WO2019024401A1 - 一种襟缝翼操纵手柄 - Google Patents

一种襟缝翼操纵手柄 Download PDF

Info

Publication number
WO2019024401A1
WO2019024401A1 PCT/CN2017/118560 CN2017118560W WO2019024401A1 WO 2019024401 A1 WO2019024401 A1 WO 2019024401A1 CN 2017118560 W CN2017118560 W CN 2017118560W WO 2019024401 A1 WO2019024401 A1 WO 2019024401A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
detection signal
displacement detection
displacement
signal
Prior art date
Application number
PCT/CN2017/118560
Other languages
English (en)
French (fr)
Inventor
王伟达
王晓熠
严少波
赵继
徐向荣
刘瞳
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Priority to EP17919657.1A priority Critical patent/EP3643604B1/en
Priority to US16/633,011 priority patent/US11396361B2/en
Publication of WO2019024401A1 publication Critical patent/WO2019024401A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/04Initiating means actuated personally
    • B64C13/042Initiating means actuated personally operated by hand
    • B64C13/0425Initiating means actuated personally operated by hand for actuating trailing or leading edge flaps, air brakes or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/50Transmitting means with power amplification using electrical energy
    • B64C13/505Transmitting means with power amplification using electrical energy having duplication or stand-by provisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric
    • G05B9/03Safety arrangements electric with multiple-channel loop, i.e. redundant control systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/02Comparing digital values

Definitions

  • This invention relates to aircraft, and more particularly to a slatwing handle of an aircraft.
  • the high lift system of modern large aircraft includes slats at the leading edge of the wing and flaps at the trailing edge of the wing.
  • the wing area can be increased by the outward extension and downward bending of the leading edge slat and the trailing edge flap to change the configuration and provide the lift of the aircraft to ensure that the aircraft has reasonable Sliding distance and safe take-off speed, while improving aircraft climb rate, approach speed and approach attitude.
  • the Flap/Slat Control Lever is a control unit for the high lift system that controls the extension and retraction of the flaps and slats.
  • the FSCL is usually mounted on a central console for operation by the pilot.
  • 1 shows a perspective view of a conventional FSCL, which mainly includes, for example, a handle 101, a light guide plate 102 with a position mark, a housing 103, a locking piece 104, a pull rod 105 with a force sensing device, a spring assembly 106, a plunger 107.
  • the pilot first needs to lift the handle 101 to cause the handle 101 to move the pull rod 105 along the slide rail (typically in the form of a card slot).
  • the force sensing device of the pull rod 105 generates a lifting force and a friction force that hinder the movement.
  • the pull rod 105 drives the planetary gear train to rotationally drive the RVDT sensor, thereby generating a pull rod displacement signal and transmitting it to the slat/Flap Control Computer (SFCC), and the SFCC can control the flap and the slat according to the rod displacement signal. Operation.
  • SFCC slat/Flap Control Computer
  • the design requirement for early single-channel aircraft high-lift system failure probability is less than or equal to 1E-6, so the traditional architecture FSCL can meet the system's requirements for its availability.
  • the design requirement for the failure probability of the large-scale two-channel aircraft high-lift system is less than or equal to 1E-9, so it is assigned to the handle from top to bottom, and the failure probability should be less than or equal to 1E-9.
  • the failure probability of the handle of the traditional architecture is far less than the level of less than 1E-9.
  • the handle has a certain lifting force and friction force, and the lifting force enables the handle to be locked in the corresponding card slot.
  • the lifting force must be overcome before moving along the guide rail. Friction is generated when the handle moves along the guide rail. Friction provides the pilot with the sensation of moving the handle.
  • the design of lifting force and friction should meet the requirements of man-machine function and function. If it is too large, it will cause the burden of the pilot; if it is too small, the handle is difficult to be inserted into the card slot. If the friction is too small, the hand feel is not obvious during the manipulation, and it is easy to cause misoperation.
  • the technical problem to be solved by the present invention is to provide an improved slatwing handle.
  • the present invention provides an improved slatwing handle.
  • a slatwing handle includes: a first displacement sensor that detects displacement of the slatwing handle and generates a first displacement detection signal; and a second displacement sensor that detects the The slatwing handles the displacement of the handle and generates a second displacement detection signal; a first control command module that receives a first displacement detection signal from the first displacement sensor; and a second control command module that receives the a second displacement detecting signal of the second displacement sensor, wherein the first control instruction module is in a standby state and the second control instruction module is in an active state, and the first control instruction module sends the first displacement detection signal to The second control instruction module compares the first displacement detection signal and the second displacement detection signal between the first displacement detection signal and the second displacement detection signal The first displacement detecting signal or the second displacement detecting signal is used as a control signal when the difference is within the error tolerance Flaps to the slat control computer to control operation of the slat flaps.
  • the second control instruction module transmits any one of the first displacement detection signal and the second displacement detection signal, the larger or smaller, as a control signal to the slat Control the computer to control the quilting operation.
  • the first control instruction module fails, the first control instruction module no longer sends the first displacement detection signal to the second control instruction module, and the second control instruction module Transmitting the second displacement detection signal as a control signal to the slat control computer to control the slat operation; or if the second control command module fails, the second control instruction module is switched to the deactivated state And the first control instruction module is switched to an operating state, and the first control instruction module transmits the first displacement detection signal as a control signal to the slat control computer to control the slat operation.
  • the first control instruction module and the second control instruction module respectively check whether the first displacement detection signal and the second displacement detection signal are in a preset value range, wherein the first The failure of a control instruction module includes the first control instruction module verifying that the first displacement detection signal fails, and wherein the second control instruction module is faulty comprises the second control instruction module verifying the second The displacement detection signal fails, or the second control command module determines that the difference between the first displacement detection signal and the second displacement detection signal is not within the error tolerance for a predetermined number of times.
  • the first control instruction module and the second control instruction module each include a monitoring channel and receive the first from the first displacement sensor and the second displacement sensor via the monitoring channel, respectively a displacement detecting signal and the second displacement detecting signal.
  • the slatwing handle further includes: a lifting force mechanism that generates a lifting force of the slatwing handle; a friction mechanism that generates a frictional force of movement of the slatwing handle, wherein
  • the first control command module and the second control command module each include a control passage to control a lifting force of the lifting force mechanism and a friction force of the friction mechanism when in an operating state.
  • the slatwing handle further includes a force sensor that senses a force applied to the slatwing handle to generate a force signal; and a third control command module that receives the force signal and An effective discrete signal is sent to the slat control computer to extend the slat to the go-around configuration when the force signal is greater than a predetermined threshold.
  • the slat control computer receives both a control signal from the first control command module or the second control command module and an active discrete signal from the third control command module The valid discrete signal from the third control command module operates.
  • the first displacement sensor and the second displacement sensor each comprise any of an RVDT, a potentiometer, or a photoelectric encoder.
  • the photoelectric encoder comprises a grating disk and a photodetecting device, the photoelectric encoder outputting three sets of square wave pulses A, B and Z phases, wherein the A and B sets of pulses determine the direction of motion of the handle, and the Z phase Determine the handle position.
  • a method of operating a slatwing handle comprising: detecting a displacement of the slatwing handle and generating a first displacement detection signal; detecting the slat Manipulating the displacement of the handle and generating a second displacement detection signal; receiving the first displacement detection signal using the first control instruction module; and receiving the second displacement detection signal using the second control instruction module, wherein the first control instruction
  • the module is in a standby state, and the second control instruction module is in an active state, the first control instruction module sends the first displacement detection signal to the second control instruction module, and the second control instruction module compares Determining the first displacement detecting signal and the second displacement detecting signal and the first displacement in a case where a difference between the first displacement detecting signal and the second displacement detecting signal is within an error tolerance
  • the detection signal or the second displacement detection signal is sent as a control signal to the slat control computer to control the slat operation.
  • the second control instruction module transmits any one of the first displacement detection signal and the second displacement detection signal, the larger or smaller, as a control signal to the slat Control the computer to control the quilting operation.
  • the first control instruction module fails, the first control instruction module no longer sends the first displacement detection signal to the second control instruction module, and the second control instruction module Transmitting the second displacement detection signal as a control signal to the slat control computer to control the slat operation; or if the second control command module fails, the second control instruction module is switched to the deactivated state And the first control instruction module is switched to an operating state, and the first control instruction module transmits the first displacement detection signal as a control signal to the slat control computer to control the slat operation.
  • the first control instruction module and the second control instruction module respectively verify whether the first displacement detection signal and the second displacement detection signal are in a preset value range, wherein the first The failure of a control instruction module includes the first control instruction module verifying that the first displacement detection signal fails, and wherein the second control instruction module is faulty comprises the second control instruction module verifying the second The displacement detection signal fails, or the second control command module determines that the difference between the first displacement detection signal and the second displacement detection signal is not within the error tolerance for a predetermined number of times.
  • the method further includes the first control command module and the second control command module controlling a lifting force and a friction force of the slatwing handle by a control passage when in an active state.
  • the method further includes sensing a force applied to the slatwing handle to generate a force signal; and receiving the force signal using the third control command module and at the force signal being greater than a predetermined threshold An effective discrete signal is sent to the slat control computer to extend the slat to the go-around configuration.
  • the method further includes the slat control computer receiving a control signal from the first control command module or the second control command module and an effective discrete from the third control command module Both signals operate in accordance with the valid discrete signal from the third control command module.
  • the slatwing handle of the present invention employs a variety of redundancy measures and optionally has adjustable lifting and friction.
  • the slatwing handle includes a plurality of displacement sensors and a plurality of control command modules, the different combinations of which ensure that the pilot can manipulate the FSCL under any expected operating conditions and output available command signals to the high lift system.
  • the slatwing handle can also adjust the lifting and/or friction of the FSCL to accommodate different system/operator needs.
  • Figure 1 shows a perspective view of a conventional FSCL.
  • FIG. 2 shows a schematic diagram of the architecture of an FSCL in accordance with one embodiment of the present invention.
  • FIG. 3 shows a schematic diagram of components of an FSCL in accordance with another embodiment of the present invention.
  • Figure 4 shows a schematic view of a lifting force mechanism in accordance with one embodiment of the present invention.
  • Figure 5 shows a schematic view of a friction mechanism in accordance with one embodiment of the present invention.
  • Figure 6 shows a schematic diagram of a force sensor in accordance with one embodiment of the present invention.
  • FIG. 2 shows a block diagram of a sling/seat joystick (FSCL) 200 in accordance with one embodiment of the present invention.
  • the basic mechanical components of the slatwing handle 200 may include a handle (not shown), a tie rod 201, a channel guide and gear (not shown), etc., for example, may have an appearance similar to the conventional FSCL of FIG.
  • the FSCL 200 may include a lifting force mechanism 202, a friction mechanism 203, a first displacement sensor 204, a second displacement sensor 205, an optional force sensor 206, and a first Control Command Module CCM1.
  • the FSCL 200 may also include other components not shown for achieving helium/slat manipulation, or include fewer components than those shown in FIG.
  • FSCL 200 may include CCM1 and CCM2, but does not include CCM3 and corresponding other components.
  • the FSCL 200 can include more CCMs.
  • the lifting force mechanism 202 can control the lifting force required to lift the handle 200, and the friction mechanism 203 can control the friction generated by the moving handle 200.
  • the PCM1 can be connected to a DC current normal flow bar (for example, 28V) to power the CCM1; the PCM2 can be connected to a DC emergency bus (for example, 28V) to power the CCM2 and CCM3.
  • each PCM can provide a DC power of +5V, +15V, -15V, or other voltage levels for the respective CCM.
  • the FSCL 200 can use a power control module PCM to provide the required voltage for each component.
  • an aircraft may include a slat control computer SFCC to control the operation of the flaps and slats on either side of the aircraft.
  • an aircraft may include two slat control computer SFCCs, where each SFCC controls the operation of the flaps and slats on the respective side of the aircraft. Whether one or two SFCCs, these SFCCs control the operation of the flaps and slats of the aircraft based on the handle displacement signals generated by the slatwing handle 200.
  • the first displacement sensor 204 and the second displacement sensor 205 of the present invention may each be selected from any of an RVDT, a potentiometer, or a photoelectric encoder.
  • the advantage of the photoelectric encoder is that the displacement signal at the handle position can be directly converted into a digitally identifiable digital pulse signal without additional analog to digital conversion.
  • the photoelectric encoder can be comprised of a grating disk and a photodetecting device. An additional planetary gear train is mounted on the end of the tie rod gear, two grating ends of the photoelectric encoder are mounted on both ends of the pinion shaft (preferably incremental), and the photoelectric detecting device is mounted on the corresponding flange.
  • Incremental encoder can directly output three sets of square wave pulse A, B and Z phases by means of photoelectric conversion principle.
  • the phase difference between A and B pulses is 90 degrees, so that the movement direction of the handle can be easily judged, and Z phase One pulse per revolution is used for reference point positioning.
  • the connector board 207 can enable communication of the slatwing handle 200 with other equipment, such as the ground maintenance device 208, the slat control computer SFCC.
  • connector board 207 is illustrated as having six jacks, J1, J2, J3, J4, J5, and J6 (eg, in the form of MIL-DTL-38999).
  • J1 is used to connect CCM1 with the slat control computer SFCC (for example, via the ARINC429 bus)
  • J2 is used to connect PCM1 with DC normal bus (for example, 28V)
  • J3 is used to connect CCM2 and SFCC (for example, via ARINC429 bus)
  • J4 is used to connect PCM2 with DC emergency bus (for example, 28V)
  • J5 is used to connect CCM3 and SFCC
  • J6 is used as a test interface for connecting ground maintenance equipment with all CCMs (for example, via RS232/485 bus).
  • the connector board 207 can have lightning electromagnetic protection to ensure communication and communication reliability of the slat control handle 200 with other devices.
  • the connector board 207 of Figure 2 is merely an example, and in practice other types of connector boards 207 of the form and number of jacks may be employed as desired, and different buses may be employed to communicate between the various components.
  • the FSCL 200 may include a first displacement sensor 204, a second displacement sensor 205, CCM1, and CCM2.
  • the first displacement sensor 204 and the second displacement sensor 205 are used to sense the displacement of the handle 200 and generate a first displacement detection signal and a second displacement detection signal, respectively.
  • Each of CCM1 and CCM2 may include a monitoring channel (the monitoring channel may include a monitoring processor) to receive/process the first displacement detection signal and the second displacement detection signal from the first displacement sensor 204 and the second displacement sensor 205, respectively.
  • the CCM1 and the CCM2 may respectively check the first displacement detection signal and the second displacement detection signal to determine whether the first displacement detection signal and the second displacement detection signal are within a reasonable preset value range.
  • the CCM1 and CCM2 may further process the detected displacement detection signal as described in more detail below.
  • the FSCL 200 may further include a force sensor 206 and a CCM 3.
  • the force sensor 206 can detect the force exerted by the operator (eg, the pilot) on the handle and transmit the detected force to the CCM 3 for processing.
  • CCM1 and CCM2 will coordinate with CCM3 to control aircraft slat operation, as further described below.
  • the CCM 1 and the CCM 2 may receive displacement signals from the first displacement sensor 204 and the second displacement sensor 205, respectively, and verify the respective received displacement signals (eg, determine the detected first displacement detection, whether in an active state or a standby state).
  • the signal and the second displacement detection signal are in a reasonable preset range of values).
  • the CCM in the standby state sends its detected displacement data to the CCM in the working state (for example, via the CAN bus), and the CCM of the working state compares the displacement data of the two CCMs, if two If the difference of the group displacement data is within the error tolerance range, the comparison is considered successful, and any one of them, the larger one, or the smaller one is sent as the final displacement data (or the control signal based on the displacement data)
  • the SFCC operates to control the quilting wing.
  • the CCM check displacement signal of the standby state fails, the detected displacement signal is not sent to the CCM of the working state. If the CCM check displacement signal of the standby state fails consecutively multiple times, its monitoring processor triggers the fail-safe logic, the CCM of the standby state is deactivated and the displacement signal is no longer processed until the displacement signal is reprocessed after being reset. If the CCM check displacement signal of the working state fails, the monitoring processor triggers the fail-safe logic to lock the CCM in the working state (ie, in the deactivated state), and automatically switches the CCM in the standby state to the working state. CCM. If the data comparison between the two CCMs is unsuccessful (for example, two consecutive frames, three frames, etc.
  • the monitoring processor triggers the fail-safe logic to lock the CCM in the working state and automatically switches to the standby state.
  • the status of the CCM When the CCM check displacement signal fails or the data comparison between the two CCMs is unsuccessful, an alarm device can be triggered to alert the operator to the slat wing joystick failure.
  • FSCL 200 may further include force sensor 206 and CCM3.
  • the CCM3 can be composed of a simple analog circuit and connected to the SFCC via a hard wire.
  • the force sensor 206 senses the force exerted on the slatwing handle to generate a force signal and transmits the force signal to the CCM 3.
  • the force signal is lower than the threshold, and the CCM3 maintains the 0V level on the hard line, that is, the discrete signal 0, which does not affect the operation of the SFCC.
  • This threshold can be determined by the system designer and/or pilot.
  • the CCM3 When the slatwing handle is jammed, the pilot needs to use a strong pull-back handle. If the force signal sensed by the force sensor 206 will be greater than the threshold, the CCM3 outputs an effective discrete signal (eg, 1) so that the SFCC will quilt.
  • the wings extend out to the go-around configuration. For example, 1) if the slats and flaps are at the 0 degree position at the same time, the slats first extend to the maximum position, and then the flaps extend to the go-around position; 2) if the slats have reached the maximum position, Then the flap directly extends to the reset card. If the force signal is not greater than the threshold, CCM3 outputs a discrete signal of 0, and SFCC does not operate. In an alternate embodiment, the SFCC may also cause the slat to perform other specified operations upon receipt of the active discrete signal 1.
  • the slatwing handle of the present invention can avoid the problem of uncontrollable slats in the event of jamming of the slatwing handle and/or failure of both CCM1 and CCM2.
  • an alarm signal may be provided indicating that the slatwing handle is not in a normal working state (eg, the handle jam, CCM1 and CCM2 are all disabled, etc.).
  • CCM 3 may primarily include a subtractor and a 28V/OPEN signal output circuit, which may have a reference voltage of 5V.
  • the CCM3 receives the voltage signal from the force sensor component and performs the operation through the subtractor. If the output of the subtractor exceeds the preset voltage threshold (5V), and then through the 28V/OPEN signal output circuit, the 28V signal is output to the SFCC, that is, the effective discrete signal 1 causes the SFCC to extend the slat to the go-around configuration. .
  • the 28V/OPEN signal output circuit will output a 0V signal to the SFCC, and the SFCC will receive the discrete signal 0, determining that the handle is not manipulated, and the SFCC may not operate.
  • the voltage levels listed above are merely examples, and other voltage levels may be employed in practice without departing from the scope of the invention.
  • CCM1 In the first mode, CCM1 is in the standby state and CCM2 is in the working state, CCM1 can receive the first displacement detection signal from the first displacement sensor 204 and transmit the first displacement detection signal to CCM2 (assuming the first displacement detection signal Verify correctly).
  • the CCM 2 can receive the second displacement detection signal from the second displacement sensor 205 (assuming that the verification of the second displacement detection signal is correct), and the CCM 2 compares the first displacement detection signal and the second displacement detection signal between the two
  • the first displacement detecting signal or the second displacement detecting signal is sent as a control signal to the slat control computer SFCC to control the slatwing operation when the difference falls within the error tolerance.
  • the CCM 2 may send the larger of the first displacement detection signal and the second displacement detection signal as a control signal to the slat control computer SFCC with the difference falling within the error tolerance. Control quilting operation.
  • the CCM 2 may send the second displacement detection signal received by the CCM 2 itself as a control signal to the slat control computer SFCC to control the slatwing operation if the difference falls within the error tolerance.
  • the CCM1 in the standby state fails (for example, the verification of the first displacement detection signal is incorrect, the first displacement detection signal is not received, or the self-test system of CCM1 reports an error)
  • its monitoring processing triggers the fail-safe logic to lock the CCM1 and informs the CCM2 that the CCM2 in the working state can directly transmit the second displacement detection signal (assuming that the verification of the second displacement detection signal is correct) as a control signal to the slat control computer SFCC.
  • the monitoring processor triggers the fail-safe logic to lock the CCM2 and notify the CCM1 to switch the CCM1 to the active state.
  • the CCM 1 transmits the first displacement detection signal as a control signal to the slat control computer SFCC to control the slat operation (assuming that the verification of the first displacement detection signal is correct).
  • the FSCL 200 also includes a force sensor 206 and a CCM 3.
  • the force sensor 206 senses the force exerted on the slatwing handle to generate a force signal and transmits the force signal to the CCM 3.
  • the force signal is below the threshold, and the CCM3 maintains a 0V level on the hard line, that is, the discrete signal 0, which does not affect the operation of the SFCC. If the force signal sensed by the force sensor 206 will be greater than the threshold, the CCM 3 outputs an effective discrete signal 1 such that the SFCC extends the slat to the go-around configuration.
  • FIG. 3 shows a schematic diagram of components of an FSCL in accordance with another embodiment of the present invention.
  • CCM1 and CCM2 may be two-channel control instruction modules.
  • CCM1 and CCM2 may respectively include a monitoring channel and a control channel, and the monitoring channel and the control channel respectively have a monitoring processor and a control processor for signal processing.
  • the CCM1 and the CCM2 may each receive a first displacement detection signal and a second displacement detection signal from the first displacement sensor 204 (P1 in FIG. 3) and the second displacement sensor 205 (P2 in FIG. 3) using their monitoring channels, respectively.
  • P1 in FIG. 3 the first displacement sensor 204
  • P2 in FIG. 3 the second displacement sensor 205
  • each of CCM1 and CCM2 may have an interface FPGA to communicate with the control processor, the monitoring processor, the displacement sensor, and the slat control computer SFCC, etc., via the bus.
  • the interface FPGA can receive the digital pulse signal of the photoelectric encoder and the motor output shaft position signal in an acquisition cycle of 50 ms or less, and distribute it to the control processor of the control channel and the monitoring processor of the monitoring channel.
  • the control processor uses the frequency method (M method) to process the positive code structure of the signal data; the monitoring processor acts as the check link, and uses the frequency method (M method) to process the complement structure of the signal data.
  • the two processors send the processed displacement signals to the interface FPGA, and the interface FPGA performs the alignment processing on the encoding formats of the two sets of displacement signals. If the alignment is successful and the detected displacement signal is in a reasonable range of values, then the CCM is considered to have acquired valid displacement data.
  • the interface CMC of the standby state sends its effective displacement data to the CCM of the working state through the CAN bus, and compares the displacement data of the two CCMs by the working state CCM, if the difference between the two sets of displacement data is within the error tolerance range , the comparison is considered successful, and any one or larger displacement data is sent as a control signal to the SFCC to control the slat
  • the interface FPGA provides data for two processors and performs certain data calculation functions, the following measures can be used to ensure the integrity of the data.
  • Interface FPGA stores 5V, 3.3V, 7.5V, 2.5V and ground reference voltage.
  • the control processor periodically reads and verifies the data. In other implementations, different voltage levels can also be utilized.
  • the interface FPGA periodically generates a pseudo-random sequence to be sent to the two processors.
  • the processor then returns the sequence to the interface FPGA. If the returned sequence is the same as the original sequence, the interface FPGA will reset the processor's watchdog FPGA. If the returned sequence is different from the original sequence, the watchdog FPGA is activated, the corresponding CCM is locked, and no data or instructions are outputted.
  • the interface FPGA transmits and returns ARINC429 data (such as the handle displacement signal).
  • the data frame Label 107 can be used to represent the handle displacement signal.
  • This data frame has a total of 32 bits, the 1 to 8 bit identifier is Label107; 9 to 10 bits identify the source of the data frame; 11 to 29 bits identify the content of the data frame, usually a value; 30 and 31 bits identify the SSM (information status) Matrix), 32 bits are parity bits.
  • the control processor verifies the returned ARINC 429 data. Due to the importance of the handle displacement signal, the monitoring processor is responsible for setting the SSM of the ARINC 429 data.
  • the SSM can indicate the validity of the ARINC 429 bus data frame. For example, 00 means Failure Warning, 10 means No Computed Data; 01 means Functional Test; 11 means Normal Operation. Normally, the ARINC429 bus label is valid only if the SSM is 11.
  • the FSCL can have adjustable lifting and friction.
  • the FSCL may include a motor 1 and a motor 2, wherein the motor 1 controls the lifting force of the lifting force mechanism 202, and the motor 2 controls the friction force of the friction mechanism 203.
  • the CCM 1 and the CCM 2 can respectively include a monitoring channel and a control channel, and the operating parameters of the motor 1 and the motor 2 can be set through the control channel.
  • CCM1 and CCM2 each include a motor driver 1 and a motor driver 2, respectively, and the control command module (such as CCM1 or CCM2) in the CCM1 and CCM2 operating states can receive the lifting force/friction adjustment command from the ground maintenance device 208 and control
  • the passages control their respective motor drives (motor drive 1 or motor drive 2) such that the motor drive sets the lift force of the lift force mechanism 202 and the friction of the friction mechanism 203, as further described below with respect to Figures 4 and 5.
  • the Ground Maintenance Equipment (GSE) 208 can access the working CCM1 or CCM2 via the RS232/485 bus and perform the following operations:
  • NVM non-volatile memory
  • FIG. 4 shows a schematic view of a lifting force mechanism 202 in accordance with one embodiment of the present invention.
  • the lifting force of the FSCL is generally generated by the spring 403, which has a certain preload force.
  • the compression spring When the FSCL lifts a certain distance, the compression spring generates a force, and the maximum spring preload force overcome during the FSCL lifting process is the lifting force of the FSCL.
  • a support plate 405 and a telescopic support tube 404 are added to the lifting force mechanism, and a DC brushless motor is introduced, which is connected to the telescopic support tube through a helical gear box or other gear transmission mechanism.
  • the gear transmission mechanism When the output shaft of the motor rotates clockwise, the gear transmission mechanism is driven to extend the telescopic support tube, push the support plate to move, increase the pressure of the spring and the number of turns, the pre-tightening force of the spring increases, and the handle lifting force increases.
  • the gear transmission mechanism When the output shaft of the motor rotates counterclockwise, the gear transmission mechanism is driven to retract the telescopic support tube, and the preload of the spring itself pushes the support plate to move downward, reducing the number of turns of the spring, reducing the preload of the spring, and lifting the handle. Reduced.
  • the spring pressure sensor 402 collects the value of the spring force and feeds it back to the control module for correction.
  • the FSCL lifting force mechanism has a default lifting force of 30 N and an adjustment accuracy of 0.5 N.
  • the maximum value of the FSCL lifting force can be 40N, and the minimum can be 20N. In the specific practice, other values can also be set.
  • FIG. 5 shows a schematic view of a friction mechanism 203 in accordance with one embodiment of the present invention.
  • the friction mechanism 203 is located at the end of the FSCL tie rod, and the friction is generally generated by the friction 502.
  • the driver needs to overcome the friction to manipulate the FSCL movement.
  • the friction forces the handle to remain in the corresponding card slot without offset or jitter.
  • the invention introduces a brushless DC motor and a regulating piece 503 for driving a spur gear box or other gear transmission mechanism through a DC brushless motor.
  • the adjusting piece When the motor output shaft 504 rotates clockwise, the adjusting piece is pressed to press the friction device to reduce the distance between the two friction devices, thereby increasing the friction force; when the motor output shaft rotates counterclockwise, the adjusting piece is released to release the friction device, so that two The frictional distance increases, which in turn reduces friction.
  • FIG. 6 shows a schematic diagram of a force sensor in accordance with one embodiment of the present invention.
  • the force sensor 206 can be embedded in a handle or tie rod and can employ a conventional strain gauge pressure sensor. If the force sensor is mounted inside the tie rod, a cylindrical elastic sensor can be used. In order to ensure the sensitivity of the measurement and reduce the nonlinear error, a differential full bridge measuring circuit composed of 8 strain gauges can be selected. Four strain gauges are adhered along the axial direction to reduce the influence of bending moment, and the other four pieces are adhered along the radial direction for temperature compensation. When the handle is mechanically jammed, the pilot needs to use a powerful rear pull handle. When the force exerted by the pilot on the handle exceeds a threshold, the rudder surface will extend to the desired command position, where the threshold can be determined by the system designer and/or pilot.
  • the FSCL On the flight day, after the aircraft is powered on, the FSCL first performs a power-on self-test and then performs an initialization self-test. After the above self-test is completed, continuous self-test is performed. The detected fault can be recorded in the non-volatile memory of the control branch.
  • the control channel and the monitoring channel perform power-on self-test.
  • the contents of the test are as follows:
  • the control channel performs an initialization self-test. This type of test is performed once every day when power is first applied. If the monitoring is interrupted by the FSCL instruction, then the detection is considered incomplete and will run again on the next power-up in the same day.
  • the contents of the test are as follows:
  • the control channel performs continuous self-tests.
  • the detection includes sensor excitation voltage and current monitoring, sensor reasonable range test, data receiving system monitoring, brake monitoring, and sensor validity test.
  • CCM1 and CCM2 can enter the working state according to the single and double numbers of the flight date.
  • the three CCM modules (CCM1, CCM2, CCM3) can be in a working-standby-working state.
  • the SINC bit of the ARINC429 data sent by the CCM in the default state is "Normal Operation”; the SINC bit of the ARINC429 data sent by the CCM in the standby state is "No computed data"; the discrete signal sent by the CCM3 when the handle is working normally is "0".
  • two circuit breakers can be provided for the handle inside the cockpit for the reset of the handle CCM.
  • the CCM 1 receives the first displacement detection signal detected by the first displacement sensor 204 (eg, the first photoelectric encoder); the CCM 2 receives the second displacement detection signal detected by the second displacement sensor 205 (eg, the second photoelectric encoder).
  • the two CCMs each internally process the displacement detection signal and compare the two displacement detection signals by the CCM in the active state. If they are more consistent, the last displacement result (first displacement detection signal or second displacement detection signal) is sent to the SFCC as a control signal by the CCM in the working state through the ARINC429 bus.
  • the CCM will trigger the fail-safe logic by itself to send a trigger signal to the CCM in the standby state. .
  • the CCM in the working state is switched to the deactivated state, and the SINC bit of the ARINC429 bus data sent out is changed from "Normal Operation” to "Failure Warning".
  • the CCM in the standby state switches to the working state, and the ARINC429 bus data SSM bit sent out is changed from "No computed data” to "Normal Operation”.
  • the CCM no longer receives and compares the displacement detection data of the CCM in the standby state, but directly sends the displacement detection signal received by the CCM as a control signal to the SFCC through the ARINC 429 bus.
  • the CCM 3 receives and processes the force signals generated by the force sensor 206 sensing the force exerted on the slatwing handle. When the force signal is below the threshold, CCM3 generates a discrete signal of 0, which does not affect the operation of the SFCC. When the force signal is greater than the threshold, CCM3 generates an effective discrete signal 1 such that the SFCC extends the slat to the go-around configuration.
  • the effective discrete signal 1 may indicate that the slatwing handle is not in normal operation (eg, the handle is jammed, CCM1 and CCM2 are all disabled, etc.).
  • the duration of the discrete signal monitored by the SFCC is approximately 5 to 20 seconds, preferably 8 seconds.
  • the SFCC receives the effective discrete signal of CCM3 while receiving the displacement detection signal (ARINC429 bus data) sent by CCM1 or CCM2, it does not process the displacement detection signal, but processes the effective discrete signal of CCM3, and the quilted wing extension Go out to the go-around configuration.
  • the displacement detection signal ARINC429 bus data
  • CCM1 and CCM2 are in an active state, and the other is in a standby state.
  • CCM1 can be in a standby state and CCM2 can be in a working state, and vice versa.
  • the control instruction module may refer to CCM1 or CCM2, and the other control instruction module (CCM2 or CCM1) is in a standby state.
  • the slatwing handle of the present invention employs a variety of redundancy measures and optionally has adjustable lifting and friction.
  • the slatwing handle includes a plurality of displacement sensors and a plurality of control command modules, the different combinations of which ensure that the pilot can manipulate the FSCL under any expected operating conditions and output available command signals to the high lift system.
  • the slatwing handle can also adjust the lifting and/or friction of the FSCL to accommodate different system/operator needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Blinds (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

一种襟缝翼操纵手柄(200)以及操作该手柄的方法,所述手柄包括:第一位移传感器(204),其检测襟缝翼操纵手柄的位移并生成第一位移检测信号;第二位移传感器(205),其检测襟缝翼操纵手柄的位移并生成第二位移检测信号;第一控制指令模块(CCM1),其接收第一位移检测信号;以及第二控制指令模块(CCM2),其接收第二位移检测信号,其中第一控制指令模块处于备用状态并且第二控制指令模块处于工作状态,第一控制指令模块将第一位移检测信号发送给第二控制指令模块,第二控制指令模块比较第一和第二位移检测信号并在第一和第二位移检测信号之间的差值在误差容限内的情况下将第一或第二位移检测信号作为控制信号发送给襟缝翼控制计算机(SFCC)以控制襟缝翼操作。由于采用多个位移传感器和多个控制指令模块,保证了在任何可预期的工作条件下飞行员都可以操作该襟缝翼操纵手柄向高升力***输出可用的指令信号,降低了***失效概率。

Description

一种襟缝翼操纵手柄
本申请要求于2017年7月31日提交的、申请号为201710641540.1的中国专利申请的优先权,该申请的全部内容通过援引纳入于此。
技术领域
本发明涉及飞机,且尤其涉及飞机的襟缝翼操纵手柄。
背景技术
现代大型飞机的高升力***包括位于机翼前缘的缝翼和位于机翼后缘的襟翼。在飞机起飞、着陆等低速阶段,可通过前缘缝翼和后缘襟翼的向外伸出、向下弯曲来增大机翼面积从而改变构型并提供飞机升力,以保证飞机有合理的滑跑距离和安全的起飞速度,同时改善飞机爬升率、进场速率及进场姿态等。
襟/缝翼操纵手柄(Flap/Slat Control Lever,即FSCL)是高升力***的操纵部件,用于控制襟翼和缝翼的伸出和收回。FSCL通常安装在中央操纵台上,以便由飞行员操作。图1示出了传统FSCL的立体示图,其主要包括例如把手101、带位置标志的导光板102、壳体103、锁紧片104、带有力感装置的拉杆105、弹簧组件106、柱塞107、锁止销108、扇形齿轮109、卡档110、小齿轮轴111、卡槽112、与拉杆相连的行星齿轮系和四路RVDT传感器(未示出)等。在操作时,飞行员首先需要提起把手101,使把手101带动拉杆105沿滑轨(一般为卡槽形式)移动。在这个过程中,拉杆105的力感装置产生阻碍运动的提起力和摩擦力。同时,拉杆105带动行星齿轮系旋转驱动RVDT传感器,从而生成拉杆位移信号传送给襟缝翼控制计算机(Slat/Flap Control Computer,即SFCC),SFCC可根据该拉杆位移信号来控制襟翼和缝翼的操作。
FSCL的功能虽然简单,但是随着飞机***安全性水平与复杂性的日益增长,对其可用性要求也随之不断提高。早期单通道飞机高升力***失效概率的设计要求是小于等于1E-6,因此传统架构的FSCL能够满足***对其可用性的 要求。后期大型双通道飞机高升力***失效概率的设计要求小于等于1E-9,因此自上向下分配到手柄,要求其失效概率应小于等于1E-9。传统架构的手柄的失效概率远不能达到小于1E-9的水平。
此外,FSCL的操纵舒适性也难以控制。手柄具有一定的提起力和摩擦力,提起力使得手柄能够锁紧而处在相应的卡槽内,当需要移动手柄时,必须克服提起力,然后才能够沿着导轨移动。当手柄沿着导轨运动时,会产生摩擦力。摩擦力提供飞行员在移动手柄过程中的感觉力。提起力和摩擦力的设计都应符合人机功效和功能的需求,如果过大,会造成飞行员的负担;如果过小,手柄很难划入到卡槽内。如果摩擦力过小,操纵过程中手感不明显,也容易造成误操作。
本发明要解决的技术问题是提供一种改进的襟缝翼操纵手柄。
发明内容
本发明提供了一种改进的襟缝翼操纵手柄。
根据本发明的一个实施例,一种襟缝翼操纵手柄包括:第一位移传感器,其检测所述襟缝翼操纵手柄的位移并生成第一位移检测信号;第二位移传感器,其检测所述襟缝翼操纵手柄的位移并生成第二位移检测信号;第一控制指令模块,其接收来自所述第一位移传感器的第一位移检测信号;以及第二控制指令模块,其接收来自所述第二位移传感器的第二位移检测信号,其中所述第一控制指令模块处于备用状态并且所述第二控制指令模块处于工作状态,所述第一控制指令模块将所述第一位移检测信号发送给所述第二控制指令模块,所述第二控制指令模块比较所述第一位移检测信号和所述第二位移检测信号并在所述第一位移检测信号和所述第二位移检测信号之间的差值在误差容限内的情况下将所述第一位移检测信号或所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作。
在一个方面,所述第二控制指令模块将所述第一位移检测信号和所述第二位移检测信号中的任一者、较大者或较小者作为控制信号发送给所述襟缝翼控制计算机以控制襟缝翼操作。
在一个方面,如果所述第一控制指令模块发生故障,则所述第一控制指令 模块不再向所述第二控制指令模块发送所述第一位移检测信号,且所述第二控制指令模块将所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作;或者如果所述第二控制指令模块发生故障,则所述第二控制指令模块切换至停用状态,并且所述第一控制指令模块切换至工作状态,所述第一控制指令模块将所述第一位移检测信号作为控制信号发送给所述襟缝翼控制计算机以控制襟缝翼操作。
在一个方面,所述第一控制指令模块和所述第二控制指令模块分别校验所述第一位移检测信号和所述第二位移检测信号是否在预设取值范围中,其中所述第一控制指令模块发生故障包括所述第一控制指令模块校验所述第一位移检测信号失败,并且其中所述第二控制指令模块发生故障包括所述第二控制指令模块校验所述第二位移检测信号失败、或者所述第二控制指令模块确定所述第一位移检测信号和所述第二位移检测信号之间的差值不在误差容限内达预定次数。
在一个方面,所述第一控制指令模块和所述第二控制指令模块各自包括监控通道并经由所述监控通道分别接收来自所述第一位移传感器和所述第二位移传感器的所述第一位移检测信号和所述第二位移检测信号。
在一个方面,所述襟缝翼操纵手柄还包括:提起力机构,其产生所述襟缝翼操纵手柄的提起力;摩擦力机构,其产生所述襟缝翼操纵手柄移动的摩擦力,其中所述第一控制指令模块和所述第二控制指令模块各自包括控制通道以在处于工作状态时控制所述提起力机构的提起力和所述摩擦力机构的摩擦力。
在一个方面,所述襟缝翼操纵手柄还包括力传感器,其感测施加在所述襟缝翼操纵手柄上的力以生成力信号;以及第三控制指令模块,其接收所述力信号并在所述力信号大于预设阈值时将有效离散信号发送给所述襟缝翼控制计算机以将襟缝翼伸出到复飞构型。
在一个方面,所述襟缝翼控制计算机在接收到来自所述第一控制指令模块或所述第二控制指令模块的控制信号以及来自所述第三控制指令模块的有效离散信号两者时根据来自所述第三控制指令模块的所述有效离散信号进行操作。
在一个方面,所述第一位移传感器和所述第二位移传感器各自包括 RVDT、电位计、或光电编码器中的任一者。
在一个方面,所述光电编码器包括光栅盘和光电检测装置,所述光电编码器输出三组方波脉冲A、B和Z相,其中A、B两组脉冲确定手柄运动方向,且Z相确定手柄位置。
根据本发明的另一个实施例,本发明提供了一种操作襟缝翼操纵手柄的方法,包括:检测所述襟缝翼操纵手柄的位移并生成第一位移检测信号;检测所述襟缝翼操纵手柄的位移并生成第二位移检测信号;使用第一控制指令模块接收所述第一位移检测信号;以及使用第二控制指令模块接收所述第二位移检测信号,其中所述第一控制指令模块处于备用状态并且所述第二控制指令模块处于工作状态,所述第一控制指令模块将所述第一位移检测信号发送给所述第二控制指令模块,所述第二控制指令模块比较所述第一位移检测信号和所述第二位移检测信号并在所述第一位移检测信号和所述第二位移检测信号之间的差值在误差容限内的情况下将所述第一位移检测信号或所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作。
在一方面,所述第二控制指令模块将所述第一位移检测信号和所述第二位移检测信号中的任一者、较大者或较小者作为控制信号发送给所述襟缝翼控制计算机以控制襟缝翼操作。
在一方面,如果所述第一控制指令模块发生故障,则所述第一控制指令模块不再向所述第二控制指令模块发送所述第一位移检测信号,且所述第二控制指令模块将所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作;或者如果所述第二控制指令模块发生故障,则所述第二控制指令模块切换至停用状态,并且所述第一控制指令模块切换至工作状态,所述第一控制指令模块将所述第一位移检测信号作为控制信号发送给所述襟缝翼控制计算机以控制襟缝翼操作。
在一方面,所述第一控制指令模块和所述第二控制指令模块分别校验所述第一位移检测信号和所述第二位移检测信号是否在预设取值范围中,其中所述第一控制指令模块发生故障包括所述第一控制指令模块校验所述第一位移检测信号失败,并且其中所述第二控制指令模块发生故障包括所述第二控制指令模块校验所述第二位移检测信号失败、或者所述第二控制指令模块确定所述第 一位移检测信号和所述第二位移检测信号之间的差值不在误差容限内达预定次数。
在一方面,所述方法还包括所述第一控制指令模块和所述第二控制指令模块在处于工作状态时通过控制通道来控制所述襟缝翼操纵手柄的提起力和摩擦力。
在一方面,所述方法还包括感测施加在所述襟缝翼操纵手柄上的力以生成力信号;以及使用第三控制指令模块接收所述力信号并在所述力信号大于预设阈值时将有效离散信号发送给所述襟缝翼控制计算机以将襟缝翼伸出到复飞构型。
在一方面,所述方法还包括所述襟缝翼控制计算机在接收到来自所述第一控制指令模块或所述第二控制指令模块的控制信号以及来自所述第三控制指令模块的有效离散信号两者时根据来自所述第三控制指令模块的所述有效离散信号进行操作。
本发明的襟缝翼操纵手柄采用了多种冗余措施,并且可任选地具有可调节的提起力和摩擦力。该襟缝翼操纵手柄包括多个位移传感器和多个控制指令模块,上述部件的不同组合保证了在任何可预期的工作条件下飞行员都可以操纵FSCL,向高升力***输出可用的指令信号。此外,该襟缝翼操纵手柄还可以调节FSCL的提起力和/或摩擦力的大小,从而适应不同的***/操作者需求。
附图说明
图1示出了传统FSCL的立体示图。
图2示出了根据本发明一个实施例的FSCL的架构示意图。
图3示出了根据本发明另一个实施例的FSCL的组件示意图。
图4示出了根据本发明一个实施例的提起力机构的示意图。
图5示出了根据本发明一个实施例的摩擦力机构的示意图。
图6示出了根据本发明一个实施例的力传感器的示意图。
具体实施方式
下面结合具体实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
图2示出了根据本发明一个实施例的襟/缝翼操纵手柄(FSCL)200的架构示意图。该襟缝翼操纵手柄200的基本机械组件可包括把手(未示出)、拉杆201、槽型导轨和齿轮(未示出)等,例如可具有与图1的传统FSCL相似的外观。如图2所示,FSCL 200可包括提起力机构202、摩擦力机构203、第一位移传感器204、第二位移传感器205、可选的力传感器206、第一控制指令模块(Control Command Module)CCM1、第二控制指令模块CCM2、可选的第三控制指令模块CCM3、第一电源控制模块(Power control Module)PCM1和第二电源控制模块PCM2、接插件板207等。在具体实现中,FSCL 200还可包括未示出的用于实现襟/缝翼操纵的其他组件,或者包括比图2中所示的更少的组件。例如,在一个实施例中,FSCL 200可包括CCM1和CCM2,但不包括CCM3及相应的其他组件。在另一实施例中,FSCL 200可包括更多CCM。
提起力机构202可以控制提起手柄200所需的提起力,并且摩擦力机构203可以控制移动手柄200所产生的摩擦力。PCM1可与直流电汇正常流条(例如,28V)相连,给CCM1供电;PCM2可与直流电应急汇流条(例如,28V)相连,给CCM2和CCM3供电。作为示例而非限定,每个PCM可为相应的CCM提供+5V、+15V、-15V或其他电压电平的直流电。替换地,FSCL 200可使用一个电源控制模块PCM来为各个组件提供所需的电压。
第一位移传感器204和第二位移传感器205可以检测FSCL 200的拉杆位移并生成拉杆位移信号,各个控制指令模块(CCM)可以处理并输出拉杆位移信号以用于控制飞机襟缝翼的操作。在一些方面,一架飞机可包括一个襟缝翼控制计算机SFCC以控制飞机两侧的襟翼和缝翼的操作。在另一些方面,一架飞机可包括两个襟缝翼控制计算机SFCC,其中每个SFCC控制飞机相应一侧的襟翼和缝翼的操作。无论是一个还是两个SFCC,这些SFCC根据襟缝翼操纵手柄200生成的手柄位移信号来控制飞机的襟翼和缝翼的操作。
传统上测量手柄位移的传感器架构一般采用RVDT或电位计。本发明的第一位移传感器204和第二位移传感器205可以分别选自RVDT、电位计、或 光电编码器中的任一者。光电编码器的优点是可以将手柄位置的位移信号直接转换为计算机可识别的数字脉冲信号,无需额外的模数转换。在一个实施例中,光电编码器可由光栅盘和光电检测装置组成。在拉杆末端齿轮安装额外的行星齿轮系,小齿轮轴的两个末端安装两个光电编码器的光栅盘(优选是增量式的),光电检测装置安装在与之对应的法兰上。增量式编码器可直接利用光电转换原理输出三组方波脉冲A、B和Z相,其中A、B两组脉冲相位差90度,从而可方便地判断出手柄的运动方向,而Z相为每转对应一个脉冲,用于基准点定位。
接插件板207可以实现襟缝翼操纵手柄200与其他设备(诸如地面维护设备208、襟缝翼控制计算机SFCC)的通信。作为示例而非限定,接插件板207被示为具有6个接插口,分别为J1、J2、J3、J4、J5和J6(例如为MIL-DTL-38999形式)。J1用于连接CCM1与襟缝翼控制计算机SFCC(例如,经由ARINC429总线),J2用于连接PCM1与直流电正常汇流条(例如,28V),J3用于连接CCM2与SFCC(例如,经由ARINC429总线),J4用于连接PCM2与直流电应急汇流条(例如,28V),J5用于连接CCM3和SFCC,J6作为测试接口,用于连接地面维护设备与所有的CCM(例如,经由RS232/485总线)。此外,接插件板207可具有闪电电磁防护作用,以确保襟缝翼操纵手柄200与其他设备的通信安全和通信可靠性。图2中的接插件板207仅为示例,在实践中可以按需采用其他形式和接插口数量的接插件板207,并且可以采用不同的总线来在各个部件之间通信。
根据本发明的一个实施例,FSCL 200可包括第一位移传感器204、第二位移传感器205、CCM1和CCM2。第一位移传感器204和第二位移传感器205用于分别感测手柄200的位移并生成第一位移检测信号和第二位移检测信号。CCM1和CCM2各自可以包括监控通道(监控通道可包括监控处理器),以分别接收/处理来自第一位移传感器204和第二位移传感器205的第一位移检测信号和第二位移检测信号。CCM1和CCM2可以分别对第一位移检测信号和第二位移检测信号进行校验,以确定第一位移检测信号和第二位移检测信号是否在合理的预设取值范围中。CCM1和CCM2可以对通过校验的位移检测信号进行进一步处理,如以下更详细地描述的。根据本发明的另一个实施例,FSCL 200 可进一步包括力传感器206和CCM3。力传感器206可以检测操作者(例如,飞行员)在手柄上施加的力,并将检测到的力传送给CCM3进行处理。CCM1和CCM2将与CCM3协调作用,以控制飞机襟缝翼操作,如以下进一步描述的。
(a)CCM1和CCM2内部处理数据的流程
在任何时刻,CCM1和CCM2中最多只有一者处于工作状态,并且另一者处于备用状态。无论处于工作状态还是备用状态,CCM1和CCM2可以分别从第一位移传感器204和第二位移传感器205接收位移信号,并校验各自接收到的位移信号(例如,确定所检测到的第一位移检测信号和第二位移检测信号在合理的预设取值范围中)。如果CCM1和CCM2都校验成功,备用状态的CCM将其检测到的位移数据发送给工作状态的CCM(例如,通过CAN总线),由工作状态的CCM比较这两个CCM的位移数据,如果两组位移数据的差值在误差允许范围内,则认为比对成功,并取其中任一者、较大者、或较小者作为最终的位移数据(或基于该位移数据的控制信号)发送给SFCC以控制襟缝翼操作。
如果备用状态的CCM校验位移信号失败,则不将其检测到的位移信号发送给工作状态的CCM。如果备用状态的CCM校验位移信号连续失败多次,则其监控处理器触发失效保护逻辑,备用状态的CCM停用且不再处理位移信号,直至被复位后重新处理位移信号。如果工作状态的CCM校验位移信号失败,则其监控处理器触发失效保护逻辑,将处于工作状态的CCM锁死(即,处于停用状态),并自动将备用状态的CCM切换成工作状态的CCM。如果两个CCM之间的数据比对不成功(例如,连续二帧、三帧等不成功),则监控处理器触发失效保护逻辑,将处于工作状态的CCM锁死,并自动切换到处于备用状态的CCM。CCM校验位移信号失败或者两个CCM之间的数据比对不成功时可以触发报警装置,以提醒操作者发生襟缝翼操纵手柄故障。
2)CCM3内部处理数据的流程
如上所述,在一个实施例中,除了CCM1和CCM2以外,FSCL 200可进 一步包括力传感器206和CCM3。CCM3可由简单的模拟电路组成,并通过硬线与SFCC连接。力传感器206感测施加在襟缝翼操纵手柄上的力以生成力信号,并将该力信号传送给CCM3。当FSCL 200正常工作且CCM1或CCM2处于正常工作状态时,该力信号低于阈值,CCM3在该硬线上保持0V电平,即离散信号0,不影响SFCC的操作。该阈值可由***设计人员和/或飞行员确定。当襟缝翼操纵手柄发生卡阻时,飞行员需要使用强力后拉手柄,力传感器206感测到的该力信号将大于阈值,则CCM3输出有效离散信号(例如,1),使得SFCC将襟缝翼伸出到复飞构型。例如,1)如果缝翼和襟翼同时处于0度位置,则缝翼先伸出到最大位置后,襟翼再伸出到复飞卡位;2)如果缝翼已经伸出到最大位置,则襟翼直接伸出到复位卡位。如果该力信号不大于阈值,则CCM3输出离散信号0,SFCC不进行操作。在替换实施例中,SFCC也可以在接收到有效离散信号1时使得襟缝翼进行其他指定操作。
另一方面,如果襟缝翼操纵手柄未发生卡阻但CCM1和CCM2皆失效(例如,不能提供有效的位移检测数据),飞行员可以将手柄移动到最后一个卡位,并且强力操纵手柄以使得力传感器206感测到的力信号大于阈值,CCM3输出有效离散信号1,将襟缝翼伸出到复飞构型。由此,本发明的襟缝翼操纵手柄能够避免在襟缝翼操纵手柄发生卡阻、和/或CCM1和CCM2皆失效的情况下无法控制襟缝翼的问题。进一步地,当襟缝翼控制计算机(SFCC)接收到有效离散信号1时可以提供报警信号,指示襟缝翼操纵手柄未处于正常工作状态(例如,手柄卡阻、CCM1和CCM2皆失效等)。
作为示例而非限定,CCM3主要可包括一个减法器和28V/OPEN信号输出电路,减法器的参考电压可为5V。CCM3接收到力传感器组件发过来的电压信号,经过减法器进行运算。如果减法器的输出结果超过预设的电压阈值(5V),再经过28V/OPEN信号输出电路,向SFCC输出28V信号,即有效离散信号1,使得SFCC将襟缝翼伸出到复飞构型。如果减法器的输出结果小于5V,则28V/OPEN信号输出电路将向SFCC输出0V信号,SFCC收到离散信号0,判定手柄未***纵,SFCC可以不进行操作。以上列举的电压电平仅是示例,在实践中可以采用其他电压电平而不脱离本发明的范围。
以下列举了本发明的襟缝翼操纵手柄监控手柄操作的各种工作模式。本领域技术人员可以理解,CCM1和CCM2是可互换的。
在第一模式中,CCM1处于备用状态且CCM2处于工作状态,CCM1可接收来自第一位移传感器204的第一位移检测信号并将第一位移检测信号发送给CCM2(假设对第一位移检测信号的校验正确)。CCM2可接收来自第二位移传感器205的第二位移检测信号(假设对第二位移检测信号的校验正确),CCM2比较第一位移检测信号和第二位移检测信号并在这两者之间的差值落在误差容限内的情况下将第一位移检测信号或第二位移检测信号作为控制信号发送给襟缝翼控制计算机SFCC以控制襟缝翼操作。在一替换方案中,CCM2可在该差值落在误差容限内的情况下将第一位移检测信号和第二位移检测信号中的较大者作为控制信号发送给襟缝翼控制计算机SFCC以控制襟缝翼操作。在另一替换方案中,CCM2可在该差值落在误差容限内的情况下将CCM2自己接收的第二位移检测信号作为控制信号发送给襟缝翼控制计算机SFCC以控制襟缝翼操作。
在第二模式中,如果处于备用状态的CCM1发生故障(例如,对第一位移检测信号的校验不正确、未接收到第一位移检测信号、或者CCM1的自检***报错),其监控处理器触发失效保护逻辑以锁死CCM1并通知CCM2,处于工作状态的CCM2可直接将第二位移检测信号(假设对第二位移检测信号的校验正确)作为控制信号发送给襟缝翼控制计算机SFCC以控制襟缝翼操作。
在第三模式中,如果处于工作状态的CCM2发生故障(例如,对第二位移检测信号的校验不正确、未接收到第二位移检测信号、或者CCM2的自检***报错、或者CCM2确定第一位移检测信号和第二位移检测信号之间的差值不在误差容限内达预定次数),则其监控处理器触发失效保护逻辑以锁死CCM2并通知CCM1,从而将CCM1切换至工作状态,CCM1将第一位移检测信号作为控制信号发送给襟缝翼控制计算机SFCC以控制襟缝翼操作(假设对第一位移检测信号的校验正确)。
在第四模式中,FSCL 200还包括力传感器206和CCM3。力传感器206感测施加在襟缝翼操纵手柄上的力以生成力信号,并将该力信号传送给CCM3。当FSCL 200正常工作且CCM1或CCM2处于正常工作状态时,该力 信号低于阈值,CCM3在该硬线上保持0V电平,即离散信号0,不影响SFCC的操作。如果力传感器206感测到的该力信号将大于阈值,则CCM3输出有效离散信号1,使得SFCC将襟缝翼伸出到复飞构型。
图3示出了根据本发明另一个实施例的FSCL的组件示意图。图3中与图2相似的组件用相似的附图标记来标注。在该实施例中,CCM1和CCM2可以是双通道控制指令模块,例如CCM1和CCM2可以分别包括监控通道和控制通道,监控通道和控制通道分别具有监控处理器和控制处理器以进行信号处理。CCM1和CCM2可以各自利用其监控通道分别从第一位移传感器204(图3中的P1)和第二位移传感器205(图3中的P2)接收第一位移检测信号和第二位移检测信号,如以上参照图2所描述的。
在进一步的实施例中,CCM1和CCM2各自可具有接口FPGA以通过总线与控制处理器、监控处理器、位移传感器和襟缝翼控制计算机SFCC等通信。该接口FPGA能以50ms或更小的采集周期接收光电编码器的数字脉冲信号和电机输出轴位置信号,再分发给控制通道的控制处理器和监控通道的监控处理器。控制处理器作为计算环节,采用频率法(M法)处理信号数据的正码架构;监控处理器作为校核环节,采用频率法(M法)处理信号数据的补码架构。这两个处理器将处理完的位移信号发送给接口FPGA,接口FPGA将两组位移信号的编码格式进行一致化处理后,进行比对。如果比对成功并且所检测到的位移信号在合理取值范围中,则认为该CCM采集到了有效的位移数据。备用状态的CCM的接口FPGA将其有效的位移数据通过CAN总线发送给工作状态的CCM,由工作状态的CCM比较这两个CCM的位移数据,如果两组位移数据的差值在误差允许范围内,则认为比对成功,并取其中任一者或较大的位移数据作为控制信号发送给SFCC以控制襟缝翼
Figure PCTCN2017118560-appb-000001
由于接口FPGA为两个处理器提供数据,并执行一定的数据计算功能,因此可使用如下措施保证其数据的完整性。
(1)接口FPGA存储5V、3.3V、7.5V、2.5V和地参考电压。控制处理器周期性读取并校验这些数据。在其他实现中,也可以利用不同的电压电平。
(2)接口FPGA周期性地产生伪随机数列发送给两个处理器。处理器再将 该数列返回给接口FPGA。如果返回的数列与原始数列相同,则接口FPGA将重置处理器的看门狗FPGA。如果返回的数列与原始数列不同,则激活看门狗FPGA,将对应的CCM锁死,不再向外输出数据或指令。
(3)接口FPGA传送并回送ARINC429数据(例如手柄位移信号)。作为示例,一般情况下,可用数据帧Label 107表示手柄位移信号。这个数据帧共有32位,1到8位标识是Label107;9到10位标识该数据帧的设备来源;11到29位标识数据帧的内容,通常是数值;30和31位标识SSM(信息状态矩阵),32位是奇偶校验位。控制处理器校验回送的ARINC429数据。由于手柄位移信号的重要性,监控处理器负责设置ARINC429数据的SSM。SSM可指示ARINC429总线数据帧的有效性。例如,00表示Failure Warning(故障报警),10表示No Computed Data(无计算数据);01表示Functional Test(功能测试);11表示Normal Operation(正常操作)。正常情况下,只有在SSM为11,才说明ARINC429总线标号是有效的。
另外,该FSCL可具有可调节的提起力和摩擦力。如图3中所示,该FSCL可包括电机1和电机2,其中电机1控制提起力机构202的提起力,电机2控制摩擦力机构203的摩擦力。如上所述,CCM1和CCM2可以分别包括监控通道和控制通道,并且可以通过控制通道来设置电机1和电机2的工作参数。CCM1和CCM2各自分别包括电机驱动器1和电机驱动器2,CCM1和CCM2中处于工作状态的那个控制指令模块(例如CCM1或CCM2)可以从地面维护设备208接收提起力/摩擦力调整指令,并通过控制通道来控制其相应的电机驱动器(电机驱动器1或电机驱动器2),从而该电机驱动器设置提起力机构202的提起力和摩擦力机构203的摩擦力,如以下参照图4和5进一步描述的。
地面维护设备(GSE)208可通过RS232/485总线接入处于工作状态的CCM1或CCM2,并执行以下操作:
a)控制提起力机构202中的电机1,调节提起力的大小,并读取提起力数值(使用力传感器F1和F2);
b)控制摩擦力机构203的电机2,调节摩擦力的大小;
c)上传***软件;
d)下载NVM(非易失存储器)数据;
e)清除手柄的故障数据等。
图4示出了根据本发明一个实施例的提起力机构202的示意图。FSCL的提起力一般由弹簧403产生,弹簧本身带有一定的预紧力。当FSCL提起一定的距离时,压紧弹簧产生力,在FSCL提起过程中克服的最大弹簧预紧力为FSCL的提起力。在提起力机构中增加支撑板405和可伸缩支撑管404,引入直流无刷电机,通过斜齿轮箱或其他齿轮传动机构与可伸缩支撑管相连。电机输出轴顺时针旋转时,带动齿轮传动机构使可伸缩支撑管伸出,推动支撑板上移,增加弹簧的压并圈数,弹簧的预紧力增大,手柄提起力增大。电机输出轴逆时针旋转时,带动齿轮传动机构使可伸缩支撑管回缩,弹簧本身预紧力推动支撑板下移,减少弹簧的压并圈数,弹簧的预紧力减小,手柄提起力减小。弹簧压力传感器402采集到弹簧力的数值后,反馈给控制模块以进行校正。作为示例而非限定,FSCL提起力机构的默认提起力为30N,调节精度为0.5N。电机顺时针旋转一圈,提起力增大1N;逆时针旋转一圈,提起力减小1N。FSCL提起力的极限值最大可以是40N,最小可以是20N。在具体实践中,也可以设置其他数值。
图5示出了根据本发明一个实施例的摩擦力机构203的示意图。摩擦力机构203位于FSCL拉杆的末端位置,摩擦力一般由摩擦器502产生。驾驶员需要克服摩擦力从而操纵FSCL移动,当FSCL不移动时,摩擦力使手柄保持在相应的卡槽内而不发生偏移或抖动。本发明引入直流无刷电机和调节片503,通过直流无刷电机驱动正齿轮箱或其他齿轮传动机构运动。电机输出轴504顺时针旋转时,带动调节片压紧摩擦器,使两个摩擦器距离减小,进而增大摩擦力;电机输出轴逆时针旋转时,带动调节片释放摩擦器,使两个摩擦起距离增大,进而减小摩擦力。
图6示出了根据本发明一个实施例的力传感器的示意图。力传感器206可嵌入在手柄或拉杆中,并且可采用传统的应变片式压力传感器。如果将力传 感器安装在拉杆内部,则可以选用圆柱式弹性敏感元件。为保证测量的灵敏度并减小非线性误差,可选用由8个应变片组成的差动全桥测量电路。其中4片应变片沿着轴向进行黏贴,以减小弯矩影响,另外4片沿着径向进行黏贴,做温度补偿用。当手柄发生机械卡阻时,飞行员需要使用强力后拉手柄。当飞行员在手柄上施加的力超过阈值时,舵面将伸出到所需的指令位置,其中阈值可由***设计人员和/或飞行员确定。
在飞行日,飞机上电后,FSCL首先执行上电自检测,然后执行初始化自检测。完成上述自检测后,再执行连续自检测。检测的故障可记录在控制支路的非易失性存储器中。
a)上电自检测
控制通道和监控通道执行上电自检测。检测的内容如下:
1)微处理器电路;
2)引导区程序只读存储器和校验;
3)应用程序只读存储器和校验;
4)只读存储器读/写检测;
5)看门狗定时器检测;
6)从非只读存储器中访问数据检测。
7)微处理器保护电路
8)故障保护切断检测;
9)监控通道切断检测;
10)电源监控电路检测;
11)离散输入接口。
b)初始化自检测
控制通道执行初始化自检测。该类型的检测在每天第一次上电时进行一次检测。如果该监测被FSCL指令中断,则认为检测未完成,将在同一天内的下一次上电时再次运行。检测的内容如下:
1)电机制动检测;
2)再生式电阻检测;
3)电机电气电子器件和电机驱动接口测试等。
c)连续自检测
控制通道执行连续自检测。检测的内容包括传感器励磁电压和电流监控、传感器合理范围测试、数据接收***监控、制动监控、传感器有效性测试等。
在FSCL功能正常的情况下,CCM1和CCM2可按照飞行日期的单双号轮流进入工作状态。三个CCM模块(CCM1、CCM2、CCM3)可处于工作-备用-工作状态。在默认状态下工作状态的CCM发送的ARINC429数据SSM位为“Normal Operation”;备用状态的CCM发送的ARINC429数据SSM位为“No computed data″;CCM3在手柄正常工作的情况下发送的离散信号为“0”。此外,可在驾驶舱内部为手柄设置两个断路器,用于手柄CCM的复位。
a)两台CCM(CCM1和CCM2)工作情况
CCM1接收第一位移传感器204(例如,第一光电编码器)检测到的第一位移检测信号;CCM2接收第二位移传感器205(例如,第二光电编码器)检测到的第二位移检测信号。两个CCM各自对位移检测信号做内部处理,并由处于工作状态的CCM比较这两个位移检测信号。若比较一致,则由处于工作状态的CCM将最后的位移结果(第一位移检测信号或第二位移检测信号)作为控制信号通过ARINC429总线发送给SFCC。
b)一台CCM(CCM1或CCM2)工作情况
若两个CCM连续几帧(例如,两帧、三帧等)数据比较均不一致,或处于工作状态的CCM发生故障,则该CCM将自行触发失效保护逻辑,向处于备用状态的CCM发送触发信号。处于工作状态的CCM切换为停用状态,向外发送的ARINC429总线数据SSM位由“Normal Operation”转为“Failure Warning”。处于备用状态的CCM接收到触发信号后,切换为工作状态,向外发送的ARINC429总线数据SSM位由″No computed data”转为“Normal Operation”。该CCM不再接收和比较处于备用状态的CCM的位移检测数据,而是直接将该CCM接收到的位移检测信号作为控制信号通过ARINC429总线发送给SFCC。
c)CCM3工作情况
CCM3接收并处理由力传感器206感测施加在襟缝翼操纵手柄上的力所生成的力信号。当该力信号低于阈值时,CCM3生成离散信号0,不影响SFCC的操作。当该力信号大于阈值时,CCM3生成有效离散信号1,使得SFCC将襟缝翼伸出到复飞构型。有效离散信号1可指示襟缝翼操纵手柄未处于正常工作状态(例如,手柄卡阻、CCM1和CCM2皆失效等)。SFCC监测到离散信号的持续时间约为5到20秒,优选8秒。
若SFCC在接收到CCM1或CCM2发送的位移检测信号(ARINC429总线数据)的同时接收到CCM3的有效离散信号,则不处理该位移检测信号,而是处理CCM3的有效离散信号,将襟缝翼伸出到复飞构型。
如上所述,CCM1和CCM2中的最多一者处于工作状态,并且另一者处于备用状态。例如,CCM1可以处于备用状态并且CCM2可以处于工作状态,反之亦然。本文中在描述一个(例如,第一或第二)控制指令模块处于工作状态状态时,该控制指令模块可以是指CCM1或CCM2,而另一个控制指令模块(CCM2或CCM1)则处于备用状态。
本发明的襟缝翼操纵手柄采用了多种冗余措施,并且可任选地具有可调节的提起力和摩擦力。该襟缝翼操纵手柄包括多个位移传感器和多个控制指令模块,上述部件的不同组合保证了在任何可预期的工作条件下飞行员都可以操纵FSCL,向高升力***输出可用的指令信号。此外,该襟缝翼操纵手柄还可以调节FSCL的提起力和/或摩擦力的大小,从而适应不同的***/操作者需求。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护范围之内。

Claims (17)

  1. 一种襟缝翼操纵手柄,其特征在于,包括:
    第一位移传感器,其检测所述襟缝翼操纵手柄的位移并生成第一位移检测信号;
    第二位移传感器,其检测所述襟缝翼操纵手柄的位移并生成第二位移检测信号;
    第一控制指令模块,其接收来自所述第一位移传感器的第一位移检测信号;以及
    第二控制指令模块,其接收来自所述第二位移传感器的第二位移检测信号,其中所述第一控制指令模块处于备用状态并且所述第二控制指令模块处于工作状态,所述第一控制指令模块将所述第一位移检测信号发送给所述第二控制指令模块,所述第二控制指令模块比较所述第一位移检测信号和所述第二位移检测信号并在所述第一位移检测信号和所述第二位移检测信号之间的差值在误差容限内的情况下将所述第一位移检测信号或所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作。
  2. 如权利要求1所述的襟缝翼操纵手柄,其特征在于,所述第二控制指令模块将所述第一位移检测信号和所述第二位移检测信号中的任一者、较大者或较小者作为控制信号发送给所述襟缝翼控制计算机以控制襟缝翼操作。
  3. 如权利要求1所述的襟缝翼操纵手柄,其特征在于,
    如果所述第一控制指令模块发生故障,则所述第一控制指令模块不再向所述第二控制指令模块发送所述第一位移检测信号,且所述第二控制指令模块将所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作;或者
    如果所述第二控制指令模块发生故障,则所述第二控制指令模块切换至停用状态,并且所述第一控制指令模块切换至工作状态,所述第一控制指令模块将所述第一位移检测信号作为控制信号发送给所述襟缝翼控制计算机以控制 襟缝翼操作。
  4. 如权利要求3所述的襟缝翼操纵手柄,其特征在于,所述第一控制指令模块和所述第二控制指令模块分别校验所述第一位移检测信号和所述第二位移检测信号是否在预设取值范围中,
    其中所述第一控制指令模块发生故障包括所述第一控制指令模块校验所述第一位移检测信号失败,并且
    其中所述第二控制指令模块发生故障包括所述第二控制指令模块校验所述第二位移检测信号失败、或者所述第二控制指令模块确定所述第一位移检测信号和所述第二位移检测信号之间的差值不在误差容限内达预定次数。
  5. 如权利要求1所述的襟缝翼操纵手柄,其特征在于,所述第一控制指令模块和所述第二控制指令模块各自包括监控通道并经由所述监控通道分别接收来自所述第一位移传感器和所述第二位移传感器的所述第一位移检测信号和所述第二位移检测信号。
  6. 如权利要求1所述的襟缝翼操纵手柄,其特征在于,还包括:
    提起力机构,其产生所述襟缝翼操纵手柄的提起力;
    摩擦力机构,其产生所述襟缝翼操纵手柄移动的摩擦力,其中所述第一控制指令模块和所述第二控制指令模块各自包括控制通道以在处于工作状态时控制所述提起力机构的提起力和所述摩擦力机构的摩擦力。
  7. 如权利要求1至6中任一项所述的襟缝翼操纵手柄,其特征在于,还包括:
    力传感器,其感测施加在所述襟缝翼操纵手柄上的力以生成力信号;以及
    第三控制指令模块,其接收所述力信号并在所述力信号大于预设阈值时将有效离散信号发送给所述襟缝翼控制计算机以将襟缝翼伸出到复飞构型。
  8. 如权利要求7所述的襟缝翼操纵手柄,其特征在于,所述襟缝翼控 制计算机在接收到来自所述第一控制指令模块或所述第二控制指令模块的控制信号以及来自所述第三控制指令模块的有效离散信号两者时根据来自所述第三控制指令模块的所述有效离散信号进行操作。
  9. 如权利要求1所述的襟缝翼操纵手柄,其特征在于,所述第一位移传感器和所述第二位移传感器各自包括RVDT、电位计、或光电编码器中的任一者。
  10. 如权利要求9所述的襟缝翼操纵手柄,其特征在于,所述光电编码器包括光栅盘和光电检测装置,所述光电编码器输出三组方波脉冲A、B和Z相,其中A、B两组脉冲确定手柄运动方向,且Z相确定手柄位置。
  11. 一种操作襟缝翼操纵手柄的方法,其特征在于,包括:
    检测所述襟缝翼操纵手柄的位移并生成第一位移检测信号;
    检测所述襟缝翼操纵手柄的位移并生成第二位移检测信号;
    使用第一控制指令模块接收所述第一位移检测信号;以及
    使用第二控制指令模块接收所述第二位移检测信号,其中所述第一控制指令模块处于备用状态并且所述第二控制指令模块处于工作状态,所述第一控制指令模块将所述第一位移检测信号发送给所述第二控制指令模块,所述第二控制指令模块比较所述第一位移检测信号和所述第二位移检测信号并在所述第一位移检测信号和所述第二位移检测信号之间的差值在误差容限内的情况下将所述第一位移检测信号或所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作。
  12. 如权利要求11所述的方法,其特征在于,所述第二控制指令模块将所述第一位移检测信号和所述第二位移检测信号中的任一者、较大者或较小者作为控制信号发送给所述襟缝翼控制计算机以控制襟缝翼操作。
  13. 如权利要求11所述的方法,其特征在于,
    如果所述第一控制指令模块发生故障,则所述第一控制指令模块不再向所述第二控制指令模块发送所述第一位移检测信号,且所述第二控制指令模块将所述第二位移检测信号作为控制信号发送给襟缝翼控制计算机以控制襟缝翼操作;或者
    如果所述第二控制指令模块发生故障,则所述第二控制指令模块切换至停用状态,并且所述第一控制指令模块切换至工作状态,所述第一控制指令模块将所述第一位移检测信号作为控制信号发送给所述襟缝翼控制计算机以控制襟缝翼操作。
  14. 如权利要求13所述的方法,其特征在于,所述第一控制指令模块和所述第二控制指令模块分别校验所述第一位移检测信号和所述第二位移检测信号是否在预设取值范围中,
    其中所述第一控制指令模块发生故障包括所述第一控制指令模块校验所述第一位移检测信号失败,并且
    其中所述第二控制指令模块发生故障包括所述第二控制指令模块校验所述第二位移检测信号失败、或者所述第二控制指令模块确定所述第一位移检测信号和所述第二位移检测信号之间的差值不在误差容限内达预定次数。
  15. 如权利要求11所述的方法,其特征在于,还包括:
    所述第一控制指令模块和所述第二控制指令模块在处于工作状态时通过控制通道来控制所述襟缝翼操纵手柄的提起力和摩擦力。
  16. 如权利要求11至15中任一项所述的方法,其特征在于,还包括:
    感测施加在所述襟缝翼操纵手柄上的力以生成力信号;以及
    使用第三控制指令模块接收所述力信号并在所述力信号大于预设阈值时将有效离散信号发送给所述襟缝翼控制计算机以将襟缝翼伸出到复飞构型。
  17. 如权利要求16所述的方法,其特征在于,还包括:
    所述襟缝翼控制计算机在接收到来自所述第一控制指令模块或所述第二 控制指令模块的控制信号以及来自所述第三控制指令模块的有效离散信号两者时根据来自所述第三控制指令模块的所述有效离散信号进行操作。
PCT/CN2017/118560 2017-07-31 2017-12-26 一种襟缝翼操纵手柄 WO2019024401A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17919657.1A EP3643604B1 (en) 2017-07-31 2017-12-26 A flap slat control lever
US16/633,011 US11396361B2 (en) 2017-07-31 2017-12-26 Flap slat control lever

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710641540.1A CN107187582B (zh) 2017-07-31 2017-07-31 一种襟缝翼操纵手柄
CN201710641540.1 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019024401A1 true WO2019024401A1 (zh) 2019-02-07

Family

ID=59884685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118560 WO2019024401A1 (zh) 2017-07-31 2017-12-26 一种襟缝翼操纵手柄

Country Status (4)

Country Link
US (1) US11396361B2 (zh)
EP (1) EP3643604B1 (zh)
CN (1) CN107187582B (zh)
WO (1) WO2019024401A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107187582B (zh) 2017-07-31 2019-10-29 中国商用飞机有限责任公司 一种襟缝翼操纵手柄
US10216167B1 (en) * 2017-09-28 2019-02-26 Hamilton Sundstrand Corporation Position detection system for a slat flap lever control
CN118220561A (zh) * 2019-03-19 2024-06-21 深圳市道通智能航空技术股份有限公司 一种无人机控制装置和无人机
CN110979706B (zh) * 2019-10-11 2022-12-30 中国直升机设计研究所 一种双电压直升机电源***
CN110979639B (zh) * 2019-12-20 2021-11-19 中国商用飞机有限责任公司 飞机的襟/缝翼手柄装置
CN111017195B (zh) * 2019-12-24 2023-01-13 中国航空工业集团公司西安飞机设计研究所 一种襟缝翼非指令运动保护验证***及验证方法
CN113292016B (zh) * 2020-02-21 2023-06-16 林德(中国)叉车有限公司 一种操作手柄控制方法和控制输出装置
CN111319757B (zh) * 2020-03-20 2021-05-11 中国商用飞机有限责任公司 飞机高升力***
CN111532418B (zh) * 2020-05-20 2021-09-24 中国商用飞机有限责任公司 一种飞机高升力***
CN111976955B (zh) * 2020-07-24 2023-03-14 中国航空工业集团公司西安飞行自动控制研究所 民机电传飞控双驾驶杆盘的单侧卡阻故障处理方法和装置
FR3122163B1 (fr) 2021-04-21 2024-05-10 Dassault Aviat Systeme de commande d'un ensemble hypersustentateur d'un aeronef

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2374714A2 (en) * 2010-04-09 2011-10-12 Honeywell International, Inc. Distributed fly-by-wire system
CN103287574A (zh) * 2013-01-05 2013-09-11 中国航空工业集团公司西安飞机设计研究所 一种飞机增升装置控制方法
CN104527970A (zh) * 2014-12-04 2015-04-22 中国航空工业集团公司第六三一研究所 一种分布式大型飞机襟翼控制计算机***
WO2015145456A1 (en) * 2014-03-28 2015-10-01 Moog India Technology Centre Private Limited Angular position sensing device
CN106628123A (zh) * 2016-12-28 2017-05-10 中国航空工业集团公司西安飞机设计研究所 一种分布式飞机襟翼控制***
CN107187582A (zh) * 2017-07-31 2017-09-22 中国商用飞机有限责任公司 一种襟缝翼操纵手柄

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2425665A1 (fr) * 1978-05-10 1979-12-07 Boeing Co Appareil de controle-selection de signaux a possibilites de selection ponderee
JPS57169611A (en) * 1981-04-13 1982-10-19 Tokyo Optical Co Ltd Measuring device for angular displacement
US5493497A (en) * 1992-06-03 1996-02-20 The Boeing Company Multiaxis redundant fly-by-wire primary flight control system
US6804582B1 (en) * 2000-09-25 2004-10-12 Ucar Carbon Company Inc. Digital electrode observation
DE10241038A1 (de) * 2001-09-04 2003-03-20 Heidenhain Gmbh Dr Johannes Positionsmesseinrichtung und Verfahren zum Betrieb einer Positionsmesseinrichtung
DE10249967B4 (de) * 2002-10-26 2006-03-09 Airbus Deutschland Gmbh Vorrichtung zur Ansteuerung der Vorflügel und Landeklappen eines Flugzeuges
US7021587B1 (en) * 2004-01-07 2006-04-04 Trutrak Flight Systems, Inc Dual channel fail-safe system and method for adjusting aircraft trim
US7549605B2 (en) * 2005-06-27 2009-06-23 Honeywell International Inc. Electric flight control surface actuation system for aircraft flaps and slats
WO2008122820A2 (en) * 2007-04-05 2008-10-16 Bombardier Inc. Multi-axis serially redundant, single channel, multi-path fly-by-wire flight control system
CN101962074B (zh) * 2007-08-08 2013-08-14 莫戈公司 一种控制杆
DE102008034444B4 (de) * 2008-05-14 2013-09-05 Diehl Aerospace Gmbh Eingabesystem für eine Landeklappensteuerung eines Flugzeugs
FR2952447B1 (fr) * 2009-11-06 2012-08-17 Ratier Figeac Soc Dispositif de controle electronique de fonctionnement d'un organe de pilotage a surveillance croisee, dispositif de pilotage et aeronef
JP5391115B2 (ja) * 2010-03-18 2014-01-15 株式会社ミツトヨ 光電式エンコーダ
CN102249003B (zh) * 2011-05-17 2014-08-20 中国商用飞机有限责任公司 侧杆控制装置
CN104603706B (zh) * 2012-02-10 2019-09-27 默林科技股份有限公司 自动驾驶仪的控制装置和方法
FR2988689B1 (fr) * 2012-03-27 2014-04-25 Ratier Figeac Soc Dispositif de pilotage d'un vehicule, notamment d'aeronef
US9327826B2 (en) * 2012-10-25 2016-05-03 Textron Innovations Inc. Self-centering aircraft flap position command apparatus
US10913527B2 (en) * 2016-03-22 2021-02-09 The Boeing Company Method and apparatus for latent fault detection and management for fly-by-wire flight control systems
CN106767962A (zh) * 2016-12-16 2017-05-31 凌子龙 差分式光电编码器及位置判断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2374714A2 (en) * 2010-04-09 2011-10-12 Honeywell International, Inc. Distributed fly-by-wire system
CN103287574A (zh) * 2013-01-05 2013-09-11 中国航空工业集团公司西安飞机设计研究所 一种飞机增升装置控制方法
WO2015145456A1 (en) * 2014-03-28 2015-10-01 Moog India Technology Centre Private Limited Angular position sensing device
CN104527970A (zh) * 2014-12-04 2015-04-22 中国航空工业集团公司第六三一研究所 一种分布式大型飞机襟翼控制计算机***
CN106628123A (zh) * 2016-12-28 2017-05-10 中国航空工业集团公司西安飞机设计研究所 一种分布式飞机襟翼控制***
CN107187582A (zh) * 2017-07-31 2017-09-22 中国商用飞机有限责任公司 一种襟缝翼操纵手柄

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3643604A4 *

Also Published As

Publication number Publication date
CN107187582B (zh) 2019-10-29
EP3643604A1 (en) 2020-04-29
EP3643604A4 (en) 2021-03-10
EP3643604B1 (en) 2023-06-07
CN107187582A (zh) 2017-09-22
US20210155339A1 (en) 2021-05-27
US11396361B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2019024401A1 (zh) 一种襟缝翼操纵手柄
EP3223104B1 (en) Method and apparatus for latent fault detection and management for fly-by-wire flight control systems
US20120290153A1 (en) Flight control system with alternate control path
EP3398851B1 (en) Method to measure aircraft high-lift system brake response time
CN110733628B (zh) 飞机的高升力***
US20100100355A1 (en) In-flight detection of wing flap free wheeling skew
WO2021232787A1 (zh) 一种飞机高升力***
EP1966043B1 (en) Airfoil for an aircraft and aircraft
CN111372852B (zh) 用于致动高升力飞行控制表面的***和方法
CN105517893B (zh) 异常飞机响应监视器
JP2009523658A (ja) 分散型飛行制御システムのバックアップ制御のための装置及び方法
EP3075664B1 (en) Motionless flight control surface skew detection system
EP3239043B1 (en) System and method for controlling aircraft wing flap motion
CN111319757A (zh) 飞机高升力***
US7437231B2 (en) Brake system providing at least one enable signal to brake controllers and method of using same
US10322816B2 (en) Slat skew detection system and method
US20210078620A1 (en) Over-speed protection device
JPH0358958B2 (zh)
CN113401333B (zh) 飞机的高升力***及用于其的襟缝翼操纵指令确定方法
EP4112453A1 (en) Method and apparatus for conducting health monitoring during ground operation
CN111619791B (zh) 起落架***操作
EP4112452A1 (en) Method and apparatus for conducting health monitoring
BR102023017370A2 (pt) Metodologia de controle de backup temporário para inceptor de veículo
BR102021025498A2 (pt) Sistema de freio assimétrico integrado para uma aeronave, e, aeronave
CN111619791A (zh) 起落架***操作

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017919657

Country of ref document: EP

Effective date: 20200123

NENP Non-entry into the national phase

Ref country code: DE