WO2019039262A1 - Insulator for rotating electrical machine, and rotating electrical machine - Google Patents

Insulator for rotating electrical machine, and rotating electrical machine Download PDF

Info

Publication number
WO2019039262A1
WO2019039262A1 PCT/JP2018/029527 JP2018029527W WO2019039262A1 WO 2019039262 A1 WO2019039262 A1 WO 2019039262A1 JP 2018029527 W JP2018029527 W JP 2018029527W WO 2019039262 A1 WO2019039262 A1 WO 2019039262A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
insulator
teeth
wound
stator core
Prior art date
Application number
PCT/JP2018/029527
Other languages
French (fr)
Japanese (ja)
Inventor
典之 荒巻
大助 仙波
建 野口
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Publication of WO2019039262A1 publication Critical patent/WO2019039262A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure

Definitions

  • the present invention relates to an insulating insulator mounted on a stator core of a rotating electrical machine, and more particularly to an insulator effective when applied to a rotating electrical machine having a flat outer diameter larger than the axial length and a rotating electrical machine using the same. .
  • a rotor is rotatably disposed inside a stator on which a coil is wound.
  • an insulator is attached on the stator side as a component for insulating between the stator core and the coil, and as shown in FIG. 6, the coil 51 is wound around the teeth 54 of the stator core 53 via the insulator 52. .
  • the coils 51 wound around the teeth 54 are accommodated in the slots 55 formed between the adjacent teeth 54.
  • the slots 55 expand radially outward, so the space in which the coil 51 can be wound also becomes larger outward. Therefore, it is a general practice to improve the output by winding the coil 51 more as it goes radially outward.
  • the final layer 56 located in the outermost layer has a smaller number of winding turns but the number of layers is larger than that on the inner side in the radial direction (in FIG. 5 layers on the radially outer side).
  • the winding height Hw increases, the axial length Ls of the stator increases accordingly, and the axial length Lm (hereinafter abbreviated as motor length) of the motor increases.
  • stator core length the axial length Lc of the stator core (hereinafter abbreviated as stator core length) Lc is small and the ratio of the winding height Hw to the stator core length Lc Since the coil height Hw has a large influence on the motor length.
  • stator core length the stator core length of the stator core (hereinafter abbreviated as stator core length) Lc is small and the ratio of the winding height Hw to the stator core length Lc Since the coil height Hw has a large influence on the motor length.
  • Flat type motors are often used for engine starters and generators, in which case the motor is required to be downsized (in particular, the motor length must be reduced) because it is disposed in a limited space beside the engine.
  • the winding height Hw is increased, and as described above, there is a problem that the motor length is affected.
  • the coil wire diameter of the outermost layer is also reduced, so the effect of the final layer coil on the motor length can be reduced while securing the output.
  • the winding resistance increases, there arises a new problem that the output at the time of high rotation decreases.
  • An object of the present invention is to reduce the axial length of the stator by reducing the height of the winding, and to miniaturize the rotating electrical machine.
  • the insulator according to the present invention is a rotary electric machine having a stator core including a ring-shaped back core portion and teeth radially provided radially inward from the back core portion, the stator core and the coil An insulator body disposed between and electrically insulating between the coil and the stator core, the insulator body being mounted on the teeth and covering the outer peripheral surface of the teeth, and a radially inner peripheral edge of the insulator body Formed in a form surrounded by the inner flange and the outer flange on the outer peripheral side of the insulator main body, and the outer flange formed on the outer peripheral edge of the insulator main body in the radial direction.
  • the second coil wound portion is provided so as to protrude radially outward of the insulator, and the final layer of the coil is wound around the second coil wound portion.
  • the number of winding layers of the coil in the axial direction in the first coil winding portion decreases by one, and the height of the winding can be suppressed to be smaller by the wire diameter of the coil. Therefore, the axial length of the stator is smaller by twice the coil wire diameter, and the axial length of the rotating electrical machine is also reduced by using the insulator.
  • a notch is formed in the outer flange facing both ends of the second coil winding unit, and a final layer of the coil is formed on the first coil winding unit side through the one notch. , And after passing through the second coil wound portion, the second coil wound portion may be guided to the first coil wound portion side from the other notched portion.
  • the rotary electric machine includes a stator core including a ring-shaped back core portion and teeth radially protruding inward from the back core portion, and is disposed between the stator core and the coil.
  • a rotary electric machine having an insulator which electrically insulates between the coil and the stator core, wherein the insulator is mounted on the teeth and covers an outer peripheral surface of the teeth; It is surrounded by the inner flange and the outer flange on the outer peripheral side of the insulator main body, an inner flange formed on the radially inner peripheral edge of the main body, an outer flange formed on the radial outer edge of the insulator main body
  • a first coil winding portion formed in a shape, and wound in a state in which a plurality of layers of the coil are overlapped; And a second coil winding portion which is provided radially outward in the vicinity of both axial end portions of the flange and on which the final layer of the coil wound on the teeth is wound.
  • the second coil wound portion is provided so as to protrude radially outward of the insulator, and the final layer of the coil is wound around the second coil wound portion.
  • the number of winding layers of the coil in the axial direction in the first coil winding portion decreases by one, and the height of the winding can be suppressed to be smaller by the wire diameter of the coil. Therefore, the axial length of the stator is reduced by twice the coil wire diameter, and the axial length of the rotary electric machine is also reduced accordingly.
  • the outer flange is provided with notches facing both ends of the second coil winding part, and the final layer of the coil is formed through the one notch and the first coil winding part After being pulled out from the side and passing through the second coil wound portion, the other of the notches may be guided to the first coil wound portion side.
  • the second coil winding portion on which the coil can be wound is provided on the radially outer side of the outer flange, and by winding the final layer of the coil there, the number of coil winding layers in the axial direction can be increased. It can be reduced by one roll.
  • the winding height can be reduced by the wire diameter of the coil, and the axial length of the stator can be reduced by twice the coil wire diameter. Therefore, the axial length of the rotating electrical machine can be reduced by using the insulator.
  • the insulator is provided with the second coil winding portion capable of winding the coil, and the final layer of the coil is wound there, so the number of coil winding layers in the axial direction is one turn It can be reduced by a minute.
  • the winding height can be reduced by the wire diameter of the coil
  • the axial length of the stator can be reduced by twice the coil wire diameter
  • the axial length of the rotating electrical machine can be reduced.
  • FIG. 1 is a cross-sectional view along an axial direction of a brushless motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. It is a perspective view which shows the structure of an insulator. It is explanatory drawing which shows the attachment state of the insulator in the said brushless motor.
  • FIG. 7 is an explanatory view showing a winding state of a coil in the brushless motor, and (b) is a cross-sectional view taken along the line BB of (a).
  • FIG. 12 is an explanatory view showing a wound state of a coil in a conventional brushless motor, and (b) is a cross-sectional view taken along a line CC of (a).
  • FIG. 1 is a cross-sectional view along an axial direction of a brushless motor 1 (a rotating electric machine; hereinafter abbreviated as a motor 1) according to an embodiment of the present invention
  • FIG. 2 is a line AA of FIG. FIG.
  • the motor 1 shown in FIG. 1 is of an inner rotor type, and includes a stator 3 fixed in the housings 2a and 2b, and a rotor 4 rotatably disposed in the stator 3.
  • the motor 1 is an SR motor that does not use a magnet (permanent magnet) for the rotor 4 and is used, for example, as a starter generator of an engine.
  • the stator 3 has a stator core 5 in which a large number of thin electromagnetic steel plates are stacked.
  • the stator core 5 includes a ring-shaped back core portion 6 and teeth 7 protruding radially inward (in the center direction) from the back core portion 6.
  • An insulator 10 made of synthetic resin is mounted on the outer periphery of the tooth 7, and an exciting coil 8 (hereinafter abbreviated as a coil 8) is wound around the tooth 7 via the insulator 10.
  • the coil 8 is composed of a plurality of phase coils (for example, three phases of U phase, V phase and W phase), and the coils 8 of each phase form independent circuits.
  • An electric current is supplied to the coil 8 through the bus bar 9 formed of a conductive member (for example, a metal such as copper).
  • the rotor 4 is inserted inside the stator 3.
  • the rotor 4 is composed of a rotating shaft 11 and a rotor core 12 fixed to the rotating shaft 11.
  • the rotor core 12 is also formed by laminating a large number of thin electromagnetic steel plates.
  • a salient pole 13 is provided on the outer periphery of the rotor core 12 so as to protrude in the radial direction (see FIG. 2).
  • the rotation angle of the rotor 4 is detected by a resolver (not shown), and the coils 8 of each phase are sequentially excited in accordance with the angular position of the rotor 4.
  • the teeth 7 on which the excited coil 8 is wound become a magnetic pole one after another, and a rotating magnetic field of three phases (U phase, V phase, W phase) is formed in the stator 3.
  • the salient poles 13 of the rotor 4 are attracted to the magnetized teeth 7, whereby the rotor 4 rotates in the stator 3 and the SR motor 1 operates.
  • bus bar unit 14 is disposed adjacent to one axial end side (left end side in the drawing) of the stator core 5.
  • a plurality of bus bars 9 are embedded in the bus bar unit 14 in a mutually insulated state.
  • the bus bar unit 14 has a configuration in which a plurality of bus bars 9 formed in an annular shape are insert-molded in resin in a main body portion 15 formed of a synthetic resin.
  • the bus bar 9 is provided with a coil connection terminal 16 connected to the coil 8 and a power supply connection terminal (not shown) connected to the power supply side.
  • the coil connection terminals 16 are radially projected outward in the radial direction, and are welded to the ends 17 of the coils 8 of the corresponding phases, whereby the bus bars 9 and the coils 8 are electrically connected. .
  • FIG. 3 is a perspective view showing the configuration of the insulator 10 in a state in which the coil 8 is wound
  • FIG. 4 is an explanatory view showing an attachment state of the insulator 10 in the motor 1
  • FIG. 5 is a winding of the coil 8 in the motor 1 It is explanatory drawing which shows a mounting state.
  • the insulator 10 is formed of an insulating material such as a synthetic resin, and is extrapolated from and attached to the teeth 7 from the tip (radially inner end) side of the teeth 7.
  • the insulator 10 has an insulator main body 22 formed in a substantially square cylindrical shape so as to cover the outer peripheral surface of the teeth 7.
  • An inner flange 23 and an outer flange 24 are formed integrally with the insulator main body 22 at respective peripheral edges of both radial direction ends (inner and outer sides) of the insulator main body 22.
  • a coil accommodating recess (first coil wound portion) 25 is formed on the outer peripheral side of the insulator main body 22 so as to be surrounded by the outer peripheral surface 22 a of the insulator main body 22, the inner flange 23 and the outer flange 24.
  • a plurality of layers of the coil 8 are wound around the coil accommodation recess 25.
  • the coil 8 is wound by a flyer or the like in a state where the insulator 10 is attached to the teeth 7, and the two end portions 17 of the coil 8 are respectively drawn to the bus bar unit 14 side.
  • a plate-like extending portion 21 is provided protruding outward in the radial direction.
  • the extended portion 21 is disposed on the end face 6 a of the back core portion 6 of the stator core 5.
  • two notches 26 are formed at both axial end portions 24 a of the outer flange 24 so as to face the both end portions 21 a of the extending portion 21 (26 a, 26 b).
  • the final layer 27 (here, three turns) of the coil 8 wound around the teeth 7 is wound around the extension portion 21. As shown in FIGS.
  • the final layer 27 is pulled out from the coil accommodating recess 25 side through one notch 26 a and passes through the extending portion 21, and then from the other notch 26 b to the coil accommodating recess 25. It is guided to the side and wound around a portion of the extending portion 21.
  • the coil 8 of the motor 1 has the same total number of turns as the conventional motor, and uses the space of the slot 28 which increases in the radial direction without waste The coil is wound.
  • the number of winding layers in the axial direction is one. It has been reduced by a minute. That is, the number of winding layers on the coil accommodation recess 25 side is reduced by one for the final layer 27 disposed in the extending portion 21, and the winding height Hw is equal to the wire diameter of the coil 8 (for example, 1 It is kept small (about 2 mm).
  • the axial length Ls of the stator is reduced by twice the coil wire diameter, and the motor length is also reduced accordingly.
  • the axial length Ls of the stator can be shortened by 3.0 mm (twice of the wire diameter). This is large in flat motors where the motor outer diameter Dm is large relative to the motor length Lm (Dm / Lm> 1), even if two coils are involved, and a motor having a stator core length Lc of about 30 mm In the latter case, a size reduction of approximately 10% is possible. Further, when the motor length is made the same, the stator core length Lc can be increased by twice the wire diameter, and the output can be improved accordingly.
  • the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the invention.
  • the final layer 27 of the coil 8 is wound around the extending portion 21.
  • the extending portion 21 has a margin, not only the final layer 27 but also the next All or part of the second layer (the second layer from the outer side: 10 in this case) may be wound on the extension 21.
  • the number of turns for example, 5 turns
  • the present invention is applicable to reluctance motors, generators and the like.
  • the present invention can be widely applied to other in-vehicle electric devices, electric products such as hybrid cars, electric cars, and air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

The objective of the present invention is to reduce the axial direction length of a stator by reducing the winding height, to achieve a reduction in the size of a rotating electrical machine. An insulator 10 includes an insulator main body 22 which covers an outer peripheral surface of a tooth 7, and an inside flange 23 and an outside flange 24 which are formed at peripheral edges at both ends in the radial direction of the insulator main body 22. A coil accommodating recessed portion 25 is formed surrounded by the inside flange 23 and the outside flange 24 on the outer peripheral side of the insulator main body 22. Extending portions 21 are provided projecting toward the radially outer side in the vicinity of both end portions 24a in the axial direction of the outside flange 24. Notched portions 26 are formed in the outside flange 24, facing both ends of the extending portions 21. A final layer 27 of a coil 8 is wound from the coil accommodating recessed portion 25 side through the notched portions 26 onto the extending portions 21.

Description

回転電機用インシュレータ及び回転電機Insulator for rotary electric machine and rotary electric machine
 本発明は、回転電機のステータコアに装着される絶縁用のインシュレータに関し、特に、外径が軸方向長に対して大きい扁平仕様の回転電機に適用して有効なインシュレータ及びそれを用いた回転電機に関する。 The present invention relates to an insulating insulator mounted on a stator core of a rotating electrical machine, and more particularly to an insulator effective when applied to a rotating electrical machine having a flat outer diameter larger than the axial length and a rotating electrical machine using the same. .
 一般にインナーロータ型のブラシレスモータ(回転電機)では、コイルが巻装されたステータの内側にロータが回転自在に配置される。また、ステータ側には、ステータコアとコイルとの間を絶縁する部品としてインシュレータが取り付けられ、図6に示すように、コイル51は、インシュレータ52を介して、ステータコア53のティース54に巻装される。ティース54に巻装されたコイル51は、隣接するティース54間に形成されるスロット55に収容される。その際、スロット55は、図6(a)に示すように、径方向外側に向かって拡大するため、コイル51が巻装可能なスペースも外側ほど大きくなる。そこで、径方向外側ほどコイル51を多く巻回し、出力の向上を図るのが通例である。 Generally, in an inner rotor type brushless motor (rotary electric machine), a rotor is rotatably disposed inside a stator on which a coil is wound. Further, an insulator is attached on the stator side as a component for insulating between the stator core and the coil, and as shown in FIG. 6, the coil 51 is wound around the teeth 54 of the stator core 53 via the insulator 52. . The coils 51 wound around the teeth 54 are accommodated in the slots 55 formed between the adjacent teeth 54. At this time, as shown in FIG. 6 (a), the slots 55 expand radially outward, so the space in which the coil 51 can be wound also becomes larger outward. Therefore, it is a general practice to improve the output by winding the coil 51 more as it goes radially outward.
特開2000-83340号公報JP 2000-83340 A
 ところが、図6のように径方向外側の巻回層数を多くすると、最外層に位置する最終層56は、巻線ターン数は少ないものの、径方向内側より層数が多くなる(図中、最も径方向外側は5層)。すると、層数が増えている分、巻線高さHwが増大し、ステータの軸方向長Lsがその分長くなり、モータの軸方向長(以下、モータ長と略記する)Lmが大きくなるという問題があった。 However, when the number of winding layers on the radially outer side is increased as shown in FIG. 6, the final layer 56 located in the outermost layer has a smaller number of winding turns but the number of layers is larger than that on the inner side in the radial direction (in FIG. 5 layers on the radially outer side). Then, as the number of layers increases, the winding height Hw increases, the axial length Ls of the stator increases accordingly, and the axial length Lm (hereinafter abbreviated as motor length) of the motor increases. There was a problem.
 特に、モータの外径が軸方向長に対して大きい扁平型モータでは、ステータコアの軸方向長(以下、ステータコア長と略記する)Lcが小さく、ステータコア長Lcに対して巻線高さHwの割合が大きくなるため、巻線高さHwがモータ長に与える影響が大きくなる。扁平型モータは、エンジンのスタータ・ジェネレータに用いられることも多く、その場合、エンジン横の限られたスペースに配置されるため、モータの小型化(特に、モータ長の削減)が求められる。しかしながら、径方向外側の巻回層数を多くすると、巻線高さHwが大きくなり、前述のように、モータ長に影響を与えてしまうという課題があった。 In particular, in a flat type motor in which the outer diameter of the motor is larger than the axial length, the axial length Lc of the stator core (hereinafter abbreviated as stator core length) Lc is small and the ratio of the winding height Hw to the stator core length Lc Since the coil height Hw has a large influence on the motor length. Flat type motors are often used for engine starters and generators, in which case the motor is required to be downsized (in particular, the motor length must be reduced) because it is disposed in a limited space beside the engine. However, when the number of winding layers on the outer side in the radial direction is increased, the winding height Hw is increased, and as described above, there is a problem that the motor length is affected.
 なお、コイル線径を小さくして、ターン数を増やす形とすれば、最外層のコイル線径も小さくなるため、出力を確保しつつ、最終層コイルがモータ長に与える影響を小さくできる。しかし、その場合、巻線抵抗が大きくなるため、高回転時の出力が低下するという新たな問題が生じる。 If the coil wire diameter is reduced and the number of turns is increased, the coil wire diameter of the outermost layer is also reduced, so the effect of the final layer coil on the motor length can be reduced while securing the output. However, in that case, since the winding resistance increases, there arises a new problem that the output at the time of high rotation decreases.
 本発明の目的は、巻線高さを低減することにより、ステータの軸方向長を削減し、回転電機の小型化を図ることにある。 An object of the present invention is to reduce the axial length of the stator by reducing the height of the winding, and to miniaturize the rotating electrical machine.
 本発明のインシュレータは、リング状のバックコア部と、該バックコア部から径方向内側に向かって放射状に突設されたティースと、を備えたステータコアを有する回転電機において、前記ステータコアとコイルとの間に配置され、前記コイルと前記ステータコアとの間を電気的に絶縁するインシュレータであって、前記ティースに装着され、該ティースの外周面を覆うインシュレータ本体と、前記インシュレータ本体の径方向内側の周縁に形成された内側フランジと、前記インシュレータ本体の径方向外側の周縁に形成された外側フランジと、前記インシュレータ本体の外周側に、前記内側フランジと前記外側フランジに囲まれる形で形成され、前記コイルが複数層重なった状態で巻装される第1コイル巻装部と、前記外側フランジの軸方向両端部近傍に径方向外側に向かって突設され、当該ティースに巻装される前記コイルの最終層が巻装される第2コイル巻装部と、を有することを特徴とする。 The insulator according to the present invention is a rotary electric machine having a stator core including a ring-shaped back core portion and teeth radially provided radially inward from the back core portion, the stator core and the coil An insulator body disposed between and electrically insulating between the coil and the stator core, the insulator body being mounted on the teeth and covering the outer peripheral surface of the teeth, and a radially inner peripheral edge of the insulator body Formed in a form surrounded by the inner flange and the outer flange on the outer peripheral side of the insulator main body, and the outer flange formed on the outer peripheral edge of the insulator main body in the radial direction. A first coil winding portion wound in a state in which a plurality of layers are overlapped, and an axis of the outer flange Countercurrent near both ends outward in the radial direction is protruded, and having a second coil winding part which last layer of the coil to be wound around the teeth is wound, the.
 本発明にあっては、インシュレータの径方向外側に第2コイル巻装部を突設し、コイルの最終層をこの第2コイル巻装部に巻き付ける。これにより、第1コイル巻装部における軸方向のコイルの巻回層数が1巻き分少なくなり、巻線高さがコイルの線径分だけ小さく抑えられる。したがって、ステータの軸方向長がコイル線径の2倍分小さくなり、当該インシュレータを用いることにより、回転電機の軸方向長も削減される。 In the present invention, the second coil wound portion is provided so as to protrude radially outward of the insulator, and the final layer of the coil is wound around the second coil wound portion. As a result, the number of winding layers of the coil in the axial direction in the first coil winding portion decreases by one, and the height of the winding can be suppressed to be smaller by the wire diameter of the coil. Therefore, the axial length of the stator is smaller by twice the coil wire diameter, and the axial length of the rotating electrical machine is also reduced by using the insulator.
 前記インシュレータにおいて、前記外側フランジに、前記第2コイル巻装部の両端に臨んで切欠部を形成し、前記コイルの最終層を、一方の前記切欠部を介して前記第1コイル巻装部側から引き出し、前記第2コイル巻装部を通った後、他方の前記切欠部から第1コイル巻装部側に案内するようにしても良い。 In the insulator, a notch is formed in the outer flange facing both ends of the second coil winding unit, and a final layer of the coil is formed on the first coil winding unit side through the one notch. , And after passing through the second coil wound portion, the second coil wound portion may be guided to the first coil wound portion side from the other notched portion.
 本発明の回転電機は、リング状のバックコア部と、該バックコア部から径方向内側に向かって放射状に突設されたティースと、を備えたステータコアと、前記ステータコアとコイルとの間に配置され、前記コイルと前記ステータコアとの間を電気的に絶縁するインシュレータと、を有する回転電機であって、前記インシュレータは、前記ティースに装着され、該ティースの外周面を覆うインシュレータ本体と、前記インシュレータ本体の径方向内側の周縁に形成された内側フランジと、前記インシュレータ本体の径方向外側の周縁に形成された外側フランジと、前記インシュレータ本体の外周側に、前記内側フランジと前記外側フランジに囲まれる形で形成され、前記コイルが複数層重なった状態で巻装される第1コイル巻装部と、前記外側フランジの軸方向両端部近傍に径方向外側に向かって突設され、当該ティースに巻装される前記コイルの最終層が巻装される第2コイル巻装部と、を有することを特徴とする。 The rotary electric machine according to the present invention includes a stator core including a ring-shaped back core portion and teeth radially protruding inward from the back core portion, and is disposed between the stator core and the coil. A rotary electric machine having an insulator which electrically insulates between the coil and the stator core, wherein the insulator is mounted on the teeth and covers an outer peripheral surface of the teeth; It is surrounded by the inner flange and the outer flange on the outer peripheral side of the insulator main body, an inner flange formed on the radially inner peripheral edge of the main body, an outer flange formed on the radial outer edge of the insulator main body A first coil winding portion formed in a shape, and wound in a state in which a plurality of layers of the coil are overlapped; And a second coil winding portion which is provided radially outward in the vicinity of both axial end portions of the flange and on which the final layer of the coil wound on the teeth is wound. .
 本発明にあっては、インシュレータの径方向外側に第2コイル巻装部を突設し、コイルの最終層をこの第2コイル巻装部に巻き付ける。これにより、第1コイル巻装部における軸方向のコイルの巻回層数が1巻き分少なくなり、巻線高さがコイルの線径分だけ小さく抑えられる。したがって、ステータの軸方向長がコイル線径の2倍分小さくなり、その分、回転電機の軸方向長も削減される。 In the present invention, the second coil wound portion is provided so as to protrude radially outward of the insulator, and the final layer of the coil is wound around the second coil wound portion. As a result, the number of winding layers of the coil in the axial direction in the first coil winding portion decreases by one, and the height of the winding can be suppressed to be smaller by the wire diameter of the coil. Therefore, the axial length of the stator is reduced by twice the coil wire diameter, and the axial length of the rotary electric machine is also reduced accordingly.
 前記回転電機において、前記外側フランジに、前記第2コイル巻装部の両端に臨んで切欠部を形成し、前記コイルの最終層を、一方の前記切欠部を介して前記第1コイル巻装部側から引き出し、前記第2コイル巻装部を通った後、他方の前記切欠部から第1コイル巻装部側に案内するようにしても良い。 In the electric rotating machine, the outer flange is provided with notches facing both ends of the second coil winding part, and the final layer of the coil is formed through the one notch and the first coil winding part After being pulled out from the side and passing through the second coil wound portion, the other of the notches may be guided to the first coil wound portion side.
 本発明のインシュレータによれば、外側フランジの径方向外側にコイルを巻装可能な第2コイル巻装部を設け、そこにコイルの最終層を巻き付けることにより、軸方向のコイル巻回層数を1巻き分少なくすることができる。これにより、巻線高さをコイルの線径分だけ小さく抑えることができ、ステータの軸方向長をコイル線径の2倍分小さくすることが可能となる。したがって、当該インシュレータを用いることにより、回転電機の軸方向長を削減することが可能となる。  According to the insulator of the present invention, the second coil winding portion on which the coil can be wound is provided on the radially outer side of the outer flange, and by winding the final layer of the coil there, the number of coil winding layers in the axial direction can be increased. It can be reduced by one roll. Thus, the winding height can be reduced by the wire diameter of the coil, and the axial length of the stator can be reduced by twice the coil wire diameter. Therefore, the axial length of the rotating electrical machine can be reduced by using the insulator.
 本発明の回転電機によれば、インシュレータにコイルを巻装可能な第2コイル巻装部を設け、そこにコイルの最終層を巻き付けるようにしたので、軸方向のコイル巻回層数を1巻き分少なくすることができる。これにより、巻線高さをコイルの線径分だけ小さく抑えることができ、ステータの軸方向長をコイル線径の2倍分小さくなり、回転電機の軸方向長を削減することが可能となる。 According to the rotating electrical machine of the present invention, the insulator is provided with the second coil winding portion capable of winding the coil, and the final layer of the coil is wound there, so the number of coil winding layers in the axial direction is one turn It can be reduced by a minute. As a result, the winding height can be reduced by the wire diameter of the coil, the axial length of the stator can be reduced by twice the coil wire diameter, and the axial length of the rotating electrical machine can be reduced. .
本発明の一実施形態であるブラシレスモータの軸方向に沿った断面図である。FIG. 1 is a cross-sectional view along an axial direction of a brushless motor according to an embodiment of the present invention. 図1のA-A線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line AA of FIG. インシュレータの構成を示す斜視図である。It is a perspective view which shows the structure of an insulator. 当該ブラシレスモータ内におけるインシュレータの取付状態を示す説明図である。It is explanatory drawing which shows the attachment state of the insulator in the said brushless motor. 当該ブラシレスモータにおけるコイルの巻装状態を示す説明図であり、(b)は、(a)のB-B線に沿った断面図である。FIG. 7 is an explanatory view showing a winding state of a coil in the brushless motor, and (b) is a cross-sectional view taken along the line BB of (a). 従来のブラシレスモータにおけるコイルの巻装状態を示す説明図であり、(b)は、(a)のC-C線に沿った断面図である。FIG. 12 is an explanatory view showing a wound state of a coil in a conventional brushless motor, and (b) is a cross-sectional view taken along a line CC of (a).
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の一実施形態であるブラシレスモータ1(回転電機;以下、モータ1と略記する)の軸方向に沿った断面図、図2は、図1のA-A線に沿った断面図である。図1のモータ1は、インナーロータ型の構成となっており、ハウジング2a,2b内に固定されたステータ3と、ステータ3内に回転自在に配置されたロータ4とを備えている。本実施の形態では、モータ1は、ロータ4にマグネット(永久磁石)を使用しないSRモータとなっており、たとえば、エンジンのスタータ・ジェネレータとして使用される。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. FIG. 1 is a cross-sectional view along an axial direction of a brushless motor 1 (a rotating electric machine; hereinafter abbreviated as a motor 1) according to an embodiment of the present invention, and FIG. 2 is a line AA of FIG. FIG. The motor 1 shown in FIG. 1 is of an inner rotor type, and includes a stator 3 fixed in the housings 2a and 2b, and a rotor 4 rotatably disposed in the stator 3. In the present embodiment, the motor 1 is an SR motor that does not use a magnet (permanent magnet) for the rotor 4 and is used, for example, as a starter generator of an engine.
 ステータ3は、薄板の電磁鋼板を多数積層したステータコア5を有している。図2に示すように、ステータコア5は、リング状のバックコア部6と、バックコア部6から径方向内側(中心方向)に向かって放射状に突設されたティース7とを備えている。ティース7の外周には合成樹脂製のインシュレータ10が装着されており、ティース7には、インシュレータ10を介して、励磁コイル8(以下、コイル8と略記する)が巻装されている。コイル8は、複数相の相コイル(たとえば、U相,V相,W相の3相)から構成されており、各相のコイル8はそれぞれ独立した回路を形成している。コイル8に対しては、導電性部材(例えば、銅等の金属)にて形成されたバスバー9を介して電流が供給される。 The stator 3 has a stator core 5 in which a large number of thin electromagnetic steel plates are stacked. As shown in FIG. 2, the stator core 5 includes a ring-shaped back core portion 6 and teeth 7 protruding radially inward (in the center direction) from the back core portion 6. An insulator 10 made of synthetic resin is mounted on the outer periphery of the tooth 7, and an exciting coil 8 (hereinafter abbreviated as a coil 8) is wound around the tooth 7 via the insulator 10. The coil 8 is composed of a plurality of phase coils (for example, three phases of U phase, V phase and W phase), and the coils 8 of each phase form independent circuits. An electric current is supplied to the coil 8 through the bus bar 9 formed of a conductive member (for example, a metal such as copper).
 ステータ3の内側にはロータ4が挿入されている。ロータ4は、回転軸11と、回転軸11に固定されたロータコア12とから構成されている。ロータコア12もまた、薄板の電磁鋼板を多数積層して形成されている。ロータコア12の外周には、径方向に向かって突極13が突設されている(図2参照)。SRモータ1では、ロータ4の回転角度を図示しないレゾルバにて検出しており、各相のコイル8は、ロータ4の角度位置に応じて順次励磁される。励磁されたコイル8が巻装されたティース7は順次磁極となり、ステータ3内には3相(U相,V相,W相)の回転磁界が形成される。ロータ4の突極13は磁化されたティース7に吸引され、これによりステータ3内にてロータ4が回転し、SRモータ1が作動する。 The rotor 4 is inserted inside the stator 3. The rotor 4 is composed of a rotating shaft 11 and a rotor core 12 fixed to the rotating shaft 11. The rotor core 12 is also formed by laminating a large number of thin electromagnetic steel plates. A salient pole 13 is provided on the outer periphery of the rotor core 12 so as to protrude in the radial direction (see FIG. 2). In the SR motor 1, the rotation angle of the rotor 4 is detected by a resolver (not shown), and the coils 8 of each phase are sequentially excited in accordance with the angular position of the rotor 4. The teeth 7 on which the excited coil 8 is wound become a magnetic pole one after another, and a rotating magnetic field of three phases (U phase, V phase, W phase) is formed in the stator 3. The salient poles 13 of the rotor 4 are attracted to the magnetized teeth 7, whereby the rotor 4 rotates in the stator 3 and the SR motor 1 operates.
 また、ステータコア5の軸方向一端側(図中左端側)には、バスバーユニット14が隣接配置されている。バスバーユニット14内には、複数のバスバー9が互いに絶縁された状態で埋設されている。バスバーユニット14は、合成樹脂にて形成された本体部15内に、円環状に形成された複数のバスバー9が、樹脂内にインサートモールドされた構成となっている。バスバー9には、コイル8と接続されるコイル接続端子16と、電源側と接続される図示しない電源接続端子が設けられている。コイル接続端子16は、径方向外側に向かって放射状に突設されており、対応する各相のコイル8の端部17と溶接され、これにより、バスバー9とコイル8が電気的に接続される。 Further, the bus bar unit 14 is disposed adjacent to one axial end side (left end side in the drawing) of the stator core 5. A plurality of bus bars 9 are embedded in the bus bar unit 14 in a mutually insulated state. The bus bar unit 14 has a configuration in which a plurality of bus bars 9 formed in an annular shape are insert-molded in resin in a main body portion 15 formed of a synthetic resin. The bus bar 9 is provided with a coil connection terminal 16 connected to the coil 8 and a power supply connection terminal (not shown) connected to the power supply side. The coil connection terminals 16 are radially projected outward in the radial direction, and are welded to the ends 17 of the coils 8 of the corresponding phases, whereby the bus bars 9 and the coils 8 are electrically connected. .
 ここで、本発明によるモータ1では、インシュレータ10の径方向外側に、コイル8を巻装可能な延設部(第2コイル巻装部)21が設けられている。図3は、コイル8を巻装した状態のインシュレータ10の構成を示す斜視図、図4は、モータ1内におけるインシュレータ10の取付状態を示す説明図、図5は、モータ1におけるコイル8の巻装状態を示す説明図である。インシュレータ10は、前述のように、合成樹脂等の絶縁性材料により形成されており、ティース7の先端(径方向内側端)側から、ティース7に外挿、装着される。 Here, in the motor 1 according to the present invention, an extending portion (second coil wound portion) 21 capable of winding the coil 8 is provided on the radial direction outer side of the insulator 10. FIG. 3 is a perspective view showing the configuration of the insulator 10 in a state in which the coil 8 is wound, FIG. 4 is an explanatory view showing an attachment state of the insulator 10 in the motor 1, and FIG. 5 is a winding of the coil 8 in the motor 1 It is explanatory drawing which shows a mounting state. As described above, the insulator 10 is formed of an insulating material such as a synthetic resin, and is extrapolated from and attached to the teeth 7 from the tip (radially inner end) side of the teeth 7.
 図3に示すように、インシュレータ10は、ティース7の外周面を被覆するように略四角筒状に形成されたインシュレータ本体22を有している。インシュレータ本体22の径方向両端(内側と外側)の各周縁には、内側フランジ23と外側フランジ24がインシュレータ本体22と一体に成形されている。インシュレータ本体22の外周側には、インシュレータ本体22の外周面22aと、内側フランジ23、外側フランジ24に囲まれる形でコイル収容凹部(第1コイル巻装部)25が形成されている。コイル収容凹部25には、図5に示すように、コイル8が複数層重なった状態で巻装される。コイル8は、インシュレータ10をティース7に装着した状態でフライヤー等によって巻装され、コイル8の2つの端部17はそれぞれバスバーユニット14側に引き出される。 As shown in FIG. 3, the insulator 10 has an insulator main body 22 formed in a substantially square cylindrical shape so as to cover the outer peripheral surface of the teeth 7. An inner flange 23 and an outer flange 24 are formed integrally with the insulator main body 22 at respective peripheral edges of both radial direction ends (inner and outer sides) of the insulator main body 22. A coil accommodating recess (first coil wound portion) 25 is formed on the outer peripheral side of the insulator main body 22 so as to be surrounded by the outer peripheral surface 22 a of the insulator main body 22, the inner flange 23 and the outer flange 24. As shown in FIG. 5, a plurality of layers of the coil 8 are wound around the coil accommodation recess 25. The coil 8 is wound by a flyer or the like in a state where the insulator 10 is attached to the teeth 7, and the two end portions 17 of the coil 8 are respectively drawn to the bus bar unit 14 side.
 外側フランジ24の軸方向両端部24aの近傍には、板状の延設部21が径方向外側に向かって突設されている。図5に示すように、延設部21は、インシュレータ10をティース7に装着すると、ステータコア5のバックコア部6の端面6a上に配置される。また、外側フランジ24の軸方向両端部24aには、延設部21の両端部21aに臨んで切欠部26が2ヶ所形成されている(26a,26b)。延設部21には、当該ティース7に巻装されるコイル8の最終層27(ここでは、3巻き)が巻装される。図3~5に示すように、最終層27は、一方の切欠部26aを介してコイル収容凹部25側から引き出され、延設部21を通った後、他方の切欠部26bからコイル収容凹部25側に案内され、延設部21の部分に巻き付けられる。 In the vicinity of both axial direction end portions 24 a of the outer flange 24, a plate-like extending portion 21 is provided protruding outward in the radial direction. As shown in FIG. 5, when the insulator 10 is attached to the teeth 7, the extended portion 21 is disposed on the end face 6 a of the back core portion 6 of the stator core 5. Further, two notches 26 are formed at both axial end portions 24 a of the outer flange 24 so as to face the both end portions 21 a of the extending portion 21 (26 a, 26 b). The final layer 27 (here, three turns) of the coil 8 wound around the teeth 7 is wound around the extension portion 21. As shown in FIGS. 3 to 5, the final layer 27 is pulled out from the coil accommodating recess 25 side through one notch 26 a and passes through the extending portion 21, and then from the other notch 26 b to the coil accommodating recess 25. It is guided to the side and wound around a portion of the extending portion 21.
 図5(a)と図6(a)から分かるように、モータ1のコイル8は、従来のモータと総ターン数は変わっておらず、径方向外側ほど大きくなるスロット28の空間を無駄なく利用してコイルが巻装されている。一方、図5(b)と図6(b)を比較すると、当該モータ1では、コイル8の最終層27が延設部21に巻き付けられているため、軸方向における巻回層数が1巻き分少なくなっている。つまり、コイル収容凹部25側の巻回層数が、延設部21に配した最終層27の分だけ1巻き少なくなっており、巻線高さHwがコイル8の線径分(たとえば、1~2mm程度)小さく抑えられている。この場合、コイル8は、インシュレータ10の軸方向両端で積層されているため、ステータの軸方向長Lsはコイル線径の2倍分小さくなり、モータ長もその分削減される。 As can be seen from FIGS. 5 (a) and 6 (a), the coil 8 of the motor 1 has the same total number of turns as the conventional motor, and uses the space of the slot 28 which increases in the radial direction without waste The coil is wound. On the other hand, comparing FIG. 5 (b) with FIG. 6 (b), in the motor 1, since the final layer 27 of the coil 8 is wound around the extending portion 21, the number of winding layers in the axial direction is one. It has been reduced by a minute. That is, the number of winding layers on the coil accommodation recess 25 side is reduced by one for the final layer 27 disposed in the extending portion 21, and the winding height Hw is equal to the wire diameter of the coil 8 (for example, 1 It is kept small (about 2 mm). In this case, since the coils 8 are stacked at both axial ends of the insulator 10, the axial length Ls of the stator is reduced by twice the coil wire diameter, and the motor length is also reduced accordingly.
 たとえば、コイル8の線径が1.5mmとすると、ステータの軸方向長Lsを3.0mm(線径の2倍)短くすることができる。これは、モータ外径Dmがモータ長Lmに対して大きい(Dm/Lm>1)のような扁平型モータでは、コイル2本分といえどもその影響は大きく、ステータコア長Lcが30mm程度のモータの場合、概ね10%の寸法削減が可能となる。また、モータ長を同じにした場合には、ステータコア長Lcを線径の2倍分長くすることができ、その分、出力向上が図ることが可能となる。  For example, when the wire diameter of the coil 8 is 1.5 mm, the axial length Ls of the stator can be shortened by 3.0 mm (twice of the wire diameter). This is large in flat motors where the motor outer diameter Dm is large relative to the motor length Lm (Dm / Lm> 1), even if two coils are involved, and a motor having a stator core length Lc of about 30 mm In the latter case, a size reduction of approximately 10% is possible. Further, when the motor length is made the same, the stator core length Lc can be increased by twice the wire diameter, and the output can be improved accordingly.
 本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 例えば、前述の実施形態では、コイル8の最終層27を延設部21に巻装する構成を示したが、延設部21に余裕がある場合には、最終層27のみならず、その次の層(外側から2番目の層:ここでは10巻き)の全部又は一部を延設部21に巻装しても良い。また、延設部21に余裕がある場合には、最終層27の分を超えて巻装し(たとえば、5巻き)ターン数を増加させて出力向上を図っても良い。
It goes without saying that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the invention.
For example, in the above-described embodiment, the final layer 27 of the coil 8 is wound around the extending portion 21. However, when the extending portion 21 has a margin, not only the final layer 27 but also the next All or part of the second layer (the second layer from the outer side: 10 in this case) may be wound on the extension 21. In addition, when there is a margin in the extended portion 21, the number of turns (for example, 5 turns) may be increased by winding over the final layer 27 to improve the output.
 さらに、前述の実施形態では、ティース7にインシュレータ10を装着した状態でコイル8を巻装する巻線方式を採用しているが、コイル8を予めインシュレータ10に巻回し、インシュレータ10をその状態でティース7に装着するようにしても良い。ただし、後者の場合、スロット28は間口が狭いため、奥の広いスペースを利用した巻線が行えなくなるため、本発明は前者の巻線方式のモータに適用した方が有用性が高い。加えて、前述の線径やモータの各部寸法、駆動相数はあくまでも一例であり、本発明は前述の数値には限定されない。 Furthermore, in the above-mentioned embodiment, although the winding method which winds the coil 8 in the state which attached insulator 10 to teeth 7 is adopted, coil 8 is beforehand wound around insulator 10 and insulator 10 is in that state It may be attached to the teeth 7. However, in the latter case, since the slot 28 has a narrow frontage, it is not possible to perform winding using a large space at the back, so the present invention is more useful when applied to the former winding type motor. In addition, the above-described wire diameter, dimensions of each part of the motor, and the number of driving phases are merely examples, and the present invention is not limited to the above-described values.
 前述の実施形態では、本発明をブラシレスモータの一種であるSRモータに適用した例を示したが、その適用対象はSRモータに限られるものではなく、ロータに永久磁石を配したブラシレスモータや種々のリラクタンスモータ、発電機等に本発明は適用可能である。また、エンジンのスタータ・ジェネレータ以外にも、他の車載電動装置や、ハイブリッド自動車、電気自動車、エアコン等の電気製品等に広く適用可能である。 Although the above-mentioned embodiment showed an example which applied the present invention to SR motor which is a kind of a brushless motor, the application object is not restricted to SR motor, and a brushless motor which arranged a permanent magnet in a rotor, various The present invention is applicable to reluctance motors, generators and the like. In addition to engine starters and generators, the present invention can be widely applied to other in-vehicle electric devices, electric products such as hybrid cars, electric cars, and air conditioners.
 1  ブラシレスモータ
 2a,2b  ハウジング
 3  ステータ
 4  ロータ
 5  ステータコア
 6  バックコア部
 6a 端面
 7  ティース
 8  励磁コイル
 9  バスバー
10  インシュレータ
11  回転軸
12  ロータコア
13  突極
14  バスバーユニット
15  本体部
16  コイル接続端子
17  端部
21  延設部(第2コイル巻装部)
21a 両端部
22  インシュレータ本体
22a 外周面
23  内側フランジ
24  外側フランジ
24a 軸方向両端部25  コイル収容凹部(第1コイル巻装部)
26  切欠部
26a 切欠部
26b 切欠部
27  最終層
28  スロット
51  コイル
52  インシュレータ
53  ステータコア
54  ティース
55  スロット
56  最終層
Dm  モータ外径
Hw  巻線高さ
Lc  ステータコア軸方向長
Lm  モータ軸方向長
Ls  ステータ軸方向長
DESCRIPTION OF SYMBOLS 1 Brushless motor 2a, 2b Housing 3 Stator 4 Rotor 5 Stator core 6 Back core part 6a End face 7 Teeth 8 Excitation coil 9 Bus bar 10 Insulator 11 Rotor shaft 12 Rotor core 13 Salient pole 14 Bus bar unit 15 Body part 16 Coil connection terminal 17 End 21 Extension part (second coil winding part)
21a both ends 22 insulator main body 22a outer peripheral surface 23 inner flange 24 outer flange 24a axial direction both ends 25 coil accommodation recess (first coil winding portion)
26 notch 26a notch 26b notch 27 final layer 28 slot 51 coil 52 insulator 53 stator core 54 tooth 55 slot 56 final layer Dm motor outer diameter Hw winding height Lc stator core axial direction length Lm motor axial direction length Ls stator axial direction Long

Claims (4)

  1.  リング状のバックコア部と、該バックコア部から径方向内側に向かって放射状に突設されたティースと、を備えたステータコアを有する回転電機において、前記ステータコアとコイルとの間に配置され、前記コイルと前記ステータコアとの間を電気的に絶縁するインシュレータであって、
     前記ティースに装着され、該ティースの外周面を覆うインシュレータ本体と、
     前記インシュレータ本体の径方向内側の周縁に形成された内側フランジと、
     前記インシュレータ本体の径方向外側の周縁に形成された外側フランジと、
     前記インシュレータ本体の外周側に、前記内側フランジと前記外側フランジに囲まれる形で形成され、前記コイルが複数層重なった状態で巻装される第1コイル巻装部と、
     前記外側フランジの軸方向両端部近傍に径方向外側に向かって突設され、当該ティースに巻装される前記コイルの最終層が巻装される第2コイル巻装部と、を有することを特徴とするインシュレータ。
    A rotary electric machine having a stator core including a ring-shaped back core portion and teeth radially protruding inward from the back core portion, the stator core being disposed between the stator core and the coil, An insulator electrically insulating between a coil and the stator core, wherein
    An insulator main body attached to the teeth and covering an outer peripheral surface of the teeth;
    An inner flange formed on the radially inner peripheral edge of the insulator body;
    An outer flange formed on a radially outer peripheral edge of the insulator body;
    A first coil wound portion formed on the outer peripheral side of the insulator body so as to be surrounded by the inner flange and the outer flange, and wound in a state in which a plurality of layers of the coil are overlapped;
    And a second coil winding portion which is provided radially outward in the vicinity of both axial end portions of the outer flange and on which the final layer of the coil wound around the teeth is wound. Insulating insulator.
  2.  請求項1記載のインシュレータにおいて、
     前記外側フランジは、前記第2コイル巻装部の両端に臨んで形成された切欠部を有し、
     前記コイルの最終層は、一方の前記切欠部を介して前記第1コイル巻装部側から引き出され、前記第2コイル巻装部を通った後、他方の前記切欠部から第1コイル巻装部側に案内されることを特徴とするインシュレータ。
    In the insulator according to claim 1,
    The outer flange has a notch formed so as to face both ends of the second coil wound portion,
    The final layer of the coil is pulled out from the first coil winding portion side through one of the notches, and after passing through the second coil winding portion, the first coil winding is carried out from the other notch. An insulator characterized in that it is guided to the part side.
  3.  リング状のバックコア部と、該バックコア部から径方向内側に向かって放射状に突設されたティースと、を備えたステータコアと、
     前記ステータコアとコイルとの間に配置され、前記コイルと前記ステータコアとの間を電気的に絶縁するインシュレータと、を有する回転電機であって、
     前記インシュレータは、
     前記ティースに装着され、該ティースの外周面を覆うインシュレータ本体と、
     前記インシュレータ本体の径方向内側の周縁に形成された内側フランジと、
     前記インシュレータ本体の径方向外側の周縁に形成された外側フランジと、
     前記インシュレータ本体の外周側に、前記内側フランジと前記外側フランジに囲まれる形で形成され、前記コイルが複数層重なった状態で巻装される第1コイル巻装部と、
     前記外側フランジの軸方向両端部近傍に径方向外側に向かって突設され、当該ティースに巻装される前記コイルの最終層が巻装される第2コイル巻装部と、を有することを特徴とする回転電機。
    A stator core including a ring-shaped back core portion and teeth radially protruding inward from the back core portion;
    An electric rotating machine comprising: an insulator disposed between the stator core and a coil and electrically insulating the coil from the stator core.
    The insulator is
    An insulator main body attached to the teeth and covering an outer peripheral surface of the teeth;
    An inner flange formed on the radially inner peripheral edge of the insulator body;
    An outer flange formed on a radially outer peripheral edge of the insulator body;
    A first coil wound portion formed on the outer peripheral side of the insulator body so as to be surrounded by the inner flange and the outer flange, and wound in a state in which a plurality of layers of the coil are overlapped;
    And a second coil winding portion which is provided radially outward in the vicinity of both axial end portions of the outer flange and on which the final layer of the coil wound around the teeth is wound. Electric rotating machine.
  4.  請求項3記載の回転電機において、
     前記外側フランジは、前記第2コイル巻装部の両端に臨んで形成された切欠部を有し、
     前記コイルの最終層は、一方の前記切欠部を介して前記第1コイル巻装部側から引き出され、前記第2コイル巻装部を通った後、他方の前記切欠部から第1コイル巻装部側に案内されることを特徴とする回転電機。
    In the electric rotating machine according to claim 3,
    The outer flange has a notch formed so as to face both ends of the second coil wound portion,
    The final layer of the coil is pulled out from the first coil winding portion side through one of the notches, and after passing through the second coil winding portion, the first coil winding is carried out from the other notch. A rotary electric machine characterized in that it is guided to a part side.
PCT/JP2018/029527 2017-08-23 2018-08-07 Insulator for rotating electrical machine, and rotating electrical machine WO2019039262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-159986 2017-08-23
JP2017159986A JP2019041454A (en) 2017-08-23 2017-08-23 Insulator for rotary electric machine and rotary electric machine

Publications (1)

Publication Number Publication Date
WO2019039262A1 true WO2019039262A1 (en) 2019-02-28

Family

ID=65438836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029527 WO2019039262A1 (en) 2017-08-23 2018-08-07 Insulator for rotating electrical machine, and rotating electrical machine

Country Status (2)

Country Link
JP (1) JP2019041454A (en)
WO (1) WO2019039262A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284446A (en) * 2001-03-23 2002-10-03 Moric Co Ltd Winding bobbin for electric device
JP2005287240A (en) * 2004-03-30 2005-10-13 Koyo Seiko Co Ltd Synchronous motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284446A (en) * 2001-03-23 2002-10-03 Moric Co Ltd Winding bobbin for electric device
JP2005287240A (en) * 2004-03-30 2005-10-13 Koyo Seiko Co Ltd Synchronous motor

Also Published As

Publication number Publication date
JP2019041454A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
JP4440275B2 (en) Three-phase rotating electric machine
US20150311760A1 (en) Brushless motor
JP6222032B2 (en) Rotating electric machine
JP5734794B2 (en) Stator and rotating electric machine including the stator
JP2011036010A (en) Rotating electrical machine
US11114912B2 (en) Rotating electric machine
US20120086288A1 (en) Electric rotating machine
JP2009213283A (en) Brushless motor
US8981613B2 (en) Electric rotating machine
JP2019193471A (en) Rotary electric machine stator
US10170970B2 (en) Stepper motor
CN114552836A (en) Rotating electrical machine
WO2019039262A1 (en) Insulator for rotating electrical machine, and rotating electrical machine
JP2008131780A (en) Armature of dc motor and dc motor
WO2020188789A1 (en) Axial air gap-type rotary electric machine
JP2018137836A (en) Stator and rotary electric machine
JP6926893B2 (en) Rotating machine
KR20170060501A (en) Rotor for Wound Rotor Synchronous Motor
JP2010081670A (en) Alternating current generator
WO2022264588A1 (en) Motor
WO2017126381A1 (en) Motor
WO2023140071A1 (en) Motor stator and motor provided with same
WO2021192482A1 (en) Motor
EP3739735B1 (en) Motor
JP2019037103A (en) Stator and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848240

Country of ref document: EP

Kind code of ref document: A1