WO2018235747A1 - 被覆工具、切削工具及び切削加工物の製造方法 - Google Patents

被覆工具、切削工具及び切削加工物の製造方法 Download PDF

Info

Publication number
WO2018235747A1
WO2018235747A1 PCT/JP2018/022998 JP2018022998W WO2018235747A1 WO 2018235747 A1 WO2018235747 A1 WO 2018235747A1 JP 2018022998 W JP2018022998 W JP 2018022998W WO 2018235747 A1 WO2018235747 A1 WO 2018235747A1
Authority
WO
WIPO (PCT)
Prior art keywords
alti
layer
thickness
alti layers
layers
Prior art date
Application number
PCT/JP2018/022998
Other languages
English (en)
French (fr)
Inventor
聡史 森
理沙 幸田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019525581A priority Critical patent/JP7029452B2/ja
Priority to DE112018003157.8T priority patent/DE112018003157T5/de
Priority to CN201880041679.5A priority patent/CN110769956B/zh
Priority to US16/624,942 priority patent/US11478858B2/en
Publication of WO2018235747A1 publication Critical patent/WO2018235747A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/04Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings

Definitions

  • the present disclosure relates to a coated tool used in cutting.
  • Patent Document 1 As a coated tool used for cutting such as turning and turning, for example, a coated tool provided with a hard coating described in JP-A-2016-130344 (Patent Document 1) is known.
  • Hard coating described in Patent Document 1 contains Ti 1-x1 Al x1 N phase (first phase), the Al x2 Ti 1-x2 N phase (second phase) and are alternately laminated .
  • the values of x1 and x2 indicating the content ratio of Ti and Al in each phase at atomic ratio are 0.1 ⁇ x1 ⁇ 0.7 and 0.7 ⁇ x2 ⁇ 0.95.
  • the hard coating described in Patent Document 1 has a structure in which the first phase and the second phase are alternately laminated, and thus is a coating (coating layer) excellent in wear resistance and bonding property.
  • the coated tool according to the first aspect comprises a substrate and a coating layer located on the substrate, wherein the coating layer has an atomic ratio of aluminum and titanium represented by Al 1-x1 Ti x1. And a plurality of first AlTi layers, and a plurality of second AlTi layers whose content ratio in atomic ratio of aluminum and titanium is represented by Al 1-x 2 Ti x 2 , wherein the first AlTi layer and the second AlTi layer It includes features alternately positioned in a direction away from the substrate. Furthermore, the thickness x1 is larger than the thickness x2 and the plurality of first AlTi layers are thinner than those located in the vicinity of the base in the two adjacent first AlTi layers, and the thickness of those located farther from the base It has a first area.
  • the coated tool according to the second aspect comprises a substrate and a coating layer located on the substrate, wherein the coating layer contains Al 1-x 1 Ti x 1 in the atomic ratio of aluminum and titanium.
  • the first AlTi layer and the second AlTi layer have a plurality of first AlTi layers and a plurality of second AlTi layers whose content ratio in atomic ratio of aluminum and titanium is represented by Al 1-x 2 Ti x 2 Are alternately positioned away from the substrate. Furthermore, the thickness x1 of the plurality of second AlTi layers is greater than the thickness x2 of the two adjacent second AlTi layers, and the thickness of the plurality of second AlTi layers located farther from the base is greater than that near the base. It has a second area.
  • FIG. 2 is a cross-sectional view of the coated tool shown in FIG. It is an enlarged view in area
  • FIG. 2nd embodiment It is a perspective view showing the covering tool of a 2nd embodiment.
  • FIG. 9 is a cross-sectional view of an A2-A2 cross section in the coated tool shown in FIG. 8; It is an enlarged view in area
  • FIG. 16 is a cross-sectional view of an A3-A3 cross section in the coated tool shown in FIG. 15; It is an enlarged view in area
  • FIG. 23 is an enlarged view of a region B7 shown in FIG. 22. It is the schematic which shows 1 process of the manufacturing method of the cutting material of embodiment. It is the schematic which shows 1 process of the manufacturing method of the cutting material of embodiment. It is the schematic which shows 1 process of the manufacturing method of the cutting material of embodiment. It is the schematic which shows 1 process of the manufacturing method of the cutting material of embodiment.
  • coated tools according to a plurality of embodiments will be described in detail with reference to the drawings.
  • the drawings referred to in the following simply show only the main members necessary for describing each embodiment.
  • the coated tool may comprise any component not shown in the figures to which it refers.
  • the dimensions of the members in the respective drawings do not faithfully represent the dimensions of the actual constituent members, the dimensional ratio of the respective members, and the like.
  • the coated tool 1 according to the first embodiment has a rectangular plate shape, and has a rectangular first surface 3 (upper surface in FIG. 1), a second surface 5 (side surface in FIG. 1), first surfaces 3 and 2 And a cutting edge 7 located at at least a part of a ridge line where the surfaces 5 meet.
  • the cutting edge 7 may be located on the entire outer periphery of the first surface 3, and the cutting edge 7 is only on a part of the outer periphery of the first surface 3 It may be located.
  • the cutting edge 7 may be partially or partially provided on only one side of the first surface 3 of a square.
  • the first surface 3 may have a rake surface area 3a at least in part.
  • the area along the cutting edge 7 in the first surface 3 is the rake surface area 3 a.
  • the second surface 5 may have a flank region 5a at least in part.
  • the area along the cutting edge 7 in the second surface 5 is the flank surface area 5 a. Therefore, it may be rephrased that the cutting edge 7 is located at the intersection of the rake surface area 3a and the flank surface area 5a.
  • the boundaries of the rake surface area 3 a and other areas on the first surface 3 and the boundaries of the relief area and other areas on the second surface 5 are indicated by alternate long and short dashed lines.
  • FIG. 1 an example is shown in which all the ridge lines intersecting the first surface 3 and the second surface 5 are the cutting edges 7. Therefore, an annular dashed dotted line along the cutting edge 7 in the first surface 3 is shown.
  • the size of the coated tool 1 is not particularly limited, for example, the length of one side of the first surface 3 may be set to about 3 to 20 mm. Further, the height from the first surface 3 to the surface (lower surface in FIG. 1) located on the opposite side of the first surface 3 may be set to about 5 to 20 mm.
  • An example of the coated tool 1 shown in FIG. 1 includes a square plate-shaped substrate 9 and a coating layer 11 that covers the surface of the substrate 9.
  • the covering layer 11 may cover the entire surface of the substrate 9 or may cover only a part of the surface. Since the covering layer 11 may cover only a part of the substrate 9, the covering layer 11 may be rephrased to be located on at least a part of the substrate 9.
  • the covering layer 11 in the example shown in FIG. 1 is located at least in a rake surface area 3 a along the cutting edge 7 on the first surface 3 and a flank surface area 5 a along the cutting edge 7 on the second surface 5.
  • FIG. 1 shows an example in which the covering layer 11 is present on the entire first surface 3 including the rake surface region 3a and the entire second surface 5 including the flank region 5a.
  • the thickness of the covering layer 11 can be set to, for example, about 0.1 to 10 ⁇ m.
  • the thickness of the covering layer 11 may be constant or may differ depending on the place.
  • the covering layer 11 has a plurality of first AlTi layers 13 containing aluminum and titanium as main components, and a plurality of second AlTi layers 15 containing aluminum and titanium as main components. doing.
  • the covering layer 11 includes a configuration in which the plurality of first AlTi layers 13 and the plurality of second AlTi layers 15 are alternately positioned in the direction away from the substrate 9. In such a case, it may be rephrased that the covering layer 11 includes a configuration in which a plurality of first AlTi layers 13 and a plurality of second AlTi layers 15 are alternately stacked.
  • the content ratio by atomic ratio of aluminum and titanium in the first AlTi layer 13 is represented by Al 1-x1 Ti x1 (0 ⁇ x1 ⁇ 1). Further, the content ratio of aluminum and titanium in the second AlTi layer 15 in terms of atomic ratio is indicated by Al 1 -x 2 Ti x 2 (0 ⁇ x2 ⁇ 1).
  • the values of x1 and x2 are not limited to particular values, but can be set, for example, as 0.4 ⁇ x1 ⁇ 0.95, 0.2 ⁇ x2 ⁇ 0.7.
  • x1 is larger than x2. Therefore, the content ratio of Ti in the first AlTi layer 13 is high as compared to the second AlTi layer 15, and the first AlTi layer 13 is excellent in bonding property as compared to the second AlTi layer 15. In addition, the content ratio of Al in the second AlTi layer 15 is higher than that of the first AlTi layer 13, and the second AlTi layer 15 is excellent in wear resistance as compared with the first AlTi layer 13.
  • the layered structure of the covering layer 11 can be evaluated by cross-sectional measurement using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the first AlTi layer 13 and the second AlTi layer 15 may be made of only aluminum and titanium, respectively, and in addition to aluminum and titanium, Si, Nb, Hf, V, Ta, Mo, Zr, Cr and W And other metal components may be contained.
  • the content ratio of aluminum and titanium is higher than that of the above metal component.
  • the “content ratio” in the above means the content ratio in atomic ratio.
  • the first AlTi layer 13 and the second AlTi layer 15 may be made of only the metal component containing aluminum and titanium, and are made of nitride, carbide or carbonitride of the metal component containing aluminum and titanium. May be
  • compositions of the first AlTi layer 13 and the second AlTi layer 15 can be measured, for example, by energy dispersive X-ray spectroscopy (EDS) or X-ray photoelectron spectroscopy (XPS).
  • EDS energy dispersive X-ray spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • first AlTi layers 13 and second AlTi layers 15 are not limited to a specific value.
  • the number of first AlTi layers 13 and the number of second AlTi layers 15 may be two or more, and may be set to, for example, 2 to 500.
  • the thickness of the first AlTi layer 13 is not limited to a specific value.
  • the thickness of each of the plurality of first AlTi layers 13 may be set to 5 nm to 100 nm.
  • the thickness of each of the plurality of first AlTi layers 13 in the first embodiment is not constant, and in the two adjacent first AlTi layers 13 among the plurality of first AlTi layers 13, the substrate 9 is closer than the substrate 9. There is a region where the thickness of the one located away from is thin. In the two adjacent first AlTi layers 13 among the plurality of first AlTi layers 13, a region satisfying the above-described thickness relationship is referred to as a first region 13a.
  • the first region 13 a can also be said to be a region where the thickness of the one located closer to the substrate 9 is thicker than the one located farther from the substrate 9. .
  • the ratio of the second AlTi layer 15 to the first AlTi layer 13 is high on the side of the first region 13a remote from the base 9;
  • the ratio of the first AlTi layer 13 to the second AlTi layer 15 is high on the side closer to the base 9 of the first region 13 a.
  • the bonding property of the covering layer 11 is high. Further, on the side away from the base 9 in the first region 13a, the wear resistance of the covering layer 11 is high because the ratio of the second AlTi layer 15 excellent in wear resistance is high. Therefore, the coated tool 1 of the first embodiment is excellent in both wear resistance and bondability.
  • the thickness may be thinner as it is located away from the base, and in the case where only a portion of the plurality of first AlTi layers 13 is located away from the base, the thickness may be thicker May be thinner.
  • all of the plurality of first AlTi layers 13 may be included in the first region 13a, and only a part of the plurality of first AlTi layers 13 may be included in the first region 13a.
  • the thickness of the plurality of first AlTi layers 13 decreases as the distance from the base decreases, so that all of the plurality of first AlTi layers 13 are included in the first region 13a. It can be said that In this case, the bondability and wear resistance of the covering layer 11 are further enhanced.
  • the thickness is thinner as the first AlTi layer 13 is located away from the base 9.
  • the change in thickness of the plurality of first AlTi layers 13 included in the first region 13a is not particularly limited, and the amount of change may or may not be constant.
  • the amount of change in thickness of the plurality of first AlTi layers 13 is constant. That is, when there are three or more first AlTi layers 13 in the first region 13a, the difference in thickness between two adjacent first AlTi layers 13 is the same.
  • the thickness of the first AlTi layer 13 changes rapidly, and stress is not likely to concentrate on a part of the covering layer 11. Therefore, the durability of the covering layer 11 is high.
  • the thickness of the first AlTi layer 13 included in the first region 13a is positioned approximately on a straight line. Is meant to
  • the thickness of the first AlTi layer 13 included in the first region 13a does not have to be strictly on a straight line.
  • the thickness of the first AlTi layer 13 located closest to the base 9 and the first AlTi layer 13 included in the first region 13a located most distant from the base 9 When the thickness of the first AlTi layer 13 is connected by a straight line, the thickness of each first AlTi layer 13 may be a numerical value in the range of 90 to 110% with respect to the exact value indicated by the above straight line.
  • the thickness of a part of the first AlTi layers 13 b located near the substrate 9 among the plurality of first AlTi layers 13 constituting the covering layer 11 is constant.
  • the thickness of the first AlTi layer 13 b located closer to the base 9 than the first region 13 a is constant, stress is less likely to be concentrated on a part of the first AlTi layer 13 b having the constant thickness. . Therefore, the durability of the covering layer 11 is high.
  • the thickness of a part of the first AlTi layers 13 c located apart from the base 9 among the plurality of first AlTi layers 13 constituting the covering layer 11 is constant.
  • the thickness of the first AlTi layer 13c located apart from the base 9 than the first region 13a is constant, stress is less likely to be concentrated on a part of the first AlTi layer 13c having the constant thickness. . Therefore, the durability of the covering layer 11 is high.
  • the thickness of the first AlTi layer 13 is constant does not require that the thickness be exactly the same.
  • the thickness of the thinnest first AlTi layer 13 is 95% or more with respect to the thickness of the thickest first AlTi layer 13, it can be seen that the thickness is constant. Forgive.
  • the thickness of one of the two adjacent first AlTi layers 13 is the same as each other, or the thickness of the one positioned apart from the base 9 is different.
  • the covering layer 11 is particularly excellent in both wear resistance and adhesion.
  • the plurality of first AlTi layers 13 constituting the covering layer 11 are divided into a plurality of portions in the stacking direction.
  • the thickness of the first AlTi layer 13 included in each section is constant, and the thickness of the first AlTi layer 13 included in the section located farther from the base 9 is thinner.
  • the first region 13a is formed by the pair of first AlTi layers 13 located at the boundary between adjacent sections.
  • the thickness of the first AlTi layer 13 changes stepwise, so when forming the first AlTi layer 13, the first AlTi layers 13 are formed. Adjustment of the thickness of the layer 13 is easy. Therefore, the coating layer 11 excellent in bonding property and wear resistance can be formed regardless of complicated processes.
  • the thickness of the second AlTi layer 15 is not limited to a specific value, but may be set to, for example, 5 nm to 100 nm.
  • the thickness of each of the plurality of second AlTi layers 15 may be constant, or the thickness of some of the second AlTi layers 15 may be different from each other.
  • the bondability of the covering layer 11 is further enhanced.
  • the average value of the thickness of the first AlTi layer 13 is the same as that of the second AlTi layer 15. If the thickness is larger than the average value, the bondability of the covering layer 11 is higher.
  • the wear resistance of the covering layer 11 is further high.
  • the average value of the thickness of the second AlTi layer 15 is the first AlTi layer 13 If the average thickness of the coating layer 11 is larger than the average thickness of the coating layer 11, the abrasion resistance of the coating layer 11 is even higher.
  • the covering layer 11 may be directly bonded to the substrate 9, the first AlTi layer constituting the covering layer 11 between the substrate 9 and the covering layer 11 in order to improve the bonding property of the substrate 9 and the covering layer 11.
  • Other layers such as an underlayer (not shown) thicker than 13 and the second AlTi layer 15 may be located.
  • covering tool 1 in an example shown in Drawing 1 is square board shape
  • the shape of covering tool 1 is not limited to such a shape.
  • the first surface 3 is not a square but a triangle, a hexagon or a circle.
  • the coated tool 1 may have a through hole 17 as shown in FIG.
  • the through hole 17 in the example shown in FIG. 1 is located from the first surface 3 to the surface (lower surface in FIG. 1) opposite to the first surface 3 and is open in these surfaces.
  • the through hole 17 may be used to attach a screw or clamp member when holding the coating tool 1 in the holder.
  • the through holes 17 may be opened in regions opposite to each other on the second surface 5 without any problem.
  • Examples of the material of the base 9 include inorganic materials such as cemented carbide, cermet, and ceramics.
  • examples of the composition of the cemented carbide include WC (tungsten carbide) -Co, WC-TiC (titanium carbide) -Co, and WC-TiC-TaC (tantalum carbide) -Co.
  • WC, TiC and TaC are hard particles, and Co is a binder phase.
  • cermet is a sintered composite material in which a ceramic component is compounded with a metal. Specifically, a compound mainly composed of TiC or TiN (titanium nitride) can be mentioned as the cermet.
  • substrate 9 is not limited to these.
  • the covering layer 11 may be located on the substrate 9 by using, for example, physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • the covering layer 11 is formed by using the above vapor deposition method in a state where the base 9 is held by the inner peripheral surface of the through hole 17, the entire surface of the base 9 excluding the inner peripheral surface of the through hole 17
  • the covering layer 11 can be positioned to cover the
  • the ion plating method As a physical vapor deposition method, the ion plating method, sputtering method, etc. are mentioned, for example.
  • the covering layer 11 of the first embodiment may be produced by the following method.
  • a metal target containing aluminum and titanium independently, a composite alloy target or a sintered body target is prepared.
  • the above target which is a metal source, is vaporized and ionized by arc discharge and glow discharge.
  • the ionized target is reacted with nitrogen (N 2 ) gas as a nitrogen source, methane (CH 4 ) gas as a carbon source or acetylene (C 2 H 2 ) gas, and deposited on the surface of the substrate 9.
  • the first AlTi layer 13 may be formed by the above procedure.
  • a metal target independently containing aluminum and titanium, a composite alloy target or a sintered body target is prepared.
  • a target having a higher content ratio of aluminum than the target prepared in the first procedure is prepared.
  • the above target, which is a metal source is vaporized and ionized by arc discharge and glow discharge.
  • the ionized target is reacted with nitrogen gas as a nitrogen source, methane gas as a carbon source, or acetylene gas, and deposited on the surface of the substrate 9.
  • the second AlTi layer 15 may be formed by the above procedure.
  • the covering layer 11 including the configuration in which the plurality of first AlTi layers 13 and the plurality of second AlTi layers 15 are alternately positioned in the direction away from the substrate 9 is formed. You may There is no problem in performing the first procedure after performing the second procedure first.
  • the thickness of the plurality of first AlTi layers 13 can be changed by changing the current value at the time of discharge such as arc discharge and glow discharge. Specifically, when the first procedure is repeated, the two adjacent first AlTi layers 13 are located farther from the base 9 than the one located near the base 9 by reducing the current value. A thin first region 13a may be produced.
  • the distance from the base 9 is increased by gradually reducing the current value at the time of discharge from the time when the first procedure is performed to the time when the first procedure is finally performed. It is possible to make the thickness as thin as the first AlTi layer 13 located.
  • the coated tool 1 of the second embodiment will be described using the drawings. However, in the following, differences between the coated tool 1 of the second embodiment and the coated tool 1 of the first embodiment will be mainly described, and the same configuration as the coated tool 1 of the first embodiment is provided. Description of points may be omitted.
  • the coated tool 1 according to the second embodiment has a rectangular plate shape, and has a rectangular first surface 3 (upper surface in FIG. 8), a second surface 5 (side surface in FIG. 8), first surfaces 3 and 2 And a cutting edge 7 located at at least a part of a ridge line where the surfaces 5 meet.
  • the coated tool 1 shown in FIG. 8 includes a square plate-shaped base 9 and a coating layer 11 that covers the surface of the base 9, as in the example shown in FIG.
  • the covering layer 11 may cover the entire surface of the substrate 9 or may cover only a part of the surface.
  • the covering layer 11 has a plurality of first AlTi layers 13 containing aluminum and titanium as main components, and a plurality of second AlTi layers 15 containing aluminum and titanium as main components. doing.
  • the covering layer 11 includes a configuration in which the plurality of first AlTi layers 13 and the plurality of second AlTi layers 15 are alternately positioned in the direction away from the substrate 9.
  • the thickness of the second AlTi layer 15 is not limited to a specific value.
  • the thickness of each of the plurality of second AlTi layers 15 may be set to 5 nm to 100 nm.
  • the thickness of each of the plurality of second AlTi layers 15 in the second embodiment is not constant, and in two adjacent second AlTi layers 15 among the plurality of second AlTi layers 15, the substrate 9 is closer than the substrate 9.
  • the second region 15a may be thicker than the second region 15a.
  • the ratio of the second AlTi layer 15 to the first AlTi layer 13 is high on the side of the second region 15a remote from the substrate 9, and The ratio of the first AlTi layer 13 to the second AlTi layer 15 is high on the side closer to the base 9 of the second region 15 a.
  • the coated tool 1 of the second embodiment is, as with the coated tool 1 of the first embodiment, excellent in both wear resistance and bondability.
  • All of the plurality of second AlTi layers 15 may be included in the second region 15a, and only a part of the plurality of second AlTi layers 15 may be included in the second region 15a. In the example shown in FIG. 10, all of the plurality of second AlTi layers 15 are included in the second region 15a. In this case, the bondability and wear resistance of the covering layer 11 are further enhanced.
  • the second AlTi layer 15 located away from the base 9 is thicker.
  • the change in thickness of the plurality of second AlTi layers 15 included in the second region 15a is not particularly limited, and the amount of change may or may not be constant.
  • the amount of change in thickness of the plurality of second AlTi layers 15 is constant. That is, when there are three or more second AlTi layers 15 in the second region 15a, the difference in thickness between two adjacent second AlTi layers 15 is the same.
  • the thickness of the second AlTi layer 15 changes rapidly, and stress is less likely to concentrate on a part of the covering layer 11. Therefore, the durability of the covering layer 11 is high.
  • the thickness of the second AlTi layer 15 included in the second region 15a is positioned approximately on a straight line. Is meant to
  • the thickness of the second AlTi layer 15 included in the second region 15a does not have to be strictly on a straight line.
  • the thickness of the second AlTi layer 15 located closest to the base 9 among the second AlTi layers 15 included in the second region 15 a and the far end located away from the base 9 among the second AlTi layers 15 included in the second region 15 a When the thickness of the second AlTi layer 15 is connected by a straight line, the thickness of each second AlTi layer 15 may be a numerical value in the range of 90 to 110% with respect to the exact value indicated by the above straight line.
  • the thickness of a part of the second AlTi layers 15b located near the base 9 is constant.
  • stress is less likely to be concentrated on a part of the second AlTi layer 15b having the constant thickness. . Therefore, the durability of the covering layer 11 is high.
  • the thickness of a part of the second AlTi layers 15 c located apart from the base 9 among the plurality of second AlTi layers 15 constituting the covering layer 11 is constant.
  • the thickness of the second AlTi layer 15c located apart from the base 9 than the second region 15a is constant, it is difficult for stress to concentrate on a part of the second AlTi layer 15c having the constant thickness. . Therefore, the durability of the covering layer 11 is high.
  • the thickness of the second AlTi layer 15 is constant does not require that the thickness be exactly the same.
  • the thickness of the thinnest second AlTi layer 15 is 95% or more with respect to the thickness of the thickest second AlTi layer 15, it is considered that the thickness is constant. Forgive.
  • the thickness of the plurality of second AlTi layers 15 in the two adjacent second AlTi layers 15 is the same as each other, or the thickness of one located apart from the base 9 is In the case of a thick configuration, the covering layer 11 is particularly excellent in both abrasion resistance and bondability.
  • the plurality of second AlTi layers 15 constituting the covering layer 11 are divided into a plurality of portions in the stacking direction.
  • the thickness of the second AlTi layer 15 included in each section is constant, and the thickness of the second AlTi layer 15 included in the section located farther from the base 9 is thicker.
  • the second region 15a is formed by the pair of second AlTi layers 15 located at the boundary between adjacent sections.
  • the thickness of the second AlTi layer 15 changes stepwise, so when the second AlTi layer 15 is formed, the second AlTi layers 15 are formed. Adjustment of the thickness of the layer 15 is easy. Therefore, the coating layer 11 excellent in bonding property and wear resistance can be formed regardless of complicated processes.
  • the thickness of the first AlTi layer 13 is not limited to a specific value, but may be set to, for example, 5 nm to 100 nm.
  • the thickness of each of the plurality of first AlTi layers 13 may be constant, or the thickness of some of the first AlTi layers 13 may be different from each other.
  • the covering layer 11 may be located on the substrate 9 by using a physical vapor deposition method as in the first embodiment.
  • a physical vapor deposition method as in the first embodiment.
  • the covering layer 11 of the second embodiment may be manufactured by the following method.
  • a metal target independently containing aluminum and titanium, a composite alloy target or a sintered body target is prepared.
  • the ionized target is reacted with nitrogen gas as a nitrogen source, methane gas as a carbon source, or acetylene gas, and deposited on the surface of the substrate 9.
  • the first AlTi layer 13 may be formed by the above procedure.
  • a metal target independently containing aluminum and titanium, a composite alloy target or a sintered body target is prepared.
  • a target having a higher content ratio of aluminum than the target prepared in the first procedure is prepared.
  • the ionized target is reacted with nitrogen gas as a nitrogen source, methane gas as a carbon source, or acetylene gas, and deposited on the surface of the substrate 9.
  • the second AlTi layer 15 may be formed by the above procedure.
  • the covering layer 11 including the configuration in which the plurality of first AlTi layers 13 and the plurality of second AlTi layers 15 are alternately positioned in the direction away from the substrate 9 is formed. You may There is no problem in performing the first procedure after performing the second procedure first.
  • the thickness of the plurality of second AlTi layers 15 can be changed by changing the current value at the time of discharge such as arc discharge and glow discharge. Specifically, when the second procedure is repeated, the two adjacent second AlTi layers 15 are located farther from the base 9 than those located near the base 9 by increasing the current value. A thick second region 15a may be produced.
  • the coated tool 1 of the third embodiment will be described using the drawings. However, in the following, differences between the coated tool 1 of the third embodiment and the coated tool 1 of the first and second embodiments will be mainly described, and the coated tools of the first and second embodiments will be described. The description may be omitted for the point having the same configuration as 1.
  • the coated tool 1 according to the third embodiment has a rectangular plate shape, and has a rectangular first surface 3 (upper surface in FIG. 15), a second surface 5 (side surface in FIG. 15), and the first surface 3 and the second surface. And a cutting edge 7 located at at least a part of a ridge line where the surfaces 5 meet.
  • the coated tool 1 shown in FIG. 15 includes a square plate-shaped base 9 and a coating layer 11 that covers the surface of the base 9, as in the example shown in FIG.
  • the covering layer 11 may cover the entire surface of the substrate 9 or may cover only a part of the surface.
  • the covering layer 11 has a plurality of first AlTi layers 13 containing aluminum and titanium as main components, and a plurality of second AlTi layers 15 containing aluminum and titanium as main components. doing.
  • the covering layer 11 includes a configuration in which the plurality of first AlTi layers 13 and the plurality of second AlTi layers 15 are alternately positioned in the direction away from the substrate 9.
  • the first region 13 a has a plurality of first AlTi layers 13 located farther from the base 9 than the two adjacent first AlTi layers 13 located near the base 9 and having a thinner first region 13 a. have. Further, the plurality of second AlTi layers 15 have a second region 15a in which the thickness of the two adjacent second AlTi layers 15 located farther from the base 9 than those located near the base 9 is greater than the thickness of the second areas 15a. .
  • the coated tool 1 of the third embodiment combines the characteristic configuration of the plurality of first AlTi layers 13 in the first embodiment and the characteristic configuration of the plurality of second AlTi layers 15 in the second embodiment. It is a structure.
  • the ratio of the second AlTi layer 15 to the first AlTi layer 13 is high on the side of the first region 13a remote from the base 9;
  • the ratio of the first AlTi layer 13 to the second AlTi layer 15 is high on the side closer to the base 9 of the first region 13 a.
  • the ratio of the second AlTi layer 15 to the first AlTi layer 13 is further increased on the side of the second region 15a remote from the base 9.
  • the ratio of the first AlTi layer 13 to the second AlTi layer 15 is higher on the side closer to the base 9 of the second region 15a.
  • the covering layer 11 when the covering layer 11 has both the first region 13a and the second region 15a, the covering layer 11 is very excellent in both abrasion resistance and bondability.
  • All of the plurality of first AlTi layers 13 may be included in the first region 13a, and only a part of the plurality of first AlTi layers 13 may be included in the first region 13a.
  • All of the plurality of second AlTi layers 15 may be included in the second region 15a, and only a part of the plurality of second AlTi layers 15 may be included in the second region 15a.
  • all of the plurality of first AlTi layers 13 are included in the first region 13a, and all of the plurality of second AlTi layers 15 are included in the second region 15a. In this case, the bondability and wear resistance of the covering layer 11 are further enhanced.
  • the amount of change in thickness of the plurality of first AlTi layers 13 is constant. That is, when there are three or more first AlTi layers 13 in the first region 13a, the difference in thickness between two adjacent first AlTi layers 13 is the same. Further, in the second region 15a of the example shown in FIGS. 17 and 18, the amount of change in thickness of the plurality of second AlTi layers 15 is constant. That is, when there are three or more second AlTi layers 15 in the second region 15a, the difference in thickness between two adjacent second AlTi layers 15 is the same.
  • the difference in thickness of two adjacent first AlTi layers 13 in the first region 13a may be different from the difference in thickness of two adjacent second AlTi layers 15 in the second region 15a, but is the same It is also good.
  • the difference in thickness is the same, both the wear resistance and the bondability of the coating layer 11 are excellent, and the durability of the coating layer 11 is further high.
  • the plurality of first AlTi layers 13 and the plurality of second AlTi layers 15 constituting the covering layer 11 are divided into a plurality of portions in the stacking direction.
  • the thickness of the plurality of first AlTi layers 13 and the second AlTi layers 15 included in each section is constant, and the thickness of the first AlTi layer 13 included in the section is thinner as the section is located farther from the base 9 And, the thickness of the second AlTi layer 15 is thick.
  • a first region 13a is formed by a pair of first AlTi layers 13 located at the boundary of adjacent sections, and a first region 13a is formed by a pair of second AlTi layers 15 located at the boundary between adjacent sections. Two areas 15a are formed.
  • the cutting tool 101 is a rod-like body extending from the first end (upper end in FIG. 22) to the second end (lower end in FIG. 22) as shown in FIG.
  • a holder 105 having a pocket 103 on the first end side and a coated tool 1 represented by the above embodiment located in the pocket 103 are provided.
  • the pocket 103 is a portion to which the coated tool 1 is attached, and has a seating surface parallel to the lower surface of the holder 105 and a constraining side surface inclined to the seating surface. Further, the pocket 103 is open at the first end side of the holder 105.
  • the coated tool 1 is located in the pocket 103. At this time, the lower surface of the coated tool 1 may be in direct contact with the pocket 103, and a sheet (not shown) may be sandwiched between the coated tool 1 and the pocket 103.
  • the coated tool 1 is mounted such that at least a part of a portion used as a cutting edge in a ridge line where the first surface and the second surface cross each other protrudes outward from the holder 105.
  • the coated tool 1 is attached to the holder 105 by the fixing screw 107. That is, the fixing screw 107 is inserted into the through hole of the covering tool 1 and the tip of the fixing screw 107 is inserted into a screw hole (not shown) formed in the pocket 103 to screw the screw parts together.
  • the tool 1 is attached to the holder 105.
  • the holder 105 steel, cast iron or the like can be used. In particular, it is preferable to use a high toughness steel among these members.
  • a cutting tool used for so-called turning is illustrated.
  • Examples of turning include inner diameter machining, outer diameter machining and grooving.
  • the cutting tool is not limited to one used for turning.
  • the coated tool 1 of the above embodiment may be used for a cutting tool used for milling.
  • the machined product is manufactured by cutting the work material 201.
  • the method of manufacturing a machined product according to the embodiment includes the following steps. That is, (1) a step of rotating the work material 201; (2) bringing the cutting material 101 represented by the above-described embodiment into contact with the rotating workpiece 201; (3) releasing the cutting tool 101 from the work material 201; Is equipped.
  • the work material 201 is rotated about the axis O2, and the cutting tool 101 is relatively brought close to the work material 201.
  • the cutting edge of the cutting tool 101 is brought into contact with the material to be cut 201 to cut the material to be cut 201.
  • the cutting tool 101 is relatively moved away from the workpiece 201.
  • the cutting tool 101 is moved in the Y1 direction in a state in which the axis O2 is fixed and the work material 201 is rotated around the axis O2, and thus the work material 201 is brought close. Further, in FIG. 25, the work material 201 is cut by bringing the cutting edge of the insert 1 into contact with the work material 201 being rotated. Further, in FIG. 26, the cutting tool 101 is moved away in the Y2 direction with the work material 201 rotated.
  • the cutting tool 101 is brought into contact with the work material 201 or the cutting tool 101 is separated from the work material 201 by moving the cutting tool 101 in each process.
  • the cutting tool 101 is not limited to such a form.
  • the work material 201 may be brought close to the cutting tool 101.
  • the work material 201 may be moved away from the cutting tool 101.
  • the process of keeping the work material 201 rotated and keeping the cutting blade of the insert 1 in contact with different places of the work material 201 may be repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一態様の被覆工具は、基体と、被覆層とを備えている。被覆層は、Al1-x1Tix1で示される複数の第1AlTi層と、Al1-x2Tix2で示される複数の第2AlTi層とを有し、第1AlTi層及び第2AlTi層が基体から離れる方向に交互に位置する構成であって、x1がx2よりも大きい。複数の第1AlTi層は、隣り合う2つの第1AlTi層において、基体の近くに位置するものより、基体から離れて位置するものの厚みが薄い第1領域を有している。

Description

被覆工具、切削工具及び切削加工物の製造方法
 本開示は、切削加工において用いられる被覆工具に関する。
 旋削加工及び転削加工のような切削加工に用いられる被覆工具としては、例えば特開2016-130344号公報(特許文献1)に記載の硬質被膜を備えた被覆工具が知られている。特許文献1に記載の硬質被膜は、Ti1-x1Alx1N相(第1相)と、Alx2Ti1-x2N相(第2相)とが交互に積層された構造を含んでいる。このとき、各相におけるTi及びAlの原子比での含有比率を示すx1及びx2の値は、0.1≦x1≦0.7、0.7≦x2≦0.95である。
 第1相は、Alを比較的多く含有しているため、硬度が高い相となっている。また、第2相は、Tiを比較的多く含有しているため、靭性に優れた相となっている。特許文献1に記載の硬質被膜は、第1相及び第2相が交互に積層された構造であるため、耐摩耗性及び接合性に優れた被膜(被覆層)となっている。
 近年、耐摩耗性及び接合性がさらに優れた被覆層を備えた被覆工具が求められている。このとき、耐摩耗性を高めるべく第1相の厚みを大きくすると、基体と被覆層との接合性が低下する。また、接合性を高めるべく第2相の厚みを大きくすると、被覆層の耐摩耗性が低下する。そのため、耐摩耗性及び接合性の両方をさらに優れたものとすることが困難であった。
 第1態様に基づく被覆工具は、基体と、該基体の上に位置する被覆層とを備え、該被覆層は、アルミニウム及びチタンの原子比での含有比率がAl1-x1Tix1で示される、複数の第1AlTi層と、アルミニウム及びチタンの原子比での含有比率がAl1-x2Tix2で示される、複数の第2AlTi層とを有し、前記第1AlTi層及び前記第2AlTi層が前記基体から離れる方向に交互に位置する構成を含んでいる。さらに、前記x1が前記x2よりも大きく、複数の前記第1AlTi層は、隣り合う2つの前記第1AlTi層において、前記基体の近くに位置するものより、前記基体から離れて位置するものの厚みが薄い第1領域を有している。
 また、第2態様に基づく被覆工具は、基体と、該基体の上に位置する被覆層とを備え、該被覆層は、アルミニウム及びチタンの原子比での含有比率がAl1-x1Tix1で示される、複数の第1AlTi層と、アルミニウム及びチタンの原子比での含有比率がAl1-x2Tix2で示される、複数の第2AlTi層とを有し、前記第1AlTi層及び前記第2AlTi層が前記基体から離れる方向に交互に位置する構成を含んでいる。さらに、前記x1が前記x2よりも大きく、複数の前記第2AlTi層は、隣り合う2つの前記第2AlTi層において、前記基体の近くに位置するものより、前記基体から離れて位置するものの厚みが厚い第2領域を有している。
第1実施形態の被覆工具を示す斜視図である。 図1に示す被覆工具におけるA1-A1断面の断面図である。 図2に示す領域B1における拡大図である。 図3に示す領域B2における拡大図である。 図1に示す被覆工具における第1AlTi層の厚みを示すグラフである。 図5に示す被覆工具の第1変形例における第1AlTi層の厚みを示すグラフである。 図5に示す被覆工具の第2変形例における第1AlTi層の厚みを示すグラフである。 第2実施形態の被覆工具を示す斜視図である。 図8に示す被覆工具におけるA2-A2断面の断面図である。 図9に示す領域B3における拡大図である。 図10に示す領域B4における拡大図である。 図8に示す被覆工具における第2AlTi層の厚みを示すグラフである。 図12に示す被覆工具の第3変形例における第2AlTi層の厚みを示すグラフである。 図12に示す被覆工具の第4変形例における第2AlTi層の厚みを示すグラフである。 第3実施形態の被覆工具を示す斜視図である。 図15に示す被覆工具におけるA3-A3断面の断面図である。 図16に示す領域B5における拡大図である。 図17に示す領域B6における拡大図である。 図15に示す被覆工具における第1AlTi層及び第2AlTi層の厚みを示すグラフである。 図19に示す被覆工具の第5変形例における第1AlTi層及び第2AlTi層の厚みを示すグラフである。 図19に示す被覆工具の第6変形例における第1AlTi層及び第2AlTi層の厚みを示すグラフである。 実施形態の切削工具を示す平面図である。 図22に示す領域B7における拡大図である。 実施形態の切削加工物の製造方法の一工程を示す概略図である。 実施形態の切削加工物の製造方法の一工程を示す概略図である。 実施形態の切削加工物の製造方法の一工程を示す概略図である。
 以下、複数の実施形態の被覆工具について、それぞれ図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、各実施形態を説明する上で必要な主要部材のみを簡略化して示したものである。したがって、被覆工具は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率等を忠実に表したものではない。
 <第1実施形態>
 第1実施形態の被覆工具1は、四角板形状であって、四角形の第1面3(図1における上面)と、第2面5(図1における側面)と、第1面3及び第2面5が交わる稜線の少なくとも一部に位置する切刃7とを有している。
 図1に示す一例の被覆工具1のように、第1面3の外周の全体に切刃7が位置していてもよく、また、第1面3の外周の一部のみに切刃7が位置していてもよい。例えば、四角形の第1面3における1辺のみ、若しくは、部分的に切刃7を有するものであってもよい。
 第1面3は、少なくとも一部にすくい面領域3aを有していてもよい。図1に示す一例においては、第1面3における切刃7に沿った領域がすくい面領域3aである。第2面5は、少なくとも一部に逃げ面領域5aを有していてもよい。図1に示す一例においては、第2面5における切刃7に沿った領域が逃げ面領域5aである。そのため、すくい面領域3a及び逃げ面領域5aが交わる部分に切刃7が位置していると言い換えてもよい。
 図1では、第1面3におけるすくい面領域3a及びそれ以外の領域の境界と、第2面5における逃げ領域及びそれ以外の領域の境界とを一点鎖線で示している。図1においては、第1面3及び第2面5が交差する稜線の全てが切刃7である例が示されている。そのため、第1面3において切刃7に沿った環状の一点鎖線が示されている。
 被覆工具1の大きさは特に限定されるものではないが、例えば、第1面3の一辺の長さが3~20mm程度に設定されてもよい。また、第1面3から第1面3の反対側に位置する面(図1における下面)までの高さは、5~20mm程度に設定されてもよい。
 図1に示す一例の被覆工具1は、四角板形状の基体9と、この基体9の表面を被覆する被覆層11とを備えている。被覆層11は、基体9の表面の全体を覆っていてもよく、また、一部のみを覆っていてもよい。被覆層11が基体9の一部のみを被覆していてもよいことから、被覆層11は、基体9の上の少なくとも一部に位置していると言い換えてもよい。
 図1に示す一例における被覆層11は、少なくとも、第1面3における切刃7に沿ったすくい面領域3a及び第2面5における切刃7に沿った逃げ面領域5aに位置している。図1においては、すくい面領域3aを含む第1面3の全体及び逃げ面領域5aを含む第2面5の全体に被覆層11が存在する例が示されている。被覆層11の厚みとしては、例えば、0.1~10μm程度に設定できる。なお、被覆層11の厚みは一定であっても、場所によって異なっていてもよい。
 被覆層11は、図3及び図4に示すように、アルミニウム及びチタンを主成分として含有する複数の第1AlTi層13と、アルミニウム及びチタンを主成分として含有する複数の第2AlTi層15とを有している。被覆層11は、複数の第1AlTi層13及び複数の第2AlTi層15が基体9から離れる方向に交互に位置する構成を含んでいる。このような場合には、被覆層11が複数の第1AlTi層13及び複数の第2AlTi層15が交互に積層された構成を含んでいる、と言い換えてもよい。
 第1AlTi層13におけるアルミニウム及びチタンの原子比での含有比率はAl1-x1Tix1(0<x1<1)で示される。また、第2AlTi層15におけるアルミニウム及びチタンの原子比での含有比率はAl1-x2Tix2(0<x2<1)で示される。x1及びx2の値は、特定の値に限定されるものではないが、例えば、0.4≦x1≦0.95、0.2≦x2≦0.7に設定できる。
 第1実施形態の被覆工具1においては、x1がx2よりも大きい。そのため、第2AlTi層15と比較して第1AlTi層13におけるTiの含有比率が高く、第2AlTi層15と比較して第1AlTi層13は接合性に優れている。また、第1AlTi層13と比較して第2AlTi層15におけるAlの含有比率が高く、第1AlTi層13と比較して第2AlTi層15は耐摩耗性に優れている。
 なお、x1が0.5より大きく、且つ、x2が0.5より小さい場合には、第1AlTi層13の接合性が特に優れているとともに、第2AlTi層15の耐摩耗性が特に優れている。
 被覆層11の積層構造は、走査型電子顕微鏡(SEM:Scanning Electron Microscopy)又は透過型電子顕微鏡(TEM:Transmission Electron Microscopy)を用いた断面測定によって評価することが可能である。
 第1AlTi層13及び第2AlTi層15は、それぞれアルミニウム及びチタンのみによって構成されていてもよく、また、アルミニウム及びチタンに加えて、Si、Nb、Hf、V、Ta、Mo、Zr、Cr及びWなどの金属成分を含有していてもよい。
 ただし、第1AlTi層13及び第2AlTi層15はアルミニウム及びチタンを主成分として含有していることから、上記の金属成分と比較してアルミニウム及びチタンの含有比率が高い。なお、上記における「含有比率」とは、原子比での含有比率を意味している。
 第1AlTi層13及び第2AlTi層15は、アルミニウム及びチタンを含む金属成分のみによって構成されていてもよく、また、アルミニウム及びチタンを含む金属成分の窒化物、炭化物又は炭窒化物などによって構成されていてもよい。
 第1AlTi層13及び第2AlTi層15の組成は、例えば、エネルギー分散型X線分光分析法(EDS)又はX線光電子分光分析法(XPS)によって測定することが可能である。
 第1AlTi層13及び第2AlTi層15の数は、特定の値に限定されない。第1AlTi層13及び第2AlTi層15の数は、それぞれ2つ以上であればよく、例えば、2~500に設定されてもよい。
 第1AlTi層13の厚みは、特定の値に限定されない。例えば、複数の第1AlTi層13のそれぞれの厚みは、5nm~100nmに設定されてもよい。第1実施形態における複数の第1AlTi層13のそれぞれの厚みは一定ではなく、複数の第1AlTi層13のうち隣り合う2つの第1AlTi層13において、基体9の近くに位置するものより、基体9から離れて位置するものの厚みが薄い領域を有している。複数の第1AlTi層13のうち、隣り合う2つの第1AlTi層13において、上述した厚みの関係を満たす領域を第1領域13aという。第1領域13aは、言い換えれば、複数の第1AlTi層13のうち隣り合う2つの第1AlTi層13において、基体9から離れて位置するものより、基体9の近く位置するものの厚みが厚い領域ともいえる。
 被覆層11が上記の第1領域13aを有している場合には、この第1領域13aの基体9から離れた側においては、第1AlTi層13に対する第2AlTi層15の比率が高く、また、第1領域13aの基体9に近い側においては、第2AlTi層15に対する第1AlTi層13の比率が高い。
 第1領域13aにおける基体9に近い側では、接合性に優れた第1AlTi層13の比率が高いことから、被覆層11の接合性が高い。また、第1領域13aにおける基体9から離れた側では、耐摩耗性に優れた第2AlTi層15の比率が高いことから、被覆層11の耐摩耗性が高い。そのため、第1実施形態の被覆工具1は、耐摩耗性及び接合性の両方に優れている。
 複数の第1AlTi層13の全てにおいて、基体から離れて位置するものほど厚みが薄くなっていてもよく、また、複数の第1AlTi層13の一部のみにおいて、基体から離れて位置するものほど厚みが薄くなっていてもよい。言い換えれば、複数の第1AlTi層13の全てが第1領域13aに含まれていてもよく、また、複数の第1AlTi層13における一部のみが第1領域13aに含まれていてもよい。
 図3に示す一例においては、複数の第1AlTi層13の全てにおいて、基体から離れて位置するものほど厚みが薄くなっていることから、複数の第1AlTi層13の全てが第1領域13aに含まれていると言える。この場合には、被覆層11の接合性及び耐摩耗性がさらに高い。
 第1領域13aにおいては、基体9から離れて位置する第1AlTi層13ほど厚みが薄い。このとき、第1領域13aに含まれる複数の第1AlTi層13の厚みの変化は、特に限定されるものではなく、その変化量が一定であっても、また、一定でなくてもよい。
 図5に示す一例の第1領域13aにおいては、複数の第1AlTi層13の厚みの変化量が一定である。すなわち、第1領域13aに3以上の第1AlTi層13があるとき、隣り合う2つの第1AlTi層13における厚みの差が同じである。
 上記のように複数の第1AlTi層13の厚みが変化している場合には、第1AlTi層13の厚みが急激に変化することが避けられ、被覆層11における一部に応力が集中しにくい。そのため、被覆層11の耐久性が高い。なお、第1領域13aにおける第1AlTi層13の厚みの変化量が一定であるとは、図5に示すように、第1領域13aに含まれる第1AlTi層13の厚みが概ね直線上に位置していることを意味している。
 ここで、第1領域13aに含まれる第1AlTi層13の厚みが厳密に直線上に位置している必要はない。第1領域13aに含まれる第1AlTi層13のうち最も基体9の近くに位置する第1AlTi層13の厚みと、第1領域13aに含まれる第1AlTi層13のうち最も基体9から離れて位置する第1AlTi層13の厚みと、を直線で結んだ場合に、各第1AlTi層13の厚みが、上記の直線で示される厳密な値に対して90~110%の範囲の数値であればよい。
 図6に示す変形例においては、複数の第1AlTi層13における一部のみが第1領域13aに含まれている。具体的には、被覆層11を構成する複数の第1AlTi層13のうち、基体9の近くに位置する一部の第1AlTi層13bの厚みが一定である。このように、第1領域13aよりも基体9の近くに位置する第1AlTi層13bの厚みが一定である場合には、この厚みが一定である第1AlTi層13bの一部に応力が集中しにくい。そのため、被覆層11の耐久性が高い。
 また、図6に示す変形例においては、被覆層11を構成する複数の第1AlTi層13のうち、基体9から離れて位置する一部の第1AlTi層13cの厚みが一定である。このように、第1領域13aよりも基体9から離れて位置する第1AlTi層13cの厚みが一定である場合には、この厚みが一定である第1AlTi層13cの一部に応力が集中しにくい。そのため、被覆層11の耐久性が高い。
 なお、第1AlTi層13の厚みが一定であるとは、厳密に厚みが同じであることを要求するものではない。対象となる複数の第1AlTi層13において、厚みの最も薄い第1AlTi層13の厚みが、厚みの最も厚い第1AlTi層13の厚みに対して95%以上である場合に厚みが一定であると見做す。
 例えば、図6に示す変形例のように、複数の第1AlTi層13が、隣り合う2つの第1AlTi層13における互いの厚みが同じであるか、又は、基体9から離れて位置するものの厚みが薄い構成である場合には、被覆層11が、耐摩耗性及び接合性の両方に特に優れている。
 これは、被覆層11の全体にわたって、基体9から離れた側では耐摩耗性に優れた第2AlTi層15の比率が高く、また、基体9に近い側では接合性に優れた第1AlTi層13の比率が高いからである。
 図7に示す変形例においては、被覆層11を構成する複数の第1AlTi層13が、積層方向において複数の部位に区分されている。各区分に含まれる第1AlTi層13の厚みは一定であり、また、基体9から離れて位置する区分であるほど、含まれる第1AlTi層13の厚みが薄い。図7に示す変形例においては、隣り合う区分の境界に位置する一対の第1AlTi層13によって第1領域13aが構成される。
 被覆層11を構成する複数の第1AlTi層13が、上記の構成である場合には、第1AlTi層13の厚みが段階的に変化しているため、第1AlTi層13を形成する際に第1AlTi層13の厚みの調整が容易である。そのため、複雑な工程に依らずに接合性及び耐摩耗性に優れた被覆層11を形成できる。
 第2AlTi層15の厚みは、特定の値に限定されないが、例えば、それぞれ5nm~100nmに設定してもよい。複数の第2AlTi層15のそれぞれの厚みは一定であっても、また、一部の第2AlTi層15の厚みが互いに異なっていてもよい。
 被覆層11の基体9に近い側において、第1AlTi層13の厚みが第2AlTi層15の厚みよりも厚い場合には、被覆層11の接合性がさらに高い。具体的には、例えば、被覆層11における積層方向の中心よりも基体9側に位置する第1AlTi層13及び第2AlTi層15について、第1AlTi層13の厚みの平均値が、第2AlTi層15の厚みの平均値よりも大きい場合には、被覆層11の接合性がさらに高い。
 また、被覆層11の基体9から離れた側において、第2AlTi層15の厚みが第1AlTi層13の厚みよりも厚い場合には、被覆層11の耐摩耗性がさらに高い。具体的には、例えば、被覆層11における積層方向の中心よりも基体9から離れて位置する第1AlTi層13及び第2AlTi層15について、第2AlTi層15の厚みの平均値が、第1AlTi層13の厚みの平均値よりも大きい場合には、被覆層11の耐摩耗性がさらに高い。
 被覆層11は、基体9に直接に接合していてもよいが、基体9及び被覆層11の接合性を高めるため、基体9及び被覆層11の間に、被覆層11を構成する第1AlTi層13及び第2AlTi層15よりも厚みの厚い下地層(不図示)などの他の層が位置していてもよい。
 図1に示す一例における被覆工具1は、四角板形状であるが、被覆工具1の形状は、このような形状に限定されない。例えば、第1面3が四角形ではなく、三角形、六角形又は円形であっても何ら問題無い。
 被覆工具1は、図1に示すように、貫通孔17を有していてもよい。図1に示す一例における貫通孔17は、第1面3から第1面3の反対側に位置する面(図1における下面)にかけて位置しており、これらの面において開口している。貫通孔17は、被覆工具1をホルダに保持する際に、ねじ又はクランプ部材を取り付けるために用いられてもよい。なお、貫通孔17は、第2面5における互いに反対側に位置する領域において開口する構成であっても何ら問題無い。
 基体9の材質としては、例えば、超硬合金、サーメット及びセラミックスなどの無機材料が挙げられる。超硬合金の組成としては、例えば、WC(炭化タングステン)-Co、WC-TiC(炭化チタン)-Co及びWC-TiC-TaC(炭化タンタル)-Coが挙げられる。
 ここで、WC、TiC及びTaCは硬質粒子であり、Coは結合相である。また、サーメットは、セラミック成分に金属を複合させた焼結複合材料である。具体的には、サーメットとして、TiC又はTiN(窒化チタン)を主成分とした化合物が挙げられる。なお、基体9の材質は、これらに限定されない。
 被覆層11は、例えば、物理蒸着(PVD)法を用いることによって、基体9の上に位置させてもよい。例えば、貫通孔17の内周面で基体9を保持した状態で上記の蒸着法を利用して被覆層11を形成する場合には、貫通孔17の内周面を除く基体9の表面の全体を覆うように被覆層11を位置させることができる。
 物理蒸着法としては、例えば、イオンプレーティング法及びスパッタリング法等が挙げられる。一例として、イオンプレーティング法で作製する場合には、下記の方法によって第1実施形態の被覆層11を作製してもよい。
 第1の手順として、アルミニウム及びチタンをそれぞれ独立に含有する金属ターゲット、複合化した合金ターゲット又は焼結体ターゲットを準備する。金属源である上記のターゲットをアーク放電及びグロー放電などによって蒸発させてイオン化する。イオン化したターゲットを、窒素源の窒素(N)ガス、炭素源のメタン(CH)ガス又はアセチレン(C)ガスと反応させるとともに、基体9の表面に蒸着させる。以上の手順によって第1AlTi層13を形成してもよい。
 第2の手順として、アルミニウム及びチタンをそれぞれ独立に含有する金属ターゲット、複合化した合金ターゲット又は焼結体ターゲットを準備する。このとき、第1の手順において準備したターゲットよりもアルミニウムの含有比率が高いターゲットを準備する。金属源である上記のターゲットをアーク放電及びグロー放電などによって蒸発させてイオン化する。イオン化したターゲットを、窒素源の窒素ガス、炭素源のメタンガス又はアセチレンガスと反応させるとともに、基体9の表面に蒸着させる。以上の手順によって第2AlTi層15を形成してもよい。
 上記の第1の手順及び第2の手順を交互に繰り返すことによって、複数の第1AlTi層13及び複数の第2AlTi層15が基体9から離れる方向に交互に位置する構成を含む被覆層11を形成してもよい。なお、まず第2の手順を行った後に第1の手順を行っても何ら問題無い。
 ここで、例えば、第1の手順を繰り返す際に、アーク放電及びグロー放電などの放電時の電流値を変化させることによって複数の第1AlTi層13の厚みを変化させることができる。具体的には、第1の手順を繰り返す際に、上記の電流値を小さくすることによって、隣り合う2つの第1AlTi層13のうち基体9の近くに位置するものより基体9から離れて位置するものの厚みが薄い第1領域13aを作製してもよい。
 例えば、第1の手順を繰り返す際に、最初に第1の手順を行うときから最後に第1の手順を行うときにかけて、徐々に放電時の電流値を小さくすることによって、基体9から離れて位置する第1AlTi層13ほど厚みを薄くすることが可能である。
 <第2実施形態>
 次に、第2実施形態の被覆工具1について図面を用いて説明する。ただし、以下においては、第2実施形態の被覆工具1における第1実施形態の被覆工具1との相違点について主に説明し、第1実施形態の被覆工具1と同様の構成を有している点については説明を省略する場合がある。
 第2実施形態の被覆工具1は、四角板形状であって、四角形の第1面3(図8における上面)と、第2面5(図8における側面)と、第1面3及び第2面5が交わる稜線の少なくとも一部に位置する切刃7とを有している。また、図8に示す被覆工具1は、図1に示す一例と同様に、四角板形状の基体9と、この基体9の表面を被覆する被覆層11とを備えている。被覆層11は、基体9の表面の全体を覆っていてもよく、また、一部のみを覆っていてもよい。
 被覆層11は、図10及び図11に示すように、アルミニウム及びチタンを主成分として含有する複数の第1AlTi層13と、アルミニウム及びチタンを主成分として含有する複数の第2AlTi層15とを有している。被覆層11は、複数の第1AlTi層13及び複数の第2AlTi層15が基体9から離れる方向に交互に位置する構成を含んでいる。
 第2AlTi層15の厚みは、特定の値に限定されない。例えば、複数の第2AlTi層15のそれぞれの厚みは、5nm~100nmに設定されてもよい。第2実施形態における複数の第2AlTi層15のそれぞれの厚みは一定ではなく、複数の第2AlTi層15のうち隣り合う2つの第2AlTi層15において、基体9の近くに位置するものより、基体9から離れて位置するものの厚みが厚い第2領域15aを有していてもよい。
 被覆層11が上記の第2領域15aを有している場合には、この第2領域15aの基体9から離れた側においては、第1AlTi層13に対する第2AlTi層15の比率が高く、また、第2領域15aの基体9に近い側においては、第2AlTi層15に対する第1AlTi層13の比率が高い。
 第2領域15aにおける基体9に近い側では、接合性に優れた第1AlTi層13の比率が高いことから、被覆層11の接合性が高い。また、第2領域15aにおける基体9から離れた側では、耐摩耗性に優れた第2AlTi層15の比率が高いことから、被覆層11の耐摩耗性が高い。そのため、第2実施形態の被覆工具1は、第1実施形態の被覆工具1と同様に、耐摩耗性及び接合性の両方に優れる。
 複数の第2AlTi層15の全てが第2領域15aに含まれていてもよく、また、複数の第2AlTi層15における一部のみが第2領域15aに含まれていてもよい。図10に示す一例においては、複数の第2AlTi層15の全てが第2領域15aに含まれている。この場合には、被覆層11の接合性及び耐摩耗性がさらに高い。
 第2領域15aにおいては、基体9から離れて位置する第2AlTi層15ほど厚みが厚い。このとき、第2領域15aに含まれる複数の第2AlTi層15の厚みの変化は、特に限定されるものではなく、その変化量が一定であっても、また、一定でなくてもよい。
 図10及び図11に示す一例の第2領域15aにおいては、複数の第2AlTi層15の厚みの変化量が一定である。すなわち、第2領域15aに3以上の第2AlTi層15があるとき、隣り合う2つの第2AlTi層15における厚みの差が同じである。
 上記のように複数の第2AlTi層15の厚みが変化している場合には、第2AlTi層15の厚みが急激に変化することが避けられ、被覆層11における一部に応力が集中しにくい。そのため、被覆層11の耐久性が高い。なお、第2領域15aにおける第2AlTi層15の厚みの変化量が一定であるとは、図12に示すように、第2領域15aに含まれる第2AlTi層15の厚みが概ね直線上に位置していることを意味している。
 ここで、第2領域15aに含まれる第2AlTi層15の厚みが厳密に直線上に位置している必要はない。第2領域15aに含まれる第2AlTi層15のうち最も基体9の近くに位置する第2AlTi層15の厚みと、第2領域15aに含まれる第2AlTi層15のうち最も基体9から離れて位置する第2AlTi層15の厚みと、を直線で結んだ場合に、各第2AlTi層15の厚みが、上記の直線で示される厳密な値に対して90~110%の範囲の数値であればよい。
 図13に示す変形例においては、複数の第2AlTi層15における一部のみが第2領域15aに含まれている。具体的には、被覆層11を構成する複数の第2AlTi層15のうち、基体9の近くに位置する一部の第2AlTi層15bの厚みが一定である。このように、第2領域15aよりも基体9の近くに位置する第2AlTi層15bの厚みが一定である場合には、この厚みが一定である第2AlTi層15bの一部に応力が集中しにくい。そのため、被覆層11の耐久性が高い。
 また、図13に示す変形例においては、被覆層11を構成する複数の第2AlTi層15のうち、基体9から離れて位置する一部の第2AlTi層15cの厚みが一定である。このように、第2領域15aよりも基体9から離れて位置する第2AlTi層15cの厚みが一定である場合には、この厚みが一定である第2AlTi層15cの一部に応力が集中しにくい。そのため、被覆層11の耐久性が高い。
 なお、第2AlTi層15の厚みが一定であるとは、厳密に厚みが同じであることを要求するものではない。対象となる複数の第2AlTi層15において、厚みの最も薄い第2AlTi層15の厚みが、厚みの最も厚い第2AlTi層15の厚みに対して95%以上である場合に厚みが一定であると見做す。
 例えば、図13に示す変形例のように、複数の第2AlTi層15が、隣り合う2つの第2AlTi層15における互いの厚みが同じであるか、又は、基体9から離れて位置するものの厚みが厚い構成である場合には、被覆層11が、耐摩耗性及び接合性の両方に特に優れている。
 これは、被覆層11の全体にわたって、基体9から離れた側では耐摩耗性に優れた第2AlTi層15の比率が高く、また、基体9に近い側では、接合性に優れた第1AlTi層13の比率が高いからである。
 図14に示す変形例においては、被覆層11を構成する複数の第2AlTi層15が、積層方向において複数の部位に区分されている。各区分に含まれる第2AlTi層15の厚みは一定であり、また、基体9から離れて位置する区分であるほど、含まれる第2AlTi層15の厚みが厚い。図14に示す変形例においては、隣り合う区分の境界に位置する一対の第2AlTi層15によって第2領域15aが構成される。
 被覆層11を構成する複数の第2AlTi層15が、上記の構成である場合には、第2AlTi層15の厚みが段階的に変化しているため、第2AlTi層15を形成する際に第2AlTi層15の厚みの調整が容易である。そのため、複雑な工程に依らずに接合性及び耐摩耗性に優れた被覆層11を形成できる。
 第1AlTi層13の厚みは、特定の値に限定されないが、例えば、それぞれ5nm~100nmに設定してもよい。複数の第1AlTi層13のそれぞれの厚みは一定であっても、また、一部の第1AlTi層13の厚みが互いに異なっていてもよい。
 被覆層11は、第1実施形態と同様に、物理蒸着法を用いることによって、基体9の上に位置させてもよい。一例として、イオンプレーティング法で作製する場合には、下記の方法によって第2実施形態の被覆層11を作製してもよい。
 第1の手順として、第1実施形態と同様に、アルミニウム及びチタンをそれぞれ独立に含有する金属ターゲット、複合化した合金ターゲット又は焼結体ターゲットを準備する。イオン化したターゲットを、窒素源の窒素ガス、炭素源のメタンガス又はアセチレンガスと反応させるとともに、基体9の表面に蒸着させる。以上の手順によって第1AlTi層13を形成してもよい。
 第2の手順として、第1実施形態と同様に、アルミニウム及びチタンをそれぞれ独立に含有する金属ターゲット、複合化した合金ターゲット又は焼結体ターゲットを準備する。このとき、第1の手順において準備したターゲットよりもアルミニウムの含有比率が高いターゲットを準備する。イオン化したターゲットを、窒素源の窒素ガス、炭素源のメタンガス又はアセチレンガスと反応させるとともに、基体9の表面に蒸着させる。以上の手順によって第2AlTi層15を形成してもよい。
 上記の第1の手順及び第2の手順を交互に繰り返すことによって、複数の第1AlTi層13及び複数の第2AlTi層15が基体9から離れる方向に交互に位置する構成を含む被覆層11を形成してもよい。なお、まず第2の手順を行った後に第1の手順を行っても何ら問題無い。
 ここで、例えば、第2の手順を繰り返す際に、アーク放電及びグロー放電などの放電時の電流値を変化させることによって複数の第2AlTi層15の厚みを変化させることができる。具体的には、第2の手順を繰り返す際に、上記の電流値を大きくすることによって、隣り合う2つの第2AlTi層15のうち基体9の近くに位置するものより基体9から離れて位置するものの厚みが厚い第2領域15aを作製してもよい。
 <第3実施形態>
 次に、第3実施形態の被覆工具1について図面を用いて説明する。ただし、以下においては、第3実施形態の被覆工具1における第1実施形態及び第2実施形態の被覆工具1との相違点について主に説明し、第1実施形態及び第2実施形態の被覆工具1と同様の構成を有している点については説明を省略する場合がある。
 第3実施形態の被覆工具1は、四角板形状であって、四角形の第1面3(図15における上面)と、第2面5(図15における側面)と、第1面3及び第2面5が交わる稜線の少なくとも一部に位置する切刃7とを有している。
 図15に示す被覆工具1は、図1に示す一例と同様に、四角板形状の基体9と、この基体9の表面を被覆する被覆層11とを備えている。被覆層11は、基体9の表面の全体を覆っていてもよく、また、一部のみを覆っていてもよい。
 被覆層11は、図17及び図18に示すように、アルミニウム及びチタンを主成分として含有する複数の第1AlTi層13と、アルミニウム及びチタンを主成分として含有する複数の第2AlTi層15とを有している。被覆層11は、複数の第1AlTi層13及び複数の第2AlTi層15が基体9から離れる方向に交互に位置する構成を含んでいる。
 第3実施形態においては、複数の第1AlTi層13が、隣り合う2つの第1AlTi層13のうち基体9の近くに位置するものよりも基体9から離れて位置するものの厚みが薄い第1領域13aを有している。また、複数の第2AlTi層15が、隣り合う2つの第2AlTi層15のうち基体9の近くに位置するものよりも基体9から離れて位置するものの厚みが厚い第2領域15aを有している。
 このように、第3実施形態の被覆工具1は、第1実施形態における複数の第1AlTi層13の特徴的な構成及び第2実施形態における複数の第2AlTi層15の特徴的な構成を兼ね備えた構成となっている。
 被覆層11が上記の第1領域13aを有している場合には、この第1領域13aの基体9から離れた側においては、第1AlTi層13に対する第2AlTi層15の比率が高く、また、第1領域13aの基体9に近い側においては、第2AlTi層15に対する第1AlTi層13の比率が高い。
 さらに、被覆層11が上記の第2領域15aを有している場合には、この第2領域15aの基体9から離れた側においては、第1AlTi層13に対する第2AlTi層15の比率がさらに高く、また、第2領域15aの基体9に近い側においては、第2AlTi層15に対する第1AlTi層13の比率がさらに高い。
 このように、被覆層11が第1領域13a及び第2領域15aの両方を有している場合には、被覆層11は、耐摩耗性及び接合性の両方に非常に優れる。
 複数の第1AlTi層13の全てが第1領域13aに含まれていてもよく、また、複数の第1AlTi層13における一部のみが第1領域13aに含まれていてもよい。複数の第2AlTi層15の全てが第2領域15aに含まれていてもよく、また、複数の第2AlTi層15における一部のみが第2領域15aに含まれていてもよい。
 図17に示す一例においては、複数の第1AlTi層13の全てが第1領域13aに含まれているとともに、複数の第2AlTi層15の全てが第2領域15aに含まれている。この場合には、被覆層11の接合性及び耐摩耗性がさらに高い。
 図17及び図18に示す一例の第1領域13aにおいては、複数の第1AlTi層13の厚みの変化量が一定である。すなわち、第1領域13aに3以上の第1AlTi層13があるとき、隣り合う2つの第1AlTi層13における厚みの差が同じである。また、図17及び図18に示す一例の第2領域15aにおいては、複数の第2AlTi層15の厚みの変化量が一定である。すなわち、第2領域15aに3以上の第2AlTi層15があるとき、隣り合う2つの第2AlTi層15における厚みの差が同じである。
 第1領域13aでの隣り合う2つの第1AlTi層13における厚みの差は、第2領域15aでの隣り合う2つの第2AlTi層15における厚みの差と異なっていてもよいが、同じであってもよい。これらの厚みの差が同じである場合には、被覆層11の耐摩耗性及び接合性の両方が優れたものでありつつ、さらに被覆層11の耐久性が高い。
 これは、積層方向において隣り合う第1AlTi層13の厚みの差及び積層方向において隣り合う第2AlTi層15の厚みの差が過度に大きくなることを避けつつ、第1領域13aにおける基体9から離れた側では、耐摩耗性に優れた第2AlTi層15の比率が高く、また、第1領域13aにおける基体9の側では、接合性に優れた第1AlTi層13の比率が高いからである。
 図20に示す変形例においては、複数の第1AlTi層13における一部のみが第1領域13aに含まれており、また、複数の第2AlTi層15における一部のみが第2領域15aに含まれている。具体的には、被覆層11を構成する複数の第1AlTi層13及び複数の第2AlTi層15のうち、基体9の近くに位置する一部の第1AlTi層13及び第2AlTi層15の厚みが一定となっている。
 また、図20に示す変形例においては、被覆層11を構成する複数の第1AlTi層13及び複数の第2AlTi層15のうち、基体9から離れて位置する一部の第1AlTi層13及び第2AlTi層15の厚みが一定となっている。
 図21に示す変形例においては、被覆層11を構成する複数の第1AlTi層13及び複数の第2AlTi層15が、積層方向において複数の部位に区分されている。各区分に含まれる複数の第1AlTi層13及び第2AlTi層15の厚みは一定であり、また、基体9から離れて位置する区分であるほど、当該区分に含まれる第1AlTi層13の厚みが薄く、且つ、第2AlTi層15の厚みが厚い。図21に示す変形例においては、隣り合う区分の境界に位置する一対の第1AlTi層13によって第1領域13aが構成され、また、隣り合う区分の境界に位置する一対の第2AlTi層15によって第2領域15aが構成される。
 次に、実施形態の切削工具101について図面を用いて説明する。
 実施形態の切削工具101は、図22に示すように、第1端(図22における上端)から第2端(図22における下端)に向かって延びる棒状体であり、図23に示すように、第1端側にポケット103を有するホルダ105と、ポケット103に位置する上記の実施形態に代表される被覆工具1とを備えている。
 ポケット103は、被覆工具1が装着される部分であり、ホルダ105の下面に対して平行な着座面と、着座面に対して傾斜する拘束側面とを有している。また、ポケット103は、ホルダ105の第1端側において開口している。
 ポケット103には被覆工具1が位置している。このとき、被覆工具1の下面がポケット103に直接に接していてもよく、また、被覆工具1とポケット103との間にシート(不図示)が挟まれていてもよい。
 被覆工具1は、第1面及び第2面が交わる稜線における切刃として用いられる部分の少なくとも一部がホルダ105から外方に突出するように装着される。本実施形態においては、被覆工具1は、固定ネジ107によって、ホルダ105に装着されている。すなわち、被覆工具1の貫通孔に固定ネジ107を挿入し、この固定ネジ107の先端をポケット103に形成されたネジ孔(不図示)に挿入してネジ部同士を螺合させることによって、被覆工具1がホルダ105に装着されている。
 ホルダ105としては、鋼、鋳鉄などを用いることができる。特に、これらの部材の中で靱性の高い鋼を用いることが好ましい。
 実施形態においては、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工が挙げられる。なお、切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具に上記の実施形態の被覆工具1を用いてもよい。
 <切削加工物の製造方法>
 次に、実施形態の切削加工物の製造方法について図面を用いて説明する。
 切削加工物は、被削材201を切削加工することによって作製される。実施形態における切削加工物の製造方法は、以下の工程を備えている。すなわち、
(1)被削材201を回転させる工程と、
(2)回転している被削材201に上記の実施形態に代表される切削工具101を接触させる工程と、
(3)切削工具101を被削材201から離す工程と、
を備えている。
 より具体的には、まず、図24に示すように、被削材201を軸O2の周りで回転させるとともに、被削材201に切削工具101を相対的に近付ける。次に、図25に示すように、切削工具101における切刃を被削材201に接触させて、被削材201を切削する。そして、図26に示すように、切削工具101を被削材201から相対的に遠ざける。
 実施形態においては、軸O2を固定するとともに被削材201を軸O2の周りで回転させた状態で切削工具101をY1方向に移動させることによって被削材201に近づけている。また、図25においては、回転している被削材201にインサート1における切刃を接触させることによって被削材201を切削している。また、図26においては、被削材201を回転させた状態で切削工具101をY2方向に移動させることによって遠ざけている。
 なお、実施形態の製造方法における切削加工では、それぞれの工程において、切削工具101を動かすことによって、切削工具101を被削材201に接触させる、あるいは、切削工具101を被削材201から離しているが、当然ながらこのような形態に限定されるものではない。
 例えば(1)の工程において、被削材201を切削工具101に近づけてもよい。同様に(3)の工程において、被削材201を切削工具101から遠ざけてもよい。切削加工を継続する場合には、被削材201を回転させた状態を維持して、被削材201の異なる箇所にインサート1における切刃を接触させる工程を繰り返せばよい。
 なお、被削材201の材質の代表例としては、炭素鋼、合金鋼、ステンレス、鋳鉄、または非鉄金属などが挙げられる。
  1・・・被覆工具
  3・・・第1面
  3a・・すくい面領域
  5・・・第2面
  5a・・逃げ面領域
  7・・・切刃
  9・・・基体
 11・・・被覆層
 13・・・第1AlTi層
 13a・・第1領域
 15・・・第2AlTi層
 15a・・第2領域
 17・・・貫通孔
101・・・切削工具
103・・・ポケット
105・・・ホルダ
107・・・固定ネジ
201・・・被削材

Claims (11)

  1.  基体と、該基体の上に位置する被覆層とを備え、
     該被覆層は、アルミニウム及びチタンの原子比での含有比率がAl1-x1Tix1で示される、複数の第1AlTi層と、アルミニウム及びチタンの原子比での含有比率がAl1-x2Tix2で示される、複数の第2AlTi層とを有し、前記第1AlTi層及び前記第2AlTi層が前記基体から離れる方向に交互に位置する構成を含み、
     前記x1が前記x2よりも大きく、
     複数の前記第1AlTi層は、隣り合う2つの前記第1AlTi層において、前記基体の近くに位置するものより、前記基体から離れて位置するものの厚みが薄い第1領域を有している、被覆工具。
  2.  前記第1領域に3以上の前記第1AlTi層があるとき、隣り合う2つの前記第1AlTi層における厚みの差が同じである、請求項1に記載の被覆工具。
  3.  複数の前記第1AlTi層は、隣り合う2つの前記第1AlTi層における互いの厚みが同じであるか、又は、前記基体から離れて位置するものの厚みが薄い構成である、請求項1又は2に記載の被覆工具。
  4.  基体と、該基体の上に位置する被覆層とを備え、
     該被覆層は、アルミニウム及びチタンの原子比での含有比率がAl1-x1Tix1で示される、複数の第1AlTi層と、アルミニウム及びチタンの原子比での含有比率がAl1-x2Tix2で示される、複数の第2AlTi層とを有し、前記第1AlTi層及び前記第2AlTi層が前記基体から離れる方向に交互に位置する構成を含み、
     前記x1が前記x2よりも大きく、
     複数の前記第2AlTi層は、隣り合う2つの前記第2AlTi層において、前記基体の近くに位置するものより、前記基体から離れて位置するものの厚みが厚い第2領域を有している、被覆工具。
  5.  前記第2領域に3以上の前記第2AlTi層があるとき、隣り合う2つの前記第2AlTi層における厚みの差が同じである、請求項4に記載の被覆工具。
  6.  複数の前記第2AlTi層は、隣り合う2つの前記第2AlTi層における互いの厚みが同じであるか、又は、前記基体から離れて位置するものの厚みが厚い構成である、請求項4又は5に記載の被覆工具。
  7.  複数の前記第1AlTi層は、隣り合う2つの前記第1AlTi層において、前記基体の近くに位置するものより、前記基体から離れて位置するものの厚みが薄い第1領域を有している、請求項4~6のいずれか1つに記載の被覆工具。
  8.  前記第1領域に3以上の前記第1AlTi層があるとき、隣り合う2つの前記第1AlTi層における厚みの差が同じであり、
     前記第2領域に3以上の前記第2AlTi層があるとき、隣り合う2つの前記第2AlTi層における厚みの差が同じである、請求項7に記載の被覆工具。
  9.  前記x1が0.5より大きく、且つ、前記Xx2が0.5より小さい、請求項1~8のいずれか1つに記載の被覆工具。
  10.  先端側にポケットを有するホルダと、
     前記ポケットに位置する請求項1~9のいずれか1つに記載の被覆工具とを備えた切削工具。
  11.  被削材を回転させる工程と、
     前記被削材に請求項10に記載の切削工具を接触させる工程と、
     前記切削工具を前記被削材から離す工程とを備えた切削加工物の製造方法。
PCT/JP2018/022998 2017-06-20 2018-06-15 被覆工具、切削工具及び切削加工物の製造方法 WO2018235747A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019525581A JP7029452B2 (ja) 2017-06-20 2018-06-15 被覆工具、切削工具及び切削加工物の製造方法
DE112018003157.8T DE112018003157T5 (de) 2017-06-20 2018-06-15 Beschichtetes werkzeug, schneidwerkzeug und verfahren zum herstellen eines maschinell bearbeiteten produkts
CN201880041679.5A CN110769956B (zh) 2017-06-20 2018-06-15 涂层刀具、切削工具以及切削加工物的制造方法
US16/624,942 US11478858B2 (en) 2017-06-20 2018-06-15 Coated tool, cutting tool, and method for manufacturing machined product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017120677 2017-06-20
JP2017-120677 2017-06-20

Publications (1)

Publication Number Publication Date
WO2018235747A1 true WO2018235747A1 (ja) 2018-12-27

Family

ID=64736971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022998 WO2018235747A1 (ja) 2017-06-20 2018-06-15 被覆工具、切削工具及び切削加工物の製造方法

Country Status (5)

Country Link
US (1) US11478858B2 (ja)
JP (1) JP7029452B2 (ja)
CN (1) CN110769956B (ja)
DE (1) DE112018003157T5 (ja)
WO (1) WO2018235747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124748A (ja) * 2019-02-01 2020-08-20 京セラ株式会社 被覆工具及びこれを備えた切削工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083879A (ja) * 2009-10-19 2011-04-28 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2011212786A (ja) * 2010-03-31 2011-10-27 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2013518734A (ja) * 2010-02-11 2013-05-23 デグテック エルティーディー 切削工具
WO2015147241A1 (ja) * 2014-03-27 2015-10-01 株式会社タンガロイ 被覆工具
WO2018100849A1 (ja) * 2016-11-29 2018-06-07 住友電工ハードメタル株式会社 表面被覆切削工具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660133B2 (en) * 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
CN101690978B (zh) * 2009-09-30 2011-01-26 株洲钻石切削刀具股份有限公司 周期性沉积的多涂层刀具及其制备方法
CN105473261B (zh) * 2014-06-06 2017-08-18 住友电工硬质合金株式会社 表面被覆工具及其制造方法
CN104131256B (zh) * 2014-07-25 2017-01-11 广东工业大学 一种多层纳米复合刀具涂层及其制备方法
CN104385751B (zh) * 2014-08-29 2016-07-06 株洲钻石切削刀具股份有限公司 含CrAlVN层和CrAlSiN层的复合涂层刀具及其制备方法
JP6349581B2 (ja) * 2015-01-14 2018-07-04 住友電工ハードメタル株式会社 硬質被膜、切削工具および硬質被膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083879A (ja) * 2009-10-19 2011-04-28 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
JP2013518734A (ja) * 2010-02-11 2013-05-23 デグテック エルティーディー 切削工具
JP2011212786A (ja) * 2010-03-31 2011-10-27 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
WO2015147241A1 (ja) * 2014-03-27 2015-10-01 株式会社タンガロイ 被覆工具
WO2018100849A1 (ja) * 2016-11-29 2018-06-07 住友電工ハードメタル株式会社 表面被覆切削工具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124748A (ja) * 2019-02-01 2020-08-20 京セラ株式会社 被覆工具及びこれを備えた切削工具
JP7211656B2 (ja) 2019-02-01 2023-01-24 京セラ株式会社 被覆工具及びこれを備えた切削工具

Also Published As

Publication number Publication date
US11478858B2 (en) 2022-10-25
CN110769956B (zh) 2021-02-26
CN110769956A (zh) 2020-02-07
JPWO2018235747A1 (ja) 2020-04-16
US20210060658A1 (en) 2021-03-04
JP7029452B2 (ja) 2022-03-03
DE112018003157T5 (de) 2020-03-05

Similar Documents

Publication Publication Date Title
JP5542925B2 (ja) 切削工具
CN111032260B (zh) 涂层刀具以及具备该涂层刀具的切削刀具
CN111032261B (zh) 涂层刀具和具备其的切削刀具
JP6918951B2 (ja) 被覆工具及びこれを備えた切削工具
KR102223461B1 (ko) 피복 공구 및 이것을 구비한 절삭 공구
US11471948B2 (en) Coated tool and cutting tool including same
JP7029452B2 (ja) 被覆工具、切削工具及び切削加工物の製造方法
JP6878195B2 (ja) 被覆工具、切削工具及び切削加工物の製造方法
JP7165594B2 (ja) 被覆工具及びこれを備えた切削工具
JP7211656B2 (ja) 被覆工具及びこれを備えた切削工具
JP6092735B2 (ja) 表面被覆工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18821198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525581

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18821198

Country of ref document: EP

Kind code of ref document: A1