal performs the SS block search according to the default period of 20ms, the terminal needs to sample the signal of 20ms multiple times to find the SS block during the measurement period, which has high requirements on the terminal processing capability (such as terminal buffer, processing speed, etc.). And consume more power.
  • the terminal processing capability such as terminal buffer, processing speed, etc.
  • the frequency band span of the NR system increases, there may be multiple locations in the frequency domain to simultaneously transmit SS blocks. Terminals with large bandwidth support capability need to perform blind block detection, measurement, and information reading on these frequency domain locations. Take, further increase the complexity of blind detection of the terminal, increase the blind detection time and power consumption.
  • an embodiment of the present disclosure provides a method for measuring a synchronization signal block, which is applied to a terminal side, and includes:
  • auxiliary measurement information sent by the network device for assisting the terminal to perform synchronization signal block measurement and the auxiliary measurement information is used to indicate transmission configuration information of the synchronization signal block;
  • the sync signal block that is repeatedly transmitted is determined and measured.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a first receiving module configured to receive auxiliary measurement information sent by the network device for the auxiliary terminal to perform synchronization signal block measurement, where the auxiliary measurement information is used to indicate transmission configuration information of the synchronization signal block;
  • a determining module is configured to determine a repeatedly transmitted sync signal block and perform measurement according to the auxiliary measurement information.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes a processor, a memory, and a computer program stored on the memory and operable on the processor, and the computer program is executed by the processor to implement the synchronization signal as described above. The steps of the block measurement method.
  • an embodiment of the present disclosure provides a method for measuring a synchronization signal block, which is applied to a network device side, and includes:
  • the auxiliary measurement information for the auxiliary terminal to perform synchronization signal block measurement is transmitted to the terminal, and the auxiliary measurement information is used to indicate the transmission configuration information of the synchronization signal block.
  • the embodiment of the present disclosure further provides a network device, including:
  • a first sending module configured to send, to the terminal, auxiliary measurement information used by the auxiliary terminal to perform synchronization signal block measurement, where the auxiliary measurement information is used to indicate transmission configuration information of the synchronization signal block.
  • an embodiment of the present disclosure provides a network device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor to implement the foregoing The steps of the synchronization signal block measurement method.
  • an embodiment of the present disclosure provides a computer readable storage medium having a computer program stored thereon, the computer program being executed by a processor to implement the steps of the synchronization signal block measurement method as described above.
  • Figure 1 is a diagram showing the relationship between the NR-PBCH period, the SS block, and the SS burst set;
  • FIG. 2 is a flowchart showing a method for measuring a synchronization signal block on a terminal side according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of resource mapping of scenario 1 in the embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of resource mapping of scenario 2 and scenario 3 in the embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of resource mapping of scenario 4 in the embodiment of the present disclosure.
  • Figure 6 is a schematic view showing the end side module of the embodiment of the present disclosure.
  • Figure 7 is a block diagram showing a terminal side of an embodiment of the present disclosure.
  • FIG. 8 is a flowchart showing a method for measuring a synchronization signal block on a network device side according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a network device module according to an embodiment of the present disclosure.
  • Figure 10 shows a block diagram of a network device in accordance with an embodiment of the present disclosure.
  • the synchronization signal block measurement method of the embodiment of the present disclosure is applied to the terminal side, and specifically includes the following steps:
  • Step 21 Receive auxiliary measurement information sent by the network device for the auxiliary terminal to perform synchronization signal block measurement.
  • the auxiliary measurement information is used to indicate transmission configuration information of the synchronization signal block.
  • the network device may repeatedly transmit the synchronization signal block SS block using the same beam at multiple transmission locations of one or more domains in the time domain and the frequency domain, wherein the synchronization signal block includes a physical broadcast channel, a primary synchronization signal, and a secondary synchronization. signal.
  • the physical broadcast channel carries system information, such as a system main information block MIB.
  • the network device may send the auxiliary measurement information by using the system information or the radio resource to control the RRC layer signaling, and accordingly, the terminal controls the RRC layer signaling by using the system information or the radio resource, and receives the synchronization signal sent by the network device for the auxiliary terminal to perform the synchronization signal.
  • the system information includes at least one of a system main information block MIB, a remaining minimum system information (RMSI), and other system information (OSI).
  • Step 22 Determine the repeatedly transmitted sync signal block and perform measurement according to the auxiliary measurement information.
  • the terminal may learn the transmission configuration of the synchronization signal block according to the transmission configuration information of the synchronization signal block indicated by the auxiliary measurement information, such as which synchronization signal blocks are repeatedly transmitted and repeatedly transmitted synchronization signal blocks.
  • Information such as the number of transmissions, so that when the synchronization signal block is measured or decoded, the synchronization signal block can be quickly and blindly detected, the blind detection time, the blind detection difficulty and the measurement time are reduced, the measurement accuracy is improved, and the cell access/reselection is accelerated. Switch the process to achieve energy saving in the terminal.
  • the foregoing auxiliary measurement information includes at least one of the following information: first indication information used to indicate a pattern of a synchronization signal block repeatedly transmitted on a time domain transmission resource; and used to indicate a frequency domain transmission resource And second indication information of the pattern information of the synchronization signal block that is repeatedly transmitted; and third indication information for indicating Quasi Co-Location (QCL) information of the synchronization signal block. That is, the network device sends the auxiliary measurement information carrying at least one of the first indication information, the second indication information, and the third indication information to the terminal.
  • QCL Quasi Co-Location
  • the terminal After receiving the auxiliary measurement information, if the terminal parses the first indication information in the auxiliary measurement information, determining the first pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource; if parsing into the auxiliary measurement information The second indication information determines the second pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource; if the third indication information in the auxiliary measurement information is parsed, the quasi-co-location information of the synchronization signal block is determined. And determining, by the terminal, the repeatedly transmitted synchronization signal block and performing measurement according to at least one of the first pattern information, the second pattern information, and the quasi-co-location information.
  • the first indication information is used to indicate a pattern in the current frequency domain position that the SS block repeatedly sends in the time domain, and the pattern needs to indicate information that the SS block repeatedly sends in the time domain, for example, which time domain locations have SS
  • the block is repeatedly transmitted in the time domain, and the number of times the SS block is repeatedly transmitted in the time domain at these time domain locations.
  • the pattern information indicated by the first indication information includes at least one of the following information: location information of a candidate time domain transmission resource that repeatedly transmits a synchronization signal block, and location information of a time domain transmission resource that actually repeatedly transmits a synchronization signal block. And a transmission frequency information of the synchronization signal block that is repeatedly transmitted on the time domain transmission resource and a transmission frequency information of the synchronization signal block that is repeatedly transmitted on the time domain transmission resource.
  • the second indication information is used to indicate a pattern in which the SS block repeatedly transmits in the frequency domain, and the pattern needs to indicate information that the SS block repeatedly transmits in the frequency domain, for example, which frequency domain locations have SS blocks repeatedly transmitted in the time domain. Numerology information of these frequency domain locations, such as subcarrier spacing, Cyclic Prefix (CP), and the number of times the SS block is repeatedly transmitted in the frequency domain at these frequency domain locations.
  • the pattern information indicated by the second indication information includes at least one of the following information: location information of a candidate frequency domain transmission resource that repeatedly transmits the synchronization signal block, and location information of a frequency domain transmission resource that actually repeatedly transmits the synchronization signal block.
  • the value configuration information of the candidate frequency domain transmission resource that allows the repeated transmission of the synchronization signal block includes: a subcarrier spacing of the candidate frequency domain transmission resource that allows repeated transmission of the synchronization signal block, and a candidate frequency domain transmission resource that allows repeated transmission of the synchronization signal block. At least one of the cyclic prefixes.
  • the value configuration information of the frequency domain transmission resource that actually repeatedly transmits the synchronization signal block includes: at least a subcarrier spacing of the frequency domain transmission resource that actually repeatedly transmits the synchronization signal block and at least a cyclic prefix of the frequency domain transmission resource of the actual repeated transmission synchronization signal block.
  • the pattern information of the SS block is repeatedly transmitted in the first indication information and the second indication information, and the pattern may be a default pattern, a predefined pattern, and a pattern directly configured by the network device.
  • Different network devices may set different default patterns.
  • the network device When the terminal first accesses, the network device notifies the terminal of the default pattern, or different network devices set the same default pattern, and the network device does not need to inform the terminal of the default pattern.
  • the network device can inform the terminal of the predefined pattern and the configured pattern by using the auxiliary measurement information.
  • the auxiliary measurement information includes the first indication information and the second indication information
  • the first indication information and the second indication information may be respectively indicated by using a separate indication manner, and the first indication information and the second indication information may also be combined. Indicate the way to indicate. The above two indication modes will be further described below with reference to specific examples.
  • the first indication information and the second indication information form joint index value information, and the joint index value information is used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource and the frequency domain transmission resource. That is to say, the pattern information joint indication of the SS block repeatedly transmitted in the time domain transmission resource and the frequency domain transmission resource.
  • the pattern information joint indication of the SS block repeatedly transmitted in the time domain transmission resource and the frequency domain transmission resource.
  • there are 16 types of two-dimensional patterns repeatedly transmitted by the SS block on the time domain transmission resource and the frequency domain transmission resource and a 4-bit indication information (first indication information and second indication information) can be used to indicate in the auxiliary measurement information.
  • the first indication information and the second indication information may be separately indicated.
  • the first indication information is used as an example, and the first indication information is used to indicate that the time domain transmission resource is repeatedly sent. At least one of first index value information, bitmap information (bitmap), grouping information, repeated transmission number information, and bitmap information of the repeatedly transmitted synchronization signal block in each packet of the pattern information of the synchronization signal block.
  • bitmap information bitmap
  • grouping information repeated transmission number information
  • bitmap information of the repeatedly transmitted synchronization signal block in each packet of the pattern information of the synchronization signal block.
  • the network device can also directly indicate by transmitting a bitmap of the transmission location of the SS block repeatedly on the time domain transmission resource.
  • packet information indicates how to group and indicate which packets are sent, such as packet information indicating that 64 SS blocks are divided into 8 packets, and indicating which packets are transmitted, and SS blocks in each transmitted packet Repeatedly sent 8 times.
  • the packet information indicates how to group and indicate which packets are transmitted, for example, the packet information indicates that 64 SS blocks are divided into 8 packets and indicates which packets are transmitted, and the number of repeated transmissions
  • the information indicates that K identical SS blocks are continuously and repeatedly transmitted in each packet, and K is an integer greater than or equal to 1.
  • K is an integer greater than or equal to 1.
  • the packet information indicates how to group and indicates which packets are transmitted, for example, the group information indicates that 64 SS blocks are divided.
  • the bitmap information and the repeated transmission times information indicate that K SS blocks are repeatedly transmitted according to the indication of the bitmap in each packet, K is an integer greater than or equal to 1, and when K is equal to 1, the SS is indicated.
  • the block is sent separately, and when K is greater than 1, it indicates that the SS block is repeatedly transmitted.
  • the second indication information includes: second index value information, bitmap information (bitmap), packet information, repeated transmission times information, and each of the pattern information for indicating the synchronization signal block repeatedly transmitted on the frequency domain transmission resource. At least one of the bitmap information of the synchronization signal block is repeatedly transmitted within the packet.
  • bitmap information bitmap
  • the network device can also directly indicate by transmitting a bitmap of the transmission location of the SS block repeatedly on the frequency domain transmission resource.
  • the grouping information indicates how to group and indicate which packets are sent, for example, the grouping information divides 64 SS blocks into 8 groups, and indicates which packets are transmitted, and the SS block is repeatedly transmitted 8 times in each packet.
  • the packet information indicates how to group and indicate which packets are transmitted, for example, the packet information indicates that 64 SS blocks are divided into 8 packets and which packets are sent, and the number of repeated transmissions
  • the information indicates that K identical SS blocks are continuously and repeatedly transmitted in each packet, and K is an integer greater than or equal to 1. When K is equal to 1, the SS block is separately transmitted, and when K is greater than 1, the SS block is repeatedly transmitted.
  • the packet information indicates how to group and indicates which packets are transmitted, for example, the group information indicates that 64 SS blocks are divided.
  • the bitmap information and the number of repeated transmissions information indicate that each of the packets is repeatedly transmitted K blocks according to the indication of the bitmap, K is an integer greater than or equal to 1, and when K is equal to 1, the SS is indicated.
  • the block is sent separately, and when K is greater than 1, it indicates that the SS block is repeatedly transmitted.
  • the quasi-co-location information indicated by the third indication information in the auxiliary measurement information specifically includes at least one of the following information: airspace quasi-co-location information of the antenna port for transmitting the synchronization signal block, and is used for transmitting the synchronization signal.
  • the third indication information may include other quasi-co-location information in addition to the quasi-co-location information listed above.
  • the auxiliary measurement information includes at least one of the first indication information, the second indication information, and the third indication information, and further the auxiliary measurement information may further include at least one of the following information: used to indicate the synchronization signal set Fourth indication information of a transmission period; and fifth indication information for indicating synchronization signal block information actually transmitted in the synchronization signal set. That is, the auxiliary measurement information can also be used to indicate the transmission period of the SS burst set and the SS block actually transmitted within the transmission window of each SS burst set.
  • the sync block information actually sent in the signal set includes at least one of information such as the number of transmissions and the synchronization signal block index.
  • the following describes how the terminal determines the SS block that is repeatedly transmitted according to the measurement assistance information with reference to a specific example.
  • the terminal parses the auxiliary measurement information to learn that the auxiliary measurement information includes the third indication information, and does not include the first indication information, the second indication information, and the fifth indication information, that is, the terminal can determine the synchronization signal according to the analysis of the auxiliary measurement information.
  • the quasi-co-location information of the block the terminal may implicitly obtain the pattern repeatedly transmitted by the SS block in the time domain and/or the frequency domain according to the quasi-co-location information of the synchronization signal block, for example, the SS block indicated as the QCL is a repeatedly transmitted SS. Block.
  • the terminal may repeatedly send the SS block pattern according to the time-frequency domain. It is considered that the SS block repeatedly transmitted is QCL.
  • the terminal may repeatedly send the information according to the synchronization signal block in the time-frequency domain.
  • the pattern and the quasi-co-location information jointly determine the SS block that is repeatedly transmitted.
  • the terminal may implicitly obtain the quasi-co-location information of the synchronization signal block.
  • the SS block allows the repeatedly transmitted pattern in the time domain and/or the frequency domain, and further determines the SS block that is actually repeatedly transmitted in conjunction with the actually transmitted synchronization signal block information in the synchronization signal set.
  • the terminal parses the auxiliary measurement information to learn that the auxiliary measurement information includes the first indication information, the second indication information, and the fifth indication information, and does not include the third indication information, and the terminal may repeatedly send the SS block pattern according to the time-frequency domain, and considers the repetition.
  • the transmitted SS block is QCL, and further determines the SS block that is actually repeatedly transmitted in conjunction with the actually transmitted synchronization signal block information in the synchronization signal set.
  • the terminal determines the SS block that is actually repeatedly transmitted.
  • the above describes the auxiliary measurement information sent by the terminal receiving network device, and how to determine the process of repeatedly transmitting the SS block according to the auxiliary measurement information.
  • the following embodiment will further describe how to measure.
  • step 22 includes: determining a repeatedly transmitted synchronization signal block according to the auxiliary measurement information; and performing measurement on the repeatedly transmitted synchronization signal block.
  • the measurement behavior of the terminal according to the auxiliary measurement information is: performing sampling and measurement on the non-repeating SS blocks detected in the time-frequency domain position, and performing RSRP and the like respectively; and indicating, by the auxiliary measurement information, the SS block repeatedly transmitted. Make measurements and perform calculations such as RSRP.
  • the synchronization signal block can be read.
  • the information reading behavior performed by the terminal according to the auxiliary measurement information includes: reading information carried by the SS block detected in the time-frequency domain position. Taking, in which the auxiliary measurement information indicates that the information carried by the repeatedly transmitted SS block is merged and read. After step 22, the method further includes: combining and decoding the information carried in the repeatedly transmitted synchronization signal block.
  • the process of combining and decoding may be that the terminal decodes the information carried by the terminal after detecting the synchronization signal block every time, and if the synchronization signal block that is repeatedly transmitted fails after the initial independent decoding, The information carried by the repeatedly transmitted synchronization signal block may be further combined, and the combined information is secondarily decoded.
  • the process of the above-mentioned merge decoding may be that after receiving the repeatedly transmitted sync signal block, the terminal does not perform independent decoding, but combines the information carried by all the repeatedly transmitted sync signal blocks, and then merges the combined information. The information is decoded.
  • the step of combining and decoding the repeatedly transmitted synchronization signal block includes: combining and decoding the primary synchronization signal PSS and the secondary synchronization signal SSS in the repeatedly transmitted synchronization signal block, respectively;
  • the main information block MIB, the primary synchronization signal PSS, and the secondary synchronization signal SSS are combined and decoded, respectively.
  • the above-mentioned merging process refers to merging all the PSSs in the repeatedly transmitted sync signal block, merging the SSSs in the repeatedly transmitted sync signal block, and the Sync signal blocks in the repeatedly transmitted sync signal block.
  • the MIB is merged.
  • the following embodiment further introduces the process of measuring and decoding the synchronization signal block by the terminal using the auxiliary measurement information in combination with the specific application scenario.
  • the serving cell works in a single carrier, and the network device repeatedly sends the SS block in the time domain.
  • the actual number of SS blocks sent is 4, and the SS block 1 that is repeatedly transmitted is included. , two SS blocks 2 that are sent repeatedly.
  • the network device indicates the pattern repeatedly transmitted by the QCL and the SS block through the synchronization signal block auxiliary measurement information.
  • the network device may send the cell synchronization signal block auxiliary measurement information to the terminal in the form of system information, and the terminal parses the auxiliary measurement information, and according to the auxiliary measurement information, the SS block 1 that is repeatedly transmitted by the auxiliary measurement information is found on the current carrier. .
  • the terminal measures the repeatedly transmitted SS block1, and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the MIB are merged and read separately; if the MIB is merged, and the PSS carried by the MIB is carried SSS and MIB are merged and read separately.
  • the SS block 2 that is repeatedly sent may also perform measurement and information reading in the above manner, and therefore will not be described again.
  • the serving cell operates in a wideband scenario
  • the network device repeatedly transmits the SS block in the frequency domain
  • the SS burst set period is the same on the bandwidth part (BWP) of each frequency band, and each SS burst set is set.
  • BWP bandwidth part
  • each SS burst set is set.
  • the actual number of SS blocks sent is 4, and there are 4 different SS block1, SS block 2, SS block 3, and SS block 4.
  • the SS blocks repeatedly transmitted in the frequency domain share the same Control Resource Set (CORESET), and the network device indicates the pattern repeatedly transmitted by the QCL and the SS block through the auxiliary measurement information of the synchronization signal block.
  • CORESET Control Resource Set
  • the network device may send the cell synchronization signal block auxiliary measurement information to the terminal in the form of system information, and the terminal parses the auxiliary measurement information, and searches for the SS block at the corresponding time-frequency positions of the BWP1 and the BWP2. At the same time point, the terminal finds SS block 1 indicating that the auxiliary measurement information is repeatedly transmitted in BWP1 and BWP2, respectively.
  • the terminal measures the SS block 1 repeatedly sent on the BWP1 and the BWP2, and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the MIB are merged and read respectively; if the MIB is merged, the The carried PSS, SSS and MIB are combined and read.
  • the SS block 2, the SS block 3, and the SS block 4 that are repeatedly transmitted may also perform measurement and information reading in the foregoing manner, and therefore will not be described again.
  • the serving cell operates in a large bandwidth scenario, and the network device repeatedly transmits the SS block in the frequency domain.
  • the SS burst set period is the same on different BWPs, and the number of SS blocks actually sent in each SS burst set period is 4, and Contains 4 different SS block 1, SS block 2, SS block 3 and SS block 4.
  • the SS blocks repeatedly transmitted in the frequency domain have their own CORESET, and the network device indicates the QCL information of these SS blocks through the auxiliary measurement information of the synchronization signal block.
  • the network device may send the auxiliary measurement information of the local synchronization signal block to the terminal in the form of system information, and the terminal parses the auxiliary measurement information, and searches for the SS block at the corresponding time-frequency positions of the BWP1 and the BWP 2.
  • the terminal finds SS block 1 whose auxiliary measurement information is indicated as QCL in BWP1 and BWP2, respectively, and considers that they are repeatedly transmitted.
  • the terminal measures the SS block 1 repeatedly sent on the BWP1 and the BWP2, and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the MIB are merged and read respectively; if the MIB is merged, it is carried. PSS, SSS, and MIB are merged and read, respectively.
  • the SS block 2, the SS block 3, and the SS block 4 that are repeatedly transmitted may also perform measurement and information reading in the foregoing manner, and therefore will not be described again.
  • the serving cell works in a large bandwidth scenario, and the network device repeatedly transmits the SS block in the frequency domain, and the SS burst set period is different on different BWPs.
  • the number of SS blocks actually sent in each SS burst set period is 4, and includes 4 different SS block 1, SS block 2, SS block 3, and SS block 4.
  • the SS blocks repeatedly transmitted in the frequency domain have respective CORESETs, and each SS block and its CORESET can be uniformly indicated, and the network device indicates the pattern repeatedly transmitted by the SS blocks by the auxiliary measurement information indicating the synchronization signal block.
  • the network device sends the auxiliary measurement information of the cell synchronization signal block to the terminal in the form of system information, and the terminal parses the auxiliary measurement information, and searches for the SS block at the corresponding time-frequency positions of the BWP1 and the BWP 2.
  • the terminal finds SS block 1 with the auxiliary measurement information indicated as repeated transmission in BWP1BWP2, and considers that the SS block repeatedly transmitted is QCL.
  • the terminal measures the SS block 1 repeatedly sent on the BWP1 and the BWP 2, and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the MIB are merged and read respectively; if the MIB is merged, it is carried.
  • the PSS, SSS and MIB are merged and read separately.
  • the SS block 2, the SS block 3, and the SS block 4 that are repeatedly transmitted may also perform measurement and information reading in the foregoing manner, and therefore will not be described again.
  • the cell and the neighboring cell work at the same frequency point, and the cell and the neighboring cell are associated with multiple BWPs, and the BWP associated with the cell at the frequency is exactly the same as the BWP of the neighboring cell at the frequency. It means that the number of BWPs associated with the cell and the neighboring cell at the frequency is the same, and the locations of the BWP's Numerology and BWP are the same. Assume that the terminal is connected.
  • the network side sends the auxiliary measurement information of the neighboring cell synchronization signal block to the connected state terminal in the form of RRC signaling, and the terminal searches for the SS block in the corresponding position of the multiple BWPs of the neighboring cell according to the auxiliary measurement information of the neighboring cell. After that, the terminal measures the SS block on multiple BWPs of the neighboring cell that is searched.
  • the detected non-repeating SS blocks are respectively sampled and measured, and respectively subjected to calculations such as RSRP; for the auxiliary measurement information, the QCL and the repeatedly transmitted SS block are measured, and RSRP and the like are calculated.
  • the terminal feeds back the measurement report to the network device, and the network device determines whether to initiate the handover request according to the content of the measurement report.
  • the terminal decodes the neighboring cell SS block and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the repeatedly transmitted SS block are respectively combined and read; if the MIB is merged, the SS block to be repeatedly transmitted is repeated. The carried PSS, SSS and MIB are combined and read separately.
  • the local cell and the neighboring cell work at the same frequency point, and the local cell and the neighboring cell are associated with multiple BWPs, and the BWP associated with the cell at the frequency point and the BWP of the neighboring cell at the frequency point are exactly the same, wherein the same is the same.
  • the scenario in which the neighboring cell operates in the wideband, and the number of BWPs in the cell and the neighboring cell is the same in the frequency band.
  • the network device sends the auxiliary measurement information of the neighboring cell synchronization signal block to the idle state terminal in the form of system information, and the terminal searches for the SS block according to the auxiliary measurement information in the corresponding time-frequency position of the multiple BWPs of the neighboring cell.
  • the terminal measures the SS block of the neighboring cell that is found.
  • the detected non-repeating SS blocks are respectively sampled and measured, and respectively subjected to RSRP and the like; for the auxiliary measurement information, the QCL and the repeatedly transmitted SS block are measured, and RSRP and the like are calculated.
  • the terminal can decide whether to perform cell reselection according to the measurement result.
  • the terminal decodes the neighboring cell SS block and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the repeatedly transmitted SS block are respectively combined and read; if the MIB is merged, the SS block to be repeatedly transmitted is repeated. The carried PSS, SSS and MIB are combined and read separately.
  • the serving cell operates in a large bandwidth
  • the network device repeatedly transmits the SS block in the frequency domain, and the SS burst set period is the same on different BWPs.
  • the network device sends the local synchronization signal block auxiliary measurement information to the terminal in the form of system information.
  • the terminal searches for the SS block at the corresponding time-frequency position of the plurality of BWPs in the local cell according to the auxiliary measurement information.
  • the terminal measures the SS block of the local cell that is searched.
  • the detected non-repeating SS blocks are respectively sampled and measured, and respectively subjected to calculations such as RSRP; for the auxiliary measurement information, the QCL and the repeatedly transmitted SS block are measured, and RSRP and the like are calculated. And different operations are performed according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the MIB are merged and read respectively; if the MIB is merged, the PSS, the SSS and the MIB carried by the MIB are merged and read respectively.
  • the network device may send the auxiliary measurement information of the neighbor cell synchronization signal block to the connected state terminal in the form of RRC signaling.
  • the terminal searches for the SS block at the corresponding position of the multiple BWPs of the neighboring cell according to the auxiliary measurement information.
  • the terminal measures the SS block on multiple BWPs of the neighboring cell that is searched.
  • the detected non-repeating SS blocks are respectively sampled and measured, and respectively subjected to calculations such as RSRP; for the auxiliary measurement information, the QCL and the repeatedly transmitted SS block are measured, and RSRP and the like are calculated.
  • the terminal feeds back the measurement report to the base station, and the base station determines whether to initiate the handover request according to the content of the measurement report.
  • the terminal decodes the neighboring cell SS block and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the repeatedly transmitted SS block are respectively combined and read; if the MIB is merged, the SS block to be repeatedly transmitted is repeated. The carried PSS, SSS and MIB are combined and read separately.
  • the cell and the neighboring cell work at the same frequency point
  • the cell and the neighboring cell are associated with multiple BWPs
  • the BWP associated with the cell at the frequency point is the same or different from the BWP part of the neighboring cell at the frequency point
  • the terminal is Idle state.
  • the network device sends the auxiliary measurement information of the neighbor cell synchronization signal block to the idle state terminal in the form of system information.
  • the terminal searches for the SS block at the corresponding time-frequency position of the plurality of BWPs of the neighboring cell according to the auxiliary measurement information.
  • the terminal measures the SS block of the neighboring cell that is found.
  • the detected non-repeating SS blocks are respectively sampled and measured, and respectively subjected to calculations such as RSRP; for the auxiliary measurement information, the QCL and the repeatedly transmitted SS block are measured, and RSRP and the like are calculated.
  • the terminal determines whether to perform cell reselection according to the measurement result.
  • the terminal decodes the neighboring cell SS block and performs different operations according to whether the MIB is merged: if the MIB is not merged, the PSS and the SSS carried by the repeatedly transmitted SS block are respectively combined and read; if the MIB is merged, the SS block to be repeatedly transmitted is repeated. The carried PSS, SSS and MIB are combined and read separately.
  • the terminal receives the auxiliary measurement information sent by the network device for assisting the synchronization signal block measurement, and performs the measurement of the synchronization signal block according to the auxiliary measurement information. Since the auxiliary measurement information carries the transmission configuration information indicating the configuration of the synchronization signal block transmission, the terminal can acquire the transmission configuration of the synchronization signal block, which is convenient for the terminal to quickly detect the corresponding synchronization signal block and reduce the difficulty of blind detection of the synchronization signal block.
  • the blind detection time and the measurement time in addition, can further improve the measurement accuracy, and is more conducive to the subsequent cell access, reselection and handover process of the terminal, and reduce the power consumption of the terminal.
  • the terminal 600 of the embodiment of the present disclosure can implement the auxiliary measurement information sent by the receiving network device for the auxiliary terminal to perform synchronization signal block measurement in the foregoing embodiment, and the auxiliary measurement information is used to indicate the sending of the synchronization signal block.
  • the configuration information; determining the details of the repeatedly transmitted synchronization signal block and performing the measurement method according to the auxiliary measurement information, and achieving the same effect, the terminal 600 specifically includes the following functional modules:
  • the first receiving module 610 is configured to receive auxiliary measurement information that is sent by the network device for the auxiliary terminal to perform synchronization signal block measurement, where the auxiliary measurement information is used to indicate transmission configuration information of the synchronization signal block;
  • the determining module 620 is configured to determine, according to the auxiliary measurement information, the repeatedly transmitted synchronization signal block and perform measurement.
  • the auxiliary measurement information includes at least one of the following information:
  • Second indication information for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource
  • Third indication information for indicating quasi co-location information of the synchronization signal block.
  • the pattern information indicated by the first indication information includes at least one of the following information:
  • the location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block The location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block, the location information of the time domain transmission resource of the actual repeated transmission synchronization signal block, the transmission frequency information of the synchronization signal block that allows repeated transmission on the time domain transmission resource, and the actual The number of times of transmission of the synchronization signal block repeatedly transmitted on the time domain transmission resource.
  • the pattern information indicated by the second indication information includes at least one of the following information:
  • the quasi-co-location information indicated by the third indication information includes at least one of the following information:
  • Spatial domain quasi-co-location information of an antenna port for transmitting a synchronization signal block average gain quasi-co-location information of an antenna port for transmitting a synchronization signal block, delay quasi-co-location information of an antenna port for transmitting a synchronization signal block, and Doppler parameter quasi-co-location information of an antenna port for transmitting a sync signal block.
  • the auxiliary measurement information includes the first indication information and the second indication information
  • the first indication information and the second indication information are respectively in a separate indication manner, or the first indication information and the second indication information are in a joint indication manner.
  • the first indication information and the second indication information form joint index value information, and the joint index value information is used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource and the frequency domain transmission resource.
  • the first indication information includes: first index value information, bitmap information, packet information, repeated transmission times information, and repeated transmission within each packet, used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource. At least one of bitmap information of the synchronization signal block;
  • the second indication information includes: second index value information, bitmap information, packet information, repeated transmission times information, and repeated transmission synchronization signals in each packet for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource. At least one of the bitmap information of the block.
  • the auxiliary measurement information further includes at least one of the following information:
  • Fourth indication information for indicating a transmission period of the synchronization signal set
  • the first receiving module 610 includes:
  • the first receiving unit is configured to control, by using system information or radio resources, RRC layer signaling, and receive auxiliary measurement information sent by the network device for the auxiliary terminal to perform synchronization signal block measurement.
  • the terminal 600 further includes:
  • a processing module configured to combine and decode information carried in the repeatedly transmitted synchronization signal block.
  • the processing module includes:
  • a first processing unit configured to separately combine and decode the primary synchronization signal PSS and the secondary synchronization signal SSS in the repeatedly transmitted synchronization signal block;
  • a second processing unit configured to combine and decode the main information block MIB, the primary synchronization signal PSS, and the secondary synchronization signal SSS in the repeatedly transmitted synchronization signal block.
  • the terminal of the embodiment of the present disclosure receives the auxiliary measurement information sent by the network device for assisting the synchronization signal block measurement, and performs the measurement of the synchronization signal block according to the auxiliary measurement information, because the auxiliary measurement information carries the indication synchronization.
  • the signal block sends the configured transmission configuration information, so the terminal can acquire the transmission configuration of the synchronization signal block, which is convenient for the terminal to quickly detect the corresponding synchronization signal block, and reduce the difficulty of blind detection of the synchronization signal block, the blind detection time and the measurement time. It can further improve the measurement accuracy, and is more conducive to the subsequent cell access, reselection and handover process of the terminal, and reduce the power consumption of the terminal.
  • an embodiment of the present disclosure further provides a terminal, including a processor, a memory, and a computer program stored on the memory and operable on the processor, and the processor implements the computer program as described above.
  • the steps in the synchronization signal block measurement method further provides a computer readable storage medium having a computer program stored thereon, the computer program being executed by the processor to implement the steps of the synchronization signal block measurement method as described above.
  • FIG. 7 is a block diagram of a terminal 700 according to another embodiment of the present disclosure.
  • the terminal shown in FIG. 7 includes at least one processor 701, a memory 702, a user interface 703, and a network interface 704.
  • the various components in terminal 700 are coupled together by a bus system 705.
  • the bus system 705 is used to implement connection communication between these components.
  • the bus system 705 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 705 in FIG.
  • the user interface 703 may include a display or a pointing device (eg, a touchpad or a touch screen, etc.).
  • the memory 702 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • Memory 702 of the systems and methods described herein is intended to comprise, without being limited to, these and any other suitable types of memory.
  • memory 702 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 7021 and application 7022.
  • the operating system 7021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 7022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 7022.
  • the terminal 700 further includes: a computer program stored on the memory 702 and executable on the processor 701, and specifically, may be a computer program in the application 7022, and the computer program is executed by the processor 701.
  • the following steps are implemented: receiving auxiliary measurement information sent by the network device for the auxiliary terminal to perform synchronization signal block measurement, and the auxiliary measurement information is used to indicate the transmission configuration information of the synchronization signal block;
  • the sync signal block that is repeatedly transmitted is determined and measured.
  • Processor 701 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 701 or an instruction in a form of software.
  • the processor 701 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 702, and the processor 701 reads the information in the memory 702 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (e.g., procedures, functions, etc.) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the auxiliary measurement information includes at least one of the following information:
  • Second indication information for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource
  • Third indication information for indicating quasi co-location information of the synchronization signal block.
  • the pattern information indicated by the first indication information includes at least one of the following information:
  • the location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block The location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block, the location information of the time domain transmission resource of the actual repeated transmission synchronization signal block, the transmission frequency information of the synchronization signal block that allows repeated transmission on the time domain transmission resource, and the actual The number of times of transmission of the synchronization signal block repeatedly transmitted on the time domain transmission resource.
  • the pattern information indicated by the second indication information includes at least one of the following information:
  • the quasi-co-location information indicated by the third indication information includes at least one of the following information:
  • Spatial domain quasi-co-location information of an antenna port for transmitting a synchronization signal block average gain quasi-co-location information of an antenna port for transmitting a synchronization signal block, delay quasi-co-location information of an antenna port for transmitting a synchronization signal block, and Doppler parameter quasi-co-location information of an antenna port for transmitting a sync signal block.
  • the auxiliary measurement information includes the first indication information and the second indication information
  • the first indication information and the second indication information respectively adopt a separate indication manner, or the first indication information and the second indication information adopt a joint indication manner.
  • the first indication information and the second indication information form joint index value information
  • the joint index value information is used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource and the frequency domain transmission resource.
  • the first indication information includes: first index value information, bitmap information, packet information, repeated transmission times information, and repetition within each packet, used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource. Transmitting at least one of bitmap information of the synchronization signal block;
  • the second indication information includes: second index value information, bitmap information, packet information, repeated transmission times information, and repeated transmission synchronization signals in each packet for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource. At least one of the bitmap information of the block.
  • the auxiliary measurement information further includes at least one of the following information:
  • Fourth indication information for indicating a transmission period of the synchronization signal set
  • the following steps may be implemented: controlling RRC layer signaling by using system information or radio resources, and receiving auxiliary measurement information sent by the network device for assisting the terminal to perform synchronization signal block measurement.
  • the following steps may be implemented: merging and decoding the information carried in the repeatedly transmitted sync signal block.
  • the following steps may be further implemented: combining and decoding the primary synchronization signal PSS and the secondary synchronization signal SSS in the repeatedly transmitted synchronization signal block;
  • the main information block MIB, the main synchronizing signal PSS, and the sub-synchronization signal SSS in the repeatedly transmitted sync signal block are separately combined and decoded.
  • the terminal may be a wireless terminal or a wired terminal, and the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem. .
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a mobile terminal.
  • RAN Radio Access Network
  • the computer for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • the wireless terminal may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a remote terminal.
  • the access terminal, the user terminal (User Terminal), the user agent (User Agent), and the user device (User Device or User Equipment) are not limited herein.
  • the terminal of the embodiment of the present disclosure receives the auxiliary measurement information sent by the network device for assisting the synchronization signal block measurement, and performs the measurement of the synchronization signal block according to the auxiliary measurement information, where the auxiliary measurement information carries the configuration indicating the synchronization signal block transmission configuration.
  • the configuration information is sent, so the terminal can obtain the transmission configuration of the synchronization signal block, which is convenient for the terminal to quickly detect the corresponding synchronization signal block, reduce the blind detection difficulty of the synchronization signal block, the blind detection time and the measurement time, and further improve
  • the measurement accuracy is more conducive to the subsequent cell access, reselection and handover process of the terminal, and reduces the power consumption of the terminal.
  • the synchronization signal block measurement method of the embodiment of the present disclosure is applied to a network device, and specifically includes the following steps:
  • Step 81 Send auxiliary measurement information for the auxiliary terminal to perform synchronization signal block measurement to the terminal.
  • the auxiliary measurement information is used to indicate transmission configuration information of the synchronization signal block.
  • the network device may repeatedly transmit the synchronization signal block SS block using the same beam at multiple transmission locations of one or more domains in the time domain and the frequency domain, wherein the synchronization signal block includes a physical broadcast channel, a primary synchronization signal, and a secondary synchronization. signal. After transmitting the synchronization signal block to the terminal, the network device further sends auxiliary measurement information indicating the synchronization signal block transmission configuration information to the terminal.
  • the step 81 may be specifically implemented by: controlling RRC layer signaling by using system information or radio resources, and sending auxiliary measurement information for the auxiliary terminal to perform synchronization signal block measurement to the terminal.
  • system information includes: MIB, RMSI and OSI.
  • the auxiliary measurement information includes at least one of the following information: first indication information for indicating pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource; and synchronization signal for indicating repeated transmission on the frequency domain transmission resource. Second indication information of the pattern information of the block; third indication information for indicating quasi-co-location information of the synchronization signal block.
  • the first indication information is used to indicate a pattern in the current frequency domain position that the SS block repeatedly sends in the time domain, and the pattern needs to indicate information that the SS block repeatedly sends in the time domain, for example, which time domain locations have SS
  • the block is repeatedly transmitted in the time domain, and the number of times the SS block is repeatedly transmitted in the time domain at these time domain locations.
  • the pattern information indicated by the first indication information includes at least one of the following information: location information of a candidate time domain transmission resource that repeatedly transmits a synchronization signal block, and location information of a time domain transmission resource that actually repeatedly transmits a synchronization signal block. And a transmission frequency information of the synchronization signal block repeatedly transmitted on the time domain transmission resource and a transmission frequency information of the synchronization signal block that is repeatedly transmitted on the time domain transmission resource.
  • the second indication information is used to indicate a pattern in which the SS block repeatedly transmits in the frequency domain, and the pattern needs to indicate information that the SS block repeatedly transmits in the frequency domain, for example, which frequency domain locations have SS blocks repeatedly transmitted in the time domain.
  • the pattern information indicated by the second indication information includes at least one of the following information: location information of a candidate frequency domain transmission resource that repeatedly transmits the synchronization signal block, and location information of a frequency domain transmission resource that actually repeatedly transmits the synchronization signal block.
  • a transmission frequency information of the synchronization signal block that is repeatedly transmitted on the frequency domain transmission resource a transmission frequency information of the synchronization signal block that is repeatedly transmitted on the frequency domain transmission resource, and a candidate frequency domain transmission resource that allows the synchronization signal block to be repeatedly transmitted.
  • Numerical configuration information and numerical configuration information of frequency domain transmission resources in which the synchronization signal block is actually repeatedly transmitted are actually repeatedly transmitted.
  • the pattern information of the SS block is repeatedly transmitted in the first indication information and the second indication information, and the pattern may be a default pattern, a predefined pattern, and a pattern directly configured by the network device.
  • the indication manners of different types of patterns refer to the indication manners introduced by the terminal side, and therefore no further description is provided herein.
  • the auxiliary measurement information includes the first indication information and the second indication information
  • the first indication information and the second indication information may be respectively indicated by using a separate indication manner, and the first indication information and the second indication information may also be combined. Indicate the way to indicate. The above two indication modes will be further described below with reference to specific examples.
  • the first indication information and the second indication information form joint index value information
  • the joint index value information is used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource and the frequency domain transmission resource. That is to say, the pattern information joint indication of the SS block repeatedly transmitted in the time domain transmission resource and the frequency domain transmission resource.
  • the indication is performed separately, the time domain transmission resource and the pattern of the SS block repeatedly transmitted on the frequency domain transmission resource are separately indicated.
  • the first indication information is used as an example, and the first indication information includes: a synchronization for indicating repeated transmission on the time domain transmission resource.
  • bitmap information bitmap
  • packet information packet information
  • repeated transmission number information bitmap information of a repeated transmission synchronization signal block in each packet of the pattern information of the signal block.
  • first index value information there are six types of patterns for repeatedly transmitting SS blocks on the time domain transmission resource, and one 3-bit indication information (first indication information) is used for the auxiliary measurement information.
  • first indication information is used for the auxiliary measurement information.
  • the network device can also directly indicate by transmitting a bitmap of the transmission location of the SS block repeatedly on the time domain transmission resource.
  • the grouping information indicates how to group and indicate which packets are sent, such as the grouping information indicating that 64 SS blocks are divided into 8 groups, the grouping information indicates which packets are transmitted, and each transmitted intra-segment SS The block is sent 8 times.
  • the packet information indicates how to group and indicate which packets are transmitted, for example, the packet information indicates that 64 SS blocks are divided into 8 packets and indicates which packets are transmitted, and the number of repeated transmissions
  • the information indicates that K identical SS blocks are continuously and repeatedly transmitted in each packet, and K is an integer greater than or equal to 1.
  • the packet information indicates how to group and indicates which packets are transmitted, for example, the group information indicates that 64 SS blocks are divided. It is 8 packets and indicates which packets are transmitted.
  • the bitmap information and the repeated transmission times information indicate that K SS blocks are repeatedly transmitted according to the indication of the bitmap in each packet, K is an integer greater than or equal to 1, and when K is equal to 1, the SS is indicated. The block is sent separately, and when K is greater than 1, it indicates that the SS block is repeatedly transmitted.
  • the second indication information includes: second index value information, bitmap information (bitmap), packet information, repeated transmission times information, and each of the pattern information for indicating the synchronization signal block repeatedly transmitted on the frequency domain transmission resource. At least one of the bitmap information of the synchronization signal block is repeatedly transmitted within the packet.
  • bitmap information bitmap
  • the network device can also directly indicate by transmitting a bitmap of the transmission location of the SS block repeatedly on the frequency domain transmission resource.
  • the packet information indicates how to group and indicates which packets are transmitted, for example, the packet information divides 64 SS blocks into 8 packets and indicates which packets are transmitted, and the SS block in each packet is repeatedly transmitted 8 times.
  • the packet information indicates how to group and indicate which packets are transmitted, for example, the packet information indicates that 64 SS blocks are divided into 8 packets and which packets are sent, and the number of repeated transmissions
  • the information indicates that K identical SS blocks are continuously and repeatedly transmitted in each packet, and K is an integer greater than or equal to 1. When K is equal to 1, the SS block is separately transmitted, and when K is greater than 1, the SS block is repeatedly transmitted.
  • the packet information indicates how to group and indicates which packets are transmitted, for example, the group information indicates that 64 SS blocks are divided.
  • the bitmap information and the number of repeated transmissions information indicate that each of the packets is repeatedly transmitted K blocks according to the indication of the bitmap, K is an integer greater than or equal to 1, and when K is equal to 1, the SS is indicated.
  • the block is sent separately, and when K is greater than 1, it indicates that the SS block is repeatedly transmitted.
  • the quasi-co-location information indicated by the third indication information includes at least one of the following information: airspace quasi-co-location information of an antenna port for transmitting a synchronization signal block, and an average of antenna ports of a user transmission synchronization signal block.
  • the auxiliary measurement information includes at least one of the first indication information, the second indication information, and the third indication information, and further the auxiliary measurement information may further include at least one of the following information: used to indicate the synchronization signal set Fourth indication information of a transmission period; and fifth indication information for indicating synchronization signal block information actually transmitted in the synchronization signal set.
  • the network device sends auxiliary measurement information for assisting the synchronization signal block measurement to the terminal, and the terminal performs measurement of the synchronization signal block according to the auxiliary measurement information, because the auxiliary measurement information carries an indication.
  • the synchronization signal block sends the configured transmission configuration information, so the terminal can acquire the transmission configuration of the synchronization signal block, which is convenient for the terminal to quickly detect the corresponding synchronization signal block, and reduce the blind detection difficulty, the blind detection time and the measurement time of the synchronization signal block.
  • the measurement accuracy can be further improved, which is more conducive to the subsequent cell access, reselection and handover process of the terminal, and reduces terminal power consumption.
  • the network device 900 of the embodiment of the present disclosure can implement the auxiliary measurement information for the auxiliary terminal to perform synchronization signal block measurement to the terminal in the foregoing embodiment, and the auxiliary measurement information is used to indicate the transmission configuration of the synchronization signal block.
  • the network device 900 specifically includes the following functional modules:
  • the first sending module 910 is configured to send, to the terminal, auxiliary measurement information for the auxiliary terminal to perform synchronization signal block measurement, where the auxiliary measurement information is used to indicate the transmission configuration information of the synchronization signal block.
  • the auxiliary measurement information includes at least one of the following information:
  • Second indication information for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource
  • Third indication information for indicating quasi co-location information of the synchronization signal block.
  • the pattern information indicated by the first indication information includes at least one of the following information:
  • the location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block The location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block, the location information of the time domain transmission resource of the actual repeated transmission synchronization signal block, the transmission frequency information of the synchronization signal block that allows repeated transmission on the time domain transmission resource, and the actual The number of times of transmission of the synchronization signal block repeatedly transmitted on the time domain transmission resource.
  • the pattern information indicated by the second indication information includes at least one of the following information:
  • the quasi-co-location information indicated by the third indication information includes at least one of the following information:
  • Spatial domain quasi-co-location information of an antenna port for transmitting a sync signal block average gain quasi-co-location information of an antenna port of a user transmitting a sync signal block, delay quasi-co-location information of an antenna port for transmitting a sync signal block, and The Doppler parameter quasi-co-location information of the antenna port of the transmission sync block.
  • the auxiliary measurement information includes the first indication information and the second indication information
  • the first indication information and the second indication information are respectively in a separate indication manner, or the first indication information and the second indication information are in a joint indication manner.
  • the first indication information and the second indication information form joint index value information, and the joint index value information is used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource and the frequency domain transmission resource.
  • the first indication information includes: first index value information, bitmap information, packet information, repeated transmission times information, and repeated transmission within each packet, used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource. At least one of bitmap information of the synchronization signal block;
  • the second indication information includes: second index value information, bitmap information, packet information, repeated transmission times information, and repeated transmission synchronization signals in each packet for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource. At least one of the bitmap information of the block.
  • the auxiliary measurement information further includes at least one of the following information:
  • Fourth indication information for indicating a transmission period of the synchronization signal set
  • the first sending module 910 includes:
  • a sending unit configured to send, by using system information or a radio resource, RRC layer signaling, to send, to the terminal, auxiliary measurement information used by the auxiliary terminal to perform synchronization signal block measurement.
  • each module of the above network device and terminal is only a division of logical functions. In actual implementation, it may be integrated into one physical entity in whole or in part, or may be physically separated. And these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the determining module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above determination module.
  • the implementation of other modules is similar.
  • each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above method, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors ( A digital signal processor (DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSP digital signal processor
  • FPGAs Field Programmable Gate Arrays
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the network device of the embodiment of the present disclosure sends auxiliary measurement information for assisting synchronization signal block measurement to the terminal, and the terminal performs measurement of the synchronization signal block according to the auxiliary measurement information, because the auxiliary measurement information carries the indication synchronization signal.
  • the block sends the configured transmission configuration information, so the terminal can acquire the transmission configuration of the synchronization signal block, which is convenient for the terminal to quickly detect the corresponding synchronization signal block, and reduce the blind detection difficulty, the blind detection time and the measurement time of the synchronization signal block. It can further improve the measurement accuracy, and is more conducive to the subsequent cell access, reselection and handover process of the terminal, and reduce the power consumption of the terminal.
  • an embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • a network device including a processor, a memory, and a computer program stored on the memory and operable on the processor, the processor executing the computer program
  • the steps in the sync block measurement method as described above are implemented.
  • Embodiments of the invention also provide a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the synchronization signal block measurement method as described above.
  • the network device 1000 includes an antenna 101, a radio frequency device 102, and a baseband device 103.
  • the antenna 101 is connected to the radio frequency device 102.
  • the radio frequency device 102 receives information through the antenna 101, and transmits the received information to the baseband device 103 for processing.
  • the baseband device 103 processes the information to be transmitted and transmits it to the radio frequency device 102.
  • the radio frequency device 102 processes the received information and transmits it via the antenna 101.
  • the above-described band processing device may be located in the baseband device 103, and the method performed by the network device in the above embodiment may be implemented in the baseband device 103, which includes the processor 104 and the memory 105.
  • the baseband device 103 may include, for example, at least one baseband board on which a plurality of chips are disposed, as shown in FIG. 10, one of which is, for example, a processor 104, connected to the memory 105 to call a program in the memory 105 to execute The network device operation shown in the above method embodiment.
  • the baseband device 103 can also include a network interface 106 for interacting with the radio frequency device 102, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor or a collective name of multiple processing elements.
  • the processor may be a CPU, an ASIC, or one or more configured to implement the method performed by the above network device.
  • An integrated circuit such as one or more microprocessor DSPs, or one or more field programmable gate array FPGAs.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • Memory 105 can be either volatile memory or non-volatile memory, or can include both volatile and non-volatile memory.
  • the non-volatile memory may be a Read-Only Memory (ROM), a Programmable ROM (Programmable ROM), or an Erasable PROM (EPROM). , electrically erasable programmable read only memory (EEPROM) or flash memory.
  • the volatile memory may be a Random Access Memory (RAM), which is used as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous).
  • DRAM double data rate synchronous dynamic random access memory
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchlink DRAM
  • DRRAM Direct Memory Bus
  • the network device of the embodiment of the present disclosure further includes: a computer program stored on the memory 105 and operable on the processor 104, and the processor 104 calls a computer program in the memory 105 to execute the method executed by each module shown in FIG. .
  • the computer program when called by the processor 104, it can be used to: send auxiliary measurement information for the auxiliary terminal to perform synchronization signal block measurement to the terminal, and the auxiliary measurement information is used to indicate the transmission configuration information of the synchronization signal block.
  • the auxiliary measurement information includes at least one of the following information:
  • Second indication information for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource
  • Third indication information for indicating quasi co-location information of the synchronization signal block.
  • the first indication information includes at least one of the following information:
  • the location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block The location information of the candidate time domain transmission resource for repeatedly transmitting the synchronization signal block, the location information of the time domain transmission resource of the actual repeated transmission synchronization signal block, the transmission frequency information of the synchronization signal block that allows repeated transmission on the time domain transmission resource, and the actual The number of times of transmission of the synchronization signal block repeatedly transmitted on the time domain transmission resource.
  • the second indication information includes at least one of the following information:
  • the third indication information includes at least one of the following information:
  • Spatial domain quasi-co-location information of an antenna port for transmitting a sync signal block average gain quasi-co-location information of an antenna port of a user transmitting a sync signal block, delay quasi-co-location information of an antenna port for transmitting a sync signal block, and The Doppler parameter quasi-co-location information of the antenna port of the transmission sync block.
  • the auxiliary measurement information includes the first indication information and the second indication information
  • the first indication information and the second indication information are respectively in a separate indication manner, or the first indication information and the second indication information are in a joint indication manner.
  • the first indication information and the second indication information form joint index value information, and the joint index value information is used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource and the frequency domain transmission resource.
  • the first indication information includes: first index value information, bitmap information, packet information, repeated transmission times information, and repeated transmission within each packet, used to indicate pattern information of the synchronization signal block repeatedly transmitted on the time domain transmission resource. At least one of bitmap information of the synchronization signal block;
  • the second indication information includes: second index value information, bitmap information, packet information, repeated transmission times information, and repeated transmission synchronization signals in each packet for indicating pattern information of the synchronization signal block repeatedly transmitted on the frequency domain transmission resource. At least one of the bitmap information of the block.
  • the auxiliary measurement information also includes:
  • Fourth indication information indicating a transmission period of the synchronization signal set.
  • the computer program when called by the processor 104, it can be used to perform: transmitting RRC layer signaling by using system information or radio resources, and transmitting auxiliary measurement information for the auxiliary terminal to perform synchronization signal block measurement to the terminal.
  • the network device may be a Global System of Mobile communication (GSM) or a Code Division Multiple Access (CDMA) base station (Base Transceiver Station, BTS for short) or a wideband code.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • BTS Base Transceiver Station
  • WCDMA Wideband Code Division Multiple Access
  • eNB or eNodeB evolved Node B
  • eNodeB evolved Node B
  • a base station or the like in a future 5G network is not limited herein.
  • the network device in the embodiment of the present disclosure sends the auxiliary measurement information for assisting the synchronization signal block measurement to the terminal, and the terminal performs the measurement of the synchronization signal block according to the auxiliary measurement information, because the auxiliary measurement information carries the indication synchronization signal block transmission configuration.
  • the configuration information is sent, so the terminal can obtain the transmission configuration of the synchronization signal block, which is convenient for the terminal to quickly detect the corresponding synchronization signal block, reduce the blind detection difficulty of the synchronization signal block, the blind detection time and the measurement time, and further Improve measurement accuracy, which is more conducive to the subsequent cell access, reselection and handover process of the terminal, reducing terminal power consumption.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the objects of the present disclosure can also be achieved by running a program or a set of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种同步信号块测量方法、终端及网络设备,其方法包括:接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,根据辅助测量信息,确定重复发送的同步信号块;其中,辅助测量信息用于指示同步信号块的发送配置信息。

Description

同步信号块测量方法、终端及网络设备
相关申请的交叉引用
本申请主张在2017年9月8日在中国提交的中国专利申请号No.201710806842.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种同步信号块测量方法、终端及网络设备。
背景技术
在未来第五代(5th Generation,5G)通信***,或称为新空口(New Radio,NR)***中,网络设备需要发送同步信号块(Synchronized Signal block,SS block)以供终端进行同步、***信息获取或测量评估等。其中,一个SS block由新空口同步信号(New Radio Synchronized Signal,NR-SS)和新空口物理广播信道(New Radio Physical Broadcast Channel,NR-PBCH)信号组成。NR-SS包括新空口主同步信号(New Radio Primary Synchronized Signal,NR-PSS)和新空口辅同步信号(New Radio Secondary Synchronized Signal,NR-SSS)。NR-SS序列的生成与物理小区标识(Physical Cell Identifier,PCI)有关,NR-PBCH信号主要用于获取***主信息块(Master Information Block,MIB)。
其中,多个SS block组成一个同步信号集合(Synchronized Signal burst set,SS burst set),一个SS burst set中最大包含的SS block数目与***使用的载波频率相关。例如:频率小于3GHz时,一个SS burst set中最多可以包含4个SS block;载波频率范围为3GHz到6GHz时,一个SS burst set中最多可以包含8个SS block;载波频率范围为6GHz到52.6GHz时,一个SS burst set中最多可以包含64个SS block。NR-PBCH信号的周期为80ms,一个NR-PBCH周期内有多个SS burst set重复发送,即一个NR-PBCH周期内,重复发送的SS burst set具有相同索引(index)的SS block的内容一致,可以支持终端进行软合并从而实现覆盖增强,但不同传输时间间隔(Transmission Time Interval, TTI)间的NR-PBCH信号的内容可能发生变化。
当频率小于3GHz时,一个SS burst set包含4个SS block,如图1所示的NR-PBCH周期、SS block和SS burst set的关系中,一个NR-PBCH信号的TTI周期为80ms,SS burst set的周期可配置为{5,10,20,40,80,160}ms,假设每个SS burst set周期为20ms,一个NR-PBCH信号的TTI周期内包括4个SS burst set。其中,无论SS burst set周期设置为多少,一个SS burst set中的所有SS block都要在5ms的时间窗(time window)内完成发送。在没有接收到任何网络预先配置信息时,终端进行初始小区选择的时候,按照默认SS burst set周期为20ms搜索SS block。
为了避免如信号快衰落等短期波动的影响,终端需要在一个设定的测量周期内,在时域和频域对SS block进行多次测量采样,并计算出该测量周期内一系列均匀分布的测量取样的平均值,该平均值可以用作为小区选择/切换/重选等过程的参考依据。该测量周期是由相关无线场景的性能需求决定,可能达到几百毫秒,例如长期演进型(Long Term Evolution,LTE)通信***中同频参考信号接收功率(Reference Signal Receiving Power,RSRP)的测量周期可以为200ms。假如终端按照20ms的默认周期进行SS block搜索时,在测量周期内,终端需要多次采样20ms的信号来查找SS block,对终端处理能力(如终端缓存、处理速度等)有较高的要求,且耗电较多。此外,随着NR***中频段跨度增大,频域上可能存在多个位置同时传输SS block,具备大带宽支持能力的终端需要对这些频域位置都进行SS block的盲检、测量和信息读取,进一步增加了终端盲检的复杂度,增加了盲检时间和耗电。
发明内容
第一方面,本公开实施例提供了一种同步信号块测量方法,应用于终端侧,包括:
接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息;
根据辅助测量信息,确定重复发送的同步信号块并进行测量。
第二方面,本公开实施例还提供了一种终端,包括:
第一接收模块,用于接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息;
确定模块,用于根据辅助测量信息,确定重复发送的同步信号块并进行测量。
第三方面,本公开实施例提供了一种终端,终端包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如上所述的同步信号块测量方法的步骤。
第四方面,本公开实施例提供了一种同步信号块测量方法,应用于网络设备侧,包括:
向终端发送用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息。
第五方面,本公开实施例还提供了一种网络设备,包括:
第一发送模块,用于向终端发送用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息。
第六方面,本公开实施例提供了一种网络设备,网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如上所述的同步信号块测量方法的步骤。
第七方面,本公开实施例提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的同步信号块测量方法的步骤。
附图说明
图1表示NR-PBCH周期、SS block和SS burst set的关系示意图;
图2表示本公开实施例终端侧的同步信号块测量方法的流程图;
图3表示本公开实施例中场景一的资源映射示意图;
图4表示本公开实施例中场景二和场景三的资源映射示意图;
图5表示本公开实施例中场景四的资源映射示意图;
图6表示本公开实施例终的端侧模块示意图;
图7表示本公开实施例的终端侧框图;
图8表示本公开实施例网络设备侧的同步信号块测量方法的流程图;
图9表示本公开实施例的网络设备模块示意图;
图10表示本公开实施例的网络设备框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如图2所示,本公开实施例的同步信号块测量方法,应用于终端侧,具体包括以下步骤:
步骤21:接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息。
其中,该辅助测量信息用于指示同步信号块的发送配置信息。网络设备可在时域和频域的一个或者多个域的多个传输位置上,使用相同的波束重复发送同步信号块SS block,其中,同步信号块包括物理广播信道、主同步信号和辅同步信号。其中,物理广播信道中携带有***信息,如***主信息块MIB。网络设备在向终端发送同步信号块后,还进一步向终端发送指示这些同步信号块发送配置信息的辅助测量信息。
具体地,网络设备可通过***信息或无线资源控制RRC层信令发送辅助 测量信息,相应地,终端通过***信息或无线资源控制RRC层信令,接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息。其中,***信息包括:***主信息块MIB、剩余最小***信息(Remaining Minimum System Information,RMSI)、和其他***信息(Other System Information,OSI)等至少其中一项。
步骤22:根据辅助测量信息,确定重复发送的同步信号块并进行测量。
终端在接收到辅助测量信息后,根据该辅助测量信息指示的同步信号块的发送配置信息,可获知同步信号块的发送配置,如哪些同步信号块为重复发送的、重复发送的同步信号块的发送次数等信息,这样在对同步信号块进行测量或解码时,可快速盲检到同步信号块,降低盲检时间、盲检难度和测量时间,提高测量精度,加速小区接入/重选/切换流程,实现终端的节能。
具体地,上述辅助测量信息包括以下信息中的至少一项:用于指示时域传输资源上重复发送的同步信号块的图样信息(pattern)的第一指示信息;用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;以及用于指示同步信号块的准共址(Quasi Co-Location,QCL)信息的第三指示信息。也就是说,网络设备向终端发送携带有第一指示信息、第二指示信息和第三指示信息中至少一项的辅助测量信息。终端在接收到辅助测量信息后,若解析到辅助测量信息中的第一指示信息,则确定在时域传输资源上重复发送的同步信号块的第一图样信息;若解析到辅助测量信息中的第二指示信息,则确定在频域传输资源上重复发送的同步信号块的第二图样信息;若解析到辅助测量信息中的第三指示信息,则确定同步信号块的准共址信息。终端并进一步根据第一图样信息、第二图样信息和准共址信息中的至少一项,确定重复发送的同步信号块并进行测量。
进一步地,第一指示信息用于指示当前频域位置上,SS block在时域重复发送的pattern,该pattern需要指示时域上SS block重复发送的信息,具体如:哪些时域位置上有SS block在时域重复发送,以及这些时域位置上SS block在时域重复发送的发送次数等。具体地,第一指示信息所指示的图样信息包括以下信息中的至少一项:重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、允许在时 域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
相似地,第二指示信息用于指示SS block在频域重复发送的pattern,该pattern需要指示频域上SS block重复发送的信息,具体如:哪些频域位置上有SS block在时域重复发送,这些频域位置的数值配置(Numerology)信息,如子载波间隔(subcarrier spacing)、循环前缀(Cyclic Prefix,CP),以及这些频域位置上SS block在频域重复发送的发送次数等。具体地,第二指示信息所指示的图样信息包括以下信息中的至少一项:重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、允许在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、允许重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。其中,允许重复发送同步信号块的候选频域传输资源的数值配置信息包括:允许重复发送同步信号块的候选频域传输资源的子载波间隔和允许重复发送同步信号块的候选频域传输资源的循环前缀中的至少一项。实际重复发送同步信号块的频域传输资源的数值配置信息包括:实际重复发送同步信号块的频域传输资源的子载波间隔和实际重复发送同步信号块的频域传输资源的循环前缀中的至少一项。
值得指出的是,上述第一指示信息和第二指示信息中均提到了重复发送SS block的图样信息(pattern),该pattern可以是默认pattern、预定义的pattern和网络设备直接配置的pattern。其中,不同的网络设备可设置不同的默认pattern,在终端初次接入时由网络设备告知终端该默认pattern,或者,不同网络设备均设置同一默认pattern,这时网络设备无需告知终端该默认pattern。当***存在多种不同的预定义pattern或网络设备直接配置pattern时,网络设备可通过辅助测量信息将预定义pattern和配置的pattern告知终端。
具体地,当辅助测量信息包括第一指示信息和第二指示信息时,第一指示信息和第二指示信息可分别采用单独指示方式进行指示,第一指示信息和第二指示信息还可采用联合指示方式进行指示。下面将结合具体示例对上述两种指示方式做进一步说明。
方式一、第一指示信息和所述第二指示信息采用联合指示方式
第一指示信息和第二指示信息组成联合索引值信息,该联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。也就是说,在时域传输资源和在频域传输资源上重复发送的SS block的图样信息联合指示。例如时域传输资源和频域传输资源上SS block重复发送的二维pattern一共有16种,在辅助测量信息中可使用一个4bit的指示信息(第一指示信息和第二指示信息)来指示。
方式二、第一指示信息和第二指示信息可分别采用单独指示方式
这种方式中,时域传输资源、频域传输资源上SS block重复发送的pattern分别单独指示,以第一指示信息为例,第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息(bitmap)、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。以第一索引值信息为例,例如:时域传输资源上重复发送SS block的pattern有6种,在辅助测量信息中使用一个3bit的指示信息(第一指示信息)来指示。以位图为例,网络设备还可直接通过在时域传输资源上重复发送SS block的传输位置的位图进行指示。以分组信息为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组,并指示发送了哪些分组,每个发送了的分组内SS block重复发送8次。以分组信息和重复发送次数信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组并指示发送了哪些分组,重复发送次数信息指示每个分组内连续重复发送K个相同SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。以分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组并指示发送了哪些分组,位图信息和重复发送次数信息指示每个分组内按照bitmap的指示重复发送K个SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。
同理,第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息(bitmap)、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。以第二索引值信息为例,例如:频域传输资源上重复发送SS block的pattern有4种,在辅助测量信息中使用一个2bit的指示信息(第二指示信息)来指示。以位图为例,网络设备还可直接通过在频域传输资源上重复发送SS block的传输位置的位图进行指示。以分组信息为例:分组信息指示如何分组并指示发送了哪些分组,比如分组信息将64个SS block分为8个分组,并指示发送了哪些分组,以及每个分组内SS block重复发送8次。以分组信息和重复发送次数信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组以及指示发送了哪些分组,重复发送次数信息指示每个分组内连续重复发送K个相同SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。以分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组以及指示发送了哪些分组,位图信息和重复发送次数信息指示每个分组内按照bitmap的指示重复发送K个SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。
进一步地,辅助测量信息中的第三指示信息所指示的准共址信息具体包括以下信息中的至少一项:用于传输同步信号块的天线端口的空域准共址信息、用于传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。其中,值得指出的是,第三指示信息除可包括以上列举的准共址信息外,还可包括其他的准共址信息。
以上介绍了辅助测量信息至少包括第一指示信息、第二指示信息和第三指示信息中的至少一项,此外该辅助测量信息还可包括以下信息中的至少一项:用于指示同步信号集合的发送周期的第四指示信息;和用于指示同步信号集合中实际发送的同步信号块信息的第五指示信息。也就是说,辅助测量 信息还可用于指示SS burst set的发送周期,以及每个SS burst set的发送窗内实际发送的SS block。具体地,终端在接收到辅助测量信息后,若解析到辅助测量信息中的第四指示信息,则确定同步信号集合的发送周期;若解析到辅助测量信息中的第五指示信息,则确定同步信号集合中实际发送的同步信号块信息。其中,实际发送的同步信号块信息包括:发送次数和同步信号块索引等信息至少一项。
下面将结合具体示例介绍终端如何根据测量辅助信息确定重复发送的SS block。
假设终端解析辅助测量信息获知该辅助测量信息中包含第三指示信息,而不包含第一指示信息、第二指示信息和第五指示信息,也就是说终端根据解析该辅助测量信息可确定同步信号块的准共址信息,那么终端可根据同步信号块的准共址信息隐式得到SS block在时域和/或频域重复发送的pattern,例如认为指示为QCL的SS block是重复发送的SS block。
假设终端解析辅助测量信息获知该辅助测量信息中包含第一指示信息和第二指示信息,而不包含第三指示信息和第五指示信息,那么终端可根据时频域重复发送SS block的pattern,认为重复发送的SS block是QCL的。
假设终端解析辅助测量信息获知该辅助测量信息包含第一指示信息、第二指示信息和第三指示信息,而不包含和第五指示信息,那么终端可根据同步信号块在时频域重复发送的pattern和准共址信息,联合确定重复发送的SS block。
假设终端解析辅助测量信息获知该辅助测量信息包含第三指示信息和第五指示信息,而不包含第一指示信息、第二指示信息,那么终端可根据同步信号块的准共址信息隐式得到SS block在时域和/或频域允许重复发送的pattern,并进一步联合同步信号集合中实际发送的同步信号块信息确定实际重复发送的SS block。
假设终端解析辅助测量信息获知该辅助测量信息包含第一指示信息、第二指示信息和第五指示信息,而不包含第三指示信息,终端可根据时频域重复发送SS block的pattern,认为重复发送的SS block是QCL的,并进一步联合同步信号集合中实际发送的同步信号块信息确定实际重复发送的SS block。
假设终端解析辅助测量信息获知该辅助测量信息包含第一指示信息、第二指示信息、第三指示信息和第五指示信息,则终端确定实际重复发送的SS block。
以上介绍了终端接收网络设备发送的辅助测量信息,以及如何根据辅助测量信息确定重复发送的SS block的过程,下面本实施例将进一步介绍如何测量的过程。
具体地,步骤22包括:根据上述辅助测量信息,确定重复发送的同步信号块;对重复发送的同步信号块进行测量。其中,终端根据该辅助测量信息进行测量行为有:对时频域位置上检测到的非重复的SS block分别进行采样测量,并分别进行RSRP等计算;对于该辅助测量信息指示重复发送的SS block进行测量,并进行RSRP等计算。
除了上述测量用途外,还可进行同步信号块的读取用途,具体地,终端根据该辅助测量信息进行的信息读取行为有:对时频域位置上检测到的SS block携带的信息进行读取,其中,对于该辅助测量信息指示重复发送的SS block携带的信息进行合并和读取。在步骤22之后还包括:合并并解码重复发送的同步信号块中携带的信息。其中,这里所说的合并并解码的过程可以是,终端在每次检测到同步信号块后均对其携带的信息进行解码,而对于重复发送的同步信号块,若初次独立解码失败后,还可进一步对重复发送的同步信号块携带的信息进行合并,并对合并后的信息进行二次解码。上述合并解码的过程还可以是,终端在接收到重复发送的同步信号块后,先不进行独立解码,而在将所有重复发送的同步信号块所携带的信息进行合并后,再对合并后的信息进行解码。
具体地,合并并解码重复发送的同步信号块的步骤包括:对重复发送的同步信号块中的主同步信号PSS和辅同步信号SSS分别进行合并并解码;对所述重复发送的同步信号块中的主信息块MIB、主同步信号PSS和辅同步信号SSS分别进行合并并解码。其中,值得指出的是,上述合并过程指的是将重复发送的同步信号块中的所有PSS进行合并,将重复发送的同步信号块中的SSS进行合并,以及将重复发送的同步信号块中的MIB进行合并。
下面本实施例将结合具体应用场景,对终端利用辅助测量信息对同步信 号块进行测量和解码的过程做进一步介绍。
场景一、
如图3所示,假设服务小区工作在单载波,网络设备在时域重复发送SS block,每个SS burst set周期内,实际发送SS block数为4,且包含两个重复发送的SS block 1,两个重复发送的SS block 2。网络设备通过同步信号块辅助测量信息指示QCL和SS block重复发送的pattern。网络设备可通过***信息的形式将本小区同步信号块辅助测量信息发送给终端,终端解析该辅助测量信息,并根据该辅助测量信息在当前载波搜到了被辅助测量信息指示为重复发送的SS block1。之后,终端对重复发送的SS block1进行测量,并且根据MIB是否合并进行不同操作:如果MIB不合并,将其携带的PSS和SSS分别进行合并和读取;如果MIB合并,并将其携带的PSS、SSS和MIB分别进行合并和读取。其中,重复发送的SS block2亦可采用上述方式进行测量和信息读取,故不再赘述。
场景二、
如图4所示,假设服务小区工作在大带宽(wideband)场景,网络设备在频域重复发送SS block,不同频段带宽部分(bandwidth part,BWP)上SS burst set周期相同,每个SS burst set周期内,实际发送SS block数为4,且包含4个不同的SS block1、SS block 2、SS block 3和SS block 4。假设频域上重复发送的SS block共享同一个控制资源集(Control Resource Set,CORESET),且网络设备通过同步信号块的辅助测量信息指示QCL和SS block重复发送的pattern。网络设备可通过***信息的形式将本小区同步信号块辅助测量信息发送给终端,终端解析该辅助测量信息,并在BWP1和BWP2的对应时频位置搜索SS block。在同一个时间点,终端分别在BWP1和BWP2搜到了辅助测量信息指示为重复发送的SS block1。之后,终端对BWP1和BWP2上重复发送的SS block1进行测量,并且根据MIB是否合并进行不同操作:如果MIB不合并,将其携带的PSS和SSS分别进行合并和读取;如果MIB合并,将其携带的PSS、SSS和MIB进行合并和读取。其中,重复发送的SS block2、SS block3和SS block4亦可采用上述方式进行测量和信息读取,故不再赘述。
场景三、
如图4所示,假设服务小区工作在大带宽场景,网络设备在频域重复发送SS block,不同BWP上SS burst set周期相同,每个SS burst set周期内实际发送SS block数为4,且包含4个不同的SS block 1、SS block 2、SS block 3和SS block 4。频域上重复发送的SS block有各自的CORESET,且网络设备通过同步信号块的辅助测量信息指示这些SS block的QCL信息。具体地,网络设备可通过***信息的形式将本小区同步信号块的辅助测量信息发送给终端,终端解析该辅助测量信息,在BWP1和BWP 2的对应时频位置搜索SS block。在同一个时间点,终端分别在BWP1和BWP2搜到了辅助测量信息指示为QCL的SS block1并认为它们是重复发送的。终端对BWP1和BWP2上重复发送的SS block1进行测量,并且根据MIB是否合并进行不同操作:如果MIB不合并,将其携带的PSS和SSS分别进行合并和读取;如果MIB合并,将其携带的PSS、SSS和MIB分别进行合并和读取。其中,重复发送的SS block2、SS block3和SS block4亦可采用上述方式进行测量和信息读取,故不再赘述。
场景四、
如图5所示,服务小区工作在大带宽场景,网络设备在频域重复发送SS block,不同BWP上SS burst set周期不同。每个SS burst set周期内实际发送SS block数为4,且包含4个不同的SS block 1、SS block 2、SS block 3和SS block 4。频域上重复发送的SS block有各自的CORESET,且可以统一指示每个SS block及其CORESET,网络设备通过指示同步信号块的辅助测量信息指示这些SS block重复发送的pattern。网络设备通过***信息的形式将本小区同步信号块的辅助测量信息发送给终端,终端解析该辅助测量信息,在BWP1和BWP 2的对应时频位置搜索SS block。终端分别在BWP1BWP2搜到了辅助测量信息指示为重复发送的SS block1,并认为重复发送的SS block是QCL的。终端对BWP1和BWP 2上重复发送的SS block1进行测量,并且根据MIB是否合并进行不同操作:如果MIB不合并,将其携带的PSS和SSS分别进行合并和读取;如果MIB合并,将其携带的PSS、SSS和MIB分别进行合并和读取。其中,重复发送的SS block2、SS block3和SS block4亦可采用上述方式进行测量和信息读取,故不再赘述。
场景五、
假设本小区和邻小区工作在同一个频点,且本小区和邻小区关联多个BWP,且本小区在该频点关联的BWP和邻小区在该频点关联的BWP完全相同,其中完全相同指的是本小区和邻小区在该频点上关联的BWP个数相同、BWP的Numerology、BWP频域位置都相同。假设终端为连接态。网络侧通过RRC信令的形式将邻小区同步信号块的辅助测量信息发送给连接态终端,终端根据邻小区的辅助测量信息,在邻小区多个BWP的对应位置搜索SS block。之后,终端对搜到的邻小区多个BWP上的SS block进行测量。对检测到的非重复的SS block分别进行采样测量,并分别进行RSRP等计算;对于该辅助测量信息指示QCL和重复发送的SS block进行测量,并进行RSRP等计算。在测量结束后,终端反馈测量报告给网络设备,网络设备根据测量报告的内容决定是否发起切换请求。此外,终端解码邻小区SS block并且根据MIB是否合并进行不同操作:如果MIB不合并,将重复发送的SS block携带的PSS和SSS分别进行合并和读取;如果MIB合并,将重复发送的SS block携带的PSS、SSS和MIB分别进行合并和读取。
场景六、
本小区和邻小区工作在同一个频点,本小区和邻小区关联多个BWP,且本小区在该频点关联的BWP和邻小区在该频点关联的BWP完全相同,其中完全相同指的是本小区和邻小区在该频点上关联的BWP个数相同、BWP的Numerology、BWP频域位置都相同邻小区工作在wideband的场景。假设终端为空闲态。网络设备通过***信息的形式将邻小区同步信号块的辅助测量信息发送给空闲态终端,终端根据该辅助测量信息在邻小区多个BWP的对应时频位置搜索SS block。之后,终端对搜到的邻小区的SS block进行测量。其中,对检测到的非重复的SS block分别进行采样测量,并分别进行RSRP等计算;对于该辅助测量信息指示QCL和重复发送的SS block进行测量,并进行RSRP等计算。在测量结束后,终端可根据测量结果决定是否进行小区重选。此外,终端解码邻小区SS block并且根据MIB是否合并进行不同操作:如果MIB不合并,将重复发送的SS block携带的PSS和SSS分别进行合并和读取;如果MIB合并,将重复发送的SS block携带的PSS、SSS和MIB 分别进行合并和读取。
场景七
在高速场景,假设服务小区工作在大带宽,网络设备在频域重复发送SS block,不同BWP上SS burst set周期相同。网络设备通过***信息的形式将本小区同步信号块辅助测量信息发送给终端。终端根据该辅助测量信息在本小区多个BWP的对应时频位置搜索SS block。终端对搜到的本小区的SS block进行测量。对检测到的非重复的SS block分别进行采样测量,并分别进行RSRP等计算;对于该辅助测量信息指示QCL和重复发送的SS block进行测量,并进行RSRP等计算。并且根据MIB是否合并进行不同操作:如果MIB不合并,将其携带的PSS和SSS分别进行合并和读取;如果MIB合并,将其携带的PSS、SSS和MIB分别进行合并和读取。
场景八、
假设本小区和邻小区工作在同一个频点,本小区和邻小区关联多个BWP,且本小区在该频点关联的BWP和邻小区在该频点关联的BWP部分相同或者不同。假设终端为连接态。网络设备可通过RRC信令的形式将邻小区同步信号块的辅助测量信息发送给连接态终端。终端根据该辅助测量信息在邻小区多个BWP的对应位置搜索SS block。终端对搜到的邻小区多个BWP上的SS block进行测量。对检测到的非重复的SS block分别进行采样测量,并分别进行RSRP等计算;对于该辅助测量信息指示QCL和重复发送的SS block进行测量,并进行RSRP等计算。在测量结束后,终端反馈测量报告给基站,基站根据该测量报告内容决定是否发起切换请求。此外,终端解码邻小区SS block并且根据MIB是否合并进行不同操作:如果MIB不合并,将重复发送的SS block携带的PSS和SSS分别进行合并和读取;如果MIB合并,将重复发送的SS block携带的PSS、SSS和MIB分别进行合并和读取。
场景九、
假设本小区和邻小区工作在同一个频点,本小区和邻小区关联多个BWP,且本小区在该频点关联的BWP和邻小区在该频点关联的BWP部分相同或者不同,终端为空闲态。网络设备通过***信息的形式将邻小区同步信号块的辅助测量信息发送给空闲态终端。终端根据该辅助测量信息在邻小区多个 BWP的对应时频位置搜索SS block。终端对搜到的邻小区的SS block进行测量。对检测到的非重复的SS block分别进行采样测量,并分别进行RSRP等计算;对于该辅助测量信息指示QCL和重复发送的SS block进行测量,并进行RSRP等计算。在测量结束后,终端根据测量结果决定是否进行小区重选。此外,终端解码邻小区SS block并且根据MIB是否合并进行不同操作:如果MIB不合并,将重复发送的SS block携带的PSS和SSS分别进行合并和读取;如果MIB合并,将重复发送的SS block携带的PSS、SSS和MIB分别进行合并和读取。
综上,本公开实施例各种场景中的同步信号块测量方法中,终端接收网络设备发送的用于辅助同步信号块测量的辅助测量信息,并根据该辅助测量信息进行同步信号块的测量,由于辅助测量信息中携带有指示同步信号块发送配置的发送配置信息,因此终端可获取同步信号块的发送配置,这样有利于终端快速盲检到相应的同步信号块,降低同步信号块盲检难度、盲检时间和测量时间,此外,还可进一步提高测量精度,更有利于终端后续的小区接入、重选和切换流程,减少终端功耗。
以上实施例分别详细介绍了不同场景下的同步信号块测量方法,下面本实施例将结合附图对其对应的终端做进一步介绍。
如图6所示,本公开实施例的终端600,能实现上述实施例中接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息;根据辅助测量信息,确定重复发送的同步信号块并进行测量方法的细节,并达到相同的效果,该终端600具体包括以下功能模块:
第一接收模块610,用于接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息;
确定模块620,用于根据辅助测量信息,确定重复发送的同步信号块并进行测量。
其中,辅助测量信息包括以下信息中的至少一项:
用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示 信息;
用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
用于指示同步信号块的准共址信息的第三指示信息。
其中,第一指示信息所指示的图样信息包括以下信息中的至少一项:
重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、允许在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
其中,第二指示信息所指示的图样信息包括以下信息中的至少一项:
重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、允许在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、允许重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
其中,第三指示信息所指示的准共址信息包括以下信息中的至少一项:
用于传输同步信号块的天线端口的空域准共址信息、用于传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
其中,当辅助测量信息包括第一指示信息和第二指示信息时,第一指示信息和第二指示信息分别采用单独指示方式,或者,第一指示信息和第二指示信息采用联合指示方式。
其中,第一指示信息和第二指示信息组成联合索引值信息,联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
其中,第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
以及,
第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
其中,辅助测量信息还包括以下信息中的至少一项:
用于指示同步信号集合的发送周期的第四指示信息;
用于指示同步信号集合中实际发送的同步信号块信息的第五指示信息。
其中,第一接收模块610包括:
第一接收单元,用于通过***信息或无线资源控制RRC层信令,接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息。
其中,终端600还包括:
处理模块,用于合并并解码重复发送的同步信号块中携带的信息。
其中,处理模块包括:
第一处理单元,用于对重复发送的同步信号块中的主同步信号PSS和辅同步信号SSS分别进行合并并解码;或
第二处理单元,用于对重复发送的同步信号块中的主信息块MIB、主同步信号PSS和辅同步信号SSS分别进行合并并解码。
值得指出的是,本公开实施例的终端接收网络设备发送的用于辅助同步信号块测量的辅助测量信息,并根据该辅助测量信息进行同步信号块的测量,由于辅助测量信息中携带有指示同步信号块发送配置的发送配置信息,因此终端可获取同步信号块的发送配置,这样有利于终端快速盲检到相应的同步信号块,降低同步信号块盲检难度、盲检时间和测量时间,此外,还可进一步提高测量精度,更有利于终端后续的小区接入、重选和切换流程,减少终端功耗。
为了更好地实现上述目的,本公开实施例还提供了一种终端,包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的同步信号块测量方法中的步骤。本公开实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的同步信号块测量方法的步骤。
具体地,图7是本公开另一个实施例的终端700的框图,如图7所示的终端包括:至少一个处理器701、存储器702、用户接口703和网络接口704。终端700中的各个组件通过总线***705耦合在一起。可理解,总线***705用于实现这些组件之间的连接通信。总线***705除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线***705。
其中,用户接口703可以包括显示器或者点击设备(例如触感板或者触摸屏等。
可以理解,本公开实施例中的存储器702可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的***和方法的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器702存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作***7021和应用程序7022。
其中,操作***7021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序7022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序 7022中。
在本公开的实施例中,终端700还包括:存储在存储器702上并可在处理器701上运行的计算机程序,具体地,可以是应用程序7022中的计算机程序,计算机程序被处理器701执行时实现如下步骤:接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息;
根据辅助测量信息,确定重复发送的同步信号块并进行测量。
上述本公开实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实 现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
具体地,辅助测量信息包括以下信息中的至少一项:
用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;
用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
用于指示同步信号块的准共址信息的第三指示信息。
具体地,第一指示信息所指示的图样信息包括以下信息中的至少一项:
重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、允许在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
具体地,第二指示信息所指示的图样信息包括以下信息中的至少一项:
重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、允许在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、允许重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
具体地,第三指示信息所指示的准共址信息包括以下信息中的至少一项:
用于传输同步信号块的天线端口的空域准共址信息、用于传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
具体地,当辅助测量信息包括第一指示信息和第二指示信息时,第一指示信息和第二指示信息分别采用单独指示方式,或者,第一指示信息和第二指示信息采用联合指示方式。
具体地,第一指示信息和第二指示信息组成联合索引值信息,联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
具体地,第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
以及,
第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
具体地,辅助测量信息还包括以下信息中的至少一项:
用于指示同步信号集合的发送周期的第四指示信息;
用于指示同步信号集合中实际发送的同步信号块信息的第五指示信息。
具体地,计算机程序被处理器701执行时还可实现如下步骤:通过***信息或无线资源控制RRC层信令,接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息。
具体地,计算机程序被处理器701执行时还可实现如下步骤:合并并解码重复发送的同步信号块中携带的信息。
具体地,计算机程序被处理器701执行时还可实现如下步骤:对重复发送的同步信号块中的主同步信号PSS和辅同步信号SSS分别进行合并并解码;
对重复发送的同步信号块中的主信息块MIB、主同步信号PSS和辅同步信号SSS分别进行合并并解码。
其中,终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA) 等设备。无线终端也可以称为***、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本公开实施例的终端接收网络设备发送的用于辅助同步信号块测量的辅助测量信息,并根据该辅助测量信息进行同步信号块的测量,由于辅助测量信息中携带有指示同步信号块发送配置的发送配置信息,因此终端可获取同步信号块的发送配置,这样有利于终端快速盲检到相应的同步信号块,降低同步信号块盲检难度、盲检时间和测量时间,此外,还可进一步提高测量精度,更有利于终端后续的小区接入、重选和切换流程,减少终端功耗。
以上实施例从终端侧介绍了本公开的同步信号块测量方法,下面本实施例将结合附图对网络设备侧的同步信号块测量方法做进一步介绍。
如图8所示,本公开实施例的同步信号块测量方法,应用于网络设备,具体包括以下步骤:
步骤81:向终端发送用于辅助终端进行同步信号块测量的辅助测量信息。
其中,辅助测量信息用于指示所述同步信号块的发送配置信息。网络设备可在时域和频域的一个或者多个域的多个传输位置上,使用相同的波束重复发送同步信号块SS block,其中,同步信号块包括物理广播信道、主同步信号和辅同步信号。网络设备在向终端发送同步信号块后,还进一步向终端发送指示这些同步信号块发送配置信息的辅助测量信息。
具体地,步骤81具体可通过以下方式实现:通过***信息或无线资源控制RRC层信令,向终端发送用于辅助终端进行同步信号块测量的辅助测量信息。其中,***信息包括:MIB、RMSI和OSI等。
其中,辅助测量信息包括以下信息中的至少一项:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;用于指示同步信号块的准共址信息的第三指示信息。
进一步地,第一指示信息用于指示当前频域位置上,SS block在时域重 复发送的pattern,该pattern需要指示时域上SS block重复发送的信息,具体如:哪些时域位置上有SS block在时域重复发送,以及这些时域位置上SS block在时域重复发送的发送次数等。具体地,第一指示信息所指示的图样信息包括以下信息中的至少一项:重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
相似地,第二指示信息用于指示SS block在频域重复发送的pattern,该pattern需要指示频域上SS block重复发送的信息,具体如:哪些频域位置上有SS block在时域重复发送,这些频域位置的Numerology信息,以及这些频域位置上SS block在频域重复发送的发送次数等。具体地,第二指示信息所指示的图样信息包括以下信息中的至少一项:重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、允许在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、允许重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
值得指出的是,上述第一指示信息和第二指示信息中均提到了重复发送SS block的图样信息(pattern),该pattern可以是默认pattern、预定义的pattern和网络设备直接配置的pattern。其中,不同类型的pattern的指示方式可参照上述终端侧介绍的指示方式,故在此不再赘述。
进一步地,当辅助测量信息包括第一指示信息和第二指示信息时,第一指示信息和第二指示信息可分别采用单独指示方式进行指示,第一指示信息和第二指示信息还可采用联合指示方式进行指示。下面将结合具体示例对上述两种指示方式做进一步说明。
联合指示时,第一指示信息和第二指示信息组成联合索引值信息,该联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。也就是说,在时域传输资源和在频域传输资源上重复发送的SS block的图样信息联合指示。单独指示时,时域传输资源、频域传输资源 上SS block重复发送的pattern分别单独指示,以第一指示信息为例,第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息(bitmap)、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。以第一索引值信息为例,例如:时域传输资源上重复发送SS block的pattern有6种,在辅助测量信息中使用一个3bit的指示信息(第一指示信息)来指示。以位图为例,网络设备还可直接通过在时域传输资源上重复发送SS block的传输位置的位图进行指示。以分组信息为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组,分组信息指示发送了哪些分组,每个发送了的分组内SS block重复发送8次。以分组信息和重复发送次数信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组并指示发送了哪些分组,重复发送次数信息指示每个分组内连续重复发送K个相同SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。以分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组并指示发送了哪些分组,位图信息和重复发送次数信息指示每个分组内按照bitmap的指示重复发送K个SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。
同理,第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息(bitmap)、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。以第二索引值信息为例,例如:频域传输资源上重复发送SS block的pattern有4种,在辅助测量信息中使用一个2bit的指示信息(第二指示信息)来指示。以位图为例,网络设备还可直接通过在频域传输资源上重复发送SS block的传输位置的位图进行指示。以分组信息为例:分组信息指示如何分组并指示发送了哪些分组,比如分组信息将64个SS block分为8个分组并指示发送了哪些分组,以及每个分组内SS block重复发送8次。以分组信息和重复发送 次数信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组以及指示发送了哪些分组,重复发送次数信息指示每个分组内连续重复发送K个相同SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。以分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息联合指示为例:分组信息指示了如何分组并指示发送了哪些分组,比如分组信息指示将64个SS block分为8个分组以及指示发送了哪些分组,位图信息和重复发送次数信息指示每个分组内按照bitmap的指示重复发送K个SS block,K为大于等于1的整数,当K等于1时指示SS block单独发送,K大于1时指示SS block重复发送。
进一步地,上述第三指示信息所指示的准共址信息包括以下信息中的至少一项:用于传输同步信号块的天线端口的空域准共址信息、用户传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
以上介绍了辅助测量信息至少包括第一指示信息、第二指示信息和第三指示信息中的至少一项,此外该辅助测量信息还可包括以下信息中的至少一项:用于指示同步信号集合的发送周期的第四指示信息;和用于指示同步信号集合中实际发送的同步信号块信息的第五指示信息。
本公开实施例的同步信号块测量方法中,网络设备向终端发送用于辅助同步信号块测量的辅助测量信息,终端根据该辅助测量信息进行同步信号块的测量,由于辅助测量信息中携带有指示同步信号块发送配置的发送配置信息,因此终端可获取同步信号块的发送配置,这样有利于终端快速盲检到相应的同步信号块,降低同步信号块盲检难度、盲检时间和测量时间,此外,还可进一步提高测量精度,更有利于终端后续的小区接入、重选和切换流程,减少终端功耗。
以上实施例介绍了不同场景下的同步信号块测量方法,下面将结合附图对与其对应的网络设备做进一步介绍。
如图9所示,本公开实施例的网络设备900,能实现上述实施例中向终 端发送用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息方法的细节,并达到相同的效果,该网络设备900具体包括以下功能模块:
第一发送模块910,用于向终端发送用于辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息。
其中,辅助测量信息包括以下信息中的至少一项:
用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;
用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
用于指示同步信号块的准共址信息的第三指示信息。
其中,第一指示信息所指示的图样信息包括以下信息中的至少一项:
重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、允许在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
其中,第二指示信息所指示的图样信息包括以下信息中的至少一项:
重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、允许在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、允许重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
其中,第三指示信息所指示的准共址信息包括以下信息中的至少一项:
用于传输同步信号块的天线端口的空域准共址信息、用户传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
其中,当辅助测量信息包括第一指示信息和第二指示信息时,第一指示信息和第二指示信息分别采用单独指示方式,或者,第一指示信息和第二指示信息采用联合指示方式。
其中,第一指示信息和第二指示信息组成联合索引值信息,联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
其中,第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
以及,
第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
其中,辅助测量信息还包括以下信息中的至少一项:
用于指示同步信号集合的发送周期的第四指示信息;
用于指示同步信号集合中实际发送的同步信号块信息的第五指示信息。
其中,第一发送模块910包括:
发送单元,用于通过***信息或无线资源控制RRC层信令,向终端发送用于辅助终端进行同步信号块测量的辅助测量信息。
需要说明的是,应理解以上网络设备和终端的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电 路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,简称ASIC),或,一个或多个微处理器(digital signal processor,简称DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上***(system-on-a-chip,简称SOC)的形式实现。
值得指出的是,本公开实施例的网络设备向终端发送用于辅助同步信号块测量的辅助测量信息,终端根据该辅助测量信息进行同步信号块的测量,由于辅助测量信息中携带有指示同步信号块发送配置的发送配置信息,因此终端可获取同步信号块的发送配置,这样有利于终端快速盲检到相应的同步信号块,降低同步信号块盲检难度、盲检时间和测量时间,此外,还可进一步提高测量精度,更有利于终端后续的小区接入、重选和切换流程,减少终端功耗。
为了更好的实现上述目的,本公开的实施例还提供了一种网络设备,该网络设备包括处理器、存储器以及存储于存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现如上所述的同步信号块测量方法中的步骤。发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上所述的同步信号块测量方法的步骤。
具体地,本公开的实施例还提供了一种网络设备。如图10所示,该网络设备1000包括:天线101、射频装置102、基带装置103。天线101与射频装置102连接。在上行方向上,射频装置102通过天线101接收信息,将接收的信息发送给基带装置103进行处理。在下行方向上,基带装置103对要发送的信息进行处理,并发送给射频装置102,射频装置102对收到的信息进行处理后经过天线101发送出去。
上述频带处理装置可以位于基带装置103中,以上实施例中网络设备执行的方法可以在基带装置103中实现,该基带装置103包括处理器104和存储器105。
基带装置103例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器104,与存储器105连接,以调用存储器105中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置103还可以包括网络接口106,用于与射频装置102交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器105可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,简称ROM)、可编程只读存储器(Programmable ROM,简称PROM)、可擦除可编程只读存储器(Erasable PROM,简称EPROM)、电可擦除可编程只读存储器(Electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,简称SRAM)、动态随机存取存储器(Dynamic RAM,简称DRAM)、同步动态随机存取存储器(Synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,简称DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,简称DRRAM)。本申请描述的存储器105旨在包括但不限于这些和任意其它适合类型的存储器。
具体地,本公开实施例的网络设备还包括:存储在存储器105上并可在处理器104上运行的计算机程序,处理器104调用存储器105中的计算机程序执行图9所示各模块执行的方法。
具体地,计算机程序被处理器104调用时可用于执行:向终端发送用于 辅助终端进行同步信号块测量的辅助测量信息,辅助测量信息用于指示同步信号块的发送配置信息。
其中,辅助测量信息包括以下信息中的至少一项:
用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;
用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
用于指示同步信号块的准共址信息的第三指示信息。
其中,第一指示信息包括以下信息中的至少一项:
重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、允许在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
其中,第二指示信息包括以下信息中的至少一项:
重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、允许在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、允许重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
其中,第三指示信息包括以下信息中的至少一项:
用于传输同步信号块的天线端口的空域准共址信息、用户传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
其中,当辅助测量信息包括第一指示信息和第二指示信息时,第一指示信息和第二指示信息分别采用单独指示方式,或者,第一指示信息和第二指示信息采用联合指示方式。
其中,第一指示信息和第二指示信息组成联合索引值信息,联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
其中,第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
以及,
第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
其中,辅助测量信息还包括:
用于指示同步信号集合的发送周期的第四指示信息;和/或,
用于指示同步信号集合中实际发送的同步信号块信息的第五指示信息。
具体地,计算机程序被处理器104调用时可用于执行:通过***信息或无线资源控制RRC层信令,向终端发送用于辅助终端进行同步信号块测量的辅助测量信息。
其中,网络设备可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中的基站等,在此并不限定。
本公开实施例中的网络设备,向终端发送用于辅助同步信号块测量的辅助测量信息,终端根据该辅助测量信息进行同步信号块的测量,由于辅助测量信息中携带有指示同步信号块发送配置的发送配置信息,因此终端可获取同步信号块的发送配置,这样有利于终端快速盲检到相应的同步信号块,降低同步信号块盲检难度、盲检时间和测量时间,此外,还可进一步提高测量精度,更有利于终端后续的小区接入、重选和切换流程,减少终端功耗。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特 定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
此外,需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效 方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行,某些步骤可以并行或彼此独立地执行。对本领域的普通技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现,这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (47)

  1. 一种同步信号块测量方法,应用于终端侧,包括:
    接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,所述辅助测量信息用于指示所述同步信号块的发送配置信息;
    根据所述辅助测量信息,确定重复发送的同步信号块。
  2. 根据权利要求1所述的同步信号块测量方法,其中,所述辅助测量信息包括以下信息中的至少一项:
    用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;
    用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
    用于指示同步信号块的准共址信息的第三指示信息。
  3. 根据权利要求2所述的同步信号块测量方法,其中,所述第一指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、允许在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
  4. 根据权利要求2所述的同步信号块测量方法,其中,所述第二指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、允许在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、允许重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
  5. 根据权利要求2所述的同步信号块测量方法,其中,所述第三指示信息所指示的准共址信息包括以下信息中的至少一项:
    用于传输同步信号块的天线端口的空域准共址信息、用于传输同步信号 块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
  6. 根据权利要求2所述的同步信号块测量方法,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和所述第二指示信息分别采用单独指示方式,或者,所述第一指示信息和所述第二指示信息采用联合指示方式。
  7. 根据权利要求6所述的同步信号块测量方法,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和第二指示信息采用所述联合指示方式,并组成联合索引值信息,所述联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
  8. 根据权利要求6所述的同步信号块测量方法,其中,所述第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
    以及,
    所述第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
  9. 根据权利要求2所述的同步信号块测量方法,其中,所述辅助测量信息还包括以下信息中的至少一项:
    用于指示同步信号集合的发送周期的第四指示信息;
    用于指示所述同步信号集合中实际发送的同步信号块信息的第五指示信息。
  10. 根据权利要求1所述的同步信号块测量方法,其中,所述接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息的步骤,包括:
    通过***信息或无线资源控制RRC层信令,接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息。
  11. 根据权利要求1所述的同步信号块测量方法,其中,所述根据所述 辅助测量信息,确定重复发送的同步信号块的步骤之后,还包括:
    合并并解码所述重复发送的同步信号块中携带的信息。
  12. 根据权利要求11所述的同步信号块测量方法,其中,所述合并并解码所述重复发送的同步信号块的步骤,包括:
    对所述重复发送的同步信号块中的主同步信号PSS和辅同步信号SSS分别进行合并并解码;或
    对所述重复发送的同步信号块中的主信息块MIB、主同步信号PSS和辅同步信号SSS分别进行合并并解码。
  13. 一种终端,包括:
    第一接收模块,用于接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息,所述辅助测量信息用于指示所述同步信号块的发送配置信息;
    确定模块,用于根据所述辅助测量信息,确定重复发送的同步信号块。
  14. 根据权利要求13所述的终端,其中,所述辅助测量信息包括以下信息中的至少一项:
    用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;
    用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
    用于指示同步信号块的准共址信息的第三指示信息。
  15. 根据权利要求14所述的终端,其中,所述第一指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
  16. 根据权利要求14所述的终端,其中,所述第二指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同 步信号块的频域传输资源的位置信息、在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
  17. 根据权利要求14所述的终端,其中,所述第三指示信息所指示的准共址信息包括以下信息中的至少一项:
    用于传输同步信号块的天线端口的空域准共址信息、用于传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
  18. 根据权利要求14所述的终端,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和所述第二指示信息分别采用单独指示方式。
  19. 根据权利要求14所述的终端,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和第二指示信息采用联合指示方式,并组成联合索引值信息,所述联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
  20. 根据权利要求18所述的终端,其中,所述第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
    以及,
    所述第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
  21. 根据权利要求14所述的终端,其中,所述辅助测量信息还包括以下信息中的至少一项:
    用于指示同步信号集合的发送周期的第四指示信息;
    用于指示所述同步信号集合中实际发送的同步信号块信息的第五指示信息。
  22. 根据权利要求13所述的终端,其中,所述第一接收模块包括:
    第一接收单元,用于通过***信息或无线资源控制RRC层信令,接收网络设备发送的用于辅助终端进行同步信号块测量的辅助测量信息。
  23. 根据权利要求13所述的终端,其中,所述终端还包括:
    处理模块,用于合并并解码所述重复发送的同步信号块中携带的信息。
  24. 根据权利要求23所述的终端,其中,所述处理模块包括:
    第一处理单元,用于对所述重复发送的同步信号块中的主同步信号PSS和辅同步信号SSS分别进行合并并解码;或
    第二处理单元,用于对所述重复发送的同步信号块中的主信息块MIB、主同步信号PSS和辅同步信号SSS分别进行合并并解码。
  25. 一种终端,所述终端包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至12中任一项所述的同步信号块测量方法的步骤。
  26. 一种同步信号块测量方法,应用于网络设备侧,包括:
    向终端发送用于辅助终端进行同步信号块测量的辅助测量信息,所述辅助测量信息用于指示所述同步信号块的发送配置信息。
  27. 根据权利要求26所述的同步信号块测量方法,其中,所述辅助测量信息包括以下信息中的至少一项:
    用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;
    用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
    用于指示同步信号块的准共址信息的第三指示信息。
  28. 根据权利要求27所述的同步信号块测量方法,其中,所述第一指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
  29. 根据权利要求27所述的同步信号块测量方法,其中,所述第二指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送次数信息、重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
  30. 根据权利要求27所述的同步信号块测量方法,其中,所述第三指示信息所指示的准共址信息包括以下信息中的至少一项:
    用于传输同步信号块的天线端口的空域准共址信息、用户传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
  31. 根据权利要求27所述的同步信号块测量方法,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和所述第二指示信息分别采用单独指示方式。
  32. 根据权利要求27所述的同步信号块测量方法,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和第二指示信息采用联合指示方式,并组成联合索引值信息,所述联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
  33. 根据权利要求31所述的同步信号块测量方法,其中,所述第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
    以及,
    所述第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
  34. 根据权利要求27所述的同步信号块测量方法,其中,所述辅助测量 信息还包括以下信息中的至少一项:
    用于指示同步信号集合的发送周期的第四指示信息;
    用于指示所述同步信号集合中实际发送的同步信号块信息的第五指示信息。
  35. 根据权利要求26所述的同步信号块测量方法,其中,所述向终端发送用于辅助终端进行同步信号块测量的辅助测量信息的步骤,包括:
    通过***信息或无线资源控制RRC层信令,向所述终端发送用于辅助终端进行同步信号块测量的辅助测量信息。
  36. 一种网络设备,包括:
    第一发送模块,用于向终端发送用于辅助终端进行同步信号块测量的辅助测量信息,所述辅助测量信息用于指示所述同步信号块的发送配置信息。
  37. 根据权利要求36所述的网络设备,其中,所述辅助测量信息包括以下信息中的至少一项:
    用于指示时域传输资源上重复发送的同步信号块的图样信息的第一指示信息;
    用于指示频域传输资源上重复发送的同步信号块的图样信息的第二指示信息;
    用于指示同步信号块的准共址信息的第三指示信息。
  38. 根据权利要求37所述的网络设备,其中,所述第一指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选时域传输资源的位置信息、实际重复发送同步信号块的时域传输资源的位置信息、在时域传输资源上重复发送的同步信号块的发送次数信息以及实际在时域传输资源上重复发送的同步信号块的发送次数信息。
  39. 根据权利要求37所述的网络设备,其中,所述第二指示信息所指示的图样信息包括以下信息中的至少一项:
    重复发送同步信号块的候选频域传输资源的位置信息、实际重复发送同步信号块的频域传输资源的位置信息、在频域传输资源上重复发送的同步信号块的发送次数信息、实际在频域传输资源上重复发送的同步信号块的发送 次数信息、重复发送同步信号块的候选频域传输资源的数值配置信息以及实际重复发送同步信号块的频域传输资源的数值配置信息。
  40. 根据权利要求37所述的网络设备,其中,所述第三指示信息所指示的准共址信息包括以下信息中的至少一项:
    用于传输同步信号块的天线端口的空域准共址信息、用户传输同步信号块的天线端口的平均增益准共址信息、用于传输同步信号块的天线端口的时延准共址信息和用于传输同步信号块的天线端口的多普勒参数准共址信息。
  41. 根据权利要求37所述的网络设备,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和所述第二指示信息分别采用单独指示方式。
  42. 根据权利要求37所述的网络设备,其中,当所述辅助测量信息包括所述第一指示信息和所述第二指示信息时,所述第一指示信息和第二指示信息采用联合指示方式,并组成联合索引值信息,所述联合索引值信息用于指示时域传输资源和频域传输资源上重复发送的同步信号块的图样信息。
  43. 根据权利要求41所述的网络设备,其中,所述第一指示信息包括:用于指示时域传输资源上重复发送的同步信号块的图样信息的第一索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项;
    以及,
    所述第二指示信息包括:用于指示频域传输资源上重复发送的同步信号块的图样信息的第二索引值信息、位图信息、分组信息、重复发送次数信息和每个分组内重复发送同步信号块的位图信息中的至少一项。
  44. 根据权利要求37所述的网络设备,其中,所述辅助测量信息还包括以下信息中的至少一项:
    用于指示同步信号集合的发送周期的第四指示信息;
    用于指示所述同步信号集合中实际发送的同步信号块信息的第五指示信息。
  45. 根据权利要求36所述的网络设备,其中,所述第一发送模块包括:
    发送单元,用于通过***信息或无线资源控制RRC层信令,向所述终端 发送用于辅助终端进行同步信号块测量的辅助测量信息。
  46. 一种网络设备,所述网络设备包括处理器、存储器以及存储于所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求26至35中任一项所述的同步信号块测量方法的步骤。
  47. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至12或26至35中任一项所述的同步信号块测量方法的步骤。
PCT/CN2018/103567 2017-09-08 2018-08-31 同步信号块测量方法、终端及网络设备 WO2019047783A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/645,359 US11363552B2 (en) 2017-09-08 2018-08-31 Method of synchronized signal block measurement, user equipment and network device
EP18853333.5A EP3681192A4 (en) 2017-09-08 2018-08-31 SYNCHRONIZED SIGNAL BLOCK, TERMINAL AND NETWORK DEVICE MEASUREMENT PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710806842.X 2017-09-08
CN201710806842.XA CN109474939B (zh) 2017-09-08 2017-09-08 一种同步信号块测量方法、终端及网络设备

Publications (1)

Publication Number Publication Date
WO2019047783A1 true WO2019047783A1 (zh) 2019-03-14

Family

ID=65633561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103567 WO2019047783A1 (zh) 2017-09-08 2018-08-31 同步信号块测量方法、终端及网络设备

Country Status (4)

Country Link
US (1) US11363552B2 (zh)
EP (1) EP3681192A4 (zh)
CN (2) CN114245399A (zh)
WO (1) WO2019047783A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11324066B2 (en) * 2018-04-23 2022-05-03 Qualcomm Incorporated Dynamic downlink monitoring techniques for communication systems
CN111147209B (zh) * 2018-11-02 2022-04-05 华为技术有限公司 一种指示信息的传输方法和装置
CN110140301B (zh) * 2019-03-25 2023-06-27 北京小米移动软件有限公司 同步信号块传输方法、装置及存储介质
CN111769924B (zh) * 2019-04-02 2023-08-22 大唐移动通信设备有限公司 一种信号传输方法、装置及设备
CN110460411B (zh) * 2019-08-09 2021-12-14 北京紫光展锐通信技术有限公司 Pbch重复发送、接收方法及装置、存储介质、基站、用户设备
CN111800222B (zh) * 2019-08-09 2022-09-23 维沃移动通信有限公司 一种数据接收方法及设备
CN112399492B (zh) * 2019-08-15 2022-01-14 华为技术有限公司 一种ssb测量方法和装置
EP4029305A1 (en) * 2019-09-13 2022-07-20 Nokia Technologies Oy Apparatus for radio access network data collection
CN112584392B (zh) * 2019-09-30 2022-09-23 上海华为技术有限公司 一种无线广播波束覆盖增强方法和装置
ES2972079T3 (es) * 2019-11-08 2024-06-11 Guangdong Oppo Mobile Telecommunications Corp Ltd Método y aparato para determinar la posición de un recurso
CN114642044A (zh) * 2019-11-28 2022-06-17 华为技术有限公司 同步信号块指示方法及通信装置
CN113225689B (zh) * 2020-01-21 2023-03-28 ***通信有限公司研究院 一种信息传输方法、装置和计算机可读存储介质
CN113630861B (zh) * 2020-05-09 2023-04-07 维沃移动通信有限公司 同步信号块的处理方法及装置、通信设备和可读存储介质
CN113965987B (zh) * 2020-07-20 2024-02-09 维沃移动通信有限公司 Ssb搜索信息确定方法、装置及通信设备
CN114390539B (zh) * 2020-10-16 2024-06-11 维沃移动通信有限公司 传输方法、装置、终端及网络侧设备
CN112333741B (zh) * 2020-11-17 2022-10-11 展讯通信(上海)有限公司 主信息块mib的获取方法、装置和终端
EP4319010A4 (en) * 2021-04-01 2024-05-22 Fujitsu Limited MEASURING METHOD AND DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793058A (zh) * 2016-12-30 2017-05-31 展讯通信(上海)有限公司 处理同步信号块的方法、基站及用户设备
US20170251460A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. Apparatus and method for performing random access in beam-formed system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014071562A1 (en) * 2012-11-07 2014-05-15 Broadcom Corporation Small cell initial access and physical cell identity determination
US9930515B2 (en) * 2014-05-15 2018-03-27 Lg Electronics Inc. Method for detecting discovery signal in wireless communication system, and device for same
CN106664578B (zh) * 2014-08-07 2020-11-13 夏普株式会社 基站装置、终端装置以及方法
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10708028B2 (en) * 2017-03-08 2020-07-07 Samsung Electronics Co., Ltd. Method and apparatus for reference signals in wireless system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170251460A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. Apparatus and method for performing random access in beam-formed system
CN106793058A (zh) * 2016-12-30 2017-05-31 展讯通信(上海)有限公司 处理同步信号块的方法、基站及用户设备

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"On SS Block Based Timing Indication in NR", 3GPP TSG RAN WG1 NR AH#2 RI-1710915, 30 June 2017 (2017-06-30), XP051300116 *
HUAWEI ET AL.: "Discussion and Evaluation on NR-SS Periodicity", 3GPP TSG RAN WGI MEETING #88 R1-1701721, 17 February 2017 (2017-02-17), XP051208887 *
SAMSUNG: "SS Periodicity", 3GPP TSG RAN WGI#88 RL-1702903, 17 February 2017 (2017-02-17), XP051210047 *
See also references of EP3681192A4 *
VIVO: "Remaining Issues on SS Block and SS Burst Set Composition", 3GPP TSG RAN WGI NR AD-HOC#3 R1-1715606, 21 September 2017 (2017-09-21), XP051339073 *
VIVO: "SS Block Transmissions and RRM Measurement in Wideband CC", 3GPP TSG RAN WGI NR AD-HOC MEETING #2 RI-1710374, 30 June 2017 (2017-06-30), XP051299588 *

Also Published As

Publication number Publication date
EP3681192A1 (en) 2020-07-15
US20200236636A1 (en) 2020-07-23
CN109474939A (zh) 2019-03-15
CN114245399A (zh) 2022-03-25
US11363552B2 (en) 2022-06-14
CN109474939B (zh) 2021-09-24
EP3681192A4 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
WO2019047783A1 (zh) 同步信号块测量方法、终端及网络设备
US11330576B2 (en) Method for monitoring PDCCH, terminal and network device
US11129191B2 (en) Signal transmission method and device
CN108809595B (zh) 一种参考信号通知方法及其装置
JP7160501B2 (ja) 測位基準信号設定方法、受信方法及び機器
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
WO2021098568A1 (zh) 一种能力信息发送方法、接收方法及装置
US11777694B2 (en) Method, related device and system for searching for SS block
KR102379319B1 (ko) 소프트 결합을 가능하게 하는 암시적 시스템 정보(si) 콘텐츠 변형
WO2018233513A1 (zh) 非授权频段下的信息传输方法及网络设备
WO2018127115A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019029422A1 (zh) 一种定位、测量上报方法及装置
WO2020135383A1 (zh) 通信方法和通信装置
AU2016361140A1 (en) Wireless device, radio-network node, and methods performed therein for managing signaling in a wireless communication network
JP2021193827A (ja) 端末、無線通信システム及び通信方法
JP7342970B2 (ja) Ssbに基づく測定方法及び装置
JP2021502007A (ja) 無線通信方法及び装置
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
CN110547012B (zh) 处理信号的方法和设备
US20180103483A1 (en) Data transmission method and apparatus
CN114467326B (zh) 一种测量配置方法及装置、终端设备、网络设备
TWI751254B (zh) 一種測量方法、基站及終端
US20210153084A1 (en) Wireless communication method, terminal device, and network device
WO2018227585A1 (zh) 测量同步信号块的方法和设备
WO2021082985A1 (zh) 接入网络设备的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018853333

Country of ref document: EP

Effective date: 20200408