WO2018177229A1 - 信令的发送方法,装置和*** - Google Patents

信令的发送方法,装置和*** Download PDF

Info

Publication number
WO2018177229A1
WO2018177229A1 PCT/CN2018/080401 CN2018080401W WO2018177229A1 WO 2018177229 A1 WO2018177229 A1 WO 2018177229A1 CN 2018080401 W CN2018080401 W CN 2018080401W WO 2018177229 A1 WO2018177229 A1 WO 2018177229A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antenna ports
pmi
subband
frequency domain
Prior art date
Application number
PCT/CN2018/080401
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18776500.3A priority Critical patent/EP3576333B1/en
Publication of WO2018177229A1 publication Critical patent/WO2018177229A1/zh
Priority to US16/580,691 priority patent/US11140671B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present invention relates to the field of communications, and in particular, to a technique for transmitting precoding information.
  • the signal transmission model of a wireless communication system can be based on the following mathematical formula:
  • x represents the signal to be transmitted
  • H represents the channel matrix, and is used to characterize the characteristics of the channel
  • W is a precoding matrix, which is used to indicate that the data to be transmitted is transmitted before the data to be transmitted is transmitted through the channel H.
  • n represents noise and y represents a signal received on the receiving side.
  • the precoding matrix W is generally determined by measurement, for example, a precoding matrix process for determining uplink data, and may be one or more reference signals transmitted by the transmitting end, and the receiving end measures the reference signal, and is determined by the receiving end according to the The measurement of the reference signal determines an optimal one or more precoding matrices.
  • the receiving end may send a precoding matrix indication PMI to the sending end according to the measurement result. In some cases, the PMI may not be determined according to the measurement result, for example, the core network element configuration or other network device directly notifies the PMI sent by the receiving end.
  • the manner in which the base station indicates the PMI to the UE is in the form of different PMIs through different sub-bands, for example, at a default scheduling bandwidth, including at least one A subband, where each subband is associated with one PMI, the base station needs to determine the PMI of each subband and inform the UE.
  • the current method of notifying multiple sub-band PMIs is usually to determine the PMI and directly transmit the PMI of each sub-band in the multiple sub-bands to the UE through a single signaling.
  • the scheduling bandwidth of the UE is uncertain for each scheduling. Therefore, when the subband size is fixed but the scheduling resource size is uncertain, the number of subband PMIs indicated by the UE through DCI signaling is also different, so that the UE searches in downlink signaling in the form of blind detection. Blind detection is very complex, and such an approach is not efficient enough to take up a lot of air interface resources.
  • the embodiment of the invention provides a signaling transmission method, device and system, which are used for improving transmission efficiency and saving air interface resources.
  • the embodiment of the present invention provides a signaling transmission method, where a base station receives an uplink reference signal sent by a user equipment UE, and the base station determines an number of antenna ports, where the number of the antenna ports is the UE. a number of antenna ports for transmitting an uplink reference signal; the base station determining frequency domain resource information according to the number of the antenna ports; wherein the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; Determining, by the base station, the precoding matrix indication PMI of each subband according to the frequency domain resource information; and sending, by the base station, the PMI of each subband to the user equipment UE.
  • the base station determines codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, and the PMI of each subband is occupied. At least one of a number of bits, and a codebook; wherein the codebook is associated with the number of antenna ports; and determining, by the base station, the precoding matrix indication PMI of each subband according to the frequency domain resource information includes: The base station determines a precoding matrix indication PMI for each subband according to the frequency domain resource information and the codebook information.
  • the determining, by the base station, the codebook information according to the number of the antenna ports including: the base station according to the number of the antenna ports
  • the mapping relationship of the codebook information determines the frequency domain resource information.
  • the sending, by the base station, the PMI of each sub-band to the UE includes: determining, by the base station, bits occupied by PMIs of all the sub-bands, where When the number is different, the number of occupied bits is the same; the base station sends the PMI of each sub-band to the UE according to the occupied bits.
  • the sending, by the base station, the PMI of each subband to the UE includes: Transmitting, by the base station, at least two signalings to the UE at different times, each of the signalings includes a PMI of at least one subband, wherein the base station sends the each to the UE by using the at least two signaling PMI with sub-bands.
  • the base station determines a time interval, and the base station sends the at least two signalings in the time interval.
  • the base station sends a time interval indication to the UE, where the time interval indication is used to indicate the time interval.
  • the base station determines frequency domain resource information according to the number of the antenna ports, including The base station determines the frequency domain resource information according to the mapping relationship between the number of the antenna ports and the frequency domain resource information.
  • the embodiment of the present invention provides a signaling transmission method, including: determining, by a user equipment, a number of antenna ports, where the number of the antenna ports is an antenna port used by the UE to send an uplink reference signal.
  • the UE determines the frequency domain resource information according to the number of the antenna ports; wherein the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; and the UE is configured according to the antenna port. Transmitting, by the number, the uplink reference signal to the base station; the UE receiving downlink control information sent by the base station; and determining, by the UE, the precoding matrix indication of each subband according to the downlink control information and the frequency domain resource information PMI.
  • the UE determines codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, and the PMI of each subband is occupied. At least one of a number of bits, and a codebook; wherein the codebook is associated with the number of antenna ports; the UE determines the each subband according to the codebook information and a PMI of each of the subbands Precoding matrix.
  • the determining, by the UE, the codebook information according to the number of the antenna ports including: according to the number of the antenna ports, the UE The mapping relationship of the codebook information determines the frequency domain resource information.
  • the receiving, by the UE, the downlink control information sent by the base station includes: determining, by the UE, a bit occupied by a PMI of the subband, where the number of antenna ports The number of the occupied bits is the same.
  • the UE receives the downlink control information sent by the base station according to the occupied bits.
  • the receiving, by the UE, the downlink control information sent by the base station includes: Receiving at least two signalings sent by the base station at different times, each of the signalings includes a PMI of at least one subband; wherein the UE obtains the information of each subband by receiving the at least two signalings PMI.
  • the method includes: determining, by the UE, a time interval, where the UE receives the at least two signalings in the time interval.
  • the UE receives a time interval indication sent by the base station, where the time interval indication is used to indicate the time interval.
  • the UE determines the frequency domain resource information according to the number of the antenna ports, including The UE determines the frequency domain resource information according to the mapping relationship between the number of the antenna ports and the frequency domain resource information.
  • an embodiment of the present invention provides a base station, including: a receiving unit, configured to receive an uplink reference signal sent by a user equipment UE, and a determining unit, configured to determine a number of antenna ports, where the number of the antenna ports a quantity of antenna ports used by the UE to send an uplink reference signal; the determining unit, configured to determine frequency domain resource information according to the number of the antenna ports; wherein the frequency domain resource information indicates a quantity and a subband of the subband At least one of the bandwidths; the determining unit, configured to determine, by the base station, the precoding matrix indication PMI of each subband according to the frequency domain resource information, and the sending unit, configured to send the PMI for each subband.
  • the determining unit is configured to determine codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, and each of the subbands The number of bits occupied by the PMI, and at least one of the codebooks; wherein the codebook is associated with the number of antenna ports; the determining unit is configured to determine precoding of each subband according to the subband information
  • the matrix indication PMI includes: the determining unit, configured to determine a precoding matrix indication PMI of each subband according to the subband information and the codebook information.
  • the determining unit is configured to determine codebook information according to the number of the antenna ports, including: the determining unit, configured to: The frequency domain resource information is determined according to a mapping relationship between the number of the antenna ports and the codebook information.
  • the sending unit configured to send the PMI of each sub-band to the UE, includes: the determining unit, configured to determine all the a bit occupied by the PMI of the sub-band, wherein the number of the occupied bits is the same when the number of the antenna ports is different; the sending unit is configured to send the each to the UE according to the occupied bit PMI with sub-bands.
  • the sending unit configured to send, to the UE, the PMI of each subband
  • the sending unit is configured to send at least two signalings to the UE at different times, each of the signaling includes a PMI of at least one subband, where the sending unit passes the at least two letters
  • the PMI of each of the sub-bands is sent to the UE.
  • the determining unit is configured to determine a time interval, and the base station sends the at least two letters in the time interval make.
  • the sending unit is configured to send a time interval indication to the UE, where the time interval indication is used to indicate the time interval .
  • the determining unit configured to determine a frequency domain according to the number of the antenna ports
  • the resource information includes: the determining unit, configured to determine the frequency domain resource information according to a mapping relationship between the number of the antenna ports and the frequency domain resource information.
  • an embodiment of the present invention provides a user equipment (UE), including: a determining unit, configured to determine a number of antenna ports, where the number of the antenna ports is an antenna port used by the UE to send an uplink reference signal.
  • the determining unit is configured to determine frequency domain resource information according to the number of the antenna ports, where the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; and a sending unit is configured to: And sending, by the base station, an uplink reference signal according to the number of the antenna ports and the frequency domain resource information; the receiving unit is configured to receive downlink control information sent by the base station; the determining unit is further configured to use the downlink control information according to the And determining, by the frequency domain resource information, a precoding matrix indicating PMI of each of the subbands.
  • the determining unit is configured to determine codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, and each of the subbands The number of bits occupied by the PMI, and at least one of the codebooks; wherein the codebook is associated with the number of antenna ports;
  • the UE determines a precoding matrix of each subband according to the codebook information and a PMI of each subband.
  • the determining unit configured to determine codebook information according to the number of the antenna ports, includes: the determining unit, configured to: The frequency domain resource information is determined according to a mapping relationship between the number of the antenna ports and the codebook information.
  • the receiving unit configured to receive downlink control information sent by the base station, includes: the determining unit, configured to determine a bit occupied by a PMI of the subband a bit, wherein the number of occupied bits is the same when the number of antenna ports is different; and the sending unit is configured to receive downlink control information sent by the base station according to the occupied bits.
  • the receiving, by the UE, the downlink control information sent by the base station includes: the receiving a unit, configured to receive, at different times, at least two signalings sent by the base station, where each of the signalings includes a PMI of at least one subband; wherein the receiving unit obtains by using the at least two signalings The PMI of each subband.
  • the determining unit is configured to determine a time interval, and the receiving unit receives the at least two in the time interval Strip signaling.
  • the receiving unit is configured to receive a time interval indication sent by the base station, where the time interval indication is used to indicate the time interval.
  • the determining unit configured to determine a frequency domain according to the number of the antenna ports
  • the resource information includes: the determining unit, configured to determine the frequency domain resource information according to a mapping relationship between the number of the antenna ports and the frequency domain resource information.
  • the present invention also provides a computer readable storage medium comprising instructions which, when executed on a computer, cause the computer to perform the methods of each of the above-described inventive aspects.
  • the foregoing embodiment can solve the problem that the base station has low detection efficiency of the UE in the uplink transmission mode, and further improves the system efficiency.
  • FIG. 1 is a schematic diagram of a system network according to an embodiment of the present invention
  • FIG. 2 is a sequence diagram of signaling transmission according to an embodiment of the present invention.
  • FIG. 3 is a timing diagram of signaling transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a signaling sending method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a signaling sending method according to an embodiment of the present disclosure
  • FIG. 6 is a structural diagram of an apparatus for implementing signaling according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of an apparatus for implementing signaling according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of an apparatus for implementing signaling according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of an apparatus for implementing signaling according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a chip system for implementing signaling according to an embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • FIG. 1 shows a schematic diagram of one possible system network of the present invention.
  • a radio access network RAN
  • the RAN includes at least one base station (BS), and for the sake of clarity, only one base station and one UE are shown.
  • the RAN is connected to a core network (CN).
  • the CN may be coupled to one or more external networks, such as the Internet, a public switched telephone network (PSTN), and the like.
  • PSTN public switched telephone network
  • a user equipment is a terminal device having a communication function, and may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to a wireless modem.
  • User equipment can be called different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, laptops, cordless phones, Wireless local loop station, etc.
  • the present application is simply referred to as a user equipment or a UE.
  • a base station also referred to as a base station device, is a device deployed in a radio access network to provide wireless communication functions.
  • the name of the base station may be different in different wireless access systems, for example, in a Universal Mobile Telecommunications System (UMTS) network, the base station is called a Node B (NodeB), and in the LTE network.
  • NodeB Node B
  • eNB evolved Node B
  • eNodeB evolved Node B
  • a system using multiple input multiple output (MIMO) technology can increase the transmission rate of data or other information by using multiple transmit antennas and multiple receive antennas for data or other information transmission.
  • MIMO multiple input multiple output
  • the UE side needs to acquire the channel information.
  • a precoding matrix indication (PMI) can be transmitted to the base station device through the user equipment as a type of such information.
  • the base station determines that the PMI can typically be determined by measuring the reference signal.
  • a sounding reference signal such as a Demodulation Reference Signal (DMRS)
  • DMRS Demodulation Reference Signal
  • the specific measurement process of the base station and the user terminal may also be multiple.
  • the UE determines all possible precoding matrices, and uses these precoding matrices to precode the reference signals of multiple ports, and The precoded reference signal is sent to the base station.
  • the base station receives the reference signals corresponding to the precoding matrices, and determines the best one or more measurement results by calculating a signal to noise ratio or other parameters, and determines the corresponding index, and then sends the index and or the PMI corresponding to the index.
  • the reference signals corresponding to these precoding matrices may be one or more reference signals.
  • Another specific measurement process may also be that the UE directly transmits a reference signal of multiple ports that are not precoded to the base station.
  • the base station measures to obtain the channel state information, and determines a best precoding matrix according to the data transmission scheme used by the UE to transmit data to the UE, and sends the index PMI corresponding to the precoding matrix to the UE.
  • the UE may determine a precoding matrix of the uplink data or a precoding matrix of other uplink information according to the PMI. In a special case, the UE may also use only the PMI to perform downlink data or other uplink information. Precoding. In general, whether the UE adopts the PMI indicated by the base station may depend on the situation of the system or the scenario. But usually the UE will receive the PMI before precoding the data or other upstream information. The purpose is to make a reference for the UE to determine the precoding matrix.
  • the precoding matrix W can be written as follows:
  • each PMI corresponds to a precoding matrix
  • the structure of the precoding matrix may be a single codebook format, a dual codebook format, or a three codebook format.
  • the single codebook form is defined as a precoding matrix that acts on the uplink data transmission only corresponds to one precoding matrix indication
  • the dual codebook format is defined as a precoding matrix that acts on the uplink data transmission corresponding to two Precoding matrix indication.
  • W in the above example corresponds to two precoding matrices indicating PMI1 and PMI2.
  • the three codebook form is defined as a precoding matrix that acts on the uplink data transmission corresponding to three precoding matrix indications.
  • the base station may be a network device. It should be understood that the present invention may also support a device to device, in which case the base station may be a user equipment or other type of relay.
  • the base station Receiving, by the base station, an uplink reference signal sent by the user equipment UE; the base station determining the number of antenna ports, where the number of the antenna ports is the number of antenna ports used by the UE to send an uplink reference signal; The number of antenna ports determines frequency domain resource information, wherein the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; and the base station determines the preamble of each subband according to the frequency domain resource information.
  • the coding matrix indicates a PMI; the base station transmits the PMI of each of the sub-bands to the user equipment UE.
  • the user equipment UE determines the number of antenna ports, where the number of the antenna ports is the number of antenna ports used by the UE to send uplink reference signals; and the number of the antenna ports is determined by the UE according to the number of the antenna ports. Determining frequency domain resource information; wherein the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; the UE sends an uplink reference signal to the base station according to the number of the antenna ports; Determining the downlink control information sent by the base station, the UE determining, according to the downlink control information and the frequency domain resource information, a precoding matrix indication PMI of each subband.
  • the downlink control information further includes resource allocation information that is sent by the base station to the UE, where the resource allocation information indicates a scheduling resource block of the UE, specifically including the UE. Information such as the frequency domain resource size of the scheduling, the location of the frequency domain resource block, and the like.
  • the frequency domain resource information indication corresponds to a resource allocation information indication. Specifically, the number of subbands indicated by the frequency domain resource information is multiplied by a subband bandwidth equal to a resource block size scheduled by the UE in the resource allocation information indication.
  • the UE determines the frequency domain resource information according to the number of the antenna ports.
  • the UE includes: determining, by the UE, the frequency domain resource information according to the resource allocation information indication in the downlink control information and the number of the antenna ports. .
  • different kinds of upstream reference signals are associated with different numbers of ports.
  • a sounding reference signal SRS
  • a demodulation reference signal DMRS
  • DMRS demodulation reference signal
  • how many ports are used for transmission may be determined according to the configuration of the base station or by both parties through information negotiation.
  • the UE may report the capability indication information in advance to indicate the number of antenna ports that the UE can support.
  • the base station notifies the number of antenna ports of the reference signal sent by the UE before transmitting the reference signal.
  • the base station directly determines the number of the antenna ports according to the uplink reference signal.
  • Sub-bands are part of the frequency domain resources.
  • the subband may refer to a part of the frequency band relative to the default bandwidth, or may refer to a specified frequency range. Subbands can be measured in terms of "parts" or "number of copies". For example, if the default bandwidth is averaged into several frequency segments, each subband can be called a part of each divided frequency segment, or default. The Nth or one of the bandwidth.
  • the sub-bands can also be calculated and measured in the form of PRB blocks. For example, if a total frequency band is K PRBs and the K PRBs are divided into L shares, there may be L sub-bands. The division refers to division, and the division manner may be equally divided.
  • the concept of the subband may also be a specified range without reference to the default bandwidth, for example starting from the nth MHz, and each 20 MHz is called a subband.
  • the default bandwidth may be specified on the UE and the base station side, or may be determined by any network element by signaling or by the UE and the base station through negotiation.
  • the default bandwidth may also be a frequency domain resource that is dynamically scheduled or allocated by the base station to the UE, and the frequency domain resource may be part of the frequency domain resource of the entire system bandwidth or system bandwidth.
  • the base station simultaneously notifies the UE of the result of the dynamic scheduling. Since the result of each scheduling is different, the default bandwidth is a frequency band that changes dynamically.
  • the base station may determine the number of the notified sub-bands or the bandwidth size occupied by each sub-band according to the number of antenna ports, so as to achieve the effect of flexibly determining the number of sub-bands and the sub-band size. For example, when the number of antenna ports is larger, since the number of bits required for PMI notification per sub-band is large, reducing the number of sub-bands can reduce the total number of indication bits of the PMI, thereby improving the transmission performance of downlink control information.
  • the total number of indication bits indicated by the PMI of the UE on all subbands in the scheduling resource may be predefined, or may be indicated by the base station to the user through high layer signaling or MAC CE.
  • the base station determines the PMI of each of the sub-bands according to the number of antenna ports. After determining the number of antenna ports, the base station may measure the uplink reference signal according to the determined measurement rule, and directly determine the PMI of the corresponding subband. In this embodiment, the base station may determine the number of sub-bands and directly determine the value of the PMI that needs to be notified and transmit. The base station may also determine the sub-band information according to the number of the antenna ports and the total number of indication bits indicated by the PMI of the UE on all sub-bands in the scheduling resource, and the specific determination manner may be: querying a correspondence relationship table, The correspondence table contains the relationship between the number of antenna ports and the number of sub-bands. E.g:
  • the correspondence table may also be a relationship between the number of antenna ports and the bandwidth of the subband.
  • the base station determines that the subband bandwidth is 20 MHz according to the number of antenna ports, and when the default scheduled bandwidth is 160 MHz, the base station can determine that the number of subbands is 8. The base station then determines the PMI for each subband based on the number of subbands.
  • the subband bandwidth may be in units of PRBs. For example, the base station determines that the subband is 4 PRBs according to the number of antenna ports, and when the default scheduled bandwidth is 16 PRBs, the base station can determine that the number of the subbands is 4.
  • the base station determines the codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, the number of bits occupied by the PMI of each subband, and the codebook At least one; wherein the codebook is associated with the number of antenna ports; and determining, by the base station, the precoding matrix indication PMI of each subband according to the codebook information comprises: the base station according to the subband information and The codebook information determines the precoding matrix indicator PMI for each subband.
  • the UE determines codebook information according to the number of the antenna ports, where the codebook information is the number of codewords, the number of bits occupied by the PMI of each subband, and the codebook. At least one; wherein the codebook is associated with the number of antenna ports; the UE determines a precoding matrix of each of the subbands according to the codebook information and a PMI of each of the subbands.
  • the base station When the base station communicates with the UE, it may use only one codebook, or may use multiple codebooks. In the case of using a codebook ⁇ W A ⁇ , there may usually be a scheme for notifying one or more PMIs. In the case of notifying a PMI, or both parties have previously determined that a communication within a certain time period or a certain period of time uses a codebook ⁇ W A ⁇ . In this case, the base station may not notify the codebook information because the UE may determine the number of bits per subband PMI indicated by the base station in advance or according to a predefined rule.
  • the base station may determine the codebook information according to the number of the antenna ports to dynamically adjust the codebook size or codewords to save air interface resources. For example, in the case where the number of ports is relatively small, a wider beam is formed correspondingly. Beams of this type usually cover a wide range. A larger number of ports will form a narrower beam. This type of beam usually has better directionality, but a more accurate transmission direction is required to achieve good reception. Therefore, the case where the number of ports is relatively small is less than the case where the number of ports is smaller than the number of ports. Therefore, the base station can determine the codebook information according to the number of the antenna ports.
  • the codebook information may be in multiple forms. The following describes how the base station determines the codebook information according to the number of the antenna ports according to different codebook information formats:
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the codebook information is that the codebook information is a codeword number. If there is a codeword set on the base station and/or the UE side, and the subset of the codeword set constitutes a codebook, the base station may determine the number n of codewords according to the number of antenna ports, that is, select from the codeword set. n code words are used as the determined codebook. When the number of antenna ports is large, the number of codewords is large, and when the number of antenna ports is small, the number of codewords is also small.
  • the precoding set is a submatrix of a Discrete Fourier Transform (DFT) matrix. A code word can be constructed by selecting a certain number of columns from the DFT matrix.
  • DFT Discrete Fourier Transform
  • the base station and the UE determine that the number of code ports is 8 when the number of antenna ports is 8, then a combination of columns in 16 DFT matrices may be included in the codebook, and the base station and the UE determine the antenna port.
  • the number is 2
  • the number of codewords is 2, and then the combination of only 2 types of DFT columns is included in the codebook.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the codebook information is the number of bits occupied by the PMI of each subband. Similar to the first embodiment, the base station may directly determine the number of bits occupied by the PMI according to the number of antenna ports, or determine the number of bits occupied by the PMI directly by looking up a table or according to a preset correspondence.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the method for determining, by the base station, the precoding matrix indicating the PMI of each subband according to the subband information may be implemented in various manners, and details are not described herein again.
  • the base station may also check a correspondence relationship table, and include a mapping relationship between the port and the codebook information. For example, it is applied to the second embodiment:
  • the ⁇ W 2 ⁇ , ⁇ W 4 ⁇ , ⁇ W 8 ⁇ , and ⁇ W 16 ⁇ respectively correspond to the case where the number of antenna ports is 2, 4, 6, and 8.
  • the correspondence table may also be:
  • the UE determines the codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, the number of bits occupied by the PMI of each subband, and at least one of the codebooks;
  • the codebook is associated with the number of antenna ports;
  • the UE determines a precoding matrix of each subband according to the codebook information and a PMI of each subband. This can further reduce the number of blind detections of the UE.
  • the base station determines a bit occupied by a PMI that transmits all of the sub-bands, wherein when the number of antenna ports is different, the number of occupied bits is the same. And transmitting, by the base station, the PMI of each subband to the UE according to the occupied bit.
  • each of the signalings includes a PMI of at least one subband, wherein the base station sends the each to the UE by using the at least two signaling PMI with sub-bands.
  • the UE determines to send the multiple PMIs in at least two signalings respectively, for example, the number of the sub-bands is K, and the base station sends the first signaling in the first time.
  • a PMI the base station transmitting m PMIs in a second signaling at a second moment, wherein the n PMIs and the m PMIs comprise PMIs of the K subbands.
  • the base station can be divided into different signaling to transmit the PMI of each of the sub-bands at different times.
  • the number of bits of the PMI indication transmitted at each time can be reduced, thereby improving the transmission performance of the downlink control channel.
  • the PMI of each subband can be sent in more times, for example using more than two signaling, which are sent at different times. It should be understood that in some cases, two signalings may also be sent at one time, including PMIs of different sub-bands.
  • the base station determines a time interval, and the base station sends the at least two signalings in the time interval.
  • the base station and/or the UE may determine a time interval, and the UE may determine the precoding matrix according to the subband PMI, and may only be based on the PMI in one time interval. For example, the base station sends the first strip of the at least two signalings to the UE at time T a , and the base station sends the last one of the at least two signaling to the UE at time T b , the time T b is different from the time T a ⁇ t , the UE and/or the base station may be used as the effective PMI according to the PMI in the ⁇ t , and the UE does not use the PMI determined in the previous transmission to determine the precoding. matrix.
  • the ⁇ t may not be a time metric or a unit, and may be a subframe, or a slot, for example, a plurality of subframes.
  • the T b may also be a time when the UE determines the precoding matrix.
  • the base station determines a PMI having a total of 9 subbands, which are respectively a PMI of subband 1 to a PMI of subband 9, and the base stations are respectively at T 0 , T 1 , T 2 , And T 3 send the four moments.
  • the PMI of 6 transmits the PMIs of the subbands 7, 8, and 9 at the time T 3, and transmits the PMIs of the subbands 1, 2, and 3 at the time T 4 .
  • the time interval of T 0 to T 2 is ⁇ t
  • the time interval of T 1 to T 3 is ⁇ t
  • the time interval of T 2 to T 4 is ⁇ t , therefore, at T 2 and T 3 the UE determines the time between pre-coding matrix to use the transmission time T 0 of the subband PMI 7,8,9, transmission time T 1 in the subband PMI 1,2,3, and the time T 2 in Transmitting the PMIs of the subbands 4, 5, and 6, and after the time T3, before the time T4, the UE determines that the precoding matrix uses the PMIs that transmit the subbands 1, 2, and 3 at the time T 1 .
  • the PMI of the sub-bands 4, 5, and 6 is transmitted at time T 2
  • the PMIs of the sub-bands 7, 8, and 9 are transmitted at the time T 3 .
  • the time T 0 notified with PMI is updated to the transmission time T 3.
  • the notification manner may also be in the form of FIG. 3, that is, the PMIs overlap at certain times, for example, the PMI notified by the base station at the time T1 is the PMI of the sub-bands 1, 2, 3, and 4.
  • the PMI notified by the base station at the time T2 is a PMI of the subband 2, 3, 4, 5, wherein the PMI 2 and the PMI 3 overlap.
  • the base station may also determine the need to repeat the band corresponding to the PMI notification, notification failure in the previous signaling, or need to be updated in the time interval ⁇ t within the notification again.
  • the base station sends a time interval indication to the UE, the time interval indication being used to indicate the time interval.
  • the time interval ⁇ t and the definition of a variety of ways.
  • the base station in FIG. 2 sends the location at time T2. of said subband PMI 4,5,6, starting from the time T2 after time T2 plural subframes, signaling or actual number of time ⁇ t, ⁇ t within the base station at the time of starting the time T2 Send the PMI of each subband once.
  • the above embodiment corresponds to the reception of the UE.
  • the UE and the base station according to the prior consultation reception rules or parameters, such as t-determined ⁇ value is received. It is also possible to use a unified protocol with a base station colleague to achieve the purpose of implementing the embodiments of the present invention.
  • Figure 4 illustrates an embodiment of the method of the present invention. include:
  • Step 401 The base station receives an uplink reference signal sent by the user equipment UE.
  • Step 402 The base station determines the number of antenna ports, where the number of the antenna ports is the number of antenna ports used by the UE to send an uplink reference signal.
  • the step 402 can be before the step 401.
  • the determining, by the base station, the number of the antenna ports may be determined by the base station according to the capability of the UE.
  • the base station may first receive the capability indication information sent by the UE, and then determine, according to the capability indication information, The number of antenna ports.
  • the base station may directly determine the number of the antenna ports directly according to the type information of the UE or the number of antenna ports that the base station allows the UE to use.
  • the base station may directly receive an uplink reference signal sent by the UE, and determine the number of the antenna ports according to the uplink reference signal.
  • Step 403 The base station determines frequency domain resource information according to the number of the antenna ports, where the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth.
  • the base station may determine or query a corresponding relationship, where the correspondence may be a correspondence table showing the correspondence between the number of each antenna port and the frequency domain resource information.
  • the correspondence table and the bandwidth are exemplified in the foregoing embodiments, and will not be described again.
  • the correspondence table may be an array stored in the base station, when the base station needs to determine the number of subbands corresponding to the number of antenna ports and/or the bandwidth of the subband,
  • the corresponding storage space may be directly queried according to the index corresponding to the number of antenna ports or the number of antenna ports, and the number of sub-bands corresponding to the antenna port and/or the bandwidth of the sub-band may be read.
  • when querying the array it may also be indirect, for example, determining the number of the sub-bands according to the default total bandwidth and the bandwidth of the sub-band, and then checking the table to determine the number of sub-bands and/or Or the bandwidth of the sub-band.
  • Step 404 The base station determines, according to the frequency domain resource information, a precoding matrix indication PMI of each subband.
  • the base station further determines the precoding matrix according to the uplink reference signal.
  • the base station may also be determined according to the historical information, that is, the base station determines, according to the frequency domain resource information, a PMI subband that needs to be fed back, and then determines each subband according to the history information of the subband.
  • the precoding matrix indicates the PMI.
  • the base station may also configure the PMI according to signaling of other network elements.
  • Step 405 The base station sends the PMI of each subband to the user equipment UE.
  • the base station sends at least two signalings to the UE at different times, each of the signalings includes a PMI of at least one subband, wherein the base station passes the at least two signaling directions.
  • the UE transmits the PMI of each of the subbands.
  • the base station determines a time interval, and the base station sends the at least two signalings in the time interval.
  • the method further includes a step 406, the base station determining codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, and the bits occupied by the PMI of each subband At least one of a number, and a codebook; wherein the codebook is associated with the number of antenna ports, the step 404, the determining, by the base station, the precoding matrix indication PMI of each subband according to the subband information includes: The base station determines a precoding matrix indication PMI for each subband according to the subband information and the codebook information. In an embodiment, the base station determines the frequency domain resource information according to the mapping relationship between the number of the antenna ports and the codebook information.
  • the determining, by the base station, the frequency domain resource information, according to the mapping relationship between the number of the antenna ports and the codebook information, may specifically query a mapping table, where the mapping table may be specifically stored in the base station.
  • An array when the base station needs to determine the codebook information corresponding to the number of antenna ports, it can directly query the corresponding storage space according to the index corresponding to the number of antenna ports or the number of antenna ports, and read the codebook corresponding to the antenna port. information. In another embodiment, it may also be indirect when querying the array.
  • the correspondence table may be a relationship table between the number of the antenna ports and the frequency domain resource information and the codebook information, and the base station may determine the frequency domain resource information by determining the number of the antenna ports. And codebook information.
  • the base station determines the bits occupied by the PMIs of all the sub-bands, wherein when the number of antenna ports is different, the number of occupied bits is the same; corresponding to the mapping table above,
  • the mapping relationship table may reflect the feature that the number of occupied bits is the same when the number of antenna ports is different, because in some cases, the frequency domain resource information and the codebook information may be determined.
  • the codebook itself since the codebook itself has been determined, it is generally the case that the number of bits per PMI can also be determined.
  • the step 405 may be specifically that the base station sends the PMI of each sub-band to the UE according to the occupied bits.
  • the step 405 may further send, by the base station, at least two signalings to the UE at different times, each of the signalings includes a PMI of at least one subband, where the base station passes The at least two signalings send the PMI of each of the subbands to the UE.
  • the base station determines a time interval, and the base station sends the at least two signalings in the time interval.
  • an implementation manner of transmitting the PMI by using multiple signalings is specifically provided. The foregoing description has been specifically made in the foregoing embodiments of FIG. 2 and FIG. 3, and details are not described herein again.
  • the PMI feedback resources in different case of different sub-band sizes and numbers and different antenna ports may be flexibly configured. Such a configuration can flexibly adapt to the effect of low frequency scene resource occupation and high frequency scene ensuring accuracy.
  • Figure 5 illustrates yet another method embodiment of the present invention. include:
  • Step 501 The user equipment UE determines the number of antenna ports, where the number of the antenna ports is the number of antenna ports used by the UE to send an uplink reference signal; and the process of determining the number of the antenna ports by the UE may be based on The capabilities of the UE are determined.
  • the UE may send capability indication information to the base station.
  • the UE may receive an indication of the base station after transmitting the capability indication information, and determine the number of antenna ports according to the indication. It is also possible to directly determine the combing of the antenna port according to the capability of the UE, which has the advantage of saving signaling.
  • the UE may also determine the number of the antenna ports according to the type information of the UE or the number of antenna ports that the base station allows the UE to use. In another embodiment, the UE may not perform step 501.
  • Step 502 The UE determines frequency domain resource information according to the number of the antenna ports, where the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth.
  • the UE is configured according to the UE.
  • the mapping between the number of antenna ports and the frequency domain resource information determines the frequency domain resource information.
  • the UE may determine the frequency domain resource information according to a mapping relationship table.
  • the mapping relationship table can be stored in the UE.
  • the mapping relationship indicates a correspondence between the number of each of the antenna ports and the frequency domain resource information.
  • the form of the correspondence table and the bandwidth are exemplified in the foregoing embodiments, and will not be described again.
  • the correspondence table may be an array stored in the UE, when the UE needs to determine the number of subbands corresponding to the number of antenna ports and/or the bandwidth of the subband,
  • the corresponding storage space may be directly queried according to the index corresponding to the number of antenna ports or the number of antenna ports, and the number of sub-bands corresponding to the antenna port and/or the bandwidth of the sub-band may be read.
  • when querying the array it may also be indirect, for example, determining the number of the sub-bands according to the default total bandwidth and the bandwidth of the sub-band, and then checking the table to determine the number of sub-bands and/or Or the bandwidth of the sub-band.
  • Step 503 The UE sends the uplink reference signal to the base station according to the number of the antenna ports. It should be understood that the step 503 and the step 502 may change the sequence relationship.
  • Step 504 The UE receives downlink control information sent by the base station.
  • the UE determines a bit occupied by a PMI of the sub-band, where the occupied bit is different when the number of antenna ports is different. The number of the bits is the same; the UE receives the downlink control information sent by the base station according to the occupied bits.
  • Step 505 The UE determines, according to the downlink control information and the frequency domain resource information, a precoding matrix indication PMI of each subband.
  • the method further includes: Step 506, the UE determines codebook information according to the number of the antenna ports, where the codebook information is a number of codewords, a number of bits occupied by a PMI of each subband, and At least one of the codebooks; wherein the codebook is associated with the number of antenna ports; the UE determines a precoding matrix of each of the subbands according to the codebook information and a PMI of each of the subbands.
  • the UE determines the frequency domain resource information according to the mapping relationship between the number of the antenna ports and the codebook information.
  • the determining, by the UE, the frequency domain resource information according to the mapping between the number of the antenna ports and the codebook information may specifically query a mapping table, where the mapping table may be specifically stored in the UE.
  • An array when the UE needs to determine the codebook information corresponding to the number of antenna ports, it can directly query the corresponding storage space according to the index corresponding to the number of antenna ports or the number of antenna ports, and read the codebook corresponding to the antenna port. information. In another embodiment, it may also be indirect when querying the array.
  • the correspondence table may be a relationship table between the number of the antenna ports and the frequency domain resource information and the codebook information, and the base station may determine the frequency domain resource information by determining the number of the antenna ports. And codebook information.
  • the UE determines the bits occupied by the PMIs of all the sub-bands, wherein when the number of antenna ports is different, the number of occupied bits is the same;
  • the mapping relationship table may reflect the feature that the number of occupied bits is the same when the number of antenna ports is different, because in some cases, the frequency domain resource information and the code are This information can determine the number of bits occupied by the number of antenna ports when they are different. For example, the UE determines that the frequency domain resource information is the number of subbands Kn, and determines that the number of codewords is Ln, then the number of bits of the received morality is the product of Kn and Ln.
  • the codebook itself since the codebook itself has been determined, the number of normal codewords can also be determined.
  • the determining, by the UE, the codebook information according to the number of the antenna ports the determining, by the UE, the frequency domain resource information according to the mapping relationship between the number of the antenna ports and the codebook information.
  • the UE receives at least two signalings sent by the base station at different times, each of the signalings includes a PMI of at least one subband; wherein the UE receives at least two by using the Signaling obtains the PMI of each of the subbands.
  • the UE determines a time interval, and the UE receives the at least two signalings in the time interval.
  • the UE receives a time interval indication sent by the base station, where the time interval indication is used to indicate the time interval.
  • the UE determines the corresponding frequency domain resource information according to the number of the antenna ports, and determines the PMI according to the frequency domain resource information, and the UE may be flexibly configured according to its own capability or negotiated with the base station.
  • the antenna ports are different, the PMI feedback resources of different sub-band sizes and numbers and different antenna ports are different.
  • Such a configuration can flexibly adapt to the effect of low frequency scene resource occupation and high frequency scene ensuring accuracy.
  • step 401 can be after step 402.
  • the base station determines the number of the antenna ports before receiving the uplink reference signal, and then notifies the UE of the number of the antenna ports, and then receives the uplink reference signal, or directly receives the location according to a predefined rule.
  • the uplink reference signal sent by the UE is determined, and the number of the antenna ports is determined according to the reference signal.
  • the embodiment shown in Figures 4 and 5 can be used in conjunction with the various embodiments above.
  • FIG. 6 is a structural diagram of a device of a network side device according to the present invention.
  • FIG. 6 may be a base station.
  • the device comprises a receiving unit 601, a determining unit 602, and a transmitting unit 603.
  • the receiving unit 601 is configured to receive an uplink reference signal sent by the user equipment UE
  • the determining unit 602 is configured to determine the number of antenna ports, where the number of the antenna ports is an antenna port used by the UE to send an uplink reference signal.
  • the determining unit 602 is configured to determine frequency domain resource information according to the number of the antenna ports, where the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; the determining unit 602 And determining, by the base station, the precoding matrix indication PMI of each subband according to the frequency domain resource information, and sending unit 603, configured to send, to the user equipment UE, the PMI of each subband.
  • FIG. 6 can also perform some of the related functions shown by certain embodiments of FIG. 4 separately.
  • the sending unit 603 is configured to send at least two signalings to the UE at different times, each of the signalings includes a PMI of at least one subband, where the sending unit passes the at least two Signaling sends the PMI of each of the subbands to the UE.
  • the determining unit 602 is configured to determine a time interval, and the base station sends the at least two signalings in the time interval.
  • the sending unit 603 is configured to send a time interval indication to the UE, where the time interval indication is used to indicate the time interval.
  • the apparatus further includes a storage unit 604 for storing the various correspondences and data and signaling.
  • FIG. 7 is a structural diagram of a network side device according to the present invention. Specifically, FIG. 7 may be a user equipment.
  • the apparatus includes a receiving unit 701, a determining unit 702, and a transmitting unit 703.
  • the determining unit 702 is configured to determine the number of antenna ports, where the number of the antenna ports is the number of antenna ports used by the UE to send an uplink reference signal, and the determining unit 702 is configured to be used according to the antenna port.
  • the quantity determining frequency domain resource information wherein the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; and the sending unit 703 is configured to use, according to the number of the antenna ports, the frequency domain resource information
  • the base station sends an uplink reference signal
  • the receiving unit 701 is configured to receive the downlink control information that is sent by the base station
  • the determining unit 702 is further configured to determine the each subband according to the downlink control information and the frequency domain resource information.
  • the precoding matrix indicates the PMI.
  • FIG. 7 can also perform some of the related functions shown by certain embodiments of FIG. 5 separately.
  • the receiving unit 701 is configured to receive, at different times, at least two signalings sent by the base station, where each of the signalings includes a PMI of at least one subband; wherein the receiving unit receives at least two by using the Signaling obtains the PMI of each of the subbands.
  • the determining unit 702 is configured to determine a time interval, and the receiving unit receives the at least two signalings in the time interval.
  • the apparatus shown in FIG. 7 can implement various related functions in FIG. 5, and various implementations in the previous embodiments can also be implemented, and details are not described herein again.
  • the apparatus further includes a storage unit 704 for storing the various correspondences and data and signaling.
  • Fig. 8 is a block diagram showing still another network side device of the present invention, and Fig. 8 may be a base station.
  • the apparatus includes a processor 801, a transmitter 802, and a receiver 803 to implement the functions of the various embodiments of Figures 4 and/or 6, and various embodiments of the prior embodiments can also be implemented.
  • the processor performs the role of the determining unit, the receiver completes the role of the receiving unit, and the transmitter completes the role of the transmitting unit.
  • the processor can hang memory 804 for storing the code and data in the method embodiment shown in FIG. 4, and the processor 902 performs the calculation or determination step.
  • the receiver and the transmitter may be a transceiver such as an antenna device or an antenna system.
  • FIG. 9 is a structural diagram of a user equipment device of the present invention, and FIG. 9 may be a user equipment.
  • the apparatus includes a receiver 901, a processor 902 and a transmitter 903 to implement various related functions in FIGS. 5 and/or 7, and various embodiments in the previous embodiments may also be implemented.
  • the processor performs the role of the determining unit, the receiver completes the role of the receiving unit, and the transmitter completes the role of the transmitting unit.
  • the processor can hang memory 904 for storing the code and data in the method embodiment shown in FIG. 5, and the processor 902 performs the calculation or determination step.
  • the receiver and the transmitter may be a transceiver such as an antenna device or an antenna system.
  • the receiver and the transmitter in FIG. 8 may be a pair of transceiver antennas, or an antenna or a panel array that simultaneously implements the receiving and transmitting functions
  • the receiver and transmitter in FIG. 9 may also be a
  • the transceiver antenna it can also be an antenna or panel array that simultaneously implements the receiving and transmitting functions.
  • the processor may be a function of implementing the determining unit in FIG. 8, the transmitter may implement the function of the transmitting unit in FIG. 8, and the receiver may implement the function of the receiving unit in FIG.
  • the receiver and the transmitter may be a transceiver such as an antenna device or an antenna system.
  • FIG 10 illustrates yet another embodiment of the present invention, which is an integrated circuit system.
  • the integrated circuit system includes a chip 1001 and a memory 1002, wherein the chip and the memory are soldered to a circuit board, the circuit board being located on the network side or the user equipment side.
  • the chip memory 1002 is linked by the integrated circuit traces to the chip 1001, which reads or stores the calculated data and instructions through a link to the memory.
  • the chip is in contact with the contact point of the integrated circuit, and is connected to other chips, connectors or antennas through a trace for transmitting and receiving data and instructions.
  • the specific linking manner may be various high speed or low speed interfaces.
  • the chip may be a chip having an X86 instruction set, an advanced RISC machine (ARM) instruction set or other instruction set, or a logic chip such as a field programmable gate array. , FPGA).
  • the memory may be a memory, a hard disk or a rewritable FLASH chip or the like.
  • the integrated circuit system can implement the functions of receiving data, transmitting data, and processing data. For example, when the integrated circuit system is located on the network side, various steps shown in FIG. 4 can be implemented, and the chip receives an uplink reference sent by the user equipment UE.
  • the chip determines the number of antenna ports, wherein the number of the antenna ports is the number of antenna ports used by the UE to send an uplink reference signal; and the chip determines frequency domain resource information according to the number of the antenna ports.
  • the frequency domain resource information indicates at least one of a number of subbands and a subband bandwidth; the chip determines a precoding matrix indicating PMI of each subband according to the frequency domain resource information;
  • the user equipment UE transmits the PMI of each of the sub-bands.
  • the specific calculation may be to call up instructions and data from the memory, such as calling up the calculation mode and the relationship between the number of previously stored antenna ports and the frequency domain resource information, and/or the number of the antenna ports and the codebook. The relationship of information.
  • the base station may perform addition, subtraction, multiplication or division of necessary operations through a gate circuit, and other logic operations to determine a precoding matrix indication PMI of each subband according to the frequency domain resource information, and then send the information to the other through the interface.
  • the components that need to be processed are finally sent to the terminal device.
  • the integrated circuit system is located on the terminal side, the various steps shown in FIG. 5 can be implemented.
  • a computer device may include a memory, a processor, and a computer program stored on the memory and operable on the processor, wherein when the processor executes the program.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a DVD
  • a semiconductor medium such as a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种信令的传输方法,基站接收用户设备 UE 发送的上行参考信号;所述基站确定天线端口的数量,其中,所述天线端口的数量为所述 UE 用于发送上行参考信号的天线端口的数量;所述基站根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示 PMI;所述基站向用户设备 UE 发送所述每个子带的 PMI。

Description

信令的发送方法,装置和***
本申请要求于2017年3月25日提交中国专利局、申请号为201710185309.6、申请名称为“信令的发送方法,装置和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,特别是涉及一种预编码信息的发送技术。
背景技术
通常,无线通信***的信号传输模型可以基于如下数学公式:
y=HWx+n
其中,x代表待传输的信号,H代表信道矩阵,用于表征信道的特性,W为预编码矩阵,用于表示在通过信道H传输所述待传输数据前,对所述待传输的数据进行预编码的预编码矩阵。n代表噪声,y代表在接收侧接收到的信号。预编码矩阵W通常是通过测量确定的,例如确定上行数据的预编码矩阵过程,可以是由发送端发送一个或多个参考信号,接收端对所述参考信号的测量,并由接收端根据所述参考信号的测量结果确定最优的一个或多个预编码矩阵。所述接收端可以根据所述测量结果,向所述发送端发送预编码矩阵指示PMI。在某些情况下,所述PMI也可以不根据所述测量结果确定,例如核心网网元配置或其它网络设备直接通知所述接收端发送的PMI。
通常情况下,在发送上行预编码的过程中,一种所述基站向所述UE指示PMI的方式是通过不同子带对应不同的PMI的形式,例如在一个默认的调度带宽下,包含至少一个子带,其中,每个子带都与一个PMI相关联,基站需要确定每个子带的PMI,并通知UE。
目前的通知多个子带PMI的方式通常是确定PMI后,直接通过单一信令,如下行DCI信令发送多个子带中每个子带的PMI给UE,由于每次调度,UE的调度带宽不确定,因此,在子带大小固定但调度资源大小不确定的情况下,UE通过DCI信令指示的子带PMI的个数也不同,从而使得UE以盲检测的形式在下行信令中搜索时的盲检复杂度很高,并且这样的方式不够效率,会占用大量的空口资源。
发明内容
本发明实施例提供了一种信令的传输方法、装置和***,用以提高传输效率,达到 节约空口资源的目的。
第一方面,本发明实施例提供了一种信令的传输方法,基站接收用户设备UE发送的上行参考信号;所述基站确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述基站根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;所述基站向用户设备UE发送所述每个子带的PMI。
在第一方面的第一种可能的实现方式中,所述基站根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI包括:所述基站根据所述频域资源信息和所述码本信息确定每个子带的预编码矩阵指示PMI。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述基站根据所述天线端口的数量确定码本信息,包括:所述基站根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
在第一方面的第三种可能的实现方式中,所述基站向UE发送所述每个子带的PMI包括:所述基站确定所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;所述基站根据所述占用的比特位向所述UE发送所述每个子带的PMI。
结合第一方面,或者第一方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述基站向UE发送所述每个子带的PMI包括:所述基站在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述基站通过所述至少两条信令向所述UE发送所述每个子带的PMI。
结合第一方面第四种可能的实现方式,在第五种可能的实现方式中,所述基站确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。结合第一方面第五种可能的实现方式,在第六种可能的实现方式中,所述基站向所述UE发送时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
结合第一方面,或者第一方面第一至第六种任意一种可能的实现方式,在第七种可能的实现方式中,所述基站根据所述天线端口的数量确定频域资源信息,包括:所述基站根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源 信息。
第二方面,本发明实施例提供了一种信令的传输方法,包括:用户设备UE确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述UE根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述UE根据所述天线端口的数量向基站发送所述上行参考信号;所述UE接收所述基站发送的下行控制信息;所述UE根据所述下行控制信息和所述频域资源信息确定所述每个子带的预编码矩阵指示PMI。
在第二方面的第一种可能的实现方式中,所述UE根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;所述UE根据所述码本信息和所述每个子带的PMI确定所述每个子带的预编码矩阵。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述UE根据所述天线端口的数量确定码本信息,包括:所述UE根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
在第二方面的第三种可能的实现方式中,所述UE接收所述基站发送的下行控制信息,包括:所述UE确定所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;所述UE根据所述占用的比特位接收所述基站发送的下行控制信息。
结合第二方面,或者第二方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述UE接收所述基站发送的下行控制信息包括:所述UE在不同时刻接收所述基站发送的至少两条信令,每条所述信令包含至少一个子带的PMI;其中,所述UE通过所述接收至少两条信令获得所述每个子带的PMI。
结合第二方面第四种可能的实现方式,在第五种可能的实现方式中,包括:所述UE确定时间间隔,所述UE在所述时间间隔内接收所述至少两条信令。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中,所述UE接收所述基站发送的时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
结合第二方面,或者第二方面第一至第六种任意一种可能的实现方式,在第七种可能的实现方式中,所述UE根据所述天线端口的数量确定频域资源信息,包括:所述UE根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源 信息。
第三方面,本发明实施例提供了一种基站,包括:接收单元,用于接收用户设备UE发送的上行参考信号;确定单元,用于确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述确定单元,用于根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述确定单元,用于所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;发送单元,用于向用户设备UE发送所述每个子带的PMI。
在第三方面的第一种可能的实现方式中,所述确定单元,用于根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;所述确定单元,用于根据所述子带信息确定每个子带的预编码矩阵指示PMI包括:所述确定单元,用于根据所述子带信息和所述码本信息确定每个子带的预编码矩阵指示PMI。
结合第三方面第一种可能的实现方式,在第二种可能的实现方式中,所述确定单元,用于根据所述天线端口的数量确定码本信息,包括:所述确定单元,用于根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
结合第三方面第二种可能的实现方式,在第三种可能的实现方式中,发送单元,用于向UE发送所述每个子带的PMI包括:所述确定单元,用于确定所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;所述发送单元,用于根据所述占用的比特位向所述UE发送所述每个子带的PMI。
结合第三方面,或者第三方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述发送单元,用于向UE发送所述每个子带的PMI包括:所述发送单元,用于在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述发送单元通过所述至少两条信令向所述UE发送所述每个子带的PMI。
结合第三方面第四种可能的实现方式,在第五种可能的实现方式中包括:所述确定单元,用于确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。
结合第三方面第四种可能的实现方式,在第六种可能的实现方式中,所述发送单元,用于向所述UE发送时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
结合第三方面,或者第三方面第一至第六种任意一种可能的实现方式,在第七种 可能的实现方式中,所述确定单元,用于根据所述天线端口的数量确定频域资源信息,包括:所述确定单元,用于根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源信息。
第四方面,本发明实施例提供了一种用户设备UE,包括:确定单元,用于确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述确定单元,用于根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;发送单元,用于根据所述天线端口的数量和所述频域资源信息向基站发送上行参考信号;接收单元,用于接收所述基站发送的下行控制信息;所述确定单元,还用于根据所述下行控制信息和所述频域资源信息确定所述每个子带的预编码矩阵指示PMI。
在第四方面的第一种可能的实现方式中,所述确定单元,用于根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;
所述UE根据所述码本信息和所述每个子带的PMI确定所述每个子带的预编码矩阵。
结合第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述确定单元,用于根据所述天线端口的数量确定码本信息,包括:所述确定单元,用于根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
在第四方面的第三种可能的实现方式中,所述接收单元,用于接收所述基站发送的下行控制信息,包括:所述确定单元,用于确定所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;所述发送单元,用于根据所述占用的比特位接收所述基站发送的下行控制信息。
结合第四方面,或者第四方面第一至第三种任意一种可能的实现方式,在第四种可能的实现方式中,所述UE接收所述基站发送的下行控制信息包括:所述接收单元,用于在不同时刻接收所述基站发送的至少两条信令,每条所述信令包含至少一个子带的PMI;其中,所述接收单元通过所述接收至少两条信令获得所述每个子带的PMI。
结合第四方面第四种可能的实现方式,在第五种可能的实现方式中,包括:所述确定单元,用于确定时间间隔,所述接收单元在所述时间间隔内接收所述至少两条信令。
结合第四方面第五种可能的实现方式,在第六种可能的实现方式中,所述接收单元,用于接收所述基站发送的时间间隔指示,所述时间间隔指示用于指示所述时间间 隔。
结合第四方面,或者第四方面第一至第六种任意一种可能的实现方式,在第七种可能的实现方式中,所述确定单元,用于根据所述天线端口的数量确定频域资源信息,包括:所述确定单元,用于根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源信息。
本发明还提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述发明内容中的各个的方法。
通过上述实施方式,可以解决基站在上行传输方式中,UE忙检测效率较低的问题,进一步提高了***效率。
附图说明
图1为本发明实施例提供的一种***网络示意图;
图2为本发明实施例提供的一种信令传输的时序图;
图3为本发明实施例提供的一种信令传输的时序图;
图4为本发明实施例提供的一种信令发送方法的流程示意图;
图5为本发明实施例提供的一种信令发送方法的流程示意图;
图6为本发明实施例提供的一种实现信令发送的装置结构图;
图7为本发明实施例提供的一种实现信令发送的装置结构图;
图8为本发明实施例提供的一种实现信令发送的装置结构图;
图9为本发明实施例提供的一种实现信令发送的装置结构图;
图10为本发明实施例提供的一种实现信令发送的芯片***结构图。
具体实施方式
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本发明的一种可能的***网络示意图。如图1所示,至少一个用户设备UE10与无线接入网(radio access network,简称RAN)进行通信。所述RAN包括至少一个基站20(base station,简称BS),为清楚起见,图中只示出一个基站和一个UE。所述RAN与核心网络(core network,简称CN)相连。可选的,所述CN可以耦合到一个或者更多的外部网络(external network),例如英特网,公共交换电话网(public switched telephone network,简称PSTN)等。
为便于理解,下面对本申请中涉及到的一些名词做些说明。
本申请中,名词“网络”和“***”经常交替使用,但本领域的技术人员可以理解其含义。用户设备(user equipment,简称:UE)是一种具有通信功能的终端设备,可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备等。在不同的网络中用户设备可以叫做不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。为描述方便,本申请中简称为用户设备或UE。基站(base station,简称:BS),也可称为基站设备,是一种部署在无线接入网用以提供无线通信功能的设备。在不同的无线接入***中基站的叫法可能有所不同,例如在而在通用移动通讯***(Universal Mobile Telecommunications System,简称:UMTS)网络中基站称为节点B(NodeB),而在LTE网络中的基站称为演进的节点B(evolved NodeB,简称:eNB或者eNodeB)。
采用多入多出(Multiple Input Multiple Output,简称MIMO)技术的***,利用多根发送天线和多根接收天线进行数据或其它信息的发送,可以提升数据或其它信息的传输速率。当基站作为信号的接收端,用户设备作为发送端时,UE侧需要获取信道信息。预编码矩阵指示(precoding matrix indication,简称:PMI)可以作为这类信息的一种,通过用户设备发送给基站设备。
基站确定PMI通常可以是对参考信号进行测量确定的。一般情况下的参考信号有多种,例如可以采用信道探测参考信号(sounding reference signal,简称:SRS),如解调参考信号(Demodulation Reference Signal,简称:DMRS)也可以采用其它参考信号、其它信号、或各种信号类型的组合进行测量。基站与用户终端具体的测量过程也可以多种,一种方式是遍历式的——例如,UE确定所有可能的预编码矩阵,使用这些预编码矩阵对多个端口的参考信号进行预编码,并将预编码后的参考信号发送给基站。基站接收这些预编码矩阵对应的参考信号,并通过计算信噪比或其它参数确定最好的一个或多个测量结果,并确定其对应的索引,然后将该索引和或对应该索引的PMI发送给用户设备。应理解,这些预编码矩阵对应的参考信号可以是一个或多个参考信号。另一种具体的测量过程也可以是,UE直接发送未经过预编码的多个端口的参考信号给基站。基站测量以获取信道状态信息,并结合UE后续对自己发送数据使用的数据传输方案确定一个最好的预编码矩阵,并将该预编码矩阵对应的索引PMI发送给UE。
UE接收到PMI后,可以根据该PMI确定上行数据的预编码矩阵或其它上行信息 的预编码矩阵,在特殊的情况下,也可以仅仅参考使用或不采用该PMI对下行数据或其它上行信息做预编码。通常,UE是否采用基站指示的PMI可以取决于***或场景的情况。但是通常UE会在对数据或其它上行信息做预编码前接收到该PMI。其目的是为UE确定预编码矩阵做出参考。
应理解,上述PMI的数量可以是一个,也可以是多个。例如,在三维MIMO(3D-MIMO)的双码本场景下,预编码矩阵W可以写成如下形式:
W=W1×W2
对应上述公式,PMI的个数为2个。其中,PMI1与W1相关联,PMI2与W2相关联。本发明中的各个实施例,每个PMI都对应了一个预编码矩阵,该预编码矩阵的结构可以是单码本形式,也可以是双码本形式,或三码本形式等。这里不做限定。其中,这里单码本形式的定义为上行数据传输时作用的一个预编码矩阵只对应了一个预编码矩阵指示,双码本形式的定义为上行数据传输时作用的一个预编码矩阵对应了两个预编码矩阵指示。如,上例中的W对应了两个预编码矩阵指示PMI1和PMI2。同理,三码本形式的定义为上行数据传输时作用的一个预编码矩阵对应了三个预编码矩阵指示。
本发明中的各个实施例,适用于各种不同的码本场景、不同的PMI数量的场景。下面将结合具体示例对本发明的实施方式做出具体的描述。在本发明各实施例中,所述基站可以是一个网络设备。应理解,本发明也可以支持设备到设备场景(Device to Device),在该场景下,所述基站可以是一个用户设备或其它类型的中继。
基站接收用户设备UE发送的上行参考信号;所述基站确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述基站根据所述天线端口的数量确定频域资源信息,其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;所述基站向用户设备UE发送所述每个子带的PMI。
对应的所述UE侧,用户设备UE确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述UE根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述UE根据所述天线端口的数量向基站发送上行参考信号;所述UE接收所述基站发送的下行控制信息,所述UE根据所述下行控制信息和所述频域资源信息确定所述每个子带的预编码矩阵指示PMI。
应理解,所述下行控制信息除了包含所述每个子带的预编码矩阵指示PMI外,还 包括基站给所述UE的资源分配信息,该资源分配信息指示了UE的调度资源块,具体包括UE调度的频域资源大小,频域资源块位置等信息。在所述下行控制信息中,所述频域资源信息指示对应了一个资源分配信息指示。具体地,所述频域资源信息指示的子带数量乘于子带频宽等于所述资源分配信息指示中UE调度的资源块大小。
所述UE根据所述天线端口的数量确定频域资源信息,一种实施方式中包括:UE根据所述下行控制信息中的资源分配信息指示和所述天线端口的数量确定所述频域资源信息。
一个实施例中,不同种类的上行参考信号与不同的端口的数量相关联。举例说明,探测参考信号(sounding reference signal,简称:SRS)可以使用1,2、3,4,6或8端口发送,解调参考信号(demodulation reference signal,简称:DMRS)可以使用1、2、4、8天线端口发送。而具体是采用多少端口发送,可以根据基站配置或双方通过信息协商确定。所述UE可以事先上报能力指示信息,以指示所述UE可以支持的天线端口数量。一个实施例中,所述基站在发送参考信号前会通知所述UE发送的参考信号的天线端口数。另一个实施例中,所述基站直接根据所述上行参考信号确定所述天线端口的数量。
子带(sub-band)是频域资源的一部分。所述子带可以是指相对于默认带宽的一部分频段,也可以是指一个指定的频率范围。子带可以是以“部分”或“份数”衡量,例如,若以默认带宽被平均分割成了数个频率段,那么每个子带可以称为每个分割成的频率段的一部分,或默认带宽的第N份或其中一份。所述子带也可以以PRB块的形式计算和衡量。例如一个总频段为K个PRB,所述K个PRB分割为L份情况下,即可以成为有L个子带。所述分割是指划分,这种划分方式可以是平均划分的。另一种情况,所述子带的概念还可以是指定的范围而无需以所述默认带宽做参考,例如从第n MHz起始,每20 MHz称为一个子带。通常,所述默认带宽可以在所述UE和所述基站侧规定好的,也可以任一网元通过信令配置或所述UE和所述基站通过协商确定。可选地,所述默认带宽也可以是由基站动态调度或分配给UE的频域资源,此频域资源可以是整个***带宽或***带宽的部分频域资源。基站同时会将所述动态调度的结果通知给UE。由于每次调度的结果不同,因此所述默认带宽是动态变化的一个频段。
通过本实施例的描述,所述基站可以根据天线端口的数量确定通知的子带的数量,或每个子带占用的频宽大小,以达到灵活确定子带数量和或子带大小的效果。例如在天线端口数量越多时,由于每子带的PMI通知所需的比特数较多,减少子带的数量可 以减小PMI的总指示比特数量,从而提高下行控制信息的传输性能。
一个实施例中,UE在调度资源内所有子带上的PMI指示的总指示比特数量可以是预定义好的,也可以是由基站通过高层信令或MAC CE指示给用户的。
一个实施例中,所述基站根据天线端口数量确定所述每个子带的PMI。所述基站确定天线端口数量后,可以按照确定的测量规则测量上行参考信号,直接确定对应的子带的PMI。在该实施方式中,所述基站可以不确定子带数量,而直接确定需要通知所述UE的PMI的值并发送。所述基站也可以根据所述天线端口的数量和UE在调度资源内所有子带上的PMI指示的总指示比特数量确定子带信息,其具体的确定方式可以是查询一个对应关系表,所述对应关系表中,包含天线端口的数量与子带数量的关系。例如:
天线端口数 子带数
2 8
4 4
8 2
16 1
当然,所述对应关系表也可以是天线端口的数量与子带频宽的关系。例如,所述基站通过根据天线端口数确定子带频宽为20MHz,当默认调度的带宽为160MHz时,所述基站即可确定所述子带数量为8。基站再根据子带数量确定每个子带的PMI。另一个实施例中,所述子带频宽可以是以PRB为单位。例如所述基站根据天线端口数确定子带为4个PRB,那么当默认调度的带宽为16个PRB时,所述基站即可确定所述子带的数量为4。
又一个实施例中,所述基站根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;所述基站根据所述码本信息确定每个子带的预编码矩阵指示PMI包括:所述基站根据所述子带信息和所述码本信息确定每个子带的预编码矩阵指示PMI。
与所述基站类似的,所述UE根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;所述UE根据所述码本信息和所述每个子带的PMI确定所述每个子带的预编码矩阵。
所述基站在与所述UE通信时,可以仅使用一个码本,也可以使用多个码本。在 使用一个码本{W A}的情况下,通常也可以有通知一个或多个PMI的方案。在通知一个PMI的情况下,或双方事先都确定某次或者某个时间段内的通信使用的是码本{W A}。在这种情况下,所述基站可以不通知码本信息,因为所述UE可以事前或者根据预定义的规则确定基站指示的每子带PMI的比特数。但是,为了更精确地指示和适应所述天线端口的数量,所述基站可以根据所述天线端口的数量确定码本信息,以动态灵活调整码本大小或码字达到节省空口资源的目的。例如,对于端口数量比较少的情况,会对应地形成较宽的波束。这样类型的波束通常覆盖比较广。而端口数量较多的情况会对应形成较窄的波束,这样类型的波束通常方向性较好,但是需要有一个比较准确的发射方向才能达到良好的接收效果。因此,端口数比较少的情况对于精度的需求小于端口较多的情况。因此所述基站可以根据所述天线端口的数量确定码本信息。所述码本信息具体可以是多种形式,下面将根据不同的码本信息形式介绍不同的所述基站根据所述天线端口的数量确定码本信息实施方式:
实施方式一:
所述码本信息为所述码本信息为码字数量。若在基站和/或UE侧存在一个码字集合,该码字集合的子集构成码本,那么所述基站可以根据天线端口数确定码字的数量n,即从所述码字集合中选取n个码字作为确定的码本。当所述天线端口数较多时,码字的数量就较多,所述天线端口数较少时,码字的数量也变少。一个实施例中,所述预编码集合为一个离散傅里叶变换(DFT)矩阵的子矩阵。从所述DFT矩阵中选择某几列即可构成一个码字。例如,所述基站和所述UE确定天线端口数为8时码字数量为16,那么,可以在码本中包含16种DFT矩阵中的列的组合形式,而所述基站和UE确定天线端口数为2时码字数量为2,那么在码本中只包含2种DFT的列的组合形式。在这种情况下,所述基站或UE即可以确定所述码字数量为16时,所述基站向UE发送一个子带的PMI需要占用4比特,因为2 4=16;所述基站或UE可以确定所述码字数量为2时,所述基站向UE发送一个子带的PMI需要占用1比特,因为2 1=2。
实施方式二:
所述码本信息为所述每个子带的PMI占用的比特数。与实施方式一类似,所述基站直接可以根据天线端口数间接确定所述PMI占用的比特数,也可以直接通过查表或根据预设的对应关系确定所述PMI占用的比特数。
实施方式三:
所述码本信息为所述码本。所述基站根据所述天线端口的数量确定码本信息可以 是所述基站根据所述天线端口的数量确定码本。所述基站可以直接根据天线端口数量确定所述码本。
所述基站根据所述子带信息确定每个子带的预编码矩阵指示PMI的实现方式可以有很多种,在此不再赘述。所述基站还可以查一个对应关系表,包含所述端口与所述码本信息的映射关系。例如应用于实施方式二:
天线端口数 PMI占用的比特数
2 1
4 2
8 4
16 8
或应用于实施方式三:
天线端口数 码本
2 {W 2}
4 {W 4}
8 {W 8}
16 {W 16}
其中,所述{W 2},{W 4},{W 8},和{W 16}分别对应天线端口数为2,4,6和8的情况。
所述对应关系表还可以是:
Figure PCTCN2018080401-appb-000001
对应的,所述UE根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;所述UE根据所述码本信息和所述每个子带的PMI确定所述每个子带的预编码矩阵。这样可以进一步减少UE的盲检测次数。
又一个实施例中,所述基站确定发送所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特数量相同。所述基站根据所述占用的比特位 向所述UE发送所述每个子带的PMI。
下面,将进一步介绍本发明又一个实施例。应理解,下面的实施例可以单独实施,也可以结合上面的各个实施例执行。
基站在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述基站通过所述至少两条信令向所述UE发送所述每个子带的PMI。一个实施例中,UE确定再至少两条信令中分别发送所述多个PMI,例如,所述子带的数量为K个,所述基站在第一时刻在第一条信令中发送n个PMI,所述基站在第二时刻在第二条信令中发送m个PMI,其中所述n个PMI和所述m个PMI包含所述K个子带的PMI。这样的好处是所述基站可以分为不同的信令在不同的时刻发送所述每个子带的PMI。相比把全部K个子带的PMI指示全部放在一个时刻在DCI中发送,能降低每时刻发送PMI指示的比特数,从而提高下行控制信道的传输性能。当然,每个子带的PMI可以分更多次数发送,例如使用大于两条的信令,在不同的时刻发送所述PMI。应理解,在某些情况下,也可以在一个时刻发送两条信令,包含不同的子带的PMI。可选的,所述基站确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。所述基站和/或所述UE可以确定一个时间间隔,所述UE根据子带PMI确定预编码矩阵的过程中,可以只根据一个时间间隔内的PMI。例如,所述基站在T a时刻向所述UE发送完所述至少两条信令的第一条,所述基站在T b时刻向所述UE发送完所述至少两条信令的最后一条,T b时刻与T a时刻相差Δ t,所述UE和/或所述基站可以根据所述Δ t内的PMI作为有效PMI使用,而所述UE不再使用在此前发送的PMI确定预编码矩阵。所述Δ t可以不按照时刻度量或作为单位,可以为子帧、或时隙为单位,例如数个子帧。所述T b也可以是所述UE确定所述预编码矩阵的时刻。
例如图2所示,该实施例中,所述基站确定共有9个子带的PMI,分别为子带1的PMI至子带9的PMI,所述基站分别在T 0,T 1,T 2,和T 3四个时刻发送所述。PMI,其中,在所述T 0时刻发送子带7、8、9的PMI,在所述T 1时刻发送子带1、2、3的PMI,在所述T 2时刻发送子带4、5、6的PMI,在所述T 3时刻发送子带7、8、9的PMI,在所述T 4时刻发送子带1、2、3的PMI。所述T 0至T 2的时间间隔为Δ t,所述T 1至T 3的时间间隔为Δ t,所述T 2至T 4的时间间隔为Δ t,因此,在T 2和T 3时刻之间所述UE确定预编码矩阵使用的是T 0时刻发送子带7、8、9的PMI,在所述T 1时刻发送子带1、2、3的PMI,在所述T 2时刻发送子带4、5、6的PMI,而在T3时刻后,T4时刻前,所述UE确定预编码矩阵使用的是在所述T 1时刻发送子带1、2、3的PMI, 在所述T 2时刻发送子带4、5、6的PMI,在所述T 3时刻发送子带7、8、9的PMI。在T3时刻后,T4时刻前,所述T 0时刻通知的子带PMI已经“失效”,被所述T 3时刻发送的更新。这样的好处是所述基站无需在一个时刻通过一个信令进行通知,从而达到节省资源的目的。又一个实施例中,所述通知方式也可是图3的形式,即某些时刻间的PMI有所交叠,例如T1时刻所述基站通知的PMI为子带1,2,3,4的PMI,T2时刻所述基站通知的PMI为子带2,3,4,5的PMI,其中,所述PMI2和所述PMI3存在交叠。这样的情况中虽有PMI通知上的交叠,但是提高了可靠性,在某些关键子带可以提高更新周期。一个实施例中,所述基站也可以确定需要重复通知的子带对应的PMI,在前面的信令中通知失败、或需要及时更新的情况下,在Δ t以内的时间间隔再次通知。
一个实施例中,所述基站向所述UE发送时间间隔指示,所述时间间隔指示用于指示所述时间间隔。应理解,所述时间间隔和所述Δ t的定义方式可以有多种。例如从所述UE确定所述PMI的时间开始向前推定,也可以是某个子帧接收到数个子带的PMI后,再向后推定,例如,图2中所述基站在T2时刻发送了所述子带4、5、6的PMI,从T2时刻起算,T2时刻后的数个子帧、数个信令或实际的时间为Δ t,所述基站在所述T2时刻起算的Δ t时间内发送完一次每个子带的PMI。
上述实施例对应UE的接收。所述UE可以根据事先和所述基站协商确定的接收规则或参数,例如确定好的Δ t的值进行接收。也可以和基站同事采用统一协议以达到互联互通实现本发明的实施方式的目的。
下面,将结合附图,给出本发明的方法实施例和装置实施例。
图4示出了本发明的一个方法实施例。包括:
步骤401,基站接收用户设备UE发送的上行参考信号;
步骤402,所述基站确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;
其中,所述步骤402可以在所述步骤401之前。所述基站确定所述天线端口数量的过程可以是基站根据所述UE的能力确定的,在这种情况下,所述基站可以先接收UE发送的能力指示信息,再根据该能力指示信息确定所述天线端口的数量。所述基站也可以直接根据所述UE的类型信息或目前基站允许所述UE使用的天线端口的数量直接确定所述天线端口的数量。另一个实施例中,所述基站可以直接接收所述UE发送的上行参考信号,再根据所述上行参考信号确定所述天线端口的数量。
步骤403,所述基站根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;
一个实施例中,所述基站可以确定或查询一个对应关系,该对应关系可以是一个对应关系表,示出每个所述天线端口的数量和所述频域资源信息的对应关系。所述对应关系表和频宽的形式在前述实施例已经有所举例,再此不再赘述。
应理解,所述对应关系表可以是存储在所述基站中的一个数组,当所述基站需要确定某个天线端口数对应的子带的数量和/或所述子带频宽中的时候,可以直接根据天线端口数或天线端口数对应的索引查询对应的存储空间,读出所该天线端口对应的子带数量和/或所述子带的频宽。另一个实施例中,在查询所述数组时,也可以是间接的,例如根据默认总带宽和子带的频宽确定出所述子带的数量,再查表确定出所述子带数量和/或所述子带的频宽。
步骤404,所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;一个实施例中,所述基站还根据所述上行参考信号确定所述预编码矩阵。在某些情况下,所述基站也可以根据所述历史信息确定,即所述基站根据所述频域资源信息确定需要反馈的PMI子带,再根据子带的历史信息确定所述每个子带的预编码矩阵指示PMI。所述基站还可以根据其它网元的信令配置所述PMI。
步骤405,所述基站向用户设备UE发送所述每个子带的PMI。
一个实施例中,所述基站在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述基站通过所述至少两条信令向所述UE发送所述每个子带的PMI。可选的,所述基站确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。所述通过至少两条信令发送所述至少一个子带的PMI的实施方式在前述图2、图3和相关的实施例已经进行了详细的说明,在此不再赘述。
一个实施例中,所述方法还包括步骤406,所述基站根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联,所述步骤404基站根据所述子带信息确定每个子带的预编码矩阵指示PMI包括:所述基站根据所述子带信息和所述码本信息确定每个子带的预编码矩阵指示PMI。一个实施例中,所述基站根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。所述基站根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息可以具体是查询一个映射表,该映射表的形式可以具体是存储在所述基站中的一个数组, 当所述基站需要确定某个天线端口数对应的码本信息时,可以直接根据天线端口数或天线端口数对应的索引查询对应的存储空间,读出所该天线端口对应的码本信息。另一个实施例中,在查询所述数组时,也可以是间接的。
一个实施例中,对应关系表可以是所述天线端口的数量与所述频域资源信息以及码本信息的关系表,所述基站只要确定所述天线端口数即可确定所述频域资源信息和码本信息。
又一个实施例中,所述基站确定所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;与上面的映射关系表对应的,所述映射关系表中可以反映出天线端口的数量不同时,所述占用的比特位的数量相同这一特征,因为在某些情况下,所述频域资源信息和所述码本信息可以确定所述天线端口数量不同时所占用的比特位的位数。例如确定所述频域资源信息为子带数量Kn,确定所述指示所述码字数量下的每个所述PMI的比特数为Ln,那么所述反馈占用的比特数为Kn与Ln的乘积。当确定码本本身的情况下,由于码本本身已经确定,通常情况每个所述PMI的比特数也可以确定了。
在这种情况下,所述步骤405可以具体为所述基站根据所述占用的比特位向所述UE发送所述每个子带的PMI。
有一个实施例中,所述步骤405还可以为所述基站在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述基站通过所述至少两条信令向所述UE发送所述每个子带的PMI。可选的,所述基站确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。该实施例中,具体给出了一种通过多个信令发送所述PMI的实现方式,在前述图2、3的实施例中已经有具体的描述,在此不再赘述。
上述各个实施例的方案,可以灵活配置在天线端口不同的情况下,不同的子带大小、数量以及不同天线端口不同的情况下的PMI的反馈占用资源。这样的配置可以灵活适应低频场景资源占用少,高频场景保证准确性的效果。
图5示出了本发明又一方法实施方式。包括:
步骤501,用户设备UE确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述UE确定所述天线端口数量的过程可以是根据所述UE的能力确定的。为了让基站获取所述UE的能力,所述UE可以向基站发送的能力指示信息。所述UE可以在发送所述能力指示信息后接收所述基站的 指示,根据所述指示确定天线端口的数量。也可以直接根据所述UE的能力直接确定所述天线端口的梳理,这样的好处是节省了信令。
所述UE也可以根据所述UE的类型信息或目前基站允许所述UE使用的天线端口的数量确定所述天线端口的数量。另一个实施例中,所述UE可以不执行步骤501。
步骤502,所述UE根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;一个实施例中,所述UE根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源信息。一个实施例中,所述UE可以根据一个映射关系表确定所述频域资源信息。该映射关系表可以存储在UE中。所述映射关系表示出每个所述天线端口的数量和所述频域资源信息的对应关系。所述对应关系表和频宽的形式在前述实施例已经有所举例,再此不再赘述。
应理解,所述对应关系表可以是存储在所述UE中的一个数组,当所述UE需要确定某个天线端口数对应的子带的数量和/或所述子带频宽中的时候,可以直接根据天线端口数或天线端口数对应的索引查询对应的存储空间,读出所该天线端口对应的子带数量和/或所述子带的频宽。另一个实施例中,在查询所述数组时,也可以是间接的,例如根据默认总带宽和子带的频宽确定出所述子带的数量,再查表确定出所述子带数量和/或所述子带的频宽。
步骤503,所述UE根据所述天线端口的数量向基站发送所述上行参考信号;应理解,所述步骤503和所述步骤502可以调换顺序关系。
步骤504,所述UE接收所述基站发送的下行控制信息;一个实施例中,所述UE确定所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;所述UE具体根据所述占用的比特位接收所述基站发送的下行控制信息。
步骤505,所述UE根据所述下行控制信息和所述频域资源信息确定所述每个子带的预编码矩阵指示PMI。
一个实施例中,还包括步骤506,所述UE根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;所述UE根据所述码本信息和所述每个子带的PMI确定所述每个子带的预编码矩阵。
一个实施例中,所述UE根据所述天线端口的数量和所述码本信息的映射关系, 确定所述频域资源信息。所述UE根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息可以具体是查询一个映射表,该映射表的形式可以具体是存储在所述UE中的一个数组,当所述UE需要确定某个天线端口数对应的码本信息时,可以直接根据天线端口数或天线端口数对应的索引查询对应的存储空间,读出所该天线端口对应的码本信息。另一个实施例中,在查询所述数组时,也可以是间接的。
一个实施例中,对应关系表可以是所述天线端口的数量与所述频域资源信息以及码本信息的关系表,所述基站只要确定所述天线端口数即可确定所述频域资源信息和码本信息。
又一个实施例中,步骤504中,所述UE确定所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;与上面的映射关系表对应的,所述映射关系表中可以反映出天线端口的数量不同时,所述占用的比特位的数量相同这一特征,因为在某些情况下,所述频域资源信息和所述码本信息可以确定所述天线端口数量不同时所占用的比特位的位数。例如UE确定所述频域资源信息为子带数量Kn,确定所述码字数量为Ln,那么所述接收道德的比特数为Kn与Ln的乘积。当确定码本本身的情况下,由于码本本身已经确定,通常情况码字数量也可以确定了。
又一个实施例中,所述UE根据所述天线端口的数量确定码本信息,包括:所述UE根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
又一个实施例中,所述UE在不同时刻接收所述基站发送的至少两条信令,每条所述信令包含至少一个子带的PMI;其中,所述UE通过所述接收至少两条信令获得所述每个子带的PMI。可选的,所述UE确定时间间隔,所述UE在所述时间间隔内接收所述至少两条信令。可选的,所述UE接收所述基站发送的时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
根据上述实施方式,所述UE根据所述天线端口数确定对应的频域资源信息,并根据所述频域资源信息确定所述PMI,所述UE可以根据自身能力,或与基站协商灵活配置在天线端口不同的情况下,不同的子带大小、数量以及不同天线端口不同的情况下的PMI的反馈占用资源。这样的配置可以灵活适应低频场景资源占用少,高频场景保证准确性的效果。
应理解,图4、5中的方法实施例中的各个步骤并未限定其执行顺序一定,在很多情况下,某些步骤可以有复核逻辑的多种执行方式。同样的,同一个子木块或实体装 置的有不同的作用和功能,本发明也并未限定其实现各自功能的执行顺序是一定的。例如,步骤401可以在步骤402之后。所述基站在接收到上行参考信号前就确定好所述天线端口的数量,然后将所述天线端口的数量通知给UE,再接收所述上行参考信号,也可以是直接根据预定义规则接收所述UE发送的上行参考信号,再根据参考信号确定所述天线端口的数量。图4、图5中示出的实施例可以和以上各个实施例结合使用。
图6示出了本发明一个网络侧设备装置结构图,具体的,图6可以是一个基站。该装置包含接收单元601,确定单元602,发送单元603。接收单元601,用于接收用户设备UE发送的上行参考信号;确定单元602,用于确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述确定单元602,用于根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述确定单元602,用于所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;发送单元603,用于向用户设备UE发送所述每个子带的PMI。
图6还可以单独执行某些图4的实施例示出的相关功能。例如,所述发送单元603,用于在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述发送单元通过所述至少两条信令向所述UE发送所述每个子带的PMI。一个实施例中,所述确定单元602,用于确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。所述发送单元603,用于向所述UE发送时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
图6示出的装置可以实现图4中的各个相关的功能,也可以实现先前实施例中的各种实施方式,在此不再赘述。一个实施例中,所述装置还包含存储单元604,用于存储所述各种对应关系与数据和信令。
图7示出了本发明一个网络侧设备装置结构图,具体的,图7可以是一个用户设备。该装置包含接收单元701,确定单元702,发送单元703。确定单元702,用于确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述确定单元702,用于根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;发送单元703,用于根据所述天线端口的数量和所述频域资源信息向基站发送上行参考信号;接收单元701,用于接收所述基站发送的下行控制信息;所述确定单元702,还用于根据所述下行控制信息和所述频域资源信息确定所述每个子带的预编码矩阵指示PMI。
图7还可以单独执行某些图5的实施例示出的相关功能。所述接收单元701,用于在不同时刻接收所述基站发送的至少两条信令,每条所述信令包含至少一个子带的PMI;其中,所述接收单元通过所述接收至少两条信令获得所述每个子带的PMI。所述确定单元702,用于确定时间间隔,所述接收单元在所述时间间隔内接收所述至少两条信令。
图7示出的装置可以实现图5中的各个相关的功能,也可以实现先前实施例中的各种实施方式,在此不再赘述。一个实施例中,所述装置还包含存储单元704,用于存储所述各种对应关系与数据和信令。
图8示出了本发明的又一网络侧装置结构图,图8可以是一个基站。该装置包含处理器801、发送器802和接收器803,以实现图4和/或图6中各个实施例的功能,也可以实现先前实施例中的各种实施方式。例如所述处理器完成所述确定单元的作用,所述接收器完成接收单元的作用,所述发送器完成发送单元的作用。一个实施例中,所述处理器可以下挂存储器804,用于存储执行图4示出的方法实施例中的代码和数据,由所述处理器902完成计算或确定的步骤。所述接收器和所述发送器可以是一个收发装置,例如天线装置或天线***。
图9示出了本发明一个用户设备装置结构图,图9可以是一个用户设备。该装置包含接收器901,处理器902和发送器903,以实现图5和/或图7中的各个相关的功能,也可以实现先前实施例中的各种实施方式。例如所述处理器完成所述确定单元的作用,所述接收器完成接收单元的作用,所述发送器完成发送单元的作用。一个实施例中,所述处理器可以下挂存储器904,用于存储执行图5示出的方法实施例中的代码和数据,由所述处理器902完成计算或确定的步骤。所述接收器和所述发送器可以是一个收发装置,例如天线装置或天线***。
应理解,所述图8中的接收器和发送器可以为一对收发天线,也可以是一个同时实现收、发功能的天线或面板阵,图9中的接收器和发送器也可以为一对收发天线,也可以是一个同时实现收、发功能的天线或面板阵。一个实施例中,所述处理器可以是实现图8中确定单元的功能,所述发送器可以实现图8中的发送单元的功能,接收器可以实现图8中接收单元的功能。所述接收器和所述发送器可以是一个收发装置,例如天线装置或天线***。
图10示出了本发明又一实施方式,所述图10为一个集成电路***。该集成电路***包含一个芯片1001和存储器1002,其中,所述芯片和存储器焊接于电路板上, 该电路板位于网络侧或用户设备侧。所述芯片存储器1002由集成电路走线链接所述芯片1001,所述芯片通过与存储器的链接读取或存储计算的数据和指令。所述芯片与集成电路的接触点接触连通,与其它芯片、连接器或天线通过走线链接,用于收发数据和指令,具体的链接方式可以是各种高速或低速接口。所述芯片可以为具有X86指令集、进阶精简指令集机器(advanced RISC machine,ARM)指令集或其它指令集的芯片,也可以是一逻辑芯片,例如现场可编程门阵列(field programmable gate array,FPGA)。所述存储器可以是内存、硬盘或可擦写的FLASH芯片等。该集成电路***可以实现接收数据、发送数据和处理数据的功能,例如,当所述集成电路***位于网络侧时,可以实现图4中示出的各个步骤,芯片接收用户设备UE发送的上行参考信号;所述芯片确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;所述芯片根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;所述芯片根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;所述芯片向用户设备UE发送所述每个子带的PMI。其具体的计算可以是从存储器调出指令和数据,例如调出计算方式和事先存储好的天线端口的数量与频域资源信息的关系,和/或所述天线端口的数量与所述码本信息的关系。所述基站可以通过门电路进行加、减、乘或除必要的运算,和其它逻辑运算以根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI,再通过接口发送给其它需要处理的元件,最终发送至终端设备。当所述集成电路***位于终端侧时,可以实现图5中示出的各个步骤。
作为本发明的又一个实施例,一种计算机设备,可以包括存储器,处理器,及存储在存储器上并可再处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时,可以实现图2至图9的各个步骤。其具体实施方式还可以是结合图10的方式实现的。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储 介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种信令的传输方法,其特征在于:
    基站接收用户设备UE发送的上行参考信号;
    所述基站确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;
    所述基站根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;
    所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;
    所述基站向用户设备UE发送所述每个子带的PMI。
  2. 根据权利要求1所述的方法,其特征在于,所述基站根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;
    所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI包括:
    所述基站根据所述频域资源信息和所述码本信息确定每个子带的预编码矩阵指示PMI。
  3. 根据权利要求2所述的方法,其特征在于,所述基站根据所述天线端口的数量确定码本信息,包括:
    所述基站根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
  4. 根据权利要求1所述的方法,其特征在于,所述基站向UE发送所述每个子带的PMI包括:
    所述基站确定所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;
    所述基站根据所述占用的比特位向所述UE发送所述每个子带的PMI。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,所述基站向UE发送所述每个子带的PMI包括:
    所述基站在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述基站通过所述至少两条信令向所述UE发送所述每个子带的PMI。
  6. 根据权利要求5所述的方法,其特征在于:
    所述基站确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。
  7. 根据权利要求6所述的方法,其特征在于,所述基站向所述UE发送时间间隔指示, 所述时间间隔指示用于指示所述时间间隔。
  8. 根据权利要求1至7任意一项所述的方法,其特征在于,所述基站根据所述天线端口的数量确定频域资源信息,包括:
    所述基站根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源信息。
  9. 一种信令的传输方法,其特征在于:
    用户设备UE确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;
    所述UE根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;
    所述UE根据所述天线端口的数量向基站发送所述上行参考信号;
    所述UE接收所述基站发送的下行控制信息;
    所述UE根据所述下行控制信息和所述频域资源信息确定所述每个子带的预编码矩阵指示PMI。
  10. 根据权利要求9所述的方法,其特征在于,所述UE根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;
    所述UE根据所述码本信息和所述每个子带的PMI确定所述每个子带的预编码矩阵。
  11. 根据权利要求10所述的方法,其特征在于,所述UE根据所述天线端口的数量确定码本信息,包括:
    所述UE根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
  12. 根据权利要求9所述的方法,其特征在于,所述UE接收所述基站发送的下行控制信息,包括:
    所述UE确定所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;
    所述UE根据所述占用的比特位接收所述基站发送的下行控制信息。
  13. 根据权利要求9至12任意一项所述的方法,其特征在于,所述UE接收所述基站发送的下行控制信息包括:
    所述UE在不同时刻接收所述基站发送的至少两条信令,每条所述信令包含至少一个子带的PMI;其中,所述UE通过所述接收至少两条信令获得所述每个子带的PMI。
  14. 根据权利要求13所述的方法,其特征在于:
    所述UE确定时间间隔,所述UE在所述时间间隔内接收所述至少两条信令。
  15. 根据权利要求14所述的方法,其特征在于,所述UE接收所述基站发送的时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
  16. 根据权利要求9至15任意一项所述的方法,其特征在于,所述UE根据所述天线端口的数量确定频域资源信息,包括:
    所述UE根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源信息。
  17. 一种基站,其特征在于:
    接收单元,用于接收用户设备UE发送的上行参考信号;
    确定单元,用于确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;
    所述确定单元,用于根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;
    所述确定单元,用于所述基站根据所述频域资源信息确定所述每个子带的预编码矩阵指示PMI;
    发送单元,用于向用户设备UE发送所述每个子带的PMI。
  18. 根据权利要求17所述的基站,其特征在于,所述确定单元,用于根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;
    所述确定单元,用于根据所述子带信息确定每个子带的预编码矩阵指示PMI包括:
    所述确定单元,用于根据所述子带信息和所述码本信息确定每个子带的预编码矩阵指示PMI。
  19. 根据权利要求18所述的基站,其特征在于,所述确定单元,用于根据所述天线端口的数量确定码本信息,包括:
    所述确定单元,用于根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
  20. 根据权利要求19所述的基站,其特征在于,发送单元,用于向UE发送所述每个子带的PMI包括:
    所述确定单元,用于确定所有所述子带的PMI占用的比特位,其中,天线端口的数量 不同时,所述占用的比特位的数量相同;
    所述发送单元,用于根据所述占用的比特位向所述UE发送所述每个子带的PMI。
  21. 根据权利要求17至20任意一项所述的基站,其特征在于,所述发送单元,用于向UE发送所述每个子带的PMI包括:
    所述发送单元,用于在不同时刻向所述UE发送至少两条信令,每条所述信令包含至少一个子带的PMI,其中,所述发送单元通过所述至少两条信令向所述UE发送所述每个子带的PMI。
  22. 根据权利要求21所述的基站,其特征在于:
    所述确定单元,用于确定时间间隔,所述基站在所述时间间隔内发送所述至少两条信令。
  23. 根据权利要求21所述的基站,其特征在于,所述发送单元,用于向所述UE发送时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
  24. 根据权利要求17至23任意一项所述的基站,其特征在于,所述确定单元,用于根据所述天线端口的数量确定频域资源信息,包括:
    所述确定单元,用于根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源信息。
  25. 一种用户设备UE,其特征在于:
    确定单元,用于确定天线端口的数量,其中,所述天线端口的数量为所述UE用于发送上行参考信号的天线端口的数量;
    所述确定单元,用于根据所述天线端口的数量确定频域资源信息;其中,所述频域资源信息指示子带的数量和子带频宽中的至少一个;
    发送单元,用于根据所述天线端口的数量和所述频域资源信息向基站发送上行参考信号;
    接收单元,用于接收所述基站发送的下行控制信息;
    所述确定单元,还用于根据所述下行控制信息和所述频域资源信息确定所述每个子带的预编码矩阵指示PMI。
  26. 根据权利要求25所述的用户设备,其特征在于,所述确定单元,用于根据所述天线端口的数量确定码本信息,其中,所述码本信息为码字数量,所述每个子带的PMI占用的比特数,和码本中的至少一个;其中,所述码本与所述天线端口数量相关联;
    所述UE根据所述码本信息和所述每个子带的PMI确定所述每个子带的预编码矩阵。
  27. 根据权利要求26所述的用户设备,其特征在于,所述确定单元,用于根据所述天 线端口的数量确定码本信息,包括:
    所述确定单元,用于根据所述天线端口的数量和所述码本信息的映射关系,确定所述频域资源信息。
  28. 根据权利要求25所述的用户设备,其特征在于,所述接收单元,用于接收所述基站发送的下行控制信息,包括:
    所述确定单元,用于确定所有所述子带的PMI占用的比特位,其中,天线端口的数量不同时,所述占用的比特位的数量相同;
    所述发送单元,用于根据所述占用的比特位接收所述基站发送的下行控制信息。
  29. 根据权利要求25至28任意一项所述的用户设备,其特征在于,所述UE接收所述基站发送的下行控制信息包括:
    所述接收单元,用于在不同时刻接收所述基站发送的至少两条信令,每条所述信令包含至少一个子带的PMI;其中,所述接收单元通过所述接收至少两条信令获得所述每个子带的PMI。
  30. 根据权利要求29所述的用户设备,其特征在于:
    所述确定单元,用于确定时间间隔,所述接收单元在所述时间间隔内接收所述至少两条信令。
  31. 根据权利要求30所述的用户设备,其特征在于,所述接收单元,用于接收所述基站发送的时间间隔指示,所述时间间隔指示用于指示所述时间间隔。
  32. 根据权利要求25至31任意一项所述的用户设备,其特征在于,所述确定单元,用于根据所述天线端口的数量确定频域资源信息,包括:
    所述确定单元,用于根据所述天线端口的数量和所述频域资源信息的映射关系,确定所述频域资源信息。
PCT/CN2018/080401 2017-03-25 2018-03-24 信令的发送方法,装置和*** WO2018177229A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18776500.3A EP3576333B1 (en) 2017-03-25 2018-03-24 Method, device and system for transmitting signaling
US16/580,691 US11140671B2 (en) 2017-03-25 2019-09-24 Signaling sending method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710185309.6A CN108631999B (zh) 2017-03-25 2017-03-25 信令的发送方法,装置和***
CN201710185309.6 2017-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/580,691 Continuation US11140671B2 (en) 2017-03-25 2019-09-24 Signaling sending method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018177229A1 true WO2018177229A1 (zh) 2018-10-04

Family

ID=63674269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080401 WO2018177229A1 (zh) 2017-03-25 2018-03-24 信令的发送方法,装置和***

Country Status (4)

Country Link
US (1) US11140671B2 (zh)
EP (1) EP3576333B1 (zh)
CN (1) CN108631999B (zh)
WO (1) WO2018177229A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733559B (zh) * 2016-08-12 2021-06-22 北京华为数字技术有限公司 一种数据传输方法、发送设备及接收设备
CN108811101B (zh) * 2017-05-04 2020-10-30 电信科学技术研究院 一种预编码矩阵指示方法、终端和网络侧设备
CN112840577B (zh) * 2018-10-15 2024-05-14 上海诺基亚贝尔股份有限公司 用于下行链路传输的方法、设备以及计算机可读介质
CN111818628B (zh) * 2019-04-10 2022-04-29 大唐移动通信设备有限公司 数据传输方法和设备
CN110838858B (zh) * 2019-11-08 2021-04-06 北京紫光展锐通信技术有限公司 一种码本确定方法及装置
CN113498182B (zh) * 2020-04-03 2024-04-23 大唐移动通信设备有限公司 一种信号传输方法和设备
US11876654B2 (en) * 2020-04-22 2024-01-16 Qualcomm Incorporated Methods and apparatus for unified codebooks for orthogonal sequence transmission
CN114389661B (zh) * 2020-10-22 2022-11-22 华为技术有限公司 信道测量的方法及通信装置
CN115208526B (zh) * 2021-04-09 2024-01-30 维沃移动通信有限公司 信号传输方法、装置及终端
WO2023023877A1 (en) * 2021-08-21 2023-03-02 Qualcomm Incorporated Base station-aided user equipment (ue) antenna selection
WO2024026796A1 (zh) * 2022-08-04 2024-02-08 北京小米移动软件有限公司 上行mimo传输的预编码矩阵确定方法及其装置
US20240072978A1 (en) * 2022-08-24 2024-02-29 Qualcomm Incorporated Determining a sub-band size for channel state information reporting based on an active antenna port configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296207A (zh) * 2007-04-28 2008-10-29 华为技术有限公司 控制信令的传输方法、网络侧设备以及终端
CN101674655A (zh) * 2009-10-14 2010-03-17 中兴通讯股份有限公司 一种上行及下行信道信息获取方法和***
CN101860424A (zh) * 2010-06-17 2010-10-13 中兴通讯股份有限公司 下行控制信息的发送方法和基站
CN104303431A (zh) * 2013-04-03 2015-01-21 华为技术有限公司 信道状态信息上报方法、接收方法及设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227249B (zh) * 2007-01-16 2010-12-08 中兴通讯股份有限公司 一种信道编码和空时编码级联发射方法
US8223855B2 (en) * 2007-08-10 2012-07-17 Motorola Mobility, Inc. Method for blindly detecting a precoding matrix index
CN101222300B (zh) * 2008-01-25 2014-04-09 中兴通讯股份有限公司 一种天线数量的传输方法
US8811353B2 (en) * 2008-04-22 2014-08-19 Texas Instruments Incorporated Rank and PMI in download control signaling for uplink single-user MIMO (UL SU-MIMO)
CN101540631B (zh) * 2009-04-27 2014-03-12 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置
CN101902312B (zh) * 2010-06-21 2016-02-10 中兴通讯股份有限公司 一种多精度的信道信息获取方法及***
PL3661069T3 (pl) * 2013-04-15 2022-01-17 Huawei Technologies Co., Ltd. Sposób raportowania informacji o stanie kanału, sprzęcie użytkownika i stacji bazowej
US10334474B2 (en) * 2013-10-04 2019-06-25 Lg Electronics Inc. Method for cancelling interference in wireless communication system and device therefor
CN106165318B (zh) * 2014-03-28 2018-11-16 Lg 电子株式会社 无线接入***中发送信道状态信息的方法和装置
CN107181514B (zh) * 2016-03-11 2020-09-15 电信科学技术研究院 一种csi反馈方法、预编码方法及装置
KR102168480B1 (ko) * 2016-08-11 2020-10-21 콘비다 와이어리스, 엘엘씨 뉴 라디오에 대한 csi 피드백 설계
MY194573A (en) * 2016-09-26 2022-12-02 Lg Electronics Inc Uplink transmission/reception method in wireless communication system and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296207A (zh) * 2007-04-28 2008-10-29 华为技术有限公司 控制信令的传输方法、网络侧设备以及终端
CN101674655A (zh) * 2009-10-14 2010-03-17 中兴通讯股份有限公司 一种上行及下行信道信息获取方法和***
CN101860424A (zh) * 2010-06-17 2010-10-13 中兴通讯股份有限公司 下行控制信息的发送方法和基站
CN104303431A (zh) * 2013-04-03 2015-01-21 华为技术有限公司 信道状态信息上报方法、接收方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3576333A4

Also Published As

Publication number Publication date
CN108631999B (zh) 2021-07-09
EP3576333A1 (en) 2019-12-04
US11140671B2 (en) 2021-10-05
EP3576333A4 (en) 2020-03-04
CN108631999A (zh) 2018-10-09
EP3576333B1 (en) 2021-08-25
US20200022120A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
WO2018177229A1 (zh) 信令的发送方法,装置和***
CN113965232B (zh) 信息反馈方法及装置
WO2018202096A1 (zh) 传输数据的方法、终端设备和网络设备
WO2019136941A1 (zh) 一种用于终端设备能力传输的方法、装置及***
WO2018228228A9 (zh) 信息传输方法及装置
WO2019062217A1 (zh) 数据传输方法、终端设备以及网络设备
KR102365905B1 (ko) 업링크 신호의 전송 파라미터를 결정하는 방법, 단말기 및 네트워크 장치
CN113228731A (zh) 指示信道状态信息的测量目的的方法、装置和***
WO2018171780A1 (zh) 信令的发送方法、装置和***
WO2017031672A1 (zh) 一种预编码信息发送、反馈方法及装置
JP6783945B2 (ja) 参照信号送信方法および装置
WO2020155119A1 (zh) 上报信道状态信息的方法和装置
CN111817798B (zh) 一种信道测量方法和通信装置
WO2019149216A1 (zh) 上报信道状态信息csi的方法和装置
WO2017152747A1 (zh) 一种csi反馈方法、预编码方法及装置
CN110445521B (zh) 信息传输方法及设备
WO2021129768A1 (zh) 指示消息传输方法和通信设备
WO2021056588A1 (zh) 一种配置预编码的方法及装置
CN115104263A (zh) 通信方法和通信装置
WO2022028578A1 (zh) 信号传输方法、终端和网络设备
WO2021179864A1 (zh) 码本反馈方法、网络设备、终端设备及计算机存储介质
WO2019047946A1 (zh) 一种码本子集限制的方法
CN116636169A (zh) 参考信号资源的传输方法、设备及存储介质
WO2018039860A1 (zh) 信道质量的测量和反馈方法和装置
WO2020118728A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018776500

Country of ref document: EP

Effective date: 20190830

NENP Non-entry into the national phase

Ref country code: DE