WO2018181395A1 - 線量計容器及び線量計測体 - Google Patents

線量計容器及び線量計測体 Download PDF

Info

Publication number
WO2018181395A1
WO2018181395A1 PCT/JP2018/012576 JP2018012576W WO2018181395A1 WO 2018181395 A1 WO2018181395 A1 WO 2018181395A1 JP 2018012576 W JP2018012576 W JP 2018012576W WO 2018181395 A1 WO2018181395 A1 WO 2018181395A1
Authority
WO
WIPO (PCT)
Prior art keywords
dosimeter container
dosimeter
shielding
radiation
lif
Prior art date
Application number
PCT/JP2018/012576
Other languages
English (en)
French (fr)
Inventor
秀明 薄
日高 古屋
真樹 高橋
秀徳 石川
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to AU2018202844A priority Critical patent/AU2018202844B2/en
Priority to JP2018517656A priority patent/JP6734368B2/ja
Priority to US15/777,164 priority patent/US10877165B2/en
Priority to SG11201803343SA priority patent/SG11201803343SA/en
Priority to CN201880000503.5A priority patent/CN108990421A/zh
Priority to KR1020187013783A priority patent/KR102068919B1/ko
Priority to RU2018123313A priority patent/RU2700378C1/ru
Priority to ES18729857T priority patent/ES2811032T3/es
Priority to PL18729857T priority patent/PL3407092T3/pl
Priority to EP18729857.5A priority patent/EP3407092B1/en
Priority to IL259290A priority patent/IL259290A/en
Publication of WO2018181395A1 publication Critical patent/WO2018181395A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/02Collecting means for receiving or storing samples to be investigated and possibly directly transporting the samples to the measuring arrangement; particularly for investigating radioactive fluids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/06Details of, or accessories to, the containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Definitions

  • the present invention relates to a dosimeter container and a dosimeter for measuring a dose of radiation other than neutrons such as gamma rays.
  • boron neutron capture therapy is radiation therapy using neutron radiation.
  • a boron compound that is specifically taken up by cancer cells is administered to a patient.
  • a neutron beam controlled to a predetermined range of energy is applied to the cancer cell in which the boron compound is accumulated.
  • alpha rays are generated. This alpha ray kills cancer cells.
  • Boron neutron capture therapy is expected as a means of cancer treatment, and the stage toward clinical trials is being advanced.
  • Neutron irradiation equipment used for boron neutron capture therapy uses thermal neutrons and epithermal neutrons to obtain therapeutic effects, and the neutron irradiation environment has radiation with a certain range of energy. It is also a place where Under such circumstances, it is necessary to selectively measure only gamma rays as much as possible to confirm the safety of the apparatus.
  • neutron rays such as gamma rays activated by neutron irradiation
  • radiation such as gamma rays that affect the human body is also present.
  • a dedicated dosimeter is used to detect gamma rays, but if measurement is performed in the presence of neutrons, the gamma doses may not be accurately measured due to the effects of neutrons.
  • composition for modeling a radiation protection device in which a radiation shielding material such as lithium fluoride is kneaded with a thermoplastic resin having a melting point of 40 to 80 ° C. (See Patent Document 2).
  • JP 2016-3892 A Japanese Patent Laid-Open No. 8-201581
  • the present invention has been proposed in view of the above-described circumstances, and an object thereof is to provide a dosimeter container that contributes to both the enhancement of measurement accuracy of radiation dose and the miniaturization of a measurement apparatus.
  • the present inventors have made extensive studies to solve the above-described problems. As a result, it is possible to improve the radiation dose measurement accuracy by including a storage unit for storing a specific radiation dose measuring device and a shielding unit that is made of at least a specific material having a neutron shielding property and surrounds the storage unit.
  • the present inventors have found that a dosimeter container that contributes to both advancement and downsizing of a measuring apparatus can be provided, and the present invention has been completed. That is, the present invention provides the following.
  • the first invention of the present invention is a storage unit that stores a radiation dose measuring device that measures a dose of predetermined radiation other than neutron radiation, and surrounds the storage unit, and at least the radiation dose measuring device. It is a dosimeter container provided with the shielding part which consists of the LiF sintered compact which permeate
  • 2nd invention of this invention is a said 6th LiF sintered compact in the said 1st invention.
  • the 6 LiF sintered body is made of 6 LiF and has a relative density of 83% or more and 90% or less. It has a good appearance with suppressed cracking and swelling.
  • the predetermined radiation is gamma rays.
  • the shielding portion includes at least two shielding portion constituting members, and adjacent shielding portion configurations.
  • the members have structures that can be butted against each other.
  • the adjacent shielding portion constituting members have a structure that can be fitted to each other.
  • the size of the storage portion is substantially the same as or larger than the size of the radiation dose measuring instrument.
  • the part extends over the entire shielding part constituting member.
  • the shortest distance from the inner surface of the storage portion to the outer surface of the shielding member constituting member is constant.
  • the ninth invention of the present invention is a dose measuring body in which the radiation dose measuring device is housed in the housing portion of the dosimeter container according to any one of the first to eighth inventions.
  • the present invention it is possible to provide a dosimeter container that contributes to both the enhancement of measurement accuracy of radiation dose and the miniaturization of a measuring apparatus.
  • FIG. 1B It is a perspective view of the dosimeter container concerning the 1st Embodiment of this invention. It is a front view of the said dosimeter container. It is AA sectional drawing of FIG. 1B. It is a perspective view of the main-body part of the said dosimeter container. It is a perspective view of the cover part of the said dosimeter container. It is a figure which shows the state by which the radiation dose measuring device was accommodated in the accommodating part of the said dosimeter container. It is a perspective view of the dosimeter container concerning the 2nd Embodiment of this invention. It is a front view of the said dosimeter container. It is AA sectional drawing of FIG. 2B.
  • FIG. 4C It is a perspective view of the main-body part of the said dosimeter container. It is a perspective view of the cover part of the said dosimeter container. It is a figure which shows the state by which the radiation dose measuring device was accommodated in the accommodating part of the said dosimeter container. It is a dimension figure when the dosimeter container of a present Example is seen from the cross section from the front.
  • FIG. 1 is a schematic diagram showing an example of a dosimeter container 10 according to the first embodiment of the present invention. More specifically, FIG. 1A is a perspective view of the dosimeter container 10. FIG. 1B is a front view of the dosimeter container 10, and FIG. 1C is a cross-sectional view taken along line AA of FIG. 1B. 1D is a perspective view of the main body portion 12A of the dosimeter container 10, and FIG. 1E is a perspective view of the lid portion 12B of the dosimeter container 10. As shown in FIG. FIG. 1F is a schematic diagram showing a state in which the radiation dose measuring device 51 is stored in the storage unit 11 of the dosimeter container 10.
  • the dosimeter container 10 includes a storage unit 11 that stores a radiation dose measuring device and a shielding unit 12 that surrounds the storage unit 11.
  • the storage unit 11 has a space for storing the radiation dose measuring instrument.
  • the radiation dose measuring device is an element that measures a dose of predetermined radiation other than neutron radiation.
  • the predetermined radiation can be arbitrarily selected from radiations other than neutron rays, but from the viewpoint of application to boron neutron capture therapy (BNCT), the predetermined radiation is preferably gamma rays.
  • the radiation dose measuring device here includes a series of forms of dosimeters such as the fluorescent glass element itself constituting the glass dosimeter and the fluorescent glass element housed in a resin holder.
  • the type of element is not particularly limited.
  • the fluorescent glass element which comprises a glass dosimeter, the ferrous sulfate or the ferrous ammonium sulfate which comprises a Fricke dosimeter, etc. are mentioned.
  • the size of the storage unit 11 is not particularly limited, it is preferable that the size of the storage unit 11 is substantially the same as the size of the radiation dose measuring device from the viewpoint of downsizing the dosimeter container 10.
  • the storage portion 11 has a cylindrical shape with a diameter of 2.5 mm to 3 mm and a length of 10 mm to 15 mm.
  • the shielding unit 12 surrounds the storage unit 11 and is configured to shield neutron beams that reach the dosimeter container 10.
  • the shielding unit 12 is made of a member made of a material that shields neutron rays and at least transmits radiation that is a measurement target of the radiation dose measuring device stored in the storage unit 11. Thereby, only one radiation dose measuring device is required inside the dosimeter container 10, and the radiation dose stored in the storage unit 11 even if the radiation dose measuring device is not arranged outside the dosimeter container 10.
  • the measuring instrument can accurately detect the radiation to be measured. Therefore, the procedure for calculating the radiation dose to be measured can be simplified, and the dosimeter container 10 can be reduced in size.
  • the material of the shielding part 12 will be described in detail later.
  • the lower limit of the size of the shielding part 12 is not particularly limited as long as the neutron beam that reaches the shielding part 12 can be suitably shielded and the radiation to be measured by the radiation dose measuring device can be suitably transmitted.
  • the shielding part 12 preferably has a thickness of 2 mm or more around the storage part 11, and more preferably has a thickness of 3 mm or more.
  • the upper limit of the size of the shielding part 12 is not particularly limited, but the shielding part 12 has a thickness of 8 mm or less around the storage part 11 from the viewpoint of reducing the thickness and size of the conventional dosimeter container. Preferably, it has a thickness of 5 mm or less.
  • the shielding part 12 has at least two shielding part constituting members.
  • the shielding part 12 has a main body part 12A and a lid part 12B as two or more shielding part constituting members.
  • the main body portion 12A and the lid portion 12B which are adjacent shielding portion constituting members, have a structure that can be abutted against each other.
  • the shielding part 12 By making the shielding part 12 into two or more shielding part constituting members and allowing adjacent shielding part constituting members to be brought into contact with each other, the shielding part constituting members can be easily attached to and detached from each other. Storage and removal are also easy.
  • the types of structures that can be matched are not particularly limited. As shown in FIGS. 1C, 1D, and 1E, the main body portion 12A and the lid portion 12B can be fitted to each other. And the lid portion 12B, and the outside of the joint is fixed with a fixing member.
  • the main body part 12 ⁇ / b> A and the lid part 12 ⁇ / b> B which are adjacent shielding part constituent members, have a structure that can be fitted to each other.
  • the main body portion 12A and the lid portion 12B can be integrated without fixing the outside of the seam with the fixing member.
  • the influence which may arise when a radiation other than a neutron beam and a neutron beam is irradiated to a fixing member can be disregarded.
  • one shielding part constituting member here, the main body part 12A
  • the other shielding part is formed.
  • one shielding part constituent member is an inclined member in a predetermined direction
  • the other shielding part constituent member is one shielding part constituent member. It is mentioned to make it the inclined member which has a symmetrical shape.
  • FIGS. 1C, 1D, and 1D the structures that can be fitted are shown in FIGS. 1C, 1D, and 1D.
  • FIG. 1E it is preferable to form one shielding part constituting member (here, the main body part 12A) in a convex shape and the other shielding part constituting member (here, the lid part 12B) in a concave shape. .
  • the length L A from the bottom of the main body 12A to the top of the convex member and the length L B from the bottom of the lid 12B to the top of the concave member are preferably the same.
  • L A, by the same and L B it is possible to cut a body portion 12A and the lid 12B of the plate-like body of the same thickness, with a dosimeter container 10 can be efficiently manufactured, the raw material by cutting Loss can be suppressed.
  • the size of the storage unit 11 is preferably substantially the same as the size of the radiation dose measuring instrument.
  • the storage portion 11 extends over the entire shielding portion constituting member (the main body portion 12A and the lid portion 12B in this embodiment).
  • the size of the storage unit 11 is substantially the same as the size of the radiation dose measuring instrument, and the storage unit 11 extends over the entire shielding unit constituting member, thereby fixing the shielded constituent components that are abutted to each other.
  • the radiation dose measuring device itself stored in the storage unit 11 can function as a fixing member.
  • the lid 12B When the main body 12A has a convex shape, the lid 12B has a concave shape and the main body 12A and the lid 12B can be fitted, the length of the main body 12A protruding in a convex shape and the lid 12B has a concave shape.
  • What is necessary is just to set the dent depth suitably from viewpoints, such as the intensity
  • the lower limit of the length that the main body portion 12A protrudes in a convex shape and the depth that the lid portion 12B is recessed in a concave shape is 1 mm or more. Is preferably 1.5 mm or more, more preferably 2 mm or more. If the length that the main body 12A protrudes in a convex manner and the depth that the lid 12B is recessed in a concave shape are too short, the dosimeter container 10 is being used even if the main body 12A and the lid 12B are fitted together. There is a possibility that the lid portion 12B may come off from the main body portion 12A.
  • the upper limit of the length that the main body portion 12A protrudes in a convex shape and the depth that the lid portion 12B is recessed in a concave shape is 10 mm or less. Is preferably 5 mm or less, and more preferably 3 mm or less.
  • the length that the main body portion 12A protrudes in a convex shape and the depth that the lid portion 12B is recessed in a concave shape are too long, the loss of the raw material due to cutting increases and the cost increases.
  • the thickness of the shielding member constituting member is preferably configured such that the shortest distance from the inner surface of the storage part to the outer surface of the shielding member constituting member is constant.
  • both end portions of the shielding member constituting member viewed from the cross-sectional shape are curved surfaces of R5.
  • the shortest distance from the corner of the storage portion end to the outer surface of the shielding member constituting member can be equally 5 mm.
  • the shortest distance from the inner surface of the storage unit to the outer surface of the shielding unit constituent member is designed by appropriately designing the curved surface of the R portion at the end of the shielding unit constituent member according to the thickness of the shielding unit constituent member. The distance can be constant.
  • a LiF-containing material As a material having the above properties, a LiF-containing material can be mentioned. Among these, since the LiF content is high, other components are not affected by the transmission of neutron rays, and can contribute to the miniaturization and thinning of the dosimeter container 10, the LiF-containing material may be a LiF sintered body. preferable.
  • Li contains two stable isotopes, 6 Li and 7 Li, and the natural abundance ratio is 7 Li is 92.5 atom%, while 6 Li is 7.5 atom%.
  • 6 Li what contributes to shielding of the neutron beam is 6 Li. Therefore, by using 6 LiF enriched with 6 Li, it is possible to shield the neutron beam with higher efficiency. Therefore, the LiF sintered body is more preferably a 6 LiF sintered body.
  • the 6 LiF sintered body will be described.
  • the 6 LiF sintered body is mainly made of 6 LiF, and other neutron moderating / shielding materials (for example, CaF 2 , MgF 2 , MgF 2 —CaF 2 binary system, MgF 2 —CaF 2 —LiF ternary) Higher neutron shielding performance than other systems).
  • the 6 LiF sintered body is made of 6 LiF, is not mixed with other inorganic compounds as a sintering aid or a composite material component, and is not a mixture with a thermoplastic resin or the like. Therefore, the 6 LiF sintered body according to the present embodiment has extremely high neutron shielding performance, and can contribute to thinning and miniaturization of the shielding part 12.
  • the purity of 6 Li is preferably 95.0 atom% or more and the LiF purity is 99 wt% or more.
  • impurities such as metal components (elements)
  • the 6 LiF sintered body is irradiated with neutron rays to activate the impurities and emit gamma rays. Even if 6 LiF is irradiated with a neutron beam, activation does not occur.
  • 6 Li is 95.0 atom% or more and the LiF purity is 99 wt% or more, so that not only the neutron shielding performance is excellent, but also the human body is exposed.
  • the advantage is that the influence can be minimized.
  • 6 LiF is a sintered body.
  • the method for producing the 6 LiF sintered body include a single crystal growth method, a method of solidifying from a melt, and a sintering method.
  • the obtained molded body is a single crystal, it has a problem that it has cleavage properties and easily causes cracks during processing.
  • the method of solidifying from the melt requires strict temperature control during cooling and requires a long time for cooling, so that it is possible to obtain a uniform and sound solidified product over a relatively large size as a whole. difficult.
  • the 6 LiF sintered body is obtained by a sintering method, a neutron shielding material having high neutron shielding performance can be stably supplied at a low cost.
  • the LiF sintered body preferably has a relative density of 83% or more and 90% or less.
  • the relative density is a value obtained by dividing the density of the sintered body by the theoretical density of LiF (2.64 g / cm 3 ) and multiplying by 100.
  • the relative density is 83% or more and 90% or less, and the 6 LiF sintered body is not densified. Therefore, the 6 LiF sintered body has an advantage of excellent cutting workability.
  • the relative density is too small, the 6 LiF sintered body may not have sufficient neutron shielding performance. On the other hand, if the relative density is too small, the ratio of voids inside the sintered body is high, the mechanical strength is inferior, and there is a concern about breakage during processing.
  • the 6 LiF sintered body can be said to have sufficient neutron shielding ability, but since the sintered body is dense, when the sintered body is processed, There is a concern that cracks or the like may occur due to the release of the residual stress.
  • the thickness of the LiF sintered body is not particularly limited as long as it is a thickness capable of suitably shielding a neutron beam. Specifically, the thickness of the 6 LiF sintered body is preferably 2 mm or more, and more preferably 3 mm or more.
  • the upper limit of the thickness of the 6 LiF sintered body is not particularly limited, but from the viewpoint of reducing the size and weight of the shielding part 12, the 6 LiF sintered body is thinner in a range in which neutron beams can be suitably shielded. Is preferred. Specifically, the thickness of the 6 LiF sintered body is preferably 8 mm or less, and more preferably 5 mm or less.
  • 6 LiF sintered body manufacturing method Method for producing a 6 LiF sintered body according to this embodiment, pressurized 6 LiF composition containing a 6 LiF powder and organic forming aid and pressure to obtain a press-molded body, the pressed bodies And a baking step of baking at 630 ° C. or higher and 830 ° C. or lower. Prior to the firing step, a pre-baking step of pre-baking at 250 ° C. or higher and 350 ° C. or lower may be added.
  • FIG. 1F is a schematic diagram illustrating an example of a dose measuring body 1 according to the first embodiment of the present invention.
  • a radiation dose measuring device 51 is stored in the storage unit 11 of the dosimeter container 10.
  • the dosimeter container 10 even if the dosimeter container 10 is thin, sufficient neutron shielding performance can be obtained, and the dosimeter container 10 can be designed to be small in size. Therefore, handling of the dosimeter container 10 becomes easy. For example, even in the measurement site, if the dosimeter container 10 is small, a plurality of dosimeter containers 10 are arranged in the neutron irradiation region, and there is a difference in the presence or absence of gamma rays in the neutron irradiation space region. Can be measured (or with fewer measurement work steps).
  • the shielding part 12 which is a constituent member of the dosimeter container 10 is made of a member made of a material that transmits radiation, which is a measurement target of a radiation dose measuring instrument accommodated in the accommodating part 11, while shielding a neutron beam. .
  • the radiation dose measuring instrument stored in the storage unit 11 can accurately detect the radiation to be measured. Therefore, the procedure for calculating the radiation dose to be measured can be simplified, and the dosimeter container 10 can be reduced in size.
  • FIG. 2 is a schematic diagram showing an example of a dosimeter container 20 according to a second embodiment of the present invention. More specifically, FIG. 2A is a perspective view of the dosimeter container 10. 2B is a front view of the dosimeter container 20, and FIG. 2C is a cross-sectional view taken along the line AA of FIG. 2B. 2D is a perspective view of the main body portion 22A of the dosimeter container 20, and FIG. 2E is a perspective view of the lid portion 22B of the dosimeter container 20. As shown in FIG. FIG. 2F is a schematic view showing an example of a dose measuring body 2 according to the second embodiment of the present invention, in which a radiation dose measuring instrument 51 is accommodated in the accommodating portion 21 of the dosimeter container 20.
  • the dosimeter container 2 includes a storage unit 21 and a shielding unit 22.
  • the storage unit 21 is a member that stores a radiation dose measuring device that measures a dose of predetermined radiation other than the neutron beam, and has the same function as the storage unit 11 unless otherwise specified.
  • the shielding part 22 is a member surrounding the storage part 21, and has the same function as the shielding part 12 unless otherwise specified.
  • the entire shape of the dosimeter container 10 is such that both end portions of a hemisphere are disposed at both ends of a cylindrical peripheral wall.
  • the second embodiment is different in that the entire shape of the dosimeter container 20 is a rounded corner based on a quadrangular prism shape.
  • the shape of the storage unit 21 is a cylindrical shape in accordance with the shape of the radiation dose measuring device 51 (for example, a fluorescent glass element), whereas in the second embodiment, the storage unit 21 is stored.
  • the shape of the portion 21 is a quadrangular prism shape in which the length of the outer diameter of the bottom surface of the radiation dose measuring device 51 is the length of one side of the bottom surface, and the height is substantially the same as the height of the radiation dose measuring device 51. It is different.
  • the shape of the dosimeter container is not particularly limited, and can be selected as appropriate.
  • FIG. 3 is a schematic diagram which shows an example of the dosimeter container 30 which concerns on the 3rd Embodiment of this invention. More specifically, FIG. 3A is a perspective view of the dosimeter container 30, and FIG. 3B is a front view of the dosimeter container 30. 3C is a plan view of the dosimeter container 30, and FIG. 3D is a cross-sectional view taken along the line AA of FIG. 3C. 3E is a perspective view of the main body portion 32A of the dosimeter container 30, and FIG. 3F is a perspective view of the lid portion 32B of the dosimeter container 30. FIG. 3G is a schematic view showing an example of a dose measuring body 3 according to the third embodiment of the present invention, in which a radiation dose measuring device 51 is stored in the storage portion 31 of the dosimeter container 30.
  • the dosimeter container 3 includes a storage unit 31 and a shielding unit 32.
  • the storage unit 31 is a member that stores a radiation dose measuring device that measures the dose of predetermined radiation other than neutron beams, and has the same function as the storage unit 11 unless otherwise specified.
  • the shielding part 32 is a member surrounding the storage part 31, and has the same function as the shielding part 12 unless otherwise specified.
  • the entire shape of the dosimeter container 10 is the capsule shape described above, whereas in the third embodiment, The whole shape of the dosimeter container 30 is different in that it is a circular flat plate.
  • the shape of the storage portion 21 is a cylindrical shape in accordance with the shape of the radiation dose measuring instrument 51 (for example, a fluorescent glass element), whereas in the third embodiment, the storage portion 21 is stored.
  • the shape of the portion 31 is different in that it is a circular flat plate having an inner diameter that is substantially the same as the length of the radiation dose measuring instrument 51 in the longitudinal direction.
  • the storage portion 11 extends over the entire shielding portion constituting member 51 (the main body portion 12A and the lid portion 12B in this embodiment), whereas in the third embodiment, the storage portion 11 is stored.
  • the part 31 is different in that it is located only on the main body part 32A and not on the lid part 32B.
  • the shape of the dosimeter container is not particularly limited, and can be selected as appropriate.
  • the storage part covers the entire shielding part constituting member 51 as in the first embodiment. It is preferably extended.
  • FIG. 4 is a schematic diagram which shows an example of the dosimeter container 40 which concerns on the 4th Embodiment of this invention. More specifically, FIG. 4A is a perspective view of the dosimeter container 40, and FIG. 4B is a front view of the dosimeter container 40. 4C is a plan view of the dosimeter container 40, and FIG. 4D is a cross-sectional view taken along the line AA of FIG. 4C. 4E is a perspective view of the main body portion 42A of the dosimeter container 40, and FIG. 4F is a perspective view of the lid portion 42B of the dosimeter container 40. FIG. 4G is a schematic view showing an example of a dose measuring body 4 according to the fourth embodiment of the present invention, in which a radiation dose measuring instrument 51 is stored in the storage portion 41 of the dosimeter container 40.
  • the dosimeter container 4 includes a storage part 41 and a shielding part 42.
  • the storage unit 41 is a member that stores a radiation dose measuring device that measures a dose of predetermined radiation other than neutron radiation, and has the same function as the storage unit 11 unless otherwise specified.
  • the shielding part 42 is a member surrounding the storage part 41 and has the same function as the shielding part 42 unless otherwise specified.
  • the entire shape of the dosimeter container 30 is a circular flat plate
  • the whole shape of the dosimeter container 40 is different in that it is a substantially square flat plate.
  • the shape of the dosimeter container is not particularly limited, and can be selected as appropriate.
  • 6 LiF powder 6 Li purity 95.0 atom%, LiF 99%: manufactured by Sigma-Aldrich
  • 16 parts by mass of a molding aid made of stearic acid and cellulose are obtained to obtain a 6 LiF composition. It was.
  • a cylindrical mold was loaded into a hydraulic press and a press pressure of 100 MPa was applied to obtain a press molded body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Measurement Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

放射線量の測定精度の高度化と、測定装置の小型化との両方に寄与する線量計容器を提供する。 本発明の線量計容器(10)は、収納部(11)と、収納部(11)を囲む遮蔽部(12)とを備える。収納部(11)は、中性子線以外の所定の放射線の線量を計測する放射線量計測器を収納する。遮蔽部(12)は、上記所定の放射線を透過し、中性子線を遮蔽する材料の部材からなる。遮蔽部(12)は、LiF焼結体、特に、6LiF焼結体であることが好ましい。遮蔽部(12)は、少なくとも2つ以上の遮蔽部構成部材(本体部(12A)及び蓋部(12B))を有し、隣り合う部材は、互いに突き合わせ可能、より好適には、互いに嵌合可能である。収納部(11)の大きさは、放射線量計測器の大きさと略同じかそれよりも大きく、収納部(11)は、上記構成部材の全体にわたって延在する。線量計容器(10)は、収納部(11)に放射線量計測器(51)が収納された線量計測体(1)として好適に用いられる。

Description

線量計容器及び線量計測体
 本発明は、ガンマ線等、中性子線以外の放射線の線量を測定する線量計容器及び線量計測体に関する。
 近年、がん治療の手段として、ホウ素中性子捕捉療法(BNCT:Boron Neutron Capture Therapy)の研究開発が急速に進んでいる。ホウ素中性子捕捉療法は、中性子線を利用した放射線治療である。まず、がん細胞に特異的に取り込まれるホウ素化合物を患者に投与する。次いで、ホウ素化合物が蓄積されたがん細胞に、所定の範囲のエネルギーに制御された中性子線を当てる。ホウ素化合物と中性子線が衝突するとα線が生じる。このα線によってがん細胞が死滅する。
 ホウ素中性子捕捉療法は、がん治療の手段として将来が期待されており、臨床試験への段階が進みつつある。ホウ素中性子捕捉療法に使用される中性子線照射装置は、熱中性子線や熱外中性子線を利用して治療の効果を得るものであり、中性子線照射環境は、ある一定の幅のエネルギーを持つ放射線が混在する場でもある。こうした状況下で、なるべくガンマ線のみを選択的に測定し、装置の安全性等を確認する工程が必要になる。
 中性子線照射装置に供する中性子線発生装置として、これまで、原子炉を利用する必要があった。ところが、近年、病院内設置型の小型の中性子発生装置が提案されつつある。この小型の中性子発生装置は、ベリリウムやリチウムのターゲットに加速器で加速させた陽子や重陽子を衝突させるものである。発生した中性子線は、従来型の設備よりも熱中性子や熱外中性子の割合が多く、これを減速材によって減速させ、人体に影響の小さい中性子線照射環境を提供する。
 中性子線照射環境においては、中性子線の照射によって放射化されたガンマ線等、中性子線の他にも、人体に影響のあるガンマ線等の放射線も混在する。ガンマ線の検出には専用の線量計が利用されるが、中性子線の存在下で測定を行うと、中性子線の影響によりガンマ線量を正確に測定できない場合がある。
 ガンマ線量の測定精度を高める手法として、共に使用される第二検出器を構成する放射線量計と同一の放射線量計の周囲に配置され且つ鉛又は鉛合金からなると共に、中性子の減衰とガンマ線の補正係数とがガンマ線の計測における許容範囲に収まるように厚さを決定したフィルターから構成される第一検出器を備えたことを特徴とするガンマ線計測装置が提案されている(特許文献1参照)。
 しかしながら、鉛は、中性子線を遮蔽せず、ガンマ線を遮蔽する。また、鉛や鉛合金は、中性子線照射による放射化により、それ自体からガンマ線を放射する。そのため、鉛又は鉛合金のフィルターの内部と外部との両方に放射線検出器を設け、フィルターの内部に設けられた放射線検出器の検出結果と、フィルターの外部に設けられた放射線検出器の検出結果との差からガンマ線の線量を計算する必要がある。したがって、特許文献1に記載の手法では、手順が煩雑であるとともに、放射線量計の大型化にもつながる。
 また、中性子線を遮蔽する材料の観点から、融点が40~80℃である熱可塑性樹脂に、フッ化リチウム等の放射線遮蔽材を混練してなる放射線防護用器材の造形用組成物が提案されている(特許文献2参照)。
 しかしながら、特許文献2に記載の造形用組成物では、樹脂に混合させることのできるリチウム化合物等の放射線遮蔽材の比率には限界があり、十分な遮蔽効果を得るためには、遮蔽材の厚みを大きく設計しなければならない。また、中性子線の照射により、樹脂成分は、わずかに放射化し、ガンマ線を放出するため、線量計の測定結果に影響を及ぼし得る。
特開2016-3892号公報 特開平8-201581号公報
 本発明は、上述した実情に鑑みて提案されたものであり、放射線量の測定精度の高度化と、測定装置の小型化との両方に寄与する線量計容器を提供することを目的とする。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、特定の放射線量計測器を収納する収納部と、少なくとも、中性子線遮蔽性を有する特定の材料の部材からなり、収納部を囲む遮蔽部とを備えることで、放射線量の測定精度の高度化と、測定装置の小型化との両方に寄与する線量計容器を提供できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のものを提供する。
 (1)本発明の第1の発明は、中性子線以外の所定の放射線の線量を計測する放射線量計測器を収納する収納部と、前記収納部を囲み、かつ、少なくとも、前記放射線量計測器の計測対象である前記所定の放射線を透過し、中性子線を遮蔽するLiF焼結体からなる遮蔽部とを備える線量計容器である。
 (2)また、本発明の第2の発明は、上記第1の発明において、前記LiF焼結体は、LiF焼結体である。
 (3)また、本発明の第3の発明は、上記第2の発明において、前記LiF焼結体は、LiFからなり、83%以上90%以下の相対密度を有し、外表面のクラック及び膨れが抑制された良好な外観を有する。
 (4)また、本発明の第4の発明は、上記第1から第3のいずれかの発明において、前記所定の放射線は、ガンマ線である。
 (5)また、本発明の第5の発明は、上記第1から第4のいずれかの発明において、前記遮蔽部は、少なくとも2つ以上の遮蔽部構成部材を有し、隣り合う遮蔽部構成部材は、互いに突き合わせ可能な構造を有する。
 (6)また、本発明の第6の発明は、上記第5の発明において、前記隣り合う遮蔽部構成部材は、互いに嵌合可能な構造を有する。
 (7)また、本発明の第7の発明は、上記第5又は第6の発明において、前記収納部の大きさは、前記放射線量計測器の大きさと略同じかそれよりも大きく、前記収納部は、前記遮蔽部構成部材の全体にわたって延在する。
 (8)また、本発明の第8の発明は、上記第5から第7のいずれかの発明において、前記収納部の内表面から前記遮蔽部構成部材の外表面までの最短距離が一定である。
 (9)また、本発明の第9の発明は、上記第1から第8のいずれかの発明における線量計容器の前記収納部に前記放射線量計測器が収納された線量計測体である。
 本発明によれば、放射線量の測定精度の高度化と、測定装置の小型化との両方に寄与する線量計容器を提供することができる。
本発明の第1の実施形態に係る線量計容器の斜視図である。 上記線量計容器の正面図である。 図1BのA-A断面図である。 上記線量計容器の本体部の斜視図である。 上記線量計容器の蓋部の斜視図である。 上記線量計容器の収納部に放射線量計測器が収納された状態を示す図である。 本発明の第2の実施形態に係る線量計容器の斜視図である。 上記線量計容器の正面図である。 図2BのA-A断面図である。 上記線量計容器の本体部の斜視図である。 上記線量計容器の蓋部の斜視図である。 上記線量計容器の収納部に放射線量計測器が収納された状態を示す図である。 本発明の第3の実施形態に係る線量計容器の斜視図である。 上記線量計容器の正面図である。 上記線量計容器の平面図である。 図3CのA-A断面図である。 上記線量計容器の本体部の斜視図である。 上記線量計容器の蓋部の斜視図である。 上記線量計容器の収納部に放射線量計測器が収納された状態を示す図である。 本発明の第4の実施形態に係る線量計容器の斜視図である。 上記線量計容器の正面図である。 上記線量計容器の平面図である。 図4CのA-A断面図である。 上記線量計容器の本体部の斜視図である。 上記線量計容器の蓋部の斜視図である。 上記線量計容器の収納部に放射線量計測器が収納された状態を示す図である。 本実施例の線量計容器を正面から断面視したときの寸法図である。
 以下、本発明に係る線量計容器等の具体的な実施形態について詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではなく、本発明の要旨を変更しない範囲内において、適宜変更を加えて実施することができる。
1.第1の実施形態
<線量計容器10>
 図1は、本発明の第1の実施形態に係る線量計容器10の一例を示す模式図である。より詳しく説明すると、図1Aは、線量計容器10の斜視図である。図1Bは、線量計容器10の正面図であり、図1Cは、図1BのA-A断面図である。図1Dは、線量計容器10の本体部12Aの斜視図であり、図1Eは、線量計容器10の蓋部12Bの斜視図である。また、図1Fは、線量計容器10の収納部11に放射線量計測器51が収納された状態を示す模式図である。
 本実施形態に係る線量計容器10は、放射線量計測器を収納する収納部11と、収納部11を囲む遮蔽部12とを備える。
〔収納部11〕
 収納部11は、放射線量計測器を収納にするための空間を有する。
 放射線量計測器は、中性子線以外の所定の放射線の線量を計測する素子である。所定の放射線は、中性子線以外の放射線の中から任意に選択できるが、ホウ素中性子捕捉療法(BNCT)への応用という観点から、所定の放射線は、ガンマ線であることが好ましい。ただし、ここでいう放射線量計測器は、ガラス線量計を構成する蛍光ガラス素子そのものや前記蛍光ガラス素子が樹脂製のホルダーに収納されたものなど、一連の形態の線量計を含むものとする。
 素子の種類は、特に限定されない。例えば、ガラス線量計を構成する蛍光ガラス素子、フリッケ線量計を構成する硫酸第一鉄又は硫酸第一鉄アンモニウム等が挙げられる。
 収納部11の大きさは、特に制限されないが、線量計容器10を小型化するという観点から、収納部11の大きさは、放射線量計測器の大きさと略同じであることが好ましい。
例えば、放射線量計測器がガラス線量計を構成する蛍光ガラス素子である場合、収納部11は、φ2.5mm~3mm、長さ10mm~15mmの円柱形状である。
〔遮蔽部12〕
 遮蔽部12は、収納部11を囲み、線量計容器10に届く中性子線を遮蔽可能に構成される。
 遮蔽部12は、中性子線を遮蔽する一方、少なくとも、収納部11に収納される放射線量計測器の計測対象である放射線を透過する材料の部材からなる。これにより、放射線量計測器は、線量計容器10の内部に1つあれば足り、線量計容器10の外部に放射線量計測器が未配置であっても、収納部11に収納された放射線量計測器が測定対象の放射線を正確に検出できる。したがって、測定対象の放射線量を計算する手順を簡略化できるとともに、線量計容器10の小型化に寄与し得る。
 遮蔽部12の材料については、後に詳しく説明する。
 遮蔽部12の大きさの下限は、遮蔽部12に届く中性子線を好適に遮蔽し、放射線量計測器の計測対象である放射線を好適に透過することができれば、特に限定されない。例えば、遮蔽部12は、収納部11の周囲に、2mm以上の厚さを有することが好ましく、3mm以上の厚さを有することがより好ましい。
 遮蔽部12の大きさの上限は、特に限定されないが、従来の線量計容器の薄型化、小型化を図る観点から、遮蔽部12は、収納部11の周囲に、8mm以下の厚さを有することが好ましく、5mm以下の厚さを有することがより好ましい。
 また、遮蔽部12は、少なくとも2つ以上の遮蔽部構成部材を有する。本実施形態では、遮蔽部12は、2つ以上の遮蔽部構成部材として、本体部12A及び蓋部12Bを有する。
 そして、図1C、図1D及び図1Eから分かるように、隣り合う遮蔽部構成部材である本体部12A及び蓋部12Bは、互いに突き合わせ可能な構造を有する。
 遮蔽部12を2つ以上の遮蔽部構成部材とし、隣り合う遮蔽部構成部材を互いに突き合わせ可能にすることで、遮蔽部構成部材どうしの着脱が容易となり、放射線量計測器の収納部11への収納、取り外しも容易となる。
 突き合わせ可能な構造の種類は、特に限定されず、図1C、図1D及び図1Eにあるように、本体部12Aと蓋部12Bとを互いに嵌合可能な構造にすることのほか、本体部12Aと蓋部12Bとを突き合わせ、継ぎ目の外側を固定部材で固定すること等が挙げられる。
 中でも、隣り合う遮蔽部構成部材である本体部12Aと蓋部12Bは、互いに嵌合可能な構造を有することが好ましい。嵌合可能にすることで、継ぎ目の外側を固定部材で固定することなく、本体部12Aと蓋部12Bとを一体化できる。また、固定部材に中性子線及び中性子線以外の放射線が照射されることによって起こり得る影響を無視できる。
 嵌合可能な構造の種類は、特に限定されず、図1C、図1D及び図1Eにあるように、一方の遮蔽部構成部材(ここでは、本体部12A)を凸形状にし、他方の遮蔽部構成部材(ここでは、蓋部12B)を凹形状にすることのほか、一方の遮蔽部構成部材を所定方向への傾斜部材にし、他方の遮蔽部構成部材を、一方の遮蔽部構成部材とは対称な形状を有する傾斜部材にすることが挙げられる。
 中でも、線量計容器10に向けて直線的に照射された中性子線を好適に遮蔽し、測定対象となる放射線を好適に透過させるという観点から、嵌合可能な構造は、図1C、図1D及び図1Eにあるように、一方の遮蔽部構成部材(ここでは、本体部12A)を凸形状にし、他方の遮蔽部構成部材(ここでは、蓋部12B)を凹形状にして形成することが好ましい。
 特に、本体部12Aの底部から凸状部材の頂部までの長さLと、蓋部12Bの底部から凹状部材の頂部までの長さLとが同じであることが好ましい。Lと、Lとを同じにすることで、同一の厚さの板状体から本体部12A及び蓋部12Bを切り出すことができ、線量計容器10を効率よく製造できるとともに、切削による原料のロスを抑えられる。
 上述したとおり、収納部11の大きさは、放射線量計測器の大きさと略同じであることが好ましい。加えて、収納部11は、遮蔽部構成部材(本実施形態では本体部12A及び蓋部12B)の全体にわたって延在することが好ましい。収納部11の大きさが、放射線量計測器の大きさと略同じであり、収納部11が、遮蔽部構成部材の全体にわたって延在することで、突き合わせた遮蔽部構成部材どうしを固定するにあたり、収納部11に収納される放射線量計測器そのものが固定部材として機能し得る。
 本体部12Aを凸形状にし、蓋部12Bを凹形状にして本体部12Aと蓋部12Bとを嵌合可能にする場合、本体部12Aが凸状に突出する長さと、蓋部12Bが凹状に凹む深さは、本体部12Aと蓋部12Bとの突き合わせ及び取り外しの容易性、突き合わせた遮蔽部構成部材どうしを固定する強度等の観点から、適宜設定すればよい。
 例えば、放射線量計測器がガラス線量計を構成する蛍光ガラス素子である場合、本体部12Aが凸状に突出する長さと、蓋部12Bが凹状に凹む深さとの下限は、1mm以上であることが好ましく、1.5mm以上であることがより好ましく、2mm以上であることがさらに好ましい。本体部12Aが凸状に突出する長さと、蓋部12Bが凹状に凹む深さとが短すぎると、本体部12Aと蓋部12Bとを嵌め合わせても、線量計容器10を使用している間に蓋部12Bが本体部12Aから外れる可能性がある。
 また、放射線量計測器がガラス線量計を構成する蛍光ガラス素子である場合、本体部12Aが凸状に突出する長さと、蓋部12Bが凹状に凹む深さとの上限は、10mm以下であることが好ましく、5mm以下であることがより好ましく、3mm以下であることがさらに好ましい。本体部12Aが凸状に突出する長さと、蓋部12Bが凹状に凹む深さとが長すぎる場合、切削による原料のロスが大きくなり、コストが増大してしまう。
 遮蔽部構成部材の厚みについては、収納部の内表面から遮蔽部構成部材の外表面までの最短距離が一定となるように構成するのが良い。このように構成することで、収納部に収納される放射線量計測器を均一的に遮蔽部構成部材で覆うことができるため、あらゆる方向からの中性子線を等しい割合で遮蔽することができる。したがって、中性子線の照射方向に関わらず、容器に収納した線量計測体の配置パターンを自由自在とすることができる。
 また、収納部端部の隅においては、例えば、図5のように、遮蔽部構成部材の厚みが5mmであれば、断面形状から見た遮蔽部構成部材の両端部をR5の曲面とすれば、収納部端部の隅から遮蔽部構成部材の外表面までの最短距離を、等しく5mmとすることができる。このように、遮蔽部構成部材の厚みに応じて、適宜、遮蔽部構成部材の端部のR部の曲面を設計することで、収納部の内表面から遮蔽部構成部材の外表面までの最短距離を一定とすることができる。
 上記性質を有する材料として、LiF含有材料が挙げられる。中でも、LiF含有率が高く、他の成分が中性子線を透過する影響を受けず、線量計容器10の小型化、薄型化に寄与できることから、LiF含有材料は、LiF焼結体であることが好ましい。
 ところで、Liは、LiとLiとの2つの安定同位体を含み、天然での存在比は、Liが92.5atom%であるのに対し、Liが7.5atom%である。そのうち、中性子線の遮蔽に寄与するものは、Liであるので、Liが濃縮されたLiFを使用することによって、より高い効率で中性子線を遮蔽することができる。そのことから、LiF焼結体は、LiF焼結体であることがより好ましい。以下、LiF焼結体について説明する。
LiF焼結体)
(1)成分:LiF
 LiF焼結体は、LiFを主原料としており、他の中性子減速材料・遮蔽材料(例えば、CaF、MgF、MgF-CaF二元系、MgF-CaF-LiF三元系等)に比べて高い中性子遮蔽性能を有する。また、LiF焼結体は、LiFからなり、焼結助剤や複合材成分として他の無機化合物が混合されておらず、また、熱可塑性樹脂等との混合物でもない。したがって、本実施形態に係るLiF焼結体は、極めて高い中性子遮蔽性能を有し、遮蔽部12の薄型化、小型化に寄与し得る。
 LiF焼結体において、Liの純度は、95.0atom%以上、かつ、LiF純度が99wt%以上であることが好ましい。LiF焼結体に金属成分(元素)等の不純物が多く混在していると、LiF焼結体に中性子線を照射することによって不純物が放射化し、ガンマ線を放出する可能性がある。LiFに中性子線が照射されても、放射化は起こらない。よって、本実施形態に係るLiF焼結体において、Liが95.0atom%以上、かつ、LiF純度が99wt%以上にすることで、中性子遮蔽性能に優れるだけではなく、人体への被ばくの影響を最小限に抑えられるという利点を有する。
 また、LiFは、焼結体である。LiF焼結体を製造する手法として、単結晶育成法、融液から凝固させる方法、焼結法等が挙げられる。
 しかしながら、単結晶育成法は、製造に際して高い制御精度を必要とするため、品質の安定度に劣り、製品価格は極めて高価なものとなる。加えて、得られた成形体は、単結晶であるため、劈開性を有し、加工時にクラックを引き起こしやすい等の課題を有する。
 また、融液から凝固させる方法は、冷却時に温度制御を厳密に行う必要があり、かつ冷却に長時間を必要とするため、比較的大きなサイズの全体において均質で健全な固化物を得るのは難しい。
 LiF焼結体は、焼結法によって得られているため、高い中性子遮蔽性能を有する中性子遮蔽材を低コストで安定して供給し得る。
(2)相対密度
 LiF焼結体は、83%以上90%以下の相対密度を有することが好ましい。本実施形態において、相対密度とは、焼結体の密度をLiFの理論密度(2.64g/cm)で除し、100を掛けた値をいう。
 相対密度は、83%以上90%以下であり、LiF焼結体は、高密度化されていない。そのため、LiF焼結体は、切削加工性に優れるという利点がある。
 相対密度が小さすぎると、LiF焼結体が十分な中性子遮蔽性能を有しない可能性がある。また、相対密度が小さすぎると、焼結体内部の空隙の割合が高く、機械的強度に劣り、加工中の破損等が懸念される。
 これに対し、相対密度が大きすぎると、LiF焼結体が十分な中性子遮蔽能を有するとはいえるものの、焼結体の緻密性が高いため、焼結体を加工する際、材料内部の残留応力が解放されることで、クラック等を生じることが懸念される。
(3)厚さ
 LiF焼結体の厚さは、中性子線を好適に遮蔽できる厚さであれば、特に限定されるものではない。具体的に、LiF焼結体の厚さは、2mm以上であることが好ましく、3mm以上であることがより好ましい。
 LiF焼結体の厚さの上限は、特に限定されないが、遮蔽部12の小型化、軽量化を図る観点から、中性子線を好適に遮蔽できる範囲において、LiF焼結体は、薄い方が好ましい。具体的に、LiF焼結体の厚さは、8mm以下であることが好ましく、5mm以下であることがより好ましい。
LiF焼結体の製造方法)
 本実施形態に係るLiF焼結体の製造方法は、LiF粉末と有機系成形助剤とを含有するLiF組成物を加圧し、プレス成形体を得る加圧工程と、このプレス成形体を630℃以上、830℃以下で焼成する焼成工程とを含む。また、焼成工程に先立ち、250℃以上350℃以下で予備焼成する予備焼成工程を入れても良い。
<線量計測体1>
 図1Fは、本発明の第1の実施形態に係る線量計測体1の一例を示す模式図である。この線量計1では、線量計容器10の収納部11に放射線量計測器51が収納されている。
 本実施形態によると、線量計容器10の厚みを薄く構成しても、十分な中性子遮蔽性能を得ることができ、線量計容器10のサイズも小さく設計することができる。したがって、線量計容器10の取り扱いが容易となり、例えば測定現場においても、小さな線量計容器10であれば、中性子線照射領域に複数配置して、中性子照射スペース領域内におけるガンマ線の有無や強弱の違いを(もしくは測定作業工程を少なくして)測定することもできる。
 また、線量計容器10の構成部材である遮蔽部12は、中性子線を遮蔽する一方、少なくとも、収納部11に収納される放射線量計測器の計測対象である放射線を透過する材料の部材からなる。これにより、収納部11に収納された放射線量計測器が測定対象の放射線を正確に検出できる。したがって、測定対象の放射線量を計算する手順を簡略化できるとともに、線量計容器10の小型化に寄与し得る。
2.第2の実施形態
 図2は、本発明の第2の実施形態に係る線量計容器20の一例を示す模式図である。より詳しく説明すると、図2Aは、線量計容器10の斜視図である。図2Bは、線量計容器20の正面図であり、図2Cは、図2BのA-A断面図である。図2Dは、線量計容器20の本体部22Aの斜視図であり、図2Eは、線量計容器20の蓋部22Bの斜視図である。また、図2Fは、本発明の第2の実施形態に係る線量計測体2の一例を示す模式図であり、線量計容器20の収納部21に放射線量計測器51が収納されている。
 線量計容器2は、収納部21と、遮蔽部22とを備える。収納部21は、中性子線以外の所定の放射線の線量を計測する放射線量計測器を収納する部材であり、特に説明がない限り、収納部11と同様の機能を有する。遮蔽部22は、収納部21を囲む部材であり、特に説明がない限り、遮蔽部12と同様の機能を有する。
 第1の実施形態と第2の実施形態とを対比すると、第1の実施形態では、線量計容器10の全体の形状が、円柱形状の周壁の両端に半球形状の両端部が配設されたカプセル形状であったのに対し、第2の実施形態では、線量計容器20の全体の形状が、四角柱形状を基本として角に丸みを帯びた形状である点で異なる。
 また、第1の実施形態では、収納部21の形状が、放射線量計測器51(例えば、蛍光ガラス素子)の形状に合わせて円柱形状であったのに対し、第2の実施形態では、収納部21の形状が、放射線量計測器51の底面の外径の長さを底面の1辺の長さとし、放射線量計測器51の高さと略同じ長さを高さとする四角柱形状である点で異なる。
 このように、線量計容器の形状は、特に限定されるものではなく、適宜選択可能である。
3.第3の実施形態
 図3は、本発明の第3の実施形態に係る線量計容器30の一例を示す模式図である。より詳しく説明すると、図3Aは、線量計容器30の斜視図であり、図3Bは、線量計容器30の正面図である。図3Cは、線量計容器30の平面図であり、図3Dは、図3CのA-A断面図である。図3Eは、線量計容器30の本体部32Aの斜視図であり、図3Fは、線量計容器30の蓋部32Bの斜視図である。また、図3Gは、本発明の第3の実施形態に係る線量計測体3の一例を示す模式図であり、線量計容器30の収納部31に放射線量計測器51が収納されている。
 線量計容器3は、収納部31と、遮蔽部32とを備える。収納部31は、中性子線以外の所定の放射線の線量を計測する放射線量計測器を収納する部材であり、特に説明がない限り、収納部11と同様の機能を有する。遮蔽部32は、収納部31を囲む部材であり、特に説明がない限り、遮蔽部12と同様の機能を有する。
 第1の実施形態と第3の実施形態とを対比すると、第1の実施形態では、線量計容器10の全体の形状が、上述したカプセル形状であったのに対し、第3の実施形態では、線量計容器30の全体の形状が、円形平板状である点で異なる。
 また、第1の実施形態では、収納部21の形状が、放射線量計測器51(例えば、蛍光ガラス素子)の形状に合わせて円柱形状であったのに対し、第3の実施形態では、収納部31の形状が、放射線量計測器51の長手方向の長さと略同じ長さを内径とする円形平板状である点で異なる。
 また、第1の実施形態では、収納部11は、遮蔽部構成部材51(本実施形態では本体部12A及び蓋部12B)の全体にわたって延在するのに対し、第3の実施形態では、収納部31は、本体部32Aのみに位置し、蓋部32Bに位置しない点で異なる。
 このように、線量計容器の形状は、特に限定されるものではなく、適宜選択可能である。中でも、遮蔽部構成部材51を本体部と蓋部とが嵌合したときの固定部材として機能できることを考慮すると、第1実施形態にあるように、収納部は、遮蔽部構成部材51の全体にわたって延在するが好ましい。
4.第4の実施形態
 図4は、本発明の第4の実施形態に係る線量計容器40の一例を示す模式図である。より詳しく説明すると、図4Aは、線量計容器40の斜視図であり、図4Bは、線量計容器40の正面図である。図4Cは、線量計容器40の平面図であり、図4Dは、図4CのA-A断面図である。図4Eは、線量計容器40の本体部42Aの斜視図であり、図4Fは、線量計容器40の蓋部42Bの斜視図である。また、図4Gは、本発明の第4の実施形態に係る線量計測体4の一例を示す模式図であり、線量計容器40の収納部41に放射線量計測器51が収納されている。
 線量計容器4は、収納部41と、遮蔽部42とを備える。収納部41は、中性子線以外の所定の放射線の線量を計測する放射線量計測器を収納する部材であり、特に説明がない限り、収納部11と同様の機能を有する。遮蔽部42は、収納部41を囲む部材であり、特に説明がない限り、遮蔽部42と同様の機能を有する。
 第3の実施形態と第4の実施形態とを対比すると、第3の実施形態では、線量計容器30の全体の形状が、円形平板状であったのに対し、第4の実施形態では、線量計容器40の全体の形状が、略正方形の平板状である点で異なる。
 このように、線量計容器の形状は、特に限定されるものではなく、適宜選択可能である。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<線量計容器10の製造>
 以下の工程を経て、本発明の第1の実施形態に係る線量計容器10と同様の形状を有し、正面視したときの断面形状(図1Cに相当)が図5に示す寸法である線量計容器10を得た。
LiF焼結体の製造〕
 以下の工程を経て、高さ約16mmの円柱状のLiF焼結体を得た。
 まず、LiF粉末(Li純度95.0atom%、LiF99%:Sigma―Aldrich製)100質量部と、ステアリン酸とセルロースからなる成形助剤16質量部とを混合し、LiF組成物を得た。
(1)加圧工程
 次いで、直径25mmの金型にLiF組成物を約15.8g充填し、タッピングによりLiF組成物の空隙を減らした。
 次いで、円柱状の金型を油圧式のプレス機に装填し、100MPaのプレス圧をかけて、プレス成形体を得た。
(2)予備焼成工程
 それぞれのプレス成形体を大気雰囲気の炉に入れた。300℃まで100℃/hrで昇温させ、5時間保持することで、プレス成形体に含まれる成形助剤の大半を分解・揮散させた。
(3)焼成工程
 予備焼成工程の後、プレス成形体を650℃まで100℃/hrで昇温し、5時間保持した。その後、冷却(空冷)を行い、LiF焼結体を得た。
LiF焼結体の加工〕
 続いて、LiF焼結体に対し、マシニング加工により、断面形状が図5に示す寸法になるように、LiF焼結体の周囲及び内部を切削、穴あけし、実施例に係る線量計容器10を得た。
<評価>
〔プレス成形体の評価〕
 加圧工程によって得られたプレス成形体のLiF換算の相対密度は、57.3%であった。また、外観を目視したところ、膨れやクラックは認められなかった。
LiF焼結体の評価〕
 また、加圧工程、予備焼成工程及び焼成工程によって得られたLiF焼結体の質量は13.6g、相対密度は86.2%であった。また外観を目視したところ、膨れやクラックは認められなかった。また、LiF焼結体を精密切断機で切断し、切断面の状態を目視したところ、クラックやボイド等の内部欠陥も認められなかった。
〔線量計容器10の評価〕
 線量計容器10の収納部11に、蛍光ガラス素子を収納し、線量計容器10の外部から遮蔽部12に向けてガンマ線及び中性子線を照射した。その結果、線量計容器10は、中性子線の遮蔽性に優れる一方で、ガンマ線の透過性を備えており、ガンマ線量の計測に好適であることが確認された。
 1 第1の実施形態に係る線量計測体
 10 第1の実施形態に係る線量計容器
 11 収納部
 12 遮蔽部
 12A 本体部
 12B 蓋部
 2 第2の実施形態に係る線量計測体
 20 第2の実施形態に係る線量計容器
 3 第3の実施形態に係る線量計測体
 30 第3の実施形態に係る線量計容器
 4 第4の実施形態に係る線量計測体
 40 第4の実施形態に係る線量計容器
 51 放射線量計測器

Claims (9)

  1.  中性子線以外の所定の放射線の線量を計測する放射線量計測器を収納する収納部と、
     前記収納部を囲み、かつ、少なくとも、前記放射線量計測器の計測対象である前記所定の放射線を透過し、中性子線を遮蔽するLiF焼結体からなる遮蔽部とを備える線量計容器。
  2.  前記LiF焼結体は、LiF焼結体である、請求項1に記載の線量計容器。
  3.  前記LiF焼結体は、LiFからなり、83%以上90%以下の相対密度を有し、外表面のクラック及び膨れが抑制された良好な外観を有する、請求項2に記載の線量計容器。
  4.  前記所定の放射線は、ガンマ線である、請求項1から3のいずれかに記載の線量計容器。
  5.  前記遮蔽部は、少なくとも2つ以上の遮蔽部構成部材を有し、隣り合う遮蔽部構成部材は、互いに突き合わせ可能な構造を有する、請求項1から4のいずれかに記載の線量計容器。
  6.  前記隣り合う遮蔽部構成部材は、互いに嵌合可能な構造を有する、請求項5に記載の線量計容器。
  7.  前記収納部の大きさは、前記放射線量計測器の大きさと略同じかそれよりも大きく、
     前記収納部は、前記遮蔽部構成部材の全体にわたって延在する、請求項5又は6に記載の線量計容器。
  8.  前記収納部の内表面から前記遮蔽部構成部材の外表面までの最短距離が一定である、請求項5から7のいずれかに記載の線量計容器。
  9.  請求項1から8のいずれかに記載の線量計容器の前記収納部に前記放射線量計測器が収納された線量計測体。
PCT/JP2018/012576 2017-03-31 2018-03-27 線量計容器及び線量計測体 WO2018181395A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AU2018202844A AU2018202844B2 (en) 2017-03-31 2018-03-27 Dosimeter container and dosage measuring body
JP2018517656A JP6734368B2 (ja) 2017-03-31 2018-03-27 線量計容器及び線量計測体
US15/777,164 US10877165B2 (en) 2017-03-31 2018-03-27 Dosimeter container and dosage measuring body
SG11201803343SA SG11201803343SA (en) 2017-03-31 2018-03-27 Dosimeter Container And Dosage Measuring Body
CN201880000503.5A CN108990421A (zh) 2017-03-31 2018-03-27 剂量计容器以及剂量测定体
KR1020187013783A KR102068919B1 (ko) 2017-03-31 2018-03-27 선량계 용기 및 선량 계측체
RU2018123313A RU2700378C1 (ru) 2017-03-31 2018-03-27 Контейнер дозиметра и элемент для измерения дозы
ES18729857T ES2811032T3 (es) 2017-03-31 2018-03-27 Recipiente de dosímetro y cuerpo de medición de dosis
PL18729857T PL3407092T3 (pl) 2017-03-31 2018-03-27 Pojemnik dozymetru i korpus do pomiaru dawki
EP18729857.5A EP3407092B1 (en) 2017-03-31 2018-03-27 Dosimeter container and dose measuring body
IL259290A IL259290A (en) 2017-03-31 2018-05-10 Dosimeter container and dosage measuring body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/013684 2017-03-31
PCT/JP2017/013684 WO2018179363A1 (ja) 2017-03-31 2017-03-31 線量計容器及び線量計測体

Publications (1)

Publication Number Publication Date
WO2018181395A1 true WO2018181395A1 (ja) 2018-10-04

Family

ID=63674532

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/013684 WO2018179363A1 (ja) 2017-03-31 2017-03-31 線量計容器及び線量計測体
PCT/JP2018/012576 WO2018181395A1 (ja) 2017-03-31 2018-03-27 線量計容器及び線量計測体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013684 WO2018179363A1 (ja) 2017-03-31 2017-03-31 線量計容器及び線量計測体

Country Status (14)

Country Link
US (1) US10877165B2 (ja)
EP (1) EP3407092B1 (ja)
JP (1) JP6734368B2 (ja)
KR (1) KR102068919B1 (ja)
CN (1) CN108990421A (ja)
AR (1) AR111299A1 (ja)
AU (1) AU2018202844B2 (ja)
ES (1) ES2811032T3 (ja)
IL (1) IL259290A (ja)
PL (1) PL3407092T3 (ja)
RU (1) RU2700378C1 (ja)
SG (1) SG11201803343SA (ja)
TW (1) TWI669525B (ja)
WO (2) WO2018179363A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074675A1 (en) 2021-04-16 2022-10-19 University of Tsukuba Sintered body for radiation shielding material, radiation shielding material, and method for producing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183490A (zh) * 2017-10-11 2020-05-19 日本轻金属株式会社 具有屏蔽功能的箱型结构体
CN110571224B (zh) * 2019-08-05 2021-12-28 深圳市华星光电半导体显示技术有限公司 显示装置及其制备方法
CN113917516A (zh) * 2021-10-13 2022-01-11 散裂中子源科学中心 一种用于bnct多种剂量成分空间分布的测量方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194098A (ja) * 1975-02-14 1976-08-18 Shoketsufutsukarichiumuchuseishishaheizairyo
US4171485A (en) * 1977-09-22 1979-10-16 Mdh Industries, Inc. Apparatus for analyzing the spectral data in an elemental analyzer measuring gamma rays arising from neutron capture in bulk substances
JPH08201581A (ja) 1995-01-30 1996-08-09 Sutaaraito Kogyo Kk 放射線遮蔽用組成物並びにその用途
US20110284731A1 (en) * 2010-05-19 2011-11-24 Schlumberger Technology Corporation Gamma-ray detectors for downhole applications
US20140332678A1 (en) * 2010-11-11 2014-11-13 Schlumberger Technology Corporation Neutron-Gamma Density Through Normalized Inelastic Ratio
JP2016003892A (ja) 2014-06-13 2016-01-12 三菱重工メカトロシステムズ株式会社 ガンマ線計測装置及びガンマ線計測方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426197A (en) 1965-07-16 1969-02-04 Electrospace Corp Dosimeter for measuring neutron and gamma radiation
JPS5529104Y2 (ja) 1977-07-07 1980-07-11
US4346511A (en) * 1979-07-05 1982-08-31 The United States Of America As Represented By The United States Department Of Energy Method for preparing dosimeter for measuring skin dose
SU1144503A1 (ru) 1983-10-21 1985-08-30 Рижский Медицинский Институт Термолюминесцентный дозиметр смешанного гамма и нейтронного излучени
JP2001294853A (ja) * 2000-04-12 2001-10-23 Hitachi Medical Corp 酸化物蛍光体及びそれを用いた放射線検出器、並びにx線ct装置
JP2003215247A (ja) * 2002-01-29 2003-07-30 Hitachi Ltd 中性子線量測定サービス方法
EP1634104A2 (en) * 2003-06-05 2006-03-15 Niton Llc Neutron and gamma ray monitor
EP2140913A1 (en) 2008-07-03 2010-01-06 Ion Beam Applications S.A. Device and method for particle therapy verification
DE102011054846B3 (de) * 2011-10-27 2013-02-21 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Ortsdosimeter zur Messung der Umgebungsäquivalentdosis mit einfachem Aufbau
JP6223882B2 (ja) * 2014-03-18 2017-11-01 住友重機械工業株式会社 中性子捕捉療法システム
EP3570294B1 (en) 2015-05-04 2020-12-23 Neuboron Medtech Ltd. Beam shaping body for neutron capture therapy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194098A (ja) * 1975-02-14 1976-08-18 Shoketsufutsukarichiumuchuseishishaheizairyo
US4171485A (en) * 1977-09-22 1979-10-16 Mdh Industries, Inc. Apparatus for analyzing the spectral data in an elemental analyzer measuring gamma rays arising from neutron capture in bulk substances
JPH08201581A (ja) 1995-01-30 1996-08-09 Sutaaraito Kogyo Kk 放射線遮蔽用組成物並びにその用途
US20110284731A1 (en) * 2010-05-19 2011-11-24 Schlumberger Technology Corporation Gamma-ray detectors for downhole applications
US20140332678A1 (en) * 2010-11-11 2014-11-13 Schlumberger Technology Corporation Neutron-Gamma Density Through Normalized Inelastic Ratio
JP2016003892A (ja) 2014-06-13 2016-01-12 三菱重工メカトロシステムズ株式会社 ガンマ線計測装置及びガンマ線計測方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074675A1 (en) 2021-04-16 2022-10-19 University of Tsukuba Sintered body for radiation shielding material, radiation shielding material, and method for producing the same

Also Published As

Publication number Publication date
RU2700378C1 (ru) 2019-09-16
KR20180119552A (ko) 2018-11-02
JPWO2018181395A1 (ja) 2019-04-11
KR102068919B1 (ko) 2020-01-21
PL3407092T3 (pl) 2021-05-04
CN108990421A (zh) 2018-12-11
EP3407092A4 (en) 2019-05-08
WO2018179363A1 (ja) 2018-10-04
AR111299A1 (es) 2019-06-26
JP6734368B2 (ja) 2020-08-05
IL259290A (en) 2019-02-28
TWI669525B (zh) 2019-08-21
ES2811032T3 (es) 2021-03-10
US20200124743A1 (en) 2020-04-23
EP3407092B1 (en) 2020-05-20
AU2018202844B2 (en) 2019-11-28
AU2018202844A1 (en) 2018-10-18
EP3407092A1 (en) 2018-11-28
TW201842354A (zh) 2018-12-01
SG11201803343SA (en) 2018-11-29
US10877165B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
WO2018181395A1 (ja) 線量計容器及び線量計測体
US9868673B2 (en) Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
CN107082642B (zh) 中子射线减速材料用氟化物烧结体及中子射线减速材料
JP2016064978A (ja) 放射線減速材用MgF2−CaF2二元系焼結体及びその製造方法
JP7194684B2 (ja) 中性子遮蔽性能を有する遮蔽接着剤
KR20140079497A (ko) 저농축 우라늄의 많은 로딩을 가지는 핵 연료 제품들을 생산하기 위한 방법 및 상응하는 핵연료 제품
CN107555850A (zh) 一种用于中子辐射防护的复合材料及其制备方法和应用
CN115215659A (zh) 用于放射线屏蔽材料的烧结体、放射线屏蔽材料及其制造方法
WO2010096082A1 (en) Passive actinide self-burner
JP7165339B2 (ja) 放射線遮蔽材用焼結体、放射線遮蔽材及びその製造方法
JP6080562B2 (ja) 放射線遮蔽積層材
Kharlova et al. Development of Manufacturing Technology of High-Power Gamma-Radiation Sources Based on Low-Leachable Materials with Cesium-137 Radionuclide
Sato et al. Attachment of 31Cl and 39Cl induced by high-energy neutrons to coexisted aerosols
CN110967720A (zh) 一种人体辐射组织等效材料及剂量测量模型
Stewart et al. A STUDY OF THE PHYSICAL PROPERTIES OF NOMINAL 0.7, 3, AND 6 a/o BURNUP UO $ sub 2$ FAST-REACTOR FUEL PINS PREPARATORY TO TRANSIENT TREAT EXPOSURE.
MacLean et al. LPTR irradiation of ORNL magnesium oxide crystals
Icenhour A Gamma Radiolysis Study of UO {sub 2} F {sub 2} 0.4 H {sub 2} O Using Spent Nuclear Fuel Elements from the High Flux Isotope Reactor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018517656

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 259290

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 20187013783

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018729857

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2018123313

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2018729857

Country of ref document: EP

Effective date: 20180509

ENP Entry into the national phase

Ref document number: 2018729857

Country of ref document: EP

Effective date: 20180621

ENP Entry into the national phase

Ref document number: 2018202844

Country of ref document: AU

Date of ref document: 20180327

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18729857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE