WO2019009410A1 - 熱延鋼板及びその製造方法 - Google Patents

熱延鋼板及びその製造方法 Download PDF

Info

Publication number
WO2019009410A1
WO2019009410A1 PCT/JP2018/025687 JP2018025687W WO2019009410A1 WO 2019009410 A1 WO2019009410 A1 WO 2019009410A1 JP 2018025687 W JP2018025687 W JP 2018025687W WO 2019009410 A1 WO2019009410 A1 WO 2019009410A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
rolling
rolled steel
hot
Prior art date
Application number
PCT/JP2018/025687
Other languages
English (en)
French (fr)
Inventor
吉田 充
啓達 小嶋
佑樹 神澤
公平 神谷
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to BR112019027154-6A priority Critical patent/BR112019027154A2/pt
Priority to KR1020197038117A priority patent/KR102269845B1/ko
Priority to JP2018558449A priority patent/JP6465266B1/ja
Priority to CN201880042796.3A priority patent/CN110832098B/zh
Priority to US16/624,771 priority patent/US11313009B2/en
Priority to EP18828857.5A priority patent/EP3650569B1/en
Publication of WO2019009410A1 publication Critical patent/WO2019009410A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a hot rolled steel sheet and a method of manufacturing the same. More particularly, the present invention relates to a hot-rolled steel sheet having excellent workability, which is suitable as a material used for automotive, home appliance, machine structure, and construction applications, and a method of manufacturing the same.
  • a hot-rolled steel sheet having excellent workability, which is suitable as a material used for automotive, home appliance, machine structure, and construction applications, and a method of manufacturing the same.
  • Steel plates used as materials for structural members of transportation machines including automobiles and various industrial machines include various types such as strength, workability such as elongation and stretch flangeability, low temperature toughness, and uniformity of the characteristics. Characteristics are required.
  • steel plates used for parts such as inner plate members, structural members, and foot members of automobiles have stretch flangeability, burring workability, ductility, fatigue resistance, impact resistance, corrosion resistance, etc. according to their applications. Desired. It is requested
  • the steel plate used for the member as described above needs to have a characteristic that it is difficult to be destroyed even if it receives an impact due to a collision or the like after it is formed and attached to a car as a component of the member.
  • the low temperature toughness is a characteristic defined by vTrs (Charpy fracture surface transition temperature) or the like. Not only excellent workability, but also low temperature toughness is required as a very important characteristic for thin steel plates used for parts of the above members.
  • DP steel Dual Phase steel plate
  • voids are generated from the interface between the ferrite phase and the martensitic phase, which have remarkably different hardness, and cracking occurs, so the hole expansibility may be poor.
  • Patent Document 1 by setting the area ratio to be 90% or more of bainitic ferrite, 5% or less of martensite, and 5% or less of bainite, the elongation and the hole expansibility (stretch flangeability) are improved.
  • a high strength hot rolled steel sheet having a tensile strength of 980 MPa or more has been proposed.
  • sufficient elongation may not be obtained because it is mainly made of bainitic ferrite.
  • Patent Document 2 after making bainite 90% or more in area ratio, the remaining portion is made of one or two or more matrix structures selected from martensite, austenite, and ferrite, and cementite dispersed in the structure
  • Patent Document 3 the ferrite fraction is 50 to 95%, the fraction of the hard second phase consisting of martensite and retained austenite is 5 to 50%, and the interrelationship of the content of the carbide-forming element, A hot rolled steel sheet excellent in fatigue characteristics has been proposed in which the average particle diameter of precipitates and the fraction of precipitates are defined after setting the relationship between the carbide-forming element and the C content to a predetermined range.
  • Patent Document 3 since the strength is secured by precipitation hardening of fine carbides mainly using soft ferrite, sufficient low temperature toughness may not be obtained.
  • Patent Document 4 martensite is 20 to 60%, ferrite is 40% or more, and the total area ratio of the martensite and the ferrite is 90% or more, and the average grain size of the martensite, the martensite, There has been proposed a high strength hot rolled steel sheet having a tensile strength of 980 MPa or more, in which a ratio of the hardness of the site to the hardness of the ferrite is in a predetermined range.
  • the time required at the end of finish rolling is short, texture may develop and sufficient elongation and stretch flangeability may not be obtained.
  • the present invention has been made in view of the above-mentioned problems, and a hot rolled steel sheet which is high in strength and excellent in elongation, stretch flangeability and low temperature toughness, and a manufacturing method capable of stably producing the hot rolled steel sheet. Intended to be provided.
  • the present inventors have high strength and elongation, stretch flangeability and low temperature toughness by controlling the texture and microstructure of the hot rolled steel sheet by optimizing the chemical composition and manufacturing conditions of the hot rolled steel sheet. It has been found that it is possible to produce an excellent hot rolled steel sheet.
  • the gist of the present invention is as follows.
  • a hot rolled steel sheet according to an aspect of the present invention is In mass%, C: 0.02 to 0.20%, Si: 0.005 to 2.00%, Mn: 1.30 to 2.40%, P: 0. 100% or less, S: 0.0100% or less, sol.
  • Al 0.001 to 1.00%, Ti: 0.030 to 0.200%, N: 0.0010-0.100%, Nb: 0 to 0.100%, V: 0 to 0.50%, Mo: 0 to 0.50%, Cu: 0 to 1.00%, Ni: 0 to 1.00%, Cr: 0 to 2.00%, B: 0 to 0.0100%, Ca: 0 to 0.0100%, Mg: 0 to 0.0100% and REM: 0 to 0.0100% Containing the rest, with the balance consisting of Fe and impurities,
  • the area ratio of ferrite is 10 to 55% and the total area ratio of bainite and martensite is 45 to 90% at a 1/4 depth position of the plate thickness from the surface, and the ferrite, the bainite and the martensite Total area ratio of 90% or more, average grain size is 12.0 ⁇ m or less, In the texture measured at the center of thickness, the maximum of ⁇ 100 ⁇ ⁇ 011>, ⁇ 211 ⁇ ⁇ 011
  • the hot rolled steel sheet according to the above [1] is The chemical composition is, in mass%, Nb: 0.001 to 0.100%, V: 0.005 to 0.50%, Mo: 0.001 to 0.50%, Cu: 0.02 to 1.00%, Ni: 0.02 to 1.00%, Cr: 0.02 to 2.00% and B: 0.0001 to 0.0100% It may contain one or more selected from the group consisting of
  • the hot rolled steel sheet according to any one of the above [1] to [3] is The absolute value
  • ⁇ r (r 0 + r 90 ⁇ 2 ⁇ r 45 ) / 2 R 0 : r value in the rolling direction
  • r 90 r value in the rolling orthogonal direction
  • r 45 r value in the 45 ° direction with respect to the rolling direction.
  • the r value means the Lankford value.
  • a slab having the above-mentioned chemical composition according to any one of the above [1] to [3] or A method for producing a hot rolled steel sheet according to another aspect of the present invention comprising producing a hot rolled steel sheet by subjecting a billet to multipass hot rolling to produce a hot rolled steel sheet,
  • the heating temperature in the multipass hot rolling is set to 1150 to 1350 ° C.
  • the finishing temperature is expressed as FT in ° C.
  • the total rolling reduction between FT + 50 ° C. and FT + 150 ° C. is 50% or more, the total rolling reduction between FT and FT + 50 ° C.
  • FT + 50 ° C The time required for rolling between FT + 50 ° C is 0.5 to 10.0 seconds, Rolling in two or more passes in respective temperature ranges of above FT + 50 ° C to above FT + 150 ° C and above FT to above FT + 50 ° C, After finishing the finish rolling with the FT set to Ar 3 or more determined by the equation (1) and TR or more determined by the equation (2) and 1100 ° C.
  • a method for producing a hot-rolled steel sheet comprising cooling at an average cooling rate of 20 ° C./sec or more to a cooling stop temperature of less than Ms determined by the equation (3) from 600 ° C.
  • Ar 3 (° C.) 901-325 ⁇ [C] + 33 ⁇ [Si] -92 ⁇ [Mn] + 287 ⁇ [P] + 40 ⁇ [Al]
  • TR (° C.) 800 + 700 ⁇ [Ti] + 1000 ⁇ [Nb]
  • Ms (° C.) 561-474 ⁇ [C] ⁇ 33 ⁇ [Mn] ⁇ 17 ⁇ [Ni] ⁇ 21 ⁇ [Mo] (3)
  • each element symbol in the above formulas (1) to (3) indicates the content by mass% of each element.
  • an average cooling rate from the Ms to the cooling stop temperature less than the Ms may be 80 ° C./s or more.
  • the present invention it is possible to provide a hot rolled steel sheet which is high in strength and excellent in elongation, stretch flangeability and low temperature toughness, and a manufacturing method capable of stably manufacturing the hot rolled steel sheet.
  • the heat-rolled steel plate according to the present invention is used as a material of parts such as an inner plate member, a structural member and a foot member of an automobile, it is easy to process into a part shape and withstands use in extremely cold regions Industrial contribution is extremely remarkable.
  • the heat-rolled steel plate (it may only be described as a steel plate hereafter) which concerns on this embodiment, and its manufacturing method are demonstrated in detail below.
  • the percentages relating to the chemical composition of steel are all mass%.
  • C ⁇ Chemical composition of steel> (C: 0.02 to 0.20%)
  • C has the effect of enhancing the strength of the steel by forming hard phases such as martensite and bainite and Ti carbide. If the C content is less than 0.02%, it is difficult to sufficiently exert the above-mentioned effect. Therefore, the C content is 0.02% or more, preferably 0.04% or more. On the other hand, if the C content is more than 0.20%, the stretch flangeability and low temperature toughness of the steel sheet deteriorate significantly. In addition, ferrite transformation after hot rolling is significantly delayed, and it becomes difficult to obtain a desired amount of ferrite. Furthermore, the deterioration of weldability becomes remarkable. Therefore, the C content is 0.20% or less. The C content is preferably 0.15% or less, more preferably 0.12% or less, and still more preferably 0.10% or less.
  • Si (Si: 0.005 to 2.00%) Si promotes ferrite transformation and suppresses cementite precipitation. Moreover, Si also has the effect
  • the Si content is preferably 0.40% or more, more preferably 0.80% or more.
  • the Si content is 2.00% or less.
  • the Si content is preferably 1.50% or less, more preferably 1.30% or less.
  • Mn has the effect of enhancing the strength of the steel by enhancing solid solution strengthening and hardenability. If the Mn content is less than 1.30%, it is difficult to obtain the strength of a steel plate of 950 MPa or more. Therefore, the Mn content is 1.30% or more. The Mn content is preferably 1.50% or more. On the other hand, if the Mn content is more than 2.40%, it is difficult to obtain a desired amount of ferrite because the ferrite transformation in the cooling process after hot rolling is excessively delayed. Further, by the hardening of martensite and bainite, a crack is easily generated in the vicinity of the boundary between martensite and bainite and soft ferrite, whereby the stretch flangeability and toughness of the steel sheet are lowered.
  • the inventors of the present invention found that when a large amount of Mn is contained, the stretch flangeability may be lowered with an increase in the in-plane anisotropy of the r value of the steel sheet. The reason for this is not clear, but when a large amount of Mn is contained, a large amount of MnS precipitates, and recrystallization during hot rolling due to Mn segregation and the ferrite transformation after finish rolling locally It is presumed that the cause is the occurrence of From the above, in order to stably manufacture a hot rolled steel sheet excellent in stretch flangeability while obtaining a desired amount of ferrite, the Mn content is made 2.40% or less. The Mn content is preferably 2.10% or less, more preferably 2.00% or less, and still more preferably 1.90% or less.
  • P 0. 100% or less
  • P is an element contained in the steel as an impurity, and has an effect of reducing the stretch flangeability and low temperature toughness of the hot rolled steel sheet. Therefore, the P content is 0.100% or less.
  • the P content is preferably 0.060% or less, more preferably 0.040% or less, and still more preferably 0.020% or less.
  • P is mixed as an impurity from the raw material, but the lower limit thereof need not be particularly limited, and in order to secure stretch flangeability and low temperature toughness, the P content is preferably lower. However, if the P content is excessively reduced, the manufacturing cost will increase. From the viewpoint of production cost, the lower limit of the P content is preferably 0.001%, more preferably 0.005%.
  • S is an element contained as an impurity, and has the effect
  • the S content is preferably 0.0080% or less, more preferably 0.0060% or less, and still more preferably 0.0030% or less.
  • S is mixed as an impurity from the raw material, there is no need to particularly limit the lower limit thereof, and from the viewpoint of securing the processability, the content of S is preferably lower. However, if the S content is excessively reduced, the manufacturing cost will increase. From the viewpoint of the production cost, the lower limit of the S content is preferably 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
  • Al has the function of cleaning the steel by deoxidation in the steel making stage and promoting ferrite transformation. sol. If the Al content is less than 0.001%, it will be difficult to exert the above-mentioned action. Therefore, sol.
  • the Al content is 0.001% or more. sol.
  • the Al content is preferably 0.01% or more, more preferably 0.02% or more. Meanwhile, sol. Even if the Al content exceeds 1.00%, the effect by the above-mentioned action is saturated, and the cost increases. Therefore, sol.
  • the Al content is 1.00% or less. sol.
  • the Al content is preferably 0.80% or less, more preferably 0.60% or less.
  • sol. Al means acid-soluble Al.
  • Ti 0.030 to 0.200%
  • Ti has the function of forming Ti nitride to refine the structure.
  • Ti has a function of precipitating carbides to strengthen the steel. If the Ti content is less than 0.030%, the above-mentioned action becomes difficult to exhibit. Therefore, the Ti content is 0.030% or more.
  • the Ti content is preferably 0.040% or more, more preferably 0.060% or more.
  • Ti is excessively contained, coarse nitrides and carbides are generated, and the stretch flangeability and toughness of the steel sheet are lowered.
  • the Ti content is 0.200% or less.
  • the Ti content is preferably 0.160% or less, more preferably 0.140% or less.
  • N forms Ti nitride to suppress coarsening of austenite during slab reheating and during hot rolling, and has the function of refining the microstructure.
  • the N content is preferably 0.0015% or more, more preferably 0.0020% or more.
  • the N content is made 0.0100% or less.
  • the N content is preferably 0.0060% or less.
  • Nb is an arbitrary element. Nb suppresses coarsening of the crystal grain size of the hot-rolled steel plate, and also has the effect of refining the ferrite grain size and enhancing the strength of the hot-rolled steel sheet by precipitation strengthening of NbC. In order to obtain these effects, the Nb content is preferably 0.001% or more. The Nb content is more preferably 0.005% or more. On the other hand, when the Nb content exceeds 0.100%, the above-mentioned effects may be saturated and an increase in rolling load of hot finish rolling may be caused. Therefore, the Nb content is preferably 0.100% or less. The Nb content is preferably 0.060% or less, more preferably 0.030% or less.
  • V (V: 0 to 0.50%)
  • V is an arbitrary element.
  • V forms a solid solution in the steel to increase the strength of the hot-rolled steel sheet, and also has the effect of precipitating in the steel as carbides, nitrides, carbonitrides or the like to strengthen precipitation.
  • the V content is preferably 0.005% or more.
  • the V content is more preferably 0.01% or more.
  • the V content is preferably 0.50% or less.
  • the V content is more preferably 0.30% or less.
  • Mo is an arbitrary element. Mo improves the hardenability of the steel and has the effect of forming carbides and carbonitrides to increase the strength of the hot rolled steel sheet. In order to obtain these effects, the Mo content is preferably 0.001% or more. The Mo content is more preferably 0.005% or more. On the other hand, if the Mo content exceeds 0.50%, the susceptibility to cracking of the slab may increase. Therefore, the content of Mo is preferably 0.50% or less. The Mo content is more preferably 0.30% or less.
  • Cu (Cu: 0 to 1.00%)
  • Cu is an optional element.
  • Cu has an effect of improving the toughness of the steel and an effect of enhancing the strength.
  • the Cu content is preferably 0.02% or more.
  • the Cu content is more preferably 0.08% or more.
  • the Cu content is preferably 1.00% or less.
  • the Cu content is more preferably 0.50% or less, still more preferably 0.30% or less.
  • Ni is an arbitrary element. Ni has an effect of improving the toughness of the steel and an effect of enhancing the strength. In order to obtain these effects, the Ni content is preferably 0.02% or more. The Ni content is more preferably 0.10% or more. On the other hand, if Ni is excessively contained, the alloy cost may be increased, and the toughness of the weld heat affected zone of the steel sheet may be deteriorated. Therefore, the Ni content is preferably 1.00% or less. The Ni content is more preferably 0.50% or less, still more preferably 0.30% or less.
  • Cr is an optional element. Cr has the effect of promoting the formation of martensite or the like by enhancing the hardenability of the steel. In order to obtain this effect, the Cr content is preferably 0.02% or more. The Cr content is more preferably 0.05% or more. On the other hand, when Cr is excessively contained, ferrite transformation in the cooling process after hot rolling may be excessively delayed, and it may be difficult to obtain a desired amount of ferrite. Therefore, the Cr content is preferably 2.00% or less. The Cr content is more preferably 1.50% or less, still more preferably 1.00% or less, and particularly preferably 0.50% or less.
  • B (B: 0 to 0.0100%) B is an optional element.
  • B has the effect of improving the toughness of the steel as well as increasing the grain boundary strength.
  • B has an effect of causing precipitation strengthening of the steel by nitride.
  • the B content is preferably made 0.0001% or more.
  • the B content is more preferably 0.0003% or more.
  • the B content is preferably 0.0100% or less.
  • the B content is more preferably 0.0050% or less, still more preferably 0.0030% or less, and particularly preferably 0.0010% or less.
  • Ca is an optional element.
  • Ca has the effect of dispersing many fine oxides in the molten steel and refining the metal structure of the steel sheet. Further, Ca has the effect of improving the stretch flangeability of the hot rolled steel sheet by fixing S in the molten steel as spherical CaS to suppress the formation of drawn inclusions such as MnS.
  • the Ca content is preferably made 0.0002% or more.
  • the Ca content is more preferably 0.0005% or more.
  • the Ca content is preferably 0.0100% or less.
  • the Ca content is more preferably 0.0050% or less, still more preferably 0.0030% or less.
  • Mg is an optional element. Similar to Ca, Mg forms oxides and sulfides in the molten steel, suppresses the formation of coarse MnS, disperses many fine oxides, and has the effect of refining the structure of the steel sheet. In order to obtain these effects, it is preferable to set the Mg content to 0.0002% or more. The Mg content is more preferably 0.0005% or more. On the other hand, when the Mg content exceeds 0.0100%, the oxides in the steel increase, which adversely affects the toughness of the steel sheet. Therefore, the Mg content is preferably 0.0100% or less. The Mg content is more preferably 0.0050% or less, still more preferably 0.0030% or less.
  • REM 0 to 0.0100%
  • REM is an arbitrary element. Like REM, REM also has the effect of forming oxides and sulfides in molten steel, suppressing the formation of coarse MnS, dispersing many fine oxides, and refining the structure of the steel sheet. When obtaining these effects, it is preferable to make REM content into 0.0002% or more.
  • the REM content is more preferably 0.0005% or more.
  • the REM content exceeds 0.0100%, the oxides in the steel increase, which may adversely affect the toughness of the steel sheet. Therefore, the REM content is preferably 0.0100% or less.
  • the REM content is more preferably at most 0.0050%, still more preferably at most 0.0030%.
  • REM rare earth
  • REM refers to a total of 17 elements consisting of Sc, Y and a lanthanoid. In the present embodiment, the content of REM refers to the total content of these elements.
  • the chemical composition of the hot rolled steel sheet according to the present embodiment is composed of Fe and impurities in addition to the above elements.
  • impurity means a component contained in the raw material or a component mixed in the process of production, and is a component which is not intentionally contained in steel.
  • the area ratio of ferrite the total area ratio of "bainite and martensite", “ferrite, bainite and martensite” at the depth position of 1/4 of the plate thickness from the surface of the steel plate Define the range of the total area ratio of, and the average grain size.
  • the area ratio and crystal grain size of ferrite, bainite and martensite it is the surface of the steel sheet that defines the steel structure at a depth position of 1/4 of the thickness from the surface of the steel sheet And the center position of the thickness direction, except for the texture, because the steel structure at that position represents the steel structure of the heat-rolled steel plate (shows the average steel structure of the entire hot-rolled steel plate) is there.
  • ferrite includes, in addition to polygonal ferrite, acicular ferrite and pseudo-polygonal ferrite, and does not include ferrite forming a pearlite structure or bainitic ferrite forming a bainite structure.
  • bainitic ferrite is treated as bainite. The reasons for defining each scope are described below.
  • the soft ferrite phase is the structure necessary to obtain good ductility of the steel sheet. If the area ratio of ferrite is less than 10%, the elongation of the steel sheet is reduced. Therefore, the area ratio of ferrite is 10% or more. The area ratio of ferrite is preferably 15% or more. On the other hand, when ferrite is excessively precipitated, it is difficult to obtain a tensile strength of 950 MPa or more in the chemical composition of the steel plate according to the present embodiment. Therefore, the area ratio of ferrite is 55% or less. The area ratio of ferrite is preferably less than 40%, more preferably 38% or less, and particularly preferably 36% or less.
  • Total area ratio of bainite and martensite 45 to 90%
  • Hard bainite and martensite are structures necessary to obtain high strength. If the total area ratio of bainite and martensite is less than 45%, it is difficult to obtain a tensile strength of 950 MPa or more in the chemical composition of the steel plate according to the present embodiment. Therefore, the total area ratio of bainite and martensite is 45% or more.
  • the total area ratio of bainite and martensite is preferably more than 60%, more preferably 62% or more, and still more preferably 64% or more.
  • martensite also includes auto-tempered tempered martensite
  • bainite includes bainitic ferrite.
  • the total area ratio of bainite and martensite exceeds 90%, the area ratio of ferrite is insufficient, and the workability of the steel plate can not be obtained, and the elongation is reduced. Therefore, the total area ratio of bainite and martensite is 90% or less.
  • the total area ratio of bainite and martensite is preferably 85% or less.
  • Total area ratio of ferrite, bainite and martensite 90% or more (other structures: 10% or less)
  • Other structures which have any structure other than ferrite, bainite and martensite include retained austenite, pearlite and intergranular cementite.
  • the area ratio of other tissues is 10% or less.
  • the area ratio of other tissues is preferably 8% or less, more preferably 5% or less.
  • the area ratio of other tissues may be 0%.
  • the total area ratio of ferrite, martensite and bainite is 90% or more, preferably 92% or more, more preferably 95% or more, and may be 100%.
  • Retained austenite in other structures significantly deteriorates the stretch flangeability of the steel sheet by transforming to very hard martensite by pre-processing such as punching. Therefore, among other structures, it is preferable to set the area ratio of retained austenite to 3% or less.
  • the area ratio of retained austenite is more preferably 2% or less, still more preferably 1% or less, and particularly preferably 0%.
  • the average crystal grain size is 12.0 ⁇ m or less.
  • the average crystal grain size is preferably 10.0 ⁇ m or less, more preferably 7.0 ⁇ m or less. The lower the average crystal grain size is, the more preferable it is. However, since it is technically difficult to make the average grain size smaller than 1.0 ⁇ m technically in ordinary hot rolling, it is generally 1.0 ⁇ m or more.
  • the average grain size means that the crystal structure is bcc, that is, in a ferrite, bainite, martensite and pearlite crystal grain difference region of 15 ° or more and a circle equivalent diameter of 0.3 ⁇ m or more. It means the average of the grain size defined as and the grain size of retained austenite and grain boundary cementite is not included in the average grain size.
  • the average grain size and the area ratio of each structure are thermal field emission with respect to the structure at a 1/4 depth position of the plate thickness from the surface of the steel plate in the steel plate cross section parallel to the rolling direction and the plate thickness direction. It is determined by scanning electron microscope (SEM) observation and EBSD (Electron Back Scattering Diffraction) analysis using an EBSD analyzer composed of a scanning electron microscope and an EBSD detector.
  • SEM scanning electron microscope
  • EBSD Electro Back Scattering Diffraction
  • the crystal orientation information is measured by distinguishing fcc and bcc at intervals of 0.2 ⁇ m in the region of 200 ⁇ m in the rolling direction and 100 ⁇ m in the plate thickness direction centered on the 1 ⁇ 4 depth position of the plate thickness.
  • a domain with a crystal orientation difference of 15 ° or more and a circle equivalent diameter of 0.3 ⁇ m or more is defined as a crystal grain using the attached software (“OIM Analysis (registered trademark)” manufactured by AMETEK) of the analyzer, The area ratio of austenite) is determined, and the average grain size of bcc is determined by the method using the following [Equation 1].
  • the area ratio of bainite and martensite is obtained by subtracting the area ratio of fcc (remained austenite) obtained by EBSD analysis from the area ratio of "bainite, martensite (and retained austenite)" obtained by SEM observation.
  • Equation 1 For the average crystal grain size of bcc, a value calculated by the equation shown in the following [Equation 1] is determined.
  • D is the average grain size
  • N is the number of grains contained in the evaluation area of the average grain size
  • di Represents the equivalent circle diameter of the i-th crystal grain.
  • Boundaries having a crystal orientation difference of 15 ° or more are mainly ferrite grain boundaries, block boundaries of martensite and bainite.
  • the grain size may be calculated even for ferrite grains having a crystal orientation difference of less than 15 °, and furthermore, blocks of martensite and bainite are not calculated. . Therefore, the average grain size in the present embodiment adopts a value obtained by EBSD analysis.
  • the heat-rolled steel plate according to the present embodiment has ⁇ 100 ⁇ ⁇ 011>, ⁇ 211 ⁇ ⁇ 011>, ⁇ 311 ⁇ ⁇ 011>, ⁇ 110 ⁇ ⁇ 011> and ⁇ 332 ⁇ ⁇ in the thickness center portion of the steel plate.
  • 113> Define the maximum pole density of orientation groups and the sum of pole densities of ⁇ 211 ⁇ ⁇ 011> and ⁇ 332 ⁇ ⁇ 113>.
  • the central portion of thickness refers to a range of approximately 1/10 of the thickness in the front and back directions of the steel sheet from the thickness center position (a half depth of the thickness from the surface of the steel plate).
  • the plate thickness central portion means a range of about 100 ⁇ m in the front direction and the back direction with the plate thickness center position as a boundary.
  • the reason for defining the texture at the center of thickness is that the texture at the center of thickness and the mechanical characteristics are well correlated. Although the reason for this is not clear, the present inventors speculate as follows. In the heat-rolled steel plate, due to the friction between the roll and the steel plate at the time of rolling, shear deformation occurs in the opposite direction on the front and back of the steel plate, and plane strain deformation occurs in the central portion of the plate thickness.
  • the texture of the hot-rolled steel sheet changes in the thickness direction along with this deformation, and the direction of shear deformation is reversed on the front and back of the steel sheet, so that the orientation of the texture also develops on the front and back. Therefore, as a result of offsetting the influence of the texture on the mechanical characteristics on the front and back, the texture of the central portion of the plate thickness and the mechanical characteristics correspond well.
  • orientation groups (main orientation groups) at the center of the plate thickness Density: 8.0 or less)
  • main orientations that develop in the texture of the central portion of thickness of hot-rolled steel sheet ⁇ 100 ⁇ ⁇ 011>, ⁇ 211 ⁇ ⁇ 011>, ⁇ 311 ⁇ ⁇ 011>, ⁇ 110 ⁇ ⁇ 011> and ⁇ 332 ⁇ ⁇ 113 There is>.
  • the in-plane anisotropy of various mechanical properties such as tensile strength, yield strength, elongation, r value, etc. of the hot-rolled steel sheet becomes high, and all over the circumferential direction The deformation of the stretch flangeability is particularly significantly reduced. Therefore, in the present embodiment, it is important that the texture be more random by suppressing the development of all these orientation groups.
  • the maximum pole density of the azimuth group is set to 8.0 or less.
  • the maximum pole density of the orientation group is preferably 7.0 or less, more preferably 6.0 or less.
  • the maximum pole density of the orientation group is more preferably 1.0, because it is 1.0 in the case of no texture.
  • the pole density can be obtained from crystal orientation information by EBSD analysis, but is synonymous with X-ray random intensity ratio.
  • ⁇ hkl ⁇ represents a crystal plane parallel to the rolling surface
  • ⁇ uvw> represents a crystal direction parallel to the rolling direction. That is, ⁇ hkl ⁇ ⁇ uvw> indicates a crystal in which ⁇ hkl ⁇ is directed in the plate surface normal direction and ⁇ uvw> is directed in the rolling direction.
  • the pole density of each crystal orientation in the central portion of the plate thickness is determined by EBSD analysis using an apparatus combining a scanning electron microscope and an EBSD analyzer and OIM Analysis (registered trademark) manufactured by AMETEK.
  • the hot rolled steel sheet according to the present embodiment has high strength and excellent low temperature toughness, elongation and stretch flangeability by control of the steel structure and texture.
  • the tensile strength (TS) of the heat-rolled steel plate according to the present embodiment is 950 MPa or more.
  • the tensile strength is preferably 980 MPa or more.
  • the elongation of the heat-rolled steel sheet is evaluated by the total elongation at break (El) specified in JIS Z 2241: 2011, and it is preferable that TS ⁇ El, which is an index of balance between strength and elongation, be 1400 MPa ⁇ % or more More preferably, it is 15000 MPa ⁇ % or more.
  • the stretch flangeability of the heat-rolled steel sheet is evaluated by the hole expansion ratio ( ⁇ ) defined in JIS Z 2256: 2010 in addition to
  • the low temperature toughness of the hot rolled steel sheet is preferably such that the fracture transition temperature (vTrs) in the Charpy impact test defined in JIS Z 2242: 2005 is -40 ° C. or less.
  • absolute value of ⁇ r
  • of the r value is preferably 0.40 or less, more preferably 0.35 or less, still more preferably 0.30 or less, particularly preferably 0.25 or less .
  • ⁇ r is represented by (r 0 + r 90 ⁇ 2 ⁇ r 45 ) / 2, r 0 : r value in the rolling direction, r 90 : r value in the rolling orthogonal direction, r 45 : 45 ° direction with respect to the rolling direction
  • r value of Also, r value means Lankford value.
  • multipass hot rolling is performed on a slab having the above-described chemical composition to produce a hot rolled steel sheet.
  • the slabs to be subjected to hot rolling may be those obtained by continuous casting or cast / slab rolling, but may be those to which hot working or cold working is added.
  • Multipass hot rolling can be performed using a lever mill or a tandem mill, but from the viewpoint of industrial productivity, it is preferable to use a tandem mill at least for the final few stages.
  • Heating temperature in hot rolling 1150 to 1350 ° C
  • the temperature of the slab or billet to be subjected to hot rolling is set to 1150 to 1350 ° C.
  • the temperature of the slab or billet to be subjected to hot rolling may be in the above temperature range, and the steel ingot or billet having a temperature of less than 1150 ° C. is charged into a heating furnace and heated to the above temperature zone
  • the slab obtained by continuous casting or a steel piece obtained by slabbing may be subjected to hot rolling without being subjected to heat treatment while maintaining a high temperature state of 1150 ° C. or higher.
  • Total rolling reduction between FT + 50 ° C and FT + 150 ° C 50% or more
  • the total rolling reduction between FT + 50 ° C. and FT + 150 ° C. is 50% or more.
  • the total rolling reduction between FT + 50 ° C. and FT + 150 ° C. is preferably as high as possible, but 90% or less may be 90% or less because it is about 90% industrially.
  • Total reduction ratio between FT and FT + 50 ° C: 40 to 80% (Time required for rolling between FT and FT + 50 ° C: 0.5 to 10 seconds)
  • the processability and toughness are excellent in combination with the cooling condition after hot rolling described later.
  • a hot rolled steel sheet can be obtained. If the total rolling reduction between FT and FT + 50 ° C is less than 40%, the structure after transformation becomes coarse, recrystallization between rolling passes and after rolling finish is delayed, and the amount of deformation inside the steel sheet becomes uneven, transformation Later development of a specific orientation reduces the stretch flangeability of the steel sheet.
  • the total rolling reduction between FT and FT + 50 ° C. is 40% or more.
  • the total rolling reduction in the above temperature range exceeds 80%, the texture significantly develops even in recrystallization, so the stretch flangeability of the steel sheet is lowered. Therefore, the total rolling reduction between FT and FT + 50 ° C. is 80% or less.
  • the time required for rolling in the above temperature range is 10.0 seconds or less.
  • it is 8.0 seconds or less, more preferably 6.0 seconds or less.
  • the maximum rolling reduction per pass between FT + 50 ° C. and FT + 150 ° C. is preferably 60% or less, more preferably 55% or less.
  • the maximum of the rolling reduction per pass between FT and FT + 50 ° C. is preferably 50% or less, more preferably 45% or less, still more preferably 40% or less, and most preferably 35% or less.
  • the total rolling reduction is the total rolling reduction in this temperature range (the inlet thickness before the first pass in rolling in this temperature range, based on the thickness of the entrance plate before the first pass in the predetermined temperature range). It is a percentage of the difference of the exit board thickness after the last pass in rolling in this temperature range.
  • FT When FT is less than Ar 3 , ferrite transformation proceeds during finish rolling, and processed ferrite is formed, whereby the elongation and stretch flangeability of the steel sheet are reduced.
  • austenite after hot rolling and before cooling becomes significantly flat, and in the final product hot rolled steel sheet, it becomes a structure elongated in the rolling direction and the plastic anisotropy becomes large. And stretch flangeability decreases.
  • FT is preferably TR + 20 ° C. or more, more preferably TR + 40 ° C. or more.
  • FT is set to 1100 ° C. or less.
  • it is 1080 degrees C or less, More preferably, it is 1060 degrees C or less.
  • the temperature in finish rolling points out the surface temperature of steel materials, and can be measured by a radiation thermometer etc.
  • the rolling pass between the predetermined temperature range and after the finish rolling can be obtained. Recrystallization of austenite is promoted, the ferrite transformation promoting effect by processed austenite is weakened, and the area ratio of ferrite can be controlled to 55% or less. Furthermore, since the austenite grain size can be refined, it is possible to obtain a fine grain size and, at the same time, to accelerate the recrystallization of austenite, it is possible to promote the reduction of the pole density.
  • time to start water cooling after finish rolling is completed: within 3.0 seconds
  • water cooling is started within 3.0 seconds in order to refine the structure by utilizing the strain accumulated by rolling.
  • the water cooling may be performed in multiple stages. After completion of finish rolling, if the time until the start of water cooling exceeds 3.0 seconds, strain in austenite recovers, and it becomes difficult to obtain a desired structure.
  • the time to start water cooling is preferably within 2.0 seconds, more preferably within 1.0 seconds, and still more preferably within 0.5 seconds.
  • the time until the start of water cooling after finish rolling is preferably 0.05 seconds or more in order to recrystallize austenite after finish rolling.
  • the average cooling rate at the time of cooling the hot rolled steel sheet after completion of finish rolling from the temperature at which finish rolling is completed (finishing temperature: FT (° C.)) to 750 ° C. is important process conditions to obtain the desired structure is there.
  • time until water cooling start is included as time.
  • the average cooling rate in the above temperature range is 20 ° C./sec or more. Preferably it is 30 degrees C / sec or more, More preferably, it is 40 degrees C / sec or more.
  • the upper limit is not particularly limited, but is preferably 300 ° C./second or less from the viewpoint of suppressing plate warpage due to thermal strain.
  • the structure can be further refined, and the low temperature toughness of the steel sheet is further improved.
  • water cooling is started within 3.0 seconds, and in addition to setting the average cooling rate of FT to 750 ° C to 20 ° C / sec or more, FT to FT-40 ° C
  • the average cooling rate is preferably 100 ° C./second or more. In this case, it does not prevent the water cooling from being performed in a step aiming at quenching in a temperature range of FT to FT-40 ° C. and a plurality of cooling steps performing subsequent cooling.
  • the average cooling rate of FT to FT-40 ° C. is preferably 120 ° C./sec or more, more preferably 150 ° C./sec or more.
  • the upper limit is not particularly limited, but is preferably 1000 ° C./second or less from the viewpoint of suppressing temperature variation in the steel sheet.
  • the quenching in the high temperature range after the finish rolling described above may be performed not only after the final stand for finish rolling but also between the rolling stands. That is, rolling may not be performed on the stand after rapid cooling, or rolling with a rolling reduction of 8% or less may be performed for the purpose of shape correction, cooling control, and the like. In this case, the quenching after quenching is not included in the finish rolling process.
  • the hot rolled steel sheet after finish rolling reaches a temperature range of 750 to 600 ° C.
  • transformation of austenite to ferrite becomes active. Therefore, the heat-rolled steel plate is allowed to stay for 5 seconds or more in the above temperature range to promote the transformation from austenite to ferrite to obtain a desired ferrite area ratio.
  • the residence time in the above temperature range is less than 5 seconds, the transformation from austenite to ferrite does not proceed sufficiently, making it difficult to obtain a desired ferrite area ratio. Therefore, the residence time in the above temperature range is 5 seconds or more. Preferably, it is 7 seconds or more.
  • the residence time in the temperature range is set to 20 seconds or less. Preferably it is 17 seconds or less, More preferably, it is 14 seconds or less.
  • the staying time of 750 to 600 ° C. indicates the time until the temperature of the hot-rolled steel plate after finish rolling reaches 750 ° C. and then the temperature falls to 600 ° C. It is not necessary for the steel sheet to always cool down in the time range.
  • the average cooling rate in the above temperature range is preferably 40 ° C./sec or more, more preferably 50 ° C./sec or more.
  • the upper limit of the average cooling rate in the above temperature range is not particularly limited, but is preferably 300 ° C./second or less from the viewpoint of suppression of plate warpage due to thermal strain.
  • the average cooling rate from Ms to the cooling stop temperature below Ms is 80 ° C./sec or more. More preferably, it is 100 ° C./s or more, and still more preferably 120 ° C./s or more.
  • the upper limit is not particularly limited, but is preferably 500 ° C./sec or less from the viewpoint of the uniformity of the texture in the thickness direction. More preferably, it is 400 ° C./second or less.
  • the cooling stop temperature less than Ms is preferably Ms-20 ° C. or less, more preferably Ms-50 ° C. or less.
  • winding is generally performed.
  • known temper rolling may be appropriately performed for the purpose of shape correction.
  • plating may be performed to form a plated steel plate.
  • the plating may be either electroplating or hot-dip plating, and the type of plating is not particularly limited, but generally it is zinc-based plating including zinc plating and zinc alloy plating.
  • the plated steel sheet include an electrogalvanized steel sheet, an electrozinc-nickel alloy plated steel sheet, a galvanized steel sheet, an alloyed galvanized steel sheet, a galvanized zinc-aluminum alloy plated steel sheet, and the like.
  • the amount of plating deposition may be a general amount.
  • the plate thickness of the heat-rolled steel plate according to the present embodiment is not particularly limited, but when the plate thickness is too thick, the structure generated between the surface layer of the steel plate and the inside is significantly different. . On the other hand, when the plate thickness is too thin, it becomes difficult to pass the plate during hot rolling, so in general, 1.0 mm or more is preferable. More preferably, it is 1.2 mm or more, more preferably 1.5 mm or more.
  • the cross section of the steel sheet parallel to the rolling direction and thickness direction is observed by scanning electron microscope observation and EBSD analysis, and the area ratio of the structure at a 1/4 depth position of the thickness from the steel sheet surface
  • the average grain size, and the pole density of each crystal orientation at the center of the plate thickness were determined.
  • the processing distortion of the surface layer of the observation surface was removed by electrolytic polishing.
  • the plate is 200 ⁇ m in the rolling direction centered on the 1 ⁇ 4 depth position of the plate thickness from the surface of the steel plate,
  • the crystal orientation information is measured by differentiating fcc and bcc at intervals of 0.2 ⁇ m in a 100 ⁇ m area in the thickness direction, and using the attached software of the EBSD analyzer (“OIM Analysis (registered trademark)” manufactured by AMETEK)
  • An area with a crystal orientation difference of 15 ° or more and a circle equivalent diameter of 0.3 ⁇ m or more was defined as crystal grains, and the average grain size of bcc and the area ratio of fcc (remained austenite) were determined.
  • N is the number of crystal grains included in the evaluation region of the average crystal grain size
  • di is the i-th crystal grain Indicates the equivalent circle diameter.
  • the area ratio of ferrite, “bainite, martensite (and retained austenite)”, and the remaining structure (pearlite and intergranular cementite) was determined by SEM observation.
  • retained austenite exists between laths and blocks of bainite and martensite, and it is difficult to distinguish between bainite and martensite and retained austenite, so “bainite, martensite (and retained austenite)” included.
  • the area ratio of bainite and martensite was obtained by subtracting the area ratio of fcc (remained austenite) obtained by EBSD analysis from the area ratio of "bainite, martensite (and retained austenite)” obtained by SEM observation.
  • the tensile strength is accepted as high strength at 950 MPa or more,
  • the processability was also evaluated by the strength-break total elongation balance (TS ⁇ El) and the strength-stretch flangeability balance (TS ⁇ ⁇ ), in addition to the index of total elongation at break El and
  • TS ⁇ El (MPa ⁇ %) is regarded as high strength and excellent in elongation when it is 14000 MPa ⁇ % or more, and TS ⁇ ⁇ (MPa ⁇ %) is high strength when it is 50000 MPa ⁇ % or more. It was regarded as passing because it is excellent in stretch flangeability.
  • the invention examples according to the present invention have a tensile strength of 950 MPa or more,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明の一態様に係る熱延鋼板は、所定の化学組成を有し、表面から板厚1/4深さ位置において、フェライトの面積率が10~55%であり、ベイナイト及びマルテンサイトの合計面積率が45~90%であり、前記フェライト、前記ベイナイト及び前記マルテンサイトの合計面積率が90%以上であり、平均結晶粒径が12.0μm以下であり、板厚中心部にて測定した集合組織において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度が8.0以下、かつ、{211}<011>と{332}<113>の極密度の合計が10.0以下であり、引張強度が950MPa以上である。

Description

熱延鋼板及びその製造方法
 本発明は、熱延鋼板及びその製造方法に関する。より詳しくは、本発明は、自動車用、家電用、機械構造用、建築用などの用途に用いられる素材として好適な、加工性に優れた熱延鋼板及びその製造方法に関する。
 本願は、2017年7月7日に、日本に出願された特願2017-133889号に基づき優先権を主張し、その内容をここに援用する。
 自動車をはじめとする輸送用機械や各種産業機械の構造部材等の素材として供される鋼板には、強度、伸びや伸びフランジ性などの加工性、低温靭性、またそれら特性の均一性、など多様な特性が要求される。
 特に、自動車の内板部材、構造部材、足廻り部材等の部品に用いられる鋼板は、その用途に応じて、伸びフランジ性、バーリング加工性、延性、疲労耐久性、耐衝撃性及び耐食性等が求められる。これら材料特性と高強度とを高次元でバランス良く発揮させることが、上記のような部材に対して用いられる鋼板に求められる。また、上記のような部材に対して用いられる鋼板は、成形され、部材の部品として自動車に取り付けられた後に、衝突等による衝撃を受けても破壊されにくい特性を有する必要がある。特に、使用温度が低い寒冷地では、部材が脆化しやすくなるため、耐衝撃性確保のためには、鋼板の低温靭性も向上させる必要性がある。低温靭性とは、vTrs(シャルピー破面遷移温度)等で規定される特性である。上記部材の部品に用いられる薄鋼板には、優れた加工性だけでなく、低温靭性が非常に重要な特性として求められる。
 優れた延性を得られる鋼板として、軟質なフェライト相と硬質なマルテンサイト相との複合組織で構成されるDual Phase鋼板(以下DP鋼)が知られている。DP鋼は延性に優れる一方で、著しく硬度の異なるフェライト相とマルテンサイト相との界面からボイドが発生して割れが生じるので、穴広げ性に劣る場合があった。
 特許文献1では、面積率で、ベイニティックフェライトを90%以上、マルテンサイトを5%以下、ベイナイトを5%以下とすることで、伸びと穴広げ性(伸びフランジ性)とを改善した、引張強度980MPa以上の高強度熱延鋼板が提案されている。しかしながら、特許文献1に記載の発明では、ベイニティックフェライトを主体としているため十分な伸びが得られない場合がある。
 特許文献2では、ベイナイトを面積率で90%以上とした上で、残部をマルテンサイト、オーステナイト、フェライトから選ばれた1種または2種以上の母相組織とし、かつ組織中に分散するセメンタイトの含有量と平均粒径とを制御することで穴広げ性(伸びフランジ性)を改善した、引張強度980MPa以上の熱延鋼板が提案されている。しかしながら、特許文献2に記載の発明では、遷移沸騰領域である330~470℃で巻き取りを行っているため、板面内の温度ばらつきに起因した特性ばらつきが生じる場合がある。
 特許文献3では、フェライト分率が50~95%であり、マルテンサイトと残留オーステナイトとからなる硬質第二相の分率が5~50%であり、炭化物形成元素の含有量の相互関係や、炭化物形成元素とC含有量との関係を所定の範囲とした上で、析出物の平均粒径、析出物の分率を規定した、疲労特性に優れた熱延鋼板が提案されている。しかしながら、特許文献3に記載の発明では、軟質なフェライトを主体として、微細炭化物の析出強化により強度を確保しているため、十分な低温靭性が得られない場合がある。
 特許文献4では、マルテンサイトが20~60%であり、フェライトが40%以上、前記マルテンサイトと前記フェライトとの合計面積率が90%以上であり、前記マルテンサイトの平均粒径や、前記マルテンサイトの硬度と前記フェライトの硬度との比を所定の範囲内とした、引張強度が980MPa以上である高強度熱延鋼板が提案されている。しかしながら、特許文献4に記載の発明では、仕上げ圧延の末期における所要時間が短いため、集合組織が発達して、十分な伸びおよび伸びフランジ性が得られない場合がある。
日本国特開2008-255484号公報 日本国特開2014-205890号公報 日本国特開2009-84648号公報 国際公開第2017/085841号
 本発明は、上述した課題に鑑みてなされたものであり、高強度であり、且つ伸び、伸びフランジ性及び低温靭性に優れた熱延鋼板及びその熱延鋼板を安定して製造できる製造方法を提供することを目的とする。
 本発明者らは、熱延鋼板の化学組成及び製造条件の最適化により、熱延鋼板の集合組織とミクロ組織とを制御することで、高強度であり、且つ伸び、伸びフランジ性及び低温靭性に優れた熱延鋼板を製造できることを知見した。
 本発明の要旨は、次の通りである。
〔1〕 本発明の一態様に係る熱延鋼板は、
 質量%で、
 C:0.02~0.20%、
 Si:0.005~2.00%、
 Mn:1.30~2.40%、
 P:0.100%以下、
 S:0.0100%以下、
 sol.Al:0.001~1.00%、
 Ti:0.030~0.200%、
 N:0.0010~0.0100%、
 Nb:0~0.100%、
 V:0~0.50%、
 Mo:0~0.50%、
 Cu:0~1.00%、
 Ni:0~1.00%、
 Cr:0~2.00%、
 B:0~0.0100%、
 Ca:0~0.0100%、
 Mg:0~0.0100%及び
 REM:0~0.0100%
 を含有し、残部がFe及び不純物からなる化学組成を有し、
 表面から板厚の1/4深さ位置において、フェライトの面積率が10~55%であり、ベイナイト及びマルテンサイトの合計面積率が45~90%であり、前記フェライト、前記ベイナイト及び前記マルテンサイトの合計面積率が90%以上であり、平均結晶粒径が12.0μm以下であり、
 板厚中心部にて測定した集合組織において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度が8.0以下、かつ、{211}<011>及び{332}<113>の極密度の合計が10.0以下であり、
 引張強度が950MPa以上であることを特徴とする熱延鋼板。
〔2〕 上記〔1〕に記載の熱延鋼板は、
 前記化学組成が、質量%で、
 Nb:0.001~0.100%、
 V:0.005~0.50%、
 Mo:0.001~0.50%、
 Cu:0.02~1.00%、
 Ni:0.02~1.00%、
 Cr:0.02~2.00%及び
 B:0.0001~0.0100%
 からなる群から選択される1種または2種以上を含有してもよい。
〔3〕 上記〔1〕または〔2〕に記載の熱延鋼板は、前記化学組成が、質量%で、
 Ca:0.0002~0.0100%、
 Mg:0.0002~0.0100%及び
 REM:0.0002~0.0100%
 からなる群から選択される1種または2種以上を含有してもよい。
〔4〕 上記〔1〕~〔3〕の何れか一項に記載の熱延鋼板は、
 r値の面内異方性の絶対値|Δr|が0.35以下であってもよい。
 但し、Δr=(r+r90-2×r45)/2
であり、r:圧延方向のr値、r90:圧延直交方向のr値、r45:圧延方向に対して45°方向のr値である。なお、r値はランクフォード(Lankford)値を意味する。
〔5〕 上記〔1〕~〔4〕のいずれか1項に記載の熱延鋼板を製造するに当たり、上記〔1〕~〔3〕の何れか一項に記載の前記化学組成を有するスラブまたは鋼片に多パス熱間圧延を施して熱延鋼板を製造する、本発明の別の態様に係る熱延鋼板の製造方法であって、
 前記多パス熱間圧延における加熱温度を1150~1350℃とし、
 仕上げ温度を単位℃でFTと表したとき、前記FT+50℃超~前記FT+150℃間の合計圧下率を50%以上、前記FT~前記FT+50℃間の合計圧下率を40~80%、前記FT~前記FT+50℃間の圧延に要する時間を0.5~10.0秒とし、
 前記FT+50℃超~前記FT+150℃及び前記FT~前記FT+50℃のそれぞれの温度域において2パス以上の圧延を行い、
 前記FTを、式(1)により求められるAr以上、かつ式(2)により求められるTR以上、かつ1100℃以下として仕上げ圧延を完了した後、3.0秒以内に水冷を開始し、前記FT~750℃の平均冷却速度を20℃/秒以上とし、
 750~600℃の温度域で5~20秒間滞在させた後、
 600℃から式(3)により求められるMs未満の冷却停止温度まで、平均冷却速度を20℃/秒以上として冷却することを特徴とする熱延鋼板の製造方法。
 Ar(℃)=901-325×[C]+33×[Si]-92×[Mn]+287×[P]+40×[Al]   (1)
 TR(℃)=800+700×[Ti]+1000×[Nb]   (2)
 Ms(℃)=561-474×[C]-33×[Mn]-17×[Ni]-21×[Mo]   (3)
 但し、上記式(1)~(3)中の各元素記号は、各元素の質量%での含有量を示す。
〔6〕 上記〔5〕に記載の熱延鋼板の製造方法では、前記Msから前記Ms未満の前記冷却停止温度までの平均冷却速度を80℃/s以上としてもよい。
〔7〕 上記〔5〕または〔6〕に記載の熱延鋼板の製造方法では、仕上げ圧延完了後、0.3秒以内に水冷を開始し、前記FT~前記FT-40℃までの平均冷却速度が100℃/s以上である冷却を行ってもよい。
〔8〕 上記〔7〕に記載の熱延鋼板の製造方法では、前記FT~前記FT-40℃までの平均冷却速度が100℃/s以上である冷却を行う工程を、圧延スタンド間で行ってもよい。
 本発明によれば、高強度であり、且つ伸び、伸びフランジ性および低温靭性に優れた熱延鋼板及びその熱延鋼板を安定して製造できる製造方法を提供することができる。本発明に係る熱延鋼板を自動車の内板部材、構造部材、足廻り部材等の部品の素材として使用すれば、部品形状に加工することが容易であり、極寒冷地での使用にも耐えることができるため、産業上の貢献が極めて顕著である。
 本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)およびその製造方法について以下に詳しく説明する。以下の説明において、鋼の化学組成に関する%はいずれも質量%である。
 <鋼の化学組成>
 (C:0.02~0.20%)
 Cは、マルテンサイトやベイナイト等の硬質相やTi炭化物を生成させることで、鋼の強度を高める作用を有する。C含有量が0.02%未満では上記作用を十分に発揮させることが困難である。したがって、C含有量は0.02%以上、好ましくは0.04%以上とする。一方、C含有量が0.20%超では、鋼板の伸びフランジ性や低温靭性が著しく劣化する。また、熱間圧延後のフェライト変態が著しく遅延し、所望の量のフェライトが得難くなる。さらに、溶接性の劣化が顕著となる。したがって、C含有量は0.20%以下とする。C含有量は、好ましくは0.15%以下、より好ましくは0.12%以下、より一層好ましくは0.10%以下である。
 (Si:0.005~2.00%)
 Siは、フェライト変態を促進するとともにセメンタイト析出を抑制する作用を有する。また、Siは、固溶強化による鋼の強度を向上させる作用も有する。Si含有量が0.005%未満では、上記作用を発揮させることが困難となる。したがって、Si含有量は0.005%以上とする。Si含有量は、好ましくは0.40%以上、より好ましくは0.80%以上である。一方、Si含有量が2.00%超では、熱間圧延工程における表面酸化により、鋼板の表面性状が著しく劣化する。したがって、Si含有量は2.00%以下とする。Si含有量は、好ましくは1.50%以下、より好ましくは1.30%以下である。
 (Mn:1.30~2.40%)
 Mnは、固溶強化および焼入性を高めることによって鋼の強度を高める作用を有する。Mn含有量が1.30%未満では、950MPa以上の鋼板の強度が得難くなる。したがって、Mn含有量は1.30%以上とする。Mn含有量は、好ましくは1.50%以上である。一方、Mn含有量が2.40%超では、熱間圧延後の冷却過程におけるフェライト変態が過度に遅延することで、所望の量のフェライトが得難くなる。また、マルテンサイト及びベイナイトの硬質化により、マルテンサイト及びベイナイトと軟質なフェライトとの境界近傍においてき裂が容易に発生することで、鋼板の伸びフランジ性や靭性が低下する。
 本発明者らは、Mnを多量に含有させると、鋼板のr値の面内異方性の増加とともに、伸びフランジ性が低下する場合があることを知見した。この理由は明確ではないが、Mnを多量に含有させることにより、MnSが多量に析出すること、及び、Mn偏析に起因した熱間圧延中の再結晶や、仕上げ圧延後のフェライト変態に局所的なバラつきが生じることが原因であると推測される。以上のことから、所望の量のフェライトを得つつ、伸びフランジ性に優れた熱延鋼板を安定して製造するために、Mn含有量は2.40%以下とする。Mn含有量は、好ましくは2.10%以下、より好ましくは2.00%以下、より一層好ましくは1.90%以下である。
 (P:0.100%以下)
 Pは、不純物として鋼中に含有される元素であり、熱延鋼板の伸びフランジ性や低温靭性を低下させる作用を有する。そのため、P含有量は0.100%以下とする。P含有量は、好ましくは0.060%以下、より好ましくは0.040%以下、より一層好ましくは0.020%以下である。Pは原料から不純物として混入するが、その下限を特に制限する必要はなく、伸びフランジ性や低温靭性を確保する上では、Pの含有量はより低い方が好ましい。ただし、P含有量を過剰に低減すると、製造コストが増加する。製造コストの観点からは、P含有量の下限は好ましくは0.001%、より好ましくは0.005%である。
 (S:0.0100%以下)
 Sは、不純物として含有される元素であり、熱延鋼板の加工性を低下させる作用を有する。そのため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0080%以下、より好ましくは0.0060%以下、より一層好ましくは0.0030%以下である。Sは原料から不純物として混入するが、その下限を特に制限する必要はなく、加工性を確保する観点からはSの含有量はより低い方が好ましい。ただし、S含有量を過剰に低減すると、製造コストが増加する。製造コストの観点からは、S含有量の下限は好ましくは0.0001%、より好ましくは0.0005%、より一層このましくは、0.0010%である。 
 (sol.Al:0.001~1.00%)
 Alは、製鋼段階で脱酸により鋼を清浄化し、かつフェライト変態を促進する作用を有する。sol.Al含有量が0.001%未満では、上記作用を発揮させることが困難となる。したがって、sol.Al含有量は0.001%以上とする。sol.Al含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。一方、sol.Al含有量を1.00%超としても、上記作用による効果が飽和するとともに、コスト上昇を招く。したがって、sol.Al含有量は1.00%以下とする。sol.Al含有量は、好ましくは0.80%以下、より好ましくは0.60%以下である。なお、sol.Alは酸可溶性Alを意味する。
 (Ti:0.030~0.200%)
 Tiは、Ti窒化物を形成して組織を微細化する作用を有する。また、Tiは、炭化物を析出させて、鋼を強化させる作用を有する。Ti含有量が0.030%未満では上記作用が発揮され難くなる。したがって、Ti含有量は0.030%以上とする。Ti含有量は、好ましくは、0.040%以上、より好ましくは0.060%以上である。一方、Tiを過剰に含有させると、粗大な窒化物や炭化物が生成されることにより、鋼板の伸びフランジ性や靭性が低下する。さらに、Tiはオーステナイトの再結晶温度を高める作用も有するため、Tiを過剰に含有させると、再結晶温度が過剰に高くなり、r値の異方性が増加することで、鋼板の伸びフランジ性が低下する。したがって、Ti含有量は0.200%以下とする。Ti含有量は、好ましくは0.160%以下、より好ましくは0.140%以下である。
 (N:0.0010~0.0100%)
 Nは、Ti窒化物を形成してスラブ再加熱時及び熱間圧延中のオーステナイトの粗大化を抑制して、ミクロ組織を微細化する作用を有する。N含有量が0.0010%未満では上記作用を発揮させることが困難となる。したがって、N含有量は0.0010%以上とする。N含有量は、好ましくは0.0015%以上、より好ましくは0.0020%以上である。一方、N含有量が0.0100%超では、粗大なTi窒化物を形成して、鋼板の伸びフランジ性を劣化させる。したがって、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0060%以下である。
 (Nb:0~0.100%)
 Nbは任意元素である。Nbは、熱延鋼板の結晶粒径の粗大化を抑制するとともに、フェライト粒径を微細化し、NbCの析出強化により熱延鋼板の強度を高める効果を有する。これらの効果を得る場合、Nb含有量を0.001%以上とすることが好ましい。Nb含有量は、より好ましくは0.005%以上である。一方、Nb含有量が0.100%を超えると、前述の効果が飽和するとともに、熱間仕上げ圧延の圧延荷重の増加を引き起こす場合がある。そのため、Nb含有量は、0.100%以下とすることが好ましい。Nb含有量は、好ましくは、0.060%以下、より好ましくは0.030%以下である。
 (V:0~0.50%)
 Vは任意元素である。Vは、鋼中に固溶して熱延鋼板の強度を高めるとともに、炭化物や窒化物、炭窒化物等として鋼中に析出し、析出強化させる効果を有する。これらの効果を得る場合、V含有量を0.005%以上とすることが好ましい。V含有量は、より好ましくは、0.01%以上である。一方、V含有量が0.50%を超えると鋼板の靭性の低下を引き起こす場合がある。そのため、V含有量は、0.50%以下とすることが好ましい。V含有量は、より好ましくは0.30%以下である。
 (Mo:0~0.50%)
 Moは任意元素である。Moは、鋼の焼入れ性を高めるとともに、炭化物や炭窒化物を形成して熱延鋼板を高強度化させる効果を有する。これらの効果を得る場合、Mo含有量を0.001%以上とすることが好ましい。Mo含有量は、より好ましくは、0.005%以上である。一方、Mo含有量が0.50%を超えると、スラブの割れ感受性が高まる場合がある。そのため、Moの含有量は、0.50%以下とすることが好ましい。Mo含有量は、より好ましくは、0.30%以下である。
 (Cu:0~1.00%)
 Cuは任意元素である。Cuは、鋼の靭性を改善する効果と強度を高める効果とを有する。これらの効果を得る場合、Cu含有量を0.02%以上とすることが好ましい。Cu含有量は、より好ましくは、0.08%以上である。一方、Cuを過剰に含有させると鋼板の溶接性が低下する場合がある。そのため、Cu含有量は、1.00%以下とすることが好ましい。Cu含有量は、より好ましくは、0.50%以下、より一層好ましくは0.30%以下である。
 (Ni:0~1.00%)
 Niは任意元素である。Niは、鋼の靭性を改善する効果と強度を高める効果とを有する。これらの効果を得る場合、Ni含有量を0.02%以上とすることが好ましい。Ni含有量は、より好ましくは、0.10%以上である。一方、Niを過剰に含有させると合金コストが嵩み、また、鋼板の溶接熱影響部の靭性が劣化する場合がある。そのため、Ni含有量は1.00%以下とすることが好ましい。Ni含有量は、より好ましくは、0.50%以下、より一層好ましくは0.30%以下である。
 (Cr:0~2.00%)
 Crは任意元素である。Crは、鋼の焼入性を高めることによりマルテンサイト等の生成を促進する効果を有する。この効果を得る場合、Cr含有量を0.02%以上とすることが好ましい。Cr含有量は、より好ましくは、0.05%以上である。一方、Crを過剰に含有させると、熱間圧延後の冷却過程におけるフェライト変態が過度に遅延してしまい、所望の量のフェライトが得難くなる場合がある。そのため、Cr含有量は、2.00%以下とすることが好ましい。Cr含有量は、より好ましくは1.50%以下、より一層好ましくは1.00%以下、特に好ましくは0.50%以下である。
 (B:0~0.0100%)
 Bは任意元素である。Bは、粒界強度を高めるとともに、鋼の靭性を向上させる効果を有する。また、Bは、窒化物によって鋼を析出強化させる効果を有する。これらの効果を得る場合、B含有量を0.0001%以上とすることが好ましい。B含有量は、より好ましくは、0.0003%以上である。一方、0.0100%を超えてBを含有させても上記効果が飽和するとともに、合金コストが増加する。そのため、B含有量は、0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0050%以下、より一層好ましくは0.0030%以下、特に好ましくは0.0010%以下である。
 (Ca:0~0.0100%)
 Caは任意元素である。Caは溶鋼中に微細な酸化物を多数分散させ、鋼板の金属組織を微細化させる効果を有する。また、Caは、溶鋼中のSを球状のCaSとして固定して、MnSなどの延伸介在物の生成を抑制することにより、熱延鋼板の伸びフランジ性を向上させる効果を有する。これらの効果を得る場合、Ca含有量を0.0002%以上とすることが好ましい。Ca含有量は、より好ましくは、0.0005%以上である。一方、Ca含有量が0.0100%を超えると、鋼中のCaOが増加し、鋼板の靭性に悪影響を与える場合がある。そのため、Ca含有量は0.0100%以下とすることが好ましい。Ca含有量は、より好ましくは、0.0050%以下、より一層好ましくは、0.0030%以下である。
 (Mg:0~0.0100%)
 Mgは任意元素である。MgはCaと同様に溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制し、微細な酸化物を多数分散させ、鋼板の組織を微細化する効果を有する。これらの効果を得る場合、Mg含有量を0.0002%以上とすることが好ましい。Mg含有量は、より好ましくは、0.0005%以上である。一方、Mg含有量が0.0100%を超えると、鋼中の酸化物が増加し、鋼板の靭性に悪影響を与える。そのため、Mg含有量は、0.0100%以下とすることが好ましい。Mg含有量は、より好ましくは、0.0050%以下、より一層好ましくは、0.0030%以下である。
 (REM:0~0.0100%)
 REMは任意元素である。REMもCaと同様に、溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制し、微細な酸化物を多数分散させ、鋼板の組織を微細化する効果を有する。これらの効果を得る場合、REM含有量を0.0002%以上とすることが好ましい。REM含有量は、より好ましくは、0.0005%以上である。一方、REM含有量が0.0100%を超えると鋼中の酸化物が増加し、鋼板の靭性に悪影響を与える場合がある。そのため、REM含有量は、0.0100%以下とすることが好ましい。REM含有量は、より好ましくは、0.0050%以下、より一層好ましくは、0.0030%以下である。
 ここで、REM(希土類)とは、Sc、Y及びランタノイドからなる合計17元素を指す。なお、本実施形態では、REMの含有量とはこれらの元素の合計含有量を指す。
 本実施形態に係る熱延鋼板の化学組成は、以上の元素の他、Fe及び不純物からなる。本実施形態において不純物とは、原材料に含まれる成分、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことを意味する。
 <集合組織以外の鋼組織>
 本実施形態に係る熱延鋼板は、鋼板の表面から板厚の1/4の深さ位置において、フェライトの面積率、「ベイナイト及びマルテンサイト」の合計面積率、「フェライト、ベイナイト及びマルテンサイト」の合計面積率、平均結晶粒径の範囲を規定する。ここで、フェライト、ベイナイト及びマルテンサイトの面積率や結晶粒径について、鋼板の表面から板厚の1/4の深さ位置の鋼組織を規定するのは、この深さ位置が、鋼板の表面と板厚中心位置との中間点であり、集合組織以外については、当該位置における鋼組織が、熱延鋼板の鋼組織を代表する(熱延鋼板全体の平均的な鋼組織を示す)からである。
 本実施形態において、フェライトとは、ポリゴナルフェライトの他に、アシキュラーフェライト及び擬ポリゴナルフェライトを含み、パーライト組織を構成するフェライトやベイナイト組織を構成するベイニティックフェライトは含まない。本実施形態においてベイニティックフェライトは、ベイナイトとして取り扱う。
 以下に、各々の範囲を規定した理由について述べる。
 (フェライトの面積率:10~55%)
 軟質なフェライト相は、鋼板の良好な延性を得るために必要な組織である。フェライトの面積率が10%未満では、鋼板の伸びが低下する。したがって、フェライトの面積率は10%以上とする。フェライトの面積率は、好ましくは15%以上である。一方、フェライトが過剰に析出すると、本実施形態に係る鋼板の化学組成では、950MPa以上の引張強度を得ることが困難になる。したがって、フェライトの面積率は55%以下とする。フェライトの面積率は、好ましくは40%未満、より好ましくは38%以下、特に好ましくは36%以下である。
 (ベイナイト及びマルテンサイトの合計面積率:45~90%)
 硬質なベイナイトやマルテンサイトは高強度を得るために必要な組織である。ベイナイト及びマルテンサイトの合計面積率が45%未満では、本実施形態に係る鋼板の化学組成で950MPa以上の引張強度を得ることは困難である。したがって、ベイナイト及びマルテンサイトの合計面積率は45%以上とする。ベイナイト及びマルテンサイトの合計面積率は、好ましくは60%超であり、より好ましくは62%以上、さらに好ましくは64%以上である。なお、本実施形態において、マルテンサイトには、オートテンパーされた焼き戻しマルテンサイトも含まれ、ベイナイトには、ベイニティックフェライトが含まれる。一方、ベイナイト及びマルテンサイトの合計面積率が90%を超えると、フェライトの面積率が不足し、鋼板の加工性が得られず伸びが低下する。そのため、ベイナイト及びマルテンサイトの合計面積率は90%以下とする。ベイナイト及びマルテンサイトの合計面積率は、好ましくは85%以下である。
 (フェライト、ベイナイト及びマルテンサイトの合計面積率:90%以上(その他の組織:10%以下))
 フェライト、ベイナイト及びマルテンサイト以外の、任意の組織であるその他組織として、残留オーステナイト、パーライト及び粒界セメンタイトなどがある。その他の組織の面積率が10%を越えると、これらの組織がき裂起点となり、鋼板の伸びフランジ性や低温靭性が低下する。したがって、その他の組織の面積率は10%以下とする。その他の組織の面積率は、好ましくは8%以下、より好ましくは5%以下である。その他の組織の面積率は0%でも構わない。換言すると、フェライト、マルテンサイト及びベイナイトの合計面積率は90%以上とし、好ましくは92%以上であり、より好ましくは95%以上であり、100%であっても構わない。
 その他の組織の中の残留オーステナイトは、打ち抜きなどの予加工により非常に硬質なマルテンサイトに変態することで鋼板の伸びフランジ性を著しく劣化させる。そのため、その他の組織の中でも特に、残留オーステナイトの面積率を3%以下とすることが好ましい。残留オーステナイトの面積率は、より好ましくは2%以下、より一層好ましくは1%以下であり、特に好ましくは0%である。
 (平均結晶粒径:12.0μm以下)
 フェライト粒径およびマルテンサイトやベイナイトのブロック径の平均結晶粒径が粗大であると、破断時の破面単位が大きくなり、鋼板の低温靭性が低下する。したがって、平均結晶粒径は12.0μm以下とする。平均結晶粒径は、好ましくは10.0μm以下であり、より好ましくは7.0μm以下である。平均結晶粒径は小さいほど好ましいので下限は特に限定されない。しかしながら、通常の熱間圧延では平均結晶粒径が1.0μmを下回るような細粒化は技術的に困難であるため、一般には1.0μm以上である。
 なお、本実施形態において平均結晶粒径とは、結晶構造がbccのもの、すなわちフェライト、ベイナイト、マルテンサイトおよびパーライトにおいて結晶方位差15°以上かつ円相当直径で0.3μm以上の領域を結晶粒と定義した結晶粒径の平均を意味し、残留オーステナイト、粒界セメンタイトの結晶粒径は平均結晶粒径に含めない。
 本実施形態において、平均結晶粒径および各組織の面積率は、圧延方向及び板厚方向に平行な鋼板断面の、鋼板の表面から板厚の1/4深さ位置における組織について、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されたEBSD解析装置を用いて、走査電子顕微鏡(SEM)観察とEBSD(Electron Back Scattering Diffraction:電子線後方散乱回折法)解析とにより求める。
 SEM観察では、残留オーステナイトは、ベイナイト及びマルテンサイトのラスやブロックおよびパケット間に存在し、ベイナイト及びマルテンサイトと残留オーステナイトとを区別することが困難なため、ベイナイト及びマルテンサイトに含めて測定し、フェライト、「ベイナイト、マルテンサイト(及び残留オーステナイト)」、並びに残部組織(パーライト及び粒界セメンタイト)の面積率を測定する。
 EBSD解析では、板厚の1/4深さ位置を中心とする圧延方向に200μm、板厚方向に100μmの領域を0.2μm間隔でfccとbccとを区別して結晶方位情報を測定し、EBSD解析装置の付属ソフトウェア(AMETEK社製「OIM Analysis(登録商標)」)を用いて、結晶方位差15°以上かつ円相当直径で0.3μm以上の領域を結晶粒と定義して、fcc(残留オーステナイト)の面積率を求め、また下記[数1]を用いた方法によりbccの平均結晶粒径を求める。
 SEM観察により求めた「ベイナイト、マルテンサイト(及び残留オーステナイト)」の面積率から、EBSD解析により求めたfcc(残留オーステナイト)の面積率を差し引くことで、ベイナイトおよびマルテンサイトの面積率を得る。
 bccの平均結晶粒径については、下記[数1]に示す式により算出される値を求める。式中、Dは平均結晶粒径、Nは平均結晶粒径の評価領域に含まれる結晶粒の数、Aiはi番目(i=1、2、・・、N)の結晶粒の面積、diはi番目の結晶粒の円相当直径を示す。
Figure JPOXMLDOC01-appb-M000001
 15°以上の結晶方位差を有する境界は主に、フェライト粒界、マルテンサイト及びベイナイトのブロック境界である。JIS G 0552:2013に準じたフェライト粒径の測定方法では、結晶方位差が15°未満のフェライト粒についても粒径が算定されてしまう場合があり、さらに、マルテンサイトやベイナイトのブロックは算定されない。したがって、本実施形態における平均結晶粒径は、EBSD解析により求めた値を採用する。
 <集合組織>
 本実施形態に係る熱延鋼板は、鋼板の板厚中心部において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度、並びに{211}<011>及び{332}<113>の極密度の合計を規定する。本実施形態において板厚中心部とは、板厚中心位置(鋼板の表面から板厚の1/2深さ位置)から、鋼板の表方向及び裏方向にそれぞれ板厚の1/10程度の範囲を意味する。例えば、鋼板の板厚が2mmであれば、板厚中心部とは、板厚中心位置を境に表方向及び裏方向にそれぞれ100μm程度の範囲を意味する。
 板厚中心部における集合組織を規定する理由は、板厚中心部の集合組織と機械特性とが良く相関しているためである。この理由は定かではないが、本発明者らは以下のように推測する。熱延鋼板は、圧延時にロールと鋼板との摩擦によって、鋼板の表裏で逆方向のせん断変形が生じ、板厚中心部では平面ひずみ変形が生じる。熱延鋼板の集合組織は、この変形に伴って板厚方向に変化し、鋼板の表裏でせん断変形の方向が逆であるため、集合組織も表裏で対称の方位が発達する。そのため、機械特性に及ぼす集合組織の影響を表裏で相殺し合う結果、板厚中心部の集合組織と機械特性とが良く対応する。
 (板厚中心部における{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群(主方位群)の最大極密度:8.0以下)
 熱延鋼板の板厚中心部の集合組織で発達する主方位として{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>がある。これら方位群のいずれか1つのみが発達しても、熱延鋼板の引張強度、降伏強度、伸び、r値など様々な機械特性の面内異方性が高くなり、全周方向に渡って変形する伸びフランジ性が特に著しく低下する。したがって、本実施形態では、これら全ての方位群の発達を抑制して、集合組織がよりランダムになることが重要である。本実施形態では、板厚中心部における{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群のそれぞれの極密度を算出して、その最大値を求める。最大極密度が低いということは、ランダム方位の組織の割合が高いことを意味するため、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の集合組織が発達していないことを意味する。そのため、上記方位群の最大極密度を8.0以下とする。上記方位群の最大極密度は、好ましくは7.0以下、より好ましくは6.0以下である。なお、上記方位群の最大極密度は、集合組織を持たない場合が1.0であるため、1.0に近いことがより望ましい。
 極密度はEBSD解析による結晶方位情報により得ることができるが、X線ランダム強度比と同義である。
 (板厚中心部における{211}<011>及び{332}<113>の極密度の合計:10.0以下)
 上述した方位群のうち、特に{211}<011>及び{332}<113>の発達により、鋼板の伸びフランジ性が著しく低下する。そのため、{211}<011>及び{332}<113>の極密度の合計を10.0以下とする。{211}<011>及び{332}<113>の極密度の合計は、より好ましくは8.0以下である。前記極密度の合計は、小さければ小さいほど好ましいが、集合組織を持たない場合はそれぞれの極密度が1.0であるため、2.0に近い値がより好ましい。
 なお、{hkl}は圧延面に平行な結晶面、<uvw>は圧延方向に平行な結晶方向を表す。すなわち、{hkl}<uvw>とは板面法線方向に{hkl}、圧延方向に<uvw>が向いている結晶を示す。
 また、本実施形態において、板厚中心部における各結晶方位の極密度は、走査電子顕微鏡とEBSD解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いて、EBSD解析により、板厚中心部(板厚中心位置(鋼板の表面から板厚の1/2深さ位置)から、鋼板の表方向及び裏方向にそれぞれ板厚1/10程度の範囲)において、fccとbccとを区別して、1000個以上のbccの結晶粒方位情報を測定し、級数展開法(harmonic series expansion)を用いたODF解析により求める。
 <機械特性>
 (引張強度:950MPa以上)
 本実施形態に係る熱延鋼板は、鋼組織および集合組織の制御により、高強度であり、且つ優れた低温靭性、伸びおよび伸びフランジ性を有する。しかし、熱延鋼板の引張強度が小さいと、車体軽量化や剛性向上などの効果が小さい。そのため、本実施形態に係る熱延鋼板の引張強度(TS)は950MPa以上とする。引張強度は、好ましくは980MPa以上である。
 熱延鋼板の伸びは、JIS Z 2241:2011に規定された破断全伸び(El)により評価し、強度と伸びとのバランスの指標となるTS×Elが1400MPa・%以上であることが好ましく、15000MPa・%以上であることがより好ましい。
 熱延鋼板の伸びフランジ性は、後述する|Δr|に加え、JIS Z 2256:2010に規定された穴広げ率(λ)により評価し、強度と伸びフランジ性とのバランスの指標となるTS×λが50000MPa・%以上であることが好ましく、55000MPa・%以上であることがより好ましい。
 熱延鋼板の低温靭性は、JIS Z 2242:2005に規定のシャルピー衝撃試験における破面遷移温度(vTrs)が-40℃以下であることが好ましい。
 本実施形態に係る熱延鋼板では、十分な伸びフランジ性を得る観点から、r値の面内異方性の指標である、|Δr|(Δrの絶対値)が小さい方が好ましい。r値の面内異方性|Δr|は、好ましくは0.40以下であり、より好ましくは0.35以下であり、より一層好ましくは0.30以下、特に好ましくは0.25以下である。r値の面内異方性は小さければ小さいほど好ましく、0が最も好ましい。
 Δrは、(r+r90-2×r45)/2で表され、r:圧延方向のr値、r90:圧延直交方向のr値、r45:圧延方向に対して45°方向のr値である。また、r値は、ランクフォード(Lankford)値を意味する。
 <製造方法>
 続いて、本実施形態に係る熱延鋼板の製造条件の限定理由を説明する。
 本発明者らは、本実施形態に係る熱延鋼板が、以下のような熱間圧延及び冷却を含む製造方法によって得られることを確認している。
 まず、上述した化学組成を有するスラブに多パス熱間圧延を施して熱延鋼板を製造する。熱間圧延に供するスラブは、連続鋳造や鋳造・分塊圧延により得たものでよいが、それらに熱間加工または冷間加工を加えたものであってもよい。多パス熱間圧延はレバースミルまたはタンデムミルを用いて行うことができるが、工業的生産性の観点からは、少なくとも最終の数段はタンデムミルを用いることが好ましい。
 (熱間圧延における加熱温度:1150~1350℃)
 熱間圧延に供するスラブまたは鋼片の温度が1150℃未満では、Ti炭化物の溶体化が不十分となり、鋼板の強度や加工性が低下する。一方、熱間圧延に供するスラブまたは鋼片の温度が1350℃超では、厚いスケールが生成して歩留まりの低下を引き起こしたり、スラブまたは鋼片を加熱炉で加熱する際に、加熱炉に著しい損傷を与えたりする場合がある。したがって、熱間圧延に供するスラブまたは鋼片の温度は1150~1350℃とする。
 なお、熱間圧延に供するスラブまたは鋼片の温度は、上記温度域にあればよく、1150℃未満となった鋼塊または鋼片を加熱炉に装入して上記温度域まで加熱してから熱間圧延に供する場合のほか、連続鋳造により得られるスラブまたは分塊圧延により得られる鋼片を1150℃以上の高温状態を保ったまま加熱処理を施すことなく熱間圧延に供してもよい。
 (FT+50℃超~FT+150℃間の合計圧下率:50%以上)
 本実施形態では、仕上げ温度を単位℃でFTとして、FT+50℃超~FT+150℃間の熱間圧延の合計圧下率を高めることによって、鋼板中の再結晶オーステナイト粒の微細化を図ることができる。鋼板中の再結晶オーステナイト粒を微細化させるためには、FT+50℃超~FT+150℃間の合計圧下率は50%以上とする。上記温度域における合計圧下率が50%未満では、オーステナイトが十分に微細化しないため、変態後の組織が粗大になるとともに、続くFT~FT+50℃間の圧延時の圧延パス間での再結晶が遅延することにより、変態後の集合組織が発達してしまう。FT+50℃超~FT+150℃間での合計圧下率は高いほど好ましいが、工業的には90%程度が限界であるため、90%以下としてもよい。
 (FT~FT+50℃間の合計圧下率:40~80%)
  (FT~FT+50℃間の圧延に要する時間:0.5~10秒)
 本実施形態では、FT~FT+50℃間の合計圧下率及び圧延に要する時間を適正に制御することによって、後述する熱間圧延後の冷却条件と相俟って、加工性と靭性とに優れた熱延鋼板を得ることができる。
 FT~FT+50℃間の合計圧下率が40%未満では、変態後の組織が粗大になり、圧延パス間及び圧延仕上げ後の再結晶が遅延するとともに、鋼板内部の変形量が不均一となり、変態後に特定の方位が発達してしまうことで、鋼板の伸びフランジ性が低下する。したがって、FT~FT+50℃間の合計圧下率は40%以上とする。一方、上記温度域における合計圧下率が80%を超えると、再結晶しても集合組織が著しく発達するため、鋼板の伸びフランジ性が低下する。したがって、FT~FT+50℃間の合計圧下率は80%以下とする。
 本実施形態では、さらに、上記温度域の圧延に要する時間も適正に制御することが重要である。上記温度域の圧延に要する時間が短すぎる場合はパス間で再結晶が進まずに圧延ひずみが過度に蓄積してしまい、特定の方位が発達することによって所望の集合組織が得難くなる。そのため、上記温度域の圧延に要する時間は0.5秒以上とする。好ましくは1.0秒以上であり、より好ましくは2.0秒以上である。一方、上記温度域の圧延に要する時間が長すぎる場合は、圧延パス間で再結晶粒が粒成長してしまい、変態後の組織が粗大になる。そのため、上記温度域の圧延に要する時間は10.0秒以下とする。好ましくは8.0秒以下、より好ましくは6.0秒以下である。
 FT+50℃超~FT+150℃間の圧延、FT~FT+50℃間の圧延のいずれの圧延においても、加工と再結晶とを繰り返させることが重要であるため、それぞれの温度域において2パスないしは3パス以上の圧延を施す。鋼板の集合組織の発達抑制の観点から、FT+50℃超~FT+150℃間の1パス当たりの圧下率の最大は、好ましくは60%以下、より好ましくは55%以下である。FT~FT+50℃間の1パス当たり圧下率の最大は、好ましくは50%以下、より好ましくは45%以下、より一層好ましくは40%以下、最も好ましくは35%以下である。
 なお、合計圧下率とは、所定の温度域における最初のパス前の入口板厚を基準とした、この温度域での合計圧下量(この温度域の圧延における最初のパス前の入口板厚とこの温度域の圧延における最終パス後の出口板厚との差)の百分率である。
 (仕上げ温度FT:式(1)により求められるAr以上、かつ式(2)により求められるTR以上、かつ1100℃以下)
 Ar(℃)=901-325×[C]+33×[Si]-92×[Mn]+287×[P]+40×[Al]   (1)
 TR(℃)=800+700×[Ti]+1000×[Nb]       (2)
 但し、上記式(1)及び(2)中の元素記号は、各元素の質量%での含有量を示す。
 本実施形態では、仕上げ圧延中のオーステナイト相の加工と再結晶とを繰り返すことにより、組織を微細化すると共に集合組織の発達の抑制を図る。そのため、仕上げ温度FTは、式(1)により求められるAr以上、かつ式(2)により求められるTR以上とする。ここで、仕上げ温度FTとは、最終圧延後の鋼板の表面温度を指す。
 FTがAr未満では、仕上げ圧延中におけるフェライト変態が進行し、加工フェライトが生成することで、鋼板の伸びや伸びフランジ性が低下する。また、FTがTR未満では、熱間圧延後冷却前におけるオーステナイトが著しく扁平となり、最終製品の熱延鋼板において、圧延方向に伸長した組織となって、塑性異方性が大きくなることで、伸び及び伸びフランジ性が低下する。FTをTR以上とすることにより、圧延パス間における加工オーステナイトの再結晶を適度に促して、再結晶オーステナイト粒の微細化が図ることができ、熱間圧延後においては、後述する熱間圧延後の冷却条件と相俟って、低温靭性および伸びフランジ性に好適な鋼組織および集合組織を有する熱延鋼板が得ることができる。FTは、好ましくはTR+20℃以上、より好ましくはTR+40℃以上である。
 一方、FTが1100℃を超えると、組織が粗大化してしまい、鋼板の低温靭性が低下する。したがって、FTは1100℃以下とする。好ましくは1080℃以下、より好ましくは1060℃以下である。なお、仕上げ圧延中の温度は、鋼材の表面温度を指し、放射温度計等により測定することができる。
 本実施形態では、FTを所定の範囲内とし、且つ上述したFT~FT+50℃間の圧延に要する時間を所定の範囲内とすることで、所定の温度域での圧延パス間および仕上げ圧延後のオーステナイトの再結晶が促進され、加工オーステナイトによるフェライト変態促進効果が弱まり、フェライトの面積率を55%以下に制御できる。さらに、オーステナイト粒径を微細化することができるので、微細な結晶粒径が得られるとともに、オーステナイトの再結晶が進むことで、極密度の減少を促進することができる。
 (仕上げ圧延を完了した後、水冷を開始するまでの時間:3.0秒以内)
 仕上げ圧延完了後は、圧延によって蓄積したひずみを活用して組織の微細化を図るため、3.0秒以内に水冷を開始する。この水冷は、複数の段階に分けて行われてもよい。仕上げ圧延完了後、水冷開始までの時間が3.0秒超ではオーステナイト中のひずみが回復してしまい、所望の組織を得難くなる。仕上げ圧延完了後、水冷を開始するまでの時間は、好ましくは2.0秒以内、より好ましくは1.0秒以内、さらに好ましくは0.5秒以内である。仕上げ圧延完了後、水冷を開始するまでの時間は、仕上げ圧延完了後のオーステナイトを再結晶させるために0.05秒以上が好ましい。
 (FT~750℃の平均冷却速度:20℃/秒以上)
 仕上げ圧延完了後の熱延鋼板を、仕上げ圧延を完了した温度(仕上げ温度:FT(℃))から750℃まで冷却する際の平均冷却速度は、所望の組織を得るために重要な工程条件である。なお、前記平均冷却速度の算定に当たっては、時間としては仕上げ圧延完了後、水冷開始までの時間が含まれる。上記温度域における平均冷却速度が20℃/秒未満であると、微細組織の形成が難しくなり、冷却の過程でフェライトやパーライトが析出して、鋼板の伸びフランジ性や低温靭性が低下する。そのため、上記温度域における平均冷却速度は20℃/秒以上とする。好ましくは30℃/秒以上、より好ましくは40℃/秒以上である。上限は特に限定する必要はないが、熱ひずみによる板反り抑制の観点からは300℃/秒以下であることが好ましい。
 さらに、FT~750℃の温度域において、仕上げ圧延終了後の高温域を急速冷却することにより、組織をより微細化することができ、鋼板の低温靭性がより向上する。そのためには、仕上げ圧延を完了した後、水冷を3.0秒以内に開始し、FT~750℃の平均冷却速度を20℃/秒以上とすることに加え、FT~FT-40℃までの平均冷却速度を100℃/秒以上とすることが好ましい。この場合、前記水冷が、FT~FT-40℃の温度範囲の急冷を目的としたステップとその後の冷却を行う複数の冷却ステップで行われることを妨げない。FT~FT-40℃の平均冷却速度が100℃/秒未満では上記効果が得難くなる。FT~FT-40℃の平均冷却速度は、好ましくは120℃/秒以上、より好ましくは150℃/秒以上である。上限は特に限定する必要はないが、鋼板内の温度ばらつき抑制の観点からは1000℃/秒以下であることが好ましい。
 上述の仕上げ圧延終了後の高温域の急冷(FT~FT-40℃の冷却)は、仕上げ圧延の最終スタンドの後に限らず、圧延スタンドの間で行ってもよい。すなわち、急速冷却を行った後のスタンドでは圧延しないか、もしくは、形状矯正や冷却制御などを目的として、圧下率が8%以下の圧延を加えてもよい。この場合、急冷後の圧延は仕上げ圧延工程には含まれない。
 (750~600℃の滞在時間:5~20秒)
 仕上げ圧延後の熱延鋼板が、750~600℃の温度域に達すると、オーステナイトからフェライトへの変態が活発となる。そのため、熱延鋼板を上記温度域で5秒間以上滞在させて、オーステナイトからフェライトへの変態を促進することで、所望のフェライト面積率を得る。上記温度域における滞在時間が5秒未満であると、オーステナイトからフェライトへの変態が十分に進行せず、所望のフェライト面積率を得ることが難しくなる。そのため、上記温度域における滞在時間は5秒以上とする。好ましくは7秒以上である。一方、上記温度域における滞在時間が20秒を超えると、フェライトが過剰に析出したり、パーライトやセメンタイトが析出したりする。そのため、上記温度域における滞在時間は20秒以下とする。好ましくは17秒以下、より好ましくは14秒以下である。
 なお、本実施形態において、750~600℃の滞在時間とは、仕上げ圧延後の熱延鋼板の温度が750℃に達してから、温度が低下して600℃に達するまでの時間を示し、この時間範囲において鋼板が必ずしも常に冷却される必要はない。
 (600℃からMs未満の冷却停止温度までの平均冷却速度:20℃/秒以上)
 Ms(℃)=561-474×[C]-33×[Mn]-17×[Ni]-21×[Mo] (3)
 750~600℃の温度域に5~20秒間滞在させた後の熱延鋼板に残留している未変態オーステナイトを、マルテンサイトやベイナイトに変態させて950MPa以上の引張強度を得るために、600℃から上記式(3)式で表されるマルテンサイト変態開始温度Ms未満の冷却停止温度までの平均冷却速度を20℃/秒以上とする。上記温度域における平均冷却速度が20℃/秒未満では、冷却中にパーライトが過剰に形成する等により所望の組織が得難くなり、結果として950MPa以上の引張強度が得難くなる。上記温度域における平均冷却速度は、好ましくは40℃/秒以上、より好ましくは50℃/秒以上である。上記温度域における平均冷却速度の上限は特に限定しないが、熱ひずみによる板反り抑制の観点から、300℃/秒以下が好ましい。
 (MsからMs未満の冷却停止温度までの平均冷却速度:80℃/s以上)
 鋼板の引張強度をより高めるためには、MsからMs未満の冷却停止温度までの平均冷却速度を80℃/秒以上とすることが好ましい。より好ましくは100℃/秒以上、より一層好ましくは120℃/秒以上である。上限は特に限定する必要はないが、板厚方向の組織の均一性の観点からは500℃/秒以下であることが好ましい。より好ましくは400℃/秒以下である。また、Ms未満の冷却停止温度は、好ましくはMs-20℃以下、より好ましくはMs-50℃以下である。
 Ms未満の冷却停止温度まで冷却した後は、一般的には巻取りを行う。
 本実施形態に係る熱延鋼板を製造する際には、例えば形状矯正を目的として公知の調質圧延を適宜施してもよい。また、めっきを施してめっき鋼板としてもよい。めっきは電気めっきおよび溶融めっきのいずれでもよく、めっき種も特に制限はないが、一般的には亜鉛めっきと亜鉛合金めっきとを含む亜鉛系めっきである。めっき鋼板の例としては、電気亜鉛めっき鋼板、電気亜鉛-ニッケル合金めっき鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、溶融亜鉛-アルミニウム合金めっき鋼板などが例示される。めっき付着量は一般的な量でよい。
 本実施形態に係る熱延鋼板の板厚について、特に限定するものではないが、板厚が厚すぎる場合は、鋼板表層と内部とで生成される組織が著しく異なるため、6.0mm以下が好ましい。一方、板厚が薄すぎると熱延時の通板が困難となるため、一般的には1.0mm以上が好ましい。より好ましくは、1.2mm以上、さらに好ましくは1.5mm以上である。
 表1に示す化学組成(質量%)を有する鋼を溶製して鋳造した後、熱間鍛造によって30mm厚さの鋼片とした。得られた鋼片を加熱し、試験用小型タンデムミルにて、FT+50℃超~FT+150℃間の圧延及びFT~FT+50℃間の圧延のいずれにおいても2~4パスの複数回の圧延を行い、表2-1及び表2-2に示す条件で熱間圧延を施して、2.5~3.5mmの板厚に仕上げた。表2-1及び表2-2に製造条件を示す。なお、下線付き太字は本発明の範囲外であることを示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 得られた熱延鋼板について、走査型電子顕微鏡観察およびEBSD解析により、圧延方向及び板厚方向に平行な鋼板断面を観察し、鋼板表面から板厚の1/4深さ位置における組織の面積率と平均結晶粒径、および、板厚中心部の各結晶方位の極密度を求めた。
 EBSD解析に用いる試料については、鏡面研磨後、電解研磨により観察面の表層の加工ひずみを除去した。EBSD解析は、サーマル電界放射型走査電子顕微鏡とEBSD検出器とで構成されたEBSD解析装置を用いて、鋼板の表面から板厚の1/4深さ位置を中心とする圧延方向に200μm、板厚方向に100μmの領域において、0.2μmの間隔でfccとbccとを区別して結晶方位情報を測定し、EBSD解析装置の付属ソフトウェア(AMETEK社製「OIM Analysis(登録商標)」)を用いて、結晶方位差15°以上かつ円相当直径で0.3μm以上の領域を結晶粒と定義して、bccの平均結晶粒径およびfcc(残留オーステナイト)の面積率を求めた。なお、bccの平均結晶粒径については、下記[数1]に示す式で算出される値を求めた。式中、Nは平均結晶粒径の評価領域に含まれる結晶粒の数、Aiはi番目(i=1、2、・・、N)の結晶粒の面積、diはi番目の結晶粒の円相当直径を示す。
Figure JPOXMLDOC01-appb-M000005
 フェライト、「ベイナイト、マルテンサイト(及び残留オーステナイト)」、並びに残部組織(パーライト及び粒界セメンタイト)の面積率は、SEM観察により求めた。ここで、残留オーステナイトは、ベイナイト及びマルテンサイトのラスやブロック間に存在し、ベイナイト及びマルテンサイトと残留オーステナイトとを区別することが困難であったため、「ベイナイト、マルテンサイト(及び残留オーステナイト)」に含めた。SEM観察により求めた「ベイナイト、マルテンサイト(及び残留オーステナイト)」の面積率から、EBSD解析により求めたfcc(残留オーステナイト)の面積率を差し引くことで、ベイナイト及びマルテンサイトの面積率を得た。
 同様の装置を用いて、板厚中心部において、EBSD解析により、板厚中心部(板厚中心位置(鋼板の表面から板厚の1/2深さ位置)から、鋼板の表方向及び裏方向にそれぞれ板厚1/10程度の範囲)において、fccとbccとを区別して4500~5500個のbccの結晶粒方位情報を測定し、級数展開法を用いたODF解析により各結晶方位の極密度を求めた。
 熱延鋼板の機械特性を評価するため、引張強度TS(MPa)、破断全伸びEl(%)は、JIS Z 2241:2011に準拠し、r値は、|Δr|として、JIS Z 2254:2008に準拠し、伸びフランジ性は、JIS Z 2256:2010に準拠して測定される穴広げ率λ(%)により評価した。低温靭性は、破面遷移温度vTrs(℃)で評価し、JIS Z 2242:2005に準拠して、鋼板を2.5mmサブサイズ試験片に加工したVノッチ試験片を用いてシャルピー衝撃試験を行って評価した。
 表3-1及び表3-2に鋼組織、集合組織および機械特性の調査結果を示す。なお、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度は、表3-1及び表3-2中に「主方位群の最大極密度」と示す。
 引張強度は、950MPa以上の場合を高強度であるとして合格とし、|Δr|は、0.40以下の場合を伸びフランジ性に優れるとして合格とし、vTrs(℃)は、-40℃以下を低温靭性に優れるとして合格とした。加工性は、破断全伸びEl、|Δr|の指標の他に、強度-破断全伸びバランス(TS×El)及び強度-伸びフランジ性バランス(TS×λ)によっても評価した。TS×El(MPa・%)は、14000MPa・%以上の場合を高強度であり伸びに優れるとして合格とし、TS×λ(MPa・%)は、50000MPa・%以上である場合を高強度であり伸びフランジ性に優れるとして合格とした。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3-1及び表3-2に示すように、本発明に従った発明例では、950MPa以上の引張強度、0.40以下の|Δr|、-40℃以下のvTrsを有していることから、強度、伸びフランジ性、低温靭性に優れていることが分かる。さらに、14000MPa・%以上のTS×El、50000MPa・%以上のTS×λを有していることから、高い強度と伸びおよび伸びフランジ性とを兼備していることが分かる。本発明によれば、強度、伸び、伸びフランジ性及び低温靭性に優れた熱延鋼板が得ることができている。
 これに対し、化学組成、集合組織以外の鋼組織、又は集合組織が本発明の範囲外である比較例は、強度、伸び、伸びフランジ性及び低温靭性のいずれかが劣っている。

Claims (8)

  1.  質量%で、
     C:0.02~0.20%、
     Si:0.005~2.00%、
     Mn:1.30~2.40%、
     P:0.100%以下、
     S:0.0100%以下、
     sol.Al:0.001~1.00%、
     Ti:0.030~0.200%、
     N:0.0010~0.0100%、
     Nb:0~0.100%、
     V:0~0.50%、
     Mo:0~0.50%、
     Cu:0~1.00%、
     Ni:0~1.00%、
     Cr:0~2.00%、
     B:0~0.0100%、
     Ca:0~0.0100%、
     Mg:0~0.0100%及び
     REM:0~0.0100%
     を含有し、残部がFe及び不純物からなる化学組成を有し、
     表面から板厚の1/4深さ位置において、フェライトの面積率が10~55%であり、ベイナイト及びマルテンサイトの合計面積率が45~90%であり、前記フェライト、前記ベイナイト及び前記マルテンサイトの合計面積率が90%以上であり、平均結晶粒径が12.0μm以下であり、
     板厚中心部にて測定した集合組織において、{100}<011>、{211}<011>、{311}<011>、{110}<011>及び{332}<113>方位群の最大極密度が8.0以下、かつ、{211}<011>及び{332}<113>の極密度の合計が10.0以下であり、
     引張強度が950MPa以上であることを特徴とする熱延鋼板。
  2.  前記化学組成が、質量%で、
     Nb:0.001~0.100%、
     V:0.005~0.50%、
     Mo:0.001~0.50%、
     Cu:0.02~1.00%、
     Ni:0.02~1.00%、
     Cr:0.02~2.00%及び
     B:0.0001~0.0100%
     からなる群から選択される1種または2種以上を含有することを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成が、質量%で、
     Ca:0.0002~0.0100%、
     Mg:0.0002~0.0100%及び
     REM:0.0002~0.0100%
     からなる群から選択される1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の熱延鋼板。
  4.  r値の面内異方性の絶対値|Δr|が0.35以下であることを特徴とする請求項1~3のいずれか1項に記載の熱延鋼板。
     但し、Δr=(r+r90-2×r45)/2
    であり、r:圧延方向のr値、r90:圧延直交方向のr値、r45:圧延方向に対して45°方向のr値である。
  5.  請求項1~4のいずれか1項に記載の熱延鋼板を製造するに当たり、請求項1~3の何れか一項に記載の前記化学組成を有するスラブまたは鋼片に多パス熱間圧延を施して熱延鋼板を製造する熱延鋼板の製造方法であって、
     前記多パス熱間圧延における加熱温度を1150~1350℃とし、
     仕上げ温度を単位℃でFTと表したとき、前記FT+50℃超~前記FT+150℃間の合計圧下率を50%以上、前記FT~前記FT+50℃間の合計圧下率を40~80%、前記FT~前記FT+50℃間の圧延に要する時間を0.5~10.0秒とし、
     前記FT+50℃超~前記FT+150℃及び前記FT~前記FT+50℃のそれぞれの温度域において2パス以上の圧延を行い、
     前記FTを、式(1)により求められるAr以上、かつ式(2)により求められるTR以上、かつ1100℃以下として仕上げ圧延を完了した後、3.0秒以内に水冷を開始し、前記FT~750℃の平均冷却速度を20℃/秒以上とし、
     750~600℃の温度域で5~20秒間滞在させた後、
     600℃から式(3)により求められるMs未満の冷却停止温度まで、平均冷却速度を20℃/秒以上として冷却することを特徴とする熱延鋼板の製造方法。
     Ar(℃)=901-325×[C]+33×[Si]-92×[Mn]+287×[P]+40×[Al]   (1)
     TR(℃)=800+700×[Ti]+1000×[Nb]   (2)
     Ms(℃)=561-474×[C]-33×[Mn]-17×[Ni]-21×[Mo]   (3)
     但し、上記式(1)~(3)中の各元素記号は、各元素の質量%での含有量を示す。
  6.  前記Msから前記Ms未満の前記冷却停止温度までの平均冷却速度を80℃/s以上とすることを特徴とする請求項5に記載の熱延鋼板の製造方法。
  7.  仕上げ圧延完了後、0.3秒以内に水冷を開始し、前記FT~前記FT-40℃までの平均冷却速度が100℃/s以上である冷却を行うことを特徴とする請求項5または6に記載の熱延鋼板の製造方法。
  8.  前記FT~前記FT-40℃までの平均冷却速度が100℃/s以上である冷却を行う工程を、圧延スタンド間で行うことを特徴とする請求項7に記載の熱延鋼板の製造方法。
PCT/JP2018/025687 2017-07-07 2018-07-06 熱延鋼板及びその製造方法 WO2019009410A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112019027154-6A BR112019027154A2 (pt) 2017-07-07 2018-07-06 chapa de aço laminado a quente e método de fabricação da mesma
KR1020197038117A KR102269845B1 (ko) 2017-07-07 2018-07-06 열연 강판 및 그 제조 방법
JP2018558449A JP6465266B1 (ja) 2017-07-07 2018-07-06 熱延鋼板及びその製造方法
CN201880042796.3A CN110832098B (zh) 2017-07-07 2018-07-06 热轧钢板及其制造方法
US16/624,771 US11313009B2 (en) 2017-07-07 2018-07-06 Hot-rolled steel sheet and method for manufacturing same
EP18828857.5A EP3650569B1 (en) 2017-07-07 2018-07-06 Hot-rolled steel sheet and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-133889 2017-07-07
JP2017133889 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019009410A1 true WO2019009410A1 (ja) 2019-01-10

Family

ID=64951086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025687 WO2019009410A1 (ja) 2017-07-07 2018-07-06 熱延鋼板及びその製造方法

Country Status (8)

Country Link
US (1) US11313009B2 (ja)
EP (1) EP3650569B1 (ja)
JP (1) JP6465266B1 (ja)
KR (1) KR102269845B1 (ja)
CN (1) CN110832098B (ja)
BR (1) BR112019027154A2 (ja)
TW (1) TWI679285B (ja)
WO (1) WO2019009410A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195605A1 (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板
WO2021131876A1 (ja) * 2019-12-23 2021-07-01 日本製鉄株式会社 熱延鋼板
WO2021153037A1 (ja) * 2020-01-27 2021-08-05 日本製鉄株式会社 熱延鋼板
WO2021153746A1 (ja) * 2020-01-30 2021-08-05 日本製鉄株式会社 熱延鋼板およびその製造方法
WO2021167079A1 (ja) * 2020-02-20 2021-08-26 日本製鉄株式会社 熱延鋼板
JP2021531405A (ja) * 2018-07-25 2021-11-18 ポスコPosco 耐衝突特性に優れた高強度鋼板及びその製造方法
WO2022044493A1 (ja) * 2020-08-27 2022-03-03 日本製鉄株式会社 熱延鋼板
WO2022044495A1 (ja) * 2020-08-27 2022-03-03 日本製鉄株式会社 熱延鋼板
WO2022059321A1 (ja) * 2020-09-17 2022-03-24 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
WO2022070608A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼板及び鋼板の製造方法
CN115244203A (zh) * 2020-03-11 2022-10-25 日本制铁株式会社 热轧钢板
EP4039842A4 (en) * 2019-10-01 2022-11-09 Nippon Steel Corporation HOT ROLLED STEEL SHEET
WO2023038084A1 (ja) * 2021-09-08 2023-03-16 日本製鉄株式会社 熱延鋼板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151273A1 (ja) 2017-02-16 2018-08-23 新日鐵住金株式会社 熱間圧延鋼板及びその製造方法
JP7184210B2 (ja) * 2020-03-13 2022-12-06 日本製鉄株式会社 風力発電施設用鋼板およびその製造方法
CN111647801A (zh) * 2020-05-11 2020-09-11 首钢集团有限公司 一种690MPa级铁素体马氏体双相钢、其制备方法及其应用
CN111519096A (zh) * 2020-05-12 2020-08-11 包头钢铁(集团)有限责任公司 一种含稀土的q890cf高强钢板及其制造方法
KR20220129061A (ko) * 2020-05-13 2022-09-22 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형체
WO2021230150A1 (ja) * 2020-05-13 2021-11-18 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
KR20230038545A (ko) * 2020-09-30 2023-03-20 닛폰세이테츠 가부시키가이샤 고강도 강판
MX2023012061A (es) * 2021-06-22 2023-10-23 Nippon Steel Corp Lamina de acero laminada en caliente y metodo para fabricar la misma.

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255484A (ja) 2007-03-15 2008-10-23 Kobe Steel Ltd プレス加工性に優れた高強度熱延鋼板およびその製造方法
JP2009084648A (ja) 2007-09-28 2009-04-23 Kobe Steel Ltd 疲労強度及び伸びフランジ性に優れた高強度熱延鋼板
WO2012133540A1 (ja) * 2011-03-28 2012-10-04 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2012133636A1 (ja) * 2011-03-31 2012-10-04 新日本製鐵株式会社 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
WO2012141290A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2012141265A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 局部変形能に優れた高強度熱延鋼板とその製造方法
WO2012144567A1 (ja) * 2011-04-21 2012-10-26 新日本製鐵株式会社 均一伸びと穴拡げ性に優れた高強度冷延鋼板及びその製造方法
WO2012161248A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 熱延鋼板及びその製造方法
WO2013047819A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 引張最大強度980MPa以上を有する材質異方性の少ない成形性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板及びその製造方法
WO2013125399A1 (ja) * 2012-02-22 2013-08-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
JP2014205890A (ja) 2013-04-15 2014-10-30 Jfeスチール株式会社 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
WO2015162932A1 (ja) * 2014-04-23 2015-10-29 新日鐵住金株式会社 テーラードロールドブランク用熱延鋼板、テーラードロールドブランク、及びそれらの製造方法
JP2016008310A (ja) * 2014-06-23 2016-01-18 新日鐵住金株式会社 冷延鋼板及びその製造方法
WO2017085841A1 (ja) 2015-11-19 2017-05-26 新日鐵住金株式会社 高強度熱延鋼板及びその製造方法
JP2017133889A (ja) 2016-01-26 2017-08-03 株式会社東芝 磁気センサおよび磁気センサ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100627429B1 (ko) * 2001-10-04 2006-09-25 신닛뽄세이테쯔 카부시키카이샤 드로잉이 가능하고 형상 동결성이 우수한 고강도 박강판과 이를 제조하는 방법
CN100526493C (zh) * 2004-07-27 2009-08-12 新日本制铁株式会社 高杨氏模量钢板、使用了它的热浸镀锌钢板、合金化热浸镀锌钢板、和高杨氏模量钢管以及它们的制造方法
JP5163835B2 (ja) * 2010-07-28 2013-03-13 新日鐵住金株式会社 熱延鋼板、冷延鋼板、亜鉛めっき鋼板およびこれらの製造方法
US9517914B2 (en) * 2011-03-11 2016-12-13 Signode Industrial Group Llc Tape cartridge
CN102810039A (zh) * 2011-05-31 2012-12-05 中兴通讯股份有限公司 左右手自适应的虚拟键盘显示方法及终端
CA2860165C (en) 2012-01-05 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet and manufacturing method thereof

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255484A (ja) 2007-03-15 2008-10-23 Kobe Steel Ltd プレス加工性に優れた高強度熱延鋼板およびその製造方法
JP2009084648A (ja) 2007-09-28 2009-04-23 Kobe Steel Ltd 疲労強度及び伸びフランジ性に優れた高強度熱延鋼板
WO2012133540A1 (ja) * 2011-03-28 2012-10-04 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2012133563A1 (ja) * 2011-03-28 2012-10-04 新日本製鐵株式会社 冷延鋼板及びその製造方法
WO2012133636A1 (ja) * 2011-03-31 2012-10-04 新日本製鐵株式会社 等方加工性に優れるベイナイト含有型高強度熱延鋼板及びその製造方法
WO2012141290A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 熱延鋼板及びその製造方法
WO2012141265A1 (ja) * 2011-04-13 2012-10-18 新日本製鐵株式会社 局部変形能に優れた高強度熱延鋼板とその製造方法
WO2012144567A1 (ja) * 2011-04-21 2012-10-26 新日本製鐵株式会社 均一伸びと穴拡げ性に優れた高強度冷延鋼板及びその製造方法
WO2012161248A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 熱延鋼板及びその製造方法
WO2012161241A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
WO2013047819A1 (ja) * 2011-09-30 2013-04-04 新日鐵住金株式会社 引張最大強度980MPa以上を有する材質異方性の少ない成形性に優れた高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板及びその製造方法
WO2013125399A1 (ja) * 2012-02-22 2013-08-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
JP2014205890A (ja) 2013-04-15 2014-10-30 Jfeスチール株式会社 穴拡げ加工性に優れた高強度熱延鋼板およびその製造方法
WO2015162932A1 (ja) * 2014-04-23 2015-10-29 新日鐵住金株式会社 テーラードロールドブランク用熱延鋼板、テーラードロールドブランク、及びそれらの製造方法
JP2016008310A (ja) * 2014-06-23 2016-01-18 新日鐵住金株式会社 冷延鋼板及びその製造方法
WO2017085841A1 (ja) 2015-11-19 2017-05-26 新日鐵住金株式会社 高強度熱延鋼板及びその製造方法
JP2017133889A (ja) 2016-01-26 2017-08-03 株式会社東芝 磁気センサおよび磁気センサ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650569A4

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11591667B2 (en) 2018-07-25 2023-02-28 Posco Co., Ltd High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
US11981975B2 (en) 2018-07-25 2024-05-14 Posco Co., Ltd High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP2021531405A (ja) * 2018-07-25 2021-11-18 ポスコPosco 耐衝突特性に優れた高強度鋼板及びその製造方法
JP7244716B2 (ja) 2018-07-25 2023-03-23 ポスコ カンパニー リミテッド 耐衝突特性に優れた高強度鋼板及びその製造方法
JP7284428B2 (ja) 2019-03-26 2023-05-31 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板
EP3950974A4 (en) * 2019-03-26 2023-01-25 Nippon Steel Corporation STEEL SHEET, METHOD OF PRODUCTION AND CLAD STEEL SHEET
CN113383097A (zh) * 2019-03-26 2021-09-10 日本制铁株式会社 钢板、钢板的制造方法及镀层钢板
JPWO2020195605A1 (ja) * 2019-03-26 2021-10-21 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板
WO2020195605A1 (ja) * 2019-03-26 2020-10-01 日本製鉄株式会社 鋼板、鋼板の製造方法およびめっき鋼板
CN113383097B (zh) * 2019-03-26 2022-11-22 日本制铁株式会社 钢板、钢板的制造方法及镀层钢板
EP4039842A4 (en) * 2019-10-01 2022-11-09 Nippon Steel Corporation HOT ROLLED STEEL SHEET
CN114829649B (zh) * 2019-12-23 2023-09-29 日本制铁株式会社 热轧钢板
WO2021131876A1 (ja) * 2019-12-23 2021-07-01 日本製鉄株式会社 熱延鋼板
CN114829649A (zh) * 2019-12-23 2022-07-29 日本制铁株式会社 热轧钢板
JP7260825B2 (ja) 2020-01-27 2023-04-19 日本製鉄株式会社 熱延鋼板
CN115003835B (zh) * 2020-01-27 2024-04-12 日本制铁株式会社 热轧钢板
EP4098761A4 (en) * 2020-01-27 2022-12-07 Nippon Steel Corporation HOT ROLLED STEEL SHEET
CN115003835A (zh) * 2020-01-27 2022-09-02 日本制铁株式会社 热轧钢板
WO2021153037A1 (ja) * 2020-01-27 2021-08-05 日本製鉄株式会社 熱延鋼板
JPWO2021153037A1 (ja) * 2020-01-27 2021-08-05
CN114929918B (zh) * 2020-01-30 2023-12-26 日本制铁株式会社 热轧钢板及其制造方法
CN114929918A (zh) * 2020-01-30 2022-08-19 日本制铁株式会社 热轧钢板及其制造方法
JP7372560B2 (ja) 2020-01-30 2023-11-01 日本製鉄株式会社 熱延鋼板およびその製造方法
JPWO2021153746A1 (ja) * 2020-01-30 2021-08-05
WO2021153746A1 (ja) * 2020-01-30 2021-08-05 日本製鉄株式会社 熱延鋼板およびその製造方法
WO2021167079A1 (ja) * 2020-02-20 2021-08-26 日本製鉄株式会社 熱延鋼板
CN115244203A (zh) * 2020-03-11 2022-10-25 日本制铁株式会社 热轧钢板
CN115244203B (zh) * 2020-03-11 2023-11-21 日本制铁株式会社 热轧钢板
WO2022044495A1 (ja) * 2020-08-27 2022-03-03 日本製鉄株式会社 熱延鋼板
WO2022044493A1 (ja) * 2020-08-27 2022-03-03 日本製鉄株式会社 熱延鋼板
JP7495640B2 (ja) 2020-08-27 2024-06-05 日本製鉄株式会社 熱延鋼板
JP7495641B2 (ja) 2020-08-27 2024-06-05 日本製鉄株式会社 熱延鋼板
JPWO2022059321A1 (ja) * 2020-09-17 2022-03-24
JP7397381B2 (ja) 2020-09-17 2023-12-13 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
WO2022059321A1 (ja) * 2020-09-17 2022-03-24 日本製鉄株式会社 ホットスタンプ用鋼板およびホットスタンプ成形体
CN116018418A (zh) * 2020-09-30 2023-04-25 日本制铁株式会社 钢板和钢板的制造方法
WO2022070608A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 鋼板及び鋼板の製造方法
JP7498407B2 (ja) 2020-09-30 2024-06-12 日本製鉄株式会社 鋼板及び鋼板の製造方法
WO2023038084A1 (ja) * 2021-09-08 2023-03-16 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
TWI679285B (zh) 2019-12-11
CN110832098A (zh) 2020-02-21
TW201907014A (zh) 2019-02-16
JP6465266B1 (ja) 2019-02-06
BR112019027154A2 (pt) 2020-06-30
CN110832098B (zh) 2021-11-23
KR20200011475A (ko) 2020-02-03
KR102269845B1 (ko) 2021-06-28
US11313009B2 (en) 2022-04-26
EP3650569A4 (en) 2021-03-24
US20210140005A1 (en) 2021-05-13
EP3650569A1 (en) 2020-05-13
JPWO2019009410A1 (ja) 2019-07-04
EP3650569B1 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP6465266B1 (ja) 熱延鋼板及びその製造方法
US11111553B2 (en) High-strength steel sheet and method for producing the same
US10253389B2 (en) High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor
JP6048580B2 (ja) 熱延鋼板及びその製造方法
JP6852736B2 (ja) 溶融亜鉛めっき冷延鋼板
US10590504B2 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
JP5339005B1 (ja) 合金化溶融亜鉛めっき熱延鋼板およびその製造方法
JP6354268B2 (ja) 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP7284428B2 (ja) 鋼板、鋼板の製造方法およびめっき鋼板
JP6519016B2 (ja) 熱延鋼板及びその製造方法
JP2015151600A (ja) 熱延鋼板の製造方法
JP2011052295A (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP5302840B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
CN113692456B (zh) 剪切加工性优异的超高强度钢板及其制造方法
US11248275B2 (en) Warm-workable high-strength steel sheet and method for manufacturing the same
WO2021123880A1 (en) Cold-rolled and annealed steel sheet and manufacturing method
WO2021172297A1 (ja) 鋼板、部材及びそれらの製造方法
JP7498407B2 (ja) 鋼板及び鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018558449

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197038117

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019027154

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018828857

Country of ref document: EP

Effective date: 20200207

ENP Entry into the national phase

Ref document number: 112019027154

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191218