WO2018174235A1 - リニアモータ - Google Patents

リニアモータ Download PDF

Info

Publication number
WO2018174235A1
WO2018174235A1 PCT/JP2018/011655 JP2018011655W WO2018174235A1 WO 2018174235 A1 WO2018174235 A1 WO 2018174235A1 JP 2018011655 W JP2018011655 W JP 2018011655W WO 2018174235 A1 WO2018174235 A1 WO 2018174235A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
mover
back yoke
linear motor
armature
Prior art date
Application number
PCT/JP2018/011655
Other languages
English (en)
French (fr)
Inventor
川上 誠
正喜 武富
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2019507014A priority Critical patent/JP7151698B2/ja
Priority to KR1020197026824A priority patent/KR102339956B1/ko
Priority to CN201880020494.6A priority patent/CN110476340B/zh
Publication of WO2018174235A1 publication Critical patent/WO2018174235A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a linear motor that extracts a linear motion output by combining a mover and a stator.
  • the linear motor is generally configured by combining a mover having a plurality of rectangular permanent magnets and an armature having a plurality of magnetic pole teeth.
  • a linear motor that can obtain a large acceleration with a small mass.
  • the permanent magnet of the mover is not opposed to the entire surface of the armature as the stator, but is movable.
  • a linear motor having a configuration in which the arrangement length of permanent magnets in the child is shorter than the length of the armature is employed.
  • This type of linear motor includes a mover having a magnet array in which a plurality of permanent magnets are arrayed and a flat plate-shaped back yoke integrated with the magnet array, and an armature having a drive coil in each of a plurality of magnetic pole teeth. Is configured to face each other with a gap.
  • the mover magnet arrangement and back yoke
  • the difference in length between the mover and the armature becomes the operable stroke of the linear motor.
  • the mover When the mover is composed of a back yoke formed of a ferromagnetic material and a magnet arrangement, an attractive force is generated between the opposing stator. Due to the generated suction force, a large vertical drag acts on the bearing that supports the mover so as to be movable in a predetermined direction. This normal drag brings about a shortened life of the bearing. Further, the direction in which the normal force acts is a direction that intersects the movable direction of the mover. Therefore, it is necessary to select a bearing in consideration of the normal drag. Therefore, a larger bearing is selected than a bearing that conforms to the load of the mover. This leads to an increase in the size of the entire linear motor.
  • linear motors have been proposed in which only the magnet arrangement functions as a mover and the back yoke functions as a stator (Patent Documents 3 to 5, etc.).
  • the magnet arrangement and the flat back yoke are separated, a gap is formed on the opposite side of the armature, the back yoke is opposed to the magnet arrangement, and only the magnet arrangement can be moved. Only the magnet array moves, and the back yoke does not move like the armature.
  • the length of the magnet array is shorter than the length of the armature, and the difference in length is the stroke at which the linear motor can operate.
  • JP 2005-269822 A Republished patent WO2016 / 159034 JP 2005-117856 A JP2015-130754A JP 2005-184984 A
  • the mover is strongly attracted to the magnetic pole tooth surfaces of the opposing armature.
  • the suction force F at this time is expressed by the following formula.
  • F B 2 S / 2 ⁇ 0 (Where B: magnetic flux density on the magnetic pole teeth of the electrode, S: effective area facing the mover and armature, ⁇ 0 : permeability of vacuum)
  • the gap between the magnet array and the back yoke is widened to reduce the magnetic flux density of the gap, and the attractive force between the magnet array and the back yoke is reduced to the same extent as the attractive force between the magnet array and the armature. It is possible. However, when the gap between the magnet array and the back yoke is widened, the magnetic flux density for generating the thrust from the armature also decreases, and there is a problem that the thrust becomes small. Therefore, in the separation type linear motors proposed so far, there is a problem that a reduction in thrust is inevitable in order to reduce the attractive force acting on the mover.
  • the attractive force between the mover (magnet arrangement) and the stator (armature) and the attractive force between the mover and the back yoke have substantially the same magnitude. Since the directions are opposite, the suction force acting on the mover can be reduced.
  • the eddy current generated in the back yoke during operation is increased by separating the back yoke and the magnet arrangement. An increase in eddy current leads to heat generation.
  • Such a linear motor is not suitable for a stage drive source in an apparatus that needs to keep the environmental temperature within a predetermined range, for example, a semiconductor manufacturing apparatus.
  • the present invention has been made in view of such circumstances, and provides a linear motor that can greatly reduce the suction force and reduce the detent force while achieving a compact configuration and generation of a large thrust.
  • the purpose is to do.
  • Another object of the present invention is to provide a linear motor capable of suppressing eddy currents while reducing the attractive force acting on the magnet arrangement.
  • a linear motor includes a mover having a magnet arrangement in which a plurality of rectangular permanent magnets are arranged, a back yoke as a stator that is opposed to the mover with a gap, and the mover
  • An armature as a stator disposed opposite to the back yoke with a gap therebetween, and the magnetization direction of each of the plurality of permanent magnets is a thickness direction, and adjacent permanent magnets
  • the magnetizing direction is reverse
  • the armature has a plurality of magnetic pole teeth each having a drive coil wound at an equal pitch
  • the back yoke is arranged on the surface facing the mover.
  • a mover having a magnet arrangement in which a plurality of permanent magnets are arranged, a back yoke disposed opposite to the mover with a gap, and a gap on the opposite side of the back yoke.
  • An armature disposed opposite to the mover.
  • the magnet arrangement functions as a mover, and the back yoke and armature function as a stator.
  • Each of the plurality of rectangular permanent magnets in the magnet array is magnetized in the thickness direction, and the magnetization directions are opposite between adjacent permanent magnets.
  • the armature has a plurality of magnetic pole teeth at an equal pitch, and a drive coil is wound on each magnetic pole tooth.
  • the surface facing the mover is not flat, and a plurality of magnetic pole teeth are formed at an equal pitch.
  • the pitch of the magnetic pole teeth in the back yoke is equal to the pitch of the magnetic pole teeth of the armature, and the position of the magnetic pole teeth in the back yoke is the same position as the magnetic pole teeth of the armature in the moving direction of the mover (linear motor).
  • the magnetic pole area of the magnetic pole teeth of the back yoke is 0.9 to 1.1 times the magnetic pole area of the magnetic pole teeth of the armature. Further, the gap between the mover and the back yoke is not less than the gap between the mover and the armature.
  • the back yoke is provided with magnetic pole teeth having substantially the same magnetic pole area at the same position as the armature. That is, only the back yoke portion to which the drive magnetic flux from the armature is applied is brought close to the mover, and the gap from the mover is opened except for the portion facing the magnetic pole teeth of the armature. Since the magnetic pole area of the armature facing the mover and the magnetic pole area of the back yoke facing the mover are substantially equal, they are effectively canceled out and the overall attractive force is greatly reduced. Therefore, the suction force can be significantly reduced without increasing the gap between the mover and the back yoke. At this time, since it is not necessary to increase the gap between the mover and the back yoke, the reduction in thrust is small.
  • the shear region of the driving magnetic flux is generated in the back yoke due to the uneven shape due to the formation of the magnetic pole teeth on the back yoke, not only the armature but also the back yoke contributes to the generation of thrust.
  • This thrust generation compensates for a decrease in thrust due to the increase in the gap (air gap) with the mover at two places, and a large thrust as a whole can be obtained. Therefore, the attractive force acting on the magnet arrangement (mover) can be greatly reduced while maintaining a large thrust.
  • a mover is provided between an armature having a plurality of magnetic pole teeth at an equal pitch and a back yoke having a plurality of magnetic pole teeth in the same position as the armature magnetic pole teeth. Since the cogging of the magnet arrangement in the direction perpendicular to the movable direction is reduced, the detent force of the mover can be reduced.
  • the magnetic pole area of the magnetic pole teeth of the back yoke magnetic pole teeth is set to 0.9 to 1.1 times the magnetic pole area of the magnetic pole teeth of the armature.
  • the drive coil is wound on the armature magnetic pole teeth, the armature magnetic pole teeth are not so low, and the height of the armature magnetic pole teeth is higher than the height of the magnetic pole teeth in the back yoke. For this reason, since the height of the magnetic pole teeth is low in the back yoke, a magnetic flux is also generated in a portion other than the magnetic pole teeth, and the attractive force tends to be larger than that of the armature side. Therefore, the gap between the mover and the back yoke is made equal to or larger than the gap between the mover and the armature so that the suction force can be efficiently canceled.
  • the linear motor according to the present invention is characterized in that the height of the magnetic pole teeth in the back yoke is not less than 1/20 times and not more than twice the pitch of the magnetic pole teeth.
  • the height of the magnetic pole teeth of the back yoke is made too small compared to the pitch, the effect of providing the magnetic pole teeth (uneven shape) cannot be obtained. If the height is made too large compared to the pitch, the effect does not change and the size goes down. Therefore, the height of the magnetic pole teeth in the back yoke is set to 1/20 times or more and 2 times or less of the pitch of the magnetic pole teeth.
  • the linear motor according to the present invention is characterized in that the length of the mover is shorter than the length of the armature and shorter than the length of the back yoke.
  • the length of the mover is shorter than the length of each of the armature and the back yoke. Therefore, it is a small configuration and a large acceleration can be secured. Further, since the edge effect is reduced, the cogging torque is reduced and the detent force can be reduced.
  • the linear motor according to the present invention is characterized in that the size of the gap between the mover and the back yoke and / or the size of the gap between the mover and the armature is variable.
  • the size of the gap between the mover and the back yoke and / or the size of the gap between the mover and the armature is variable. Therefore, by adjusting the size of the gap between the mover and the back yoke and / or the size of the gap between the mover and the armature according to the magnitude of the driving magnetomotive force at the time of use, the attraction force is almost zero. It is possible to
  • a linear motor includes a mover having a magnet arrangement in which a plurality of rectangular permanent magnets are arranged, a back yoke as a stator that is opposed to the mover with a gap, and the mover
  • An armature as a stator disposed opposite to the back yoke with a gap therebetween, and the magnetization direction of each of the plurality of permanent magnets is a thickness direction, and adjacent permanent magnets
  • the magnetizing direction is reverse
  • the armature has a plurality of magnetic pole teeth each having a drive coil wound at an equal pitch
  • the back yoke is arranged on the surface facing the mover.
  • the armature has a plurality of magnetic pole teeth at the same position in the moving direction of the armature and the magnetic teeth of the armature, and the magnetic pole teeth of the back yoke have a plurality of plate-like members in the moving direction of the mover. Laminated in the direction that intersects And wherein the door.
  • the linear motor of the present invention it is possible to reduce the eddy current while reducing the attractive force acting on the mover by making the magnetic pole teeth have a laminated structure.
  • the back yoke has a plurality of plate-like members stacked in the stacking direction of the magnetic pole teeth.
  • the plate member constituting the laminated portion of the back yoke and the plate member constituting the magnetic pole teeth are integrated.
  • the back yoke can further reduce the eddy current by forming a part of the thickness direction from the connecting portion with the magnetic pole teeth in a laminated structure. Further, since the plate-like member constituting the laminated portion of the back yoke and the plate-like member constituting the magnetic pole teeth are integrated, the number of manufacturing steps can be reduced.
  • the linear motor according to the present invention is characterized in that the plurality of plate-like members are subjected to insulation treatment on the laminated surface.
  • the eddy current can be further reduced.
  • the mover has a holding member for holding the magnet arrangement, and the holding member has a plurality of holes into which the plurality of permanent magnets are inserted. It is characterized by that.
  • the magnet arrangement (a plurality of permanent magnets) is held by the holding member. Therefore, since the rigidity of the mover (magnet arrangement) is increased, the detent force can be reduced because deformation such as bending and bending of the permanent magnet hardly occurs.
  • the linear motor according to the present invention is characterized in that the mover has a plate-like base material to which the holding member and the plurality of permanent magnets are bonded and fixed.
  • the magnet array (plural permanent magnets) and the holding member are bonded and fixed to the plate-like base material in a state where the plural permanent magnets are inserted into the holes of the holding member. Therefore, the rigidity of the mover (magnet arrangement) can be further increased to further reduce the detent force, and the permanent magnet can be prevented from falling off.
  • the attractive force acting on the mover can be greatly reduced and the detent force of the mover can be reduced while realizing a small configuration and generation of a large thrust. Can do. Therefore, the deformation
  • FIG. 1 is a perspective view illustrating a configuration of a linear motor according to a first embodiment.
  • 1 is a side view showing a configuration of a linear motor according to a first embodiment.
  • FIG. 3 is a plan view illustrating a configuration of a mover in the linear motor according to the first embodiment.
  • FIG. 3 is an exploded perspective view illustrating a configuration of a mover in the linear motor according to the first embodiment.
  • FIG. 3 is a side view showing the flow of magnetic flux in the linear motor according to the first embodiment.
  • FIG. 3 is a diagram illustrating a side shape of a back yoke in the linear motor according to the first embodiment.
  • 3 is a plan view showing an armature material used for manufacturing an armature in the linear motor according to Embodiment 1.
  • FIG. 3 is a diagram showing armature windings in the linear motor of the first embodiment.
  • FIG. 3 is a top view illustrating a configuration of the linear motor according to the first embodiment.
  • 1 is a side view showing a configuration of a linear motor according to a first embodiment.
  • 4 is a graph showing a variation in thrust with respect to an electrical angle of a linear motor as an example of the first embodiment.
  • 3 is a graph showing thrust characteristics of an example linear motor according to the first embodiment.
  • 3 is a graph showing the attractive force characteristics of a linear motor as an example of Embodiment 1; It is a side view which shows the structure of the linear motor of the 1st prior art example (structure which integrated the magnet arrangement
  • FIG. 1 It is a top view which shows the structure of the linear motor of a 1st prior art example. It is a side view which shows the structure of the linear motor of a 1st prior art example. It is a side view which shows the structure of the linear motor of the 2nd prior art example (structure which used only the magnet arrangement
  • FIG. 1 shows the average thrust in the linear motor of a 1st prior art example, a 2nd prior art example, and an example of Embodiment 1.
  • FIG. 6 is a graph showing average suction force in the linear motor of the first conventional example, the second conventional example, and an example of the first embodiment.
  • 5 is a graph showing thrust characteristics of a linear motor of another example of the first embodiment.
  • 6 is a graph showing the attractive force characteristics of a linear motor of another example of the first embodiment.
  • 6 is a graph showing thrust characteristics of a linear motor of still another example of the first embodiment.
  • 6 is a graph showing the attractive force characteristics of a linear motor of still another example of the first embodiment.
  • FIG. 6 is a perspective view illustrating a configuration example of a linear motor according to a second embodiment.
  • FIG. 6 is a side view illustrating a configuration example of a linear motor according to a second embodiment.
  • It is a partial side view of a linear motor. 6 is a graph showing Joule loss of a linear motor in a basic example of the second embodiment. 6 is a graph showing Joule loss of a linear motor in a first modification of the second embodiment. It is a side view which shows the other structural example of a back yoke. It is a perspective view which shows the structural example of a magnetic-pole-tooth unit. It is a perspective view which shows the structural example of a magnetic-pole-tooth unit. It is a perspective view which shows the structural example of a base part. It is a side view which shows the other structural example of a back yoke. It is a perspective view which shows the structural example of a base part.
  • FIG. 1 and 2 are a perspective view and a side view showing the configuration of the linear motor 1 of the first embodiment.
  • 3 and 4 are a plan view and an exploded perspective view showing a configuration example of the mover 2 in the linear motor 1 of the first embodiment. 1 and 2, only the mover 2 represents a cross section from a direction parallel to the movable direction so that the arrangement of the magnets can be understood.
  • the linear motor 1 includes a mover 2, a back yoke 3, and an armature 4.
  • a back yoke 3 is disposed opposite to the mover 2 with a gap
  • an armature 4 is disposed opposite to the back yoke 3 with a gap between the mover 2.
  • the back yoke 3 and the armature 4 function as a stator.
  • the elongated mover 2 includes a plurality of permanent magnets 21, a holding frame 22, and a fixed plate 23 as shown in FIG. 4.
  • the juxtaposition direction of the plurality of permanent magnets 21 is the longitudinal direction of the mover 2.
  • Each permanent magnet 21 has a rectangular shape.
  • Each permanent magnet 21 is, for example, a Nd—Fe—B rare earth magnet.
  • Each permanent magnet 21 is magnetized in the thickness direction (vertical direction in FIG. 2), and the magnetization directions of the adjacent permanent magnets 21 and 21 are opposite to each other. That is, in the magnet arrangement, the permanent magnet 21 magnetized in the direction from the back yoke 3 side toward the armature 4 side and the permanent magnet 21 magnetized in the direction from the armature 4 side toward the back yoke 3 side alternately. Is arranged.
  • the holding frame 22 has a rectangular plate shape.
  • the thickness of the holding frame 22 is smaller than the thickness of the permanent magnet 21.
  • the holding frame 22 is provided with a plurality of rectangular holes 221.
  • the holding frame 22 is made of a nonmagnetic material such as SUS or aluminum.
  • the hole 221 has a shape corresponding to the permanent magnet 21.
  • Each permanent magnet 21 is fitted into the hole 221 and fixed to the holding frame 22 with an adhesive.
  • the holes 221 are provided so that the permanent magnets 21 fixed to the holding frame 22 are juxtaposed at an equal pitch. Further, when the permanent magnet 21 is fixed to the holding frame 22, the permanent magnet 21 is fitted into the hole 221 so that the magnetization directions of the adjacent permanent magnets 21 and 21 are opposite to each other. As shown in FIG. 3, each permanent magnet 21 is skewed at an angle ⁇ .
  • the holding frame 22 is fixed to the fixing plate 23 with an adhesive while the plurality of permanent magnets 21 are inserted and held in the holes 221 of the holding frame 22.
  • the bottom surfaces of the permanent magnets 21 are also bonded to the fixed plate 23.
  • the fixed plate 23 is made of nonmagnetic SUS or the like. As described above, since the magnet array is held by the holding frame 22 and bonded and fixed to the fixing plate 23, the mover 2 has high rigidity and the permanent magnet 21 does not fall off.
  • the mover 2 is disposed in the gap between the back yoke 3 and the armature 4 so that the fixed plate 23 faces the back yoke 3.
  • the fixing plate 23 is not essential and is not necessary when the permanent magnet 21 is sufficiently held by the holding frame 22.
  • the lengths of the back yoke 3 and the armature 4 in the movable direction are substantially equal, and the lengths of the movable element 2 in the movable direction (left and right direction in FIG. 2) are the same. 4 is shorter than the length in 4, and the difference in length is a stroke at which the linear motor 1 can operate. With such a configuration, the edge effect is reduced.
  • the surface of the back yoke 3 that is made of mild steel, preferably a soft magnetic material (for example, silicon steel plate), that is not opposed to the mover 2 is flat, but the surface of the back yoke 3 that faces the mover 2 is Instead of a flat plate shape, a plurality of rectangular magnetic pole teeth 31 are formed at equal pitches in the movable direction.
  • the height of each magnetic pole tooth 31 is 1/20 or more and 2 or less, preferably 1/10 or more and 1 or less, the formation pitch of the magnetic pole teeth 31.
  • the height of each magnetic pole tooth 31 is about half of the formation pitch of the magnetic pole teeth 31.
  • armature 4 a plurality of rectangular magnetic pole teeth 42 made of a soft magnetic material are integrally provided on a core 41 made of a soft magnetic material at an equal pitch in a movable direction, and a drive coil is provided on each magnetic pole tooth 42. 43 is sown.
  • the pitch of the magnetic pole teeth 31 in the back yoke 3 is equal to the pitch of the magnetic pole teeth 42 of the armature 4, and the positions of the magnetic pole teeth 31 in the back yoke 3 are the magnetic pole teeth 42 of the armature 4 in the moving direction of the mover 2.
  • the position is the same.
  • the shape of the magnetic pole face of the magnetic pole teeth 31 of the back yoke 3 facing the mover 2 has a rectangular shape substantially the same as the magnetic pole face of the magnetic pole teeth 42 of the armature 4 facing the mover 2,
  • the former magnetic pole area is 0.9 to 1.1 times the latter magnetic pole area.
  • the magnetic pole surface of the magnetic pole tooth 31 and the magnetic pole surface of the magnetic pole tooth 42 have the same rectangular shape and the same area.
  • the gap between the mover 2 and the back yoke 3 is the same as or larger than the gap between the mover 2 and the armature 4.
  • the latter gap is 0.5 mm
  • the former gap is 0.5 mm or more.
  • the gap between the mover 2 and the back yoke 3 in this case does not include the thickness of the fixed plate 23 even when the fixed plate 23 is included, and the distance between the mover 2 itself and the back yoke 3 (shortest) Distance).
  • this gap is a magnetic gap (magnetic gap), and it is not necessary to consider the thickness of the fixed plate 23 that is a non-magnetic material.
  • the linear motor 1 of the first embodiment has a basic configuration of seven poles and six slots in which seven permanent magnets 21, six magnetic pole teeth 31 and magnetic pole teeth 42 face each other.
  • the form shown in FIGS. 1 and 2 has a 14-pole 12-slot configuration that doubles the basic configuration.
  • the back yoke 3 has a magnetic pole surface having substantially the same shape at the same position in the movable direction as the magnetic pole teeth 42 of the armature 4 on the surface facing the mover 2. Magnetic pole teeth 31 having substantially the same magnetic pole area are formed. Therefore, the magnitude of the suction force generated between the mover 2 and the back yoke 3 is substantially equal to the magnitude of the suction force generated between the mover 2 and the armature 4, and both suction forces are in the vertical direction in FIG. Is effectively canceled out, the suction force acting on the mover 2 as the whole linear motor 1 becomes very small.
  • the suction force can be significantly reduced without increasing the gap between the mover 2 and the back yoke 3. Therefore, there is no need to increase the gap between the mover 2 and the back yoke 3, so that the thrust is not reduced.
  • the armature 4 having a plurality of magnetic pole teeth 42 at an equal pitch, and the plurality of magnetic pole teeth 42 of the armature 4 in the movable direction and in the same position. Since the mover 2 is arranged between the back yoke 3 having the magnetic pole teeth 31 and the cogging torque of the magnet arrangement in the direction perpendicular to the movable direction is reduced, the detent force of the mover 2 is reduced. Reduction can be achieved. Further, since the magnet array is held by the holding frame 22 and is fixed to the fixing plate 23, the rigidity of the mover 2 can be increased, so that the permanent magnet 21 is not easily deformed such as bending and bending. However, it contributes to the reduction of the detent force of the mover 2.
  • FIG. 5 is a side view showing the flow of magnetic flux in the linear motor 1 of the first embodiment.
  • arrows indicate the flow of magnetic flux.
  • thrust is generated by the shearing of the magnetic flux on the armature 4 side, and the thrust is also generated by the shearing of the magnetic flux on the back yoke 3 side. Is the total.
  • no thrust is generated on the back yoke side, and only the thrust due to magnetic flux shearing on the armature side. It becomes.
  • the suction force acting on the mover 2 can be greatly reduced while maintaining a large thrust. Therefore, the mover 2 hardly bends due to the suction force, and the dimensional accuracy in a processing machine in a semiconductor manufacturing apparatus using the linear motor 1 becomes very high.
  • the linear motor 1 of the first embodiment since the attractive force can be reduced, there is no problem even if the permanent magnet 21 and the holding frame 22 having low rigidity are used. Therefore, it is possible to reduce the size of the mover 2 and to realize a large acceleration as the mover 2 is reduced in weight. Further, since the mover 2 is less worn, the life of the linear motor 1 can be extended.
  • the linear motor in order to move the mover smoothly, it is common to provide a linear guide on the side surface of the mover as described later.
  • the suction force is small. Therefore, a linear guide having a low rigidity can be used, which also contributes to the miniaturization and long life of the linear motor.
  • the length of the mover 2 is made shorter than the lengths of the back yoke 3 and the armature 4, thereby further reducing the size, weight and speed.
  • a skew angle ⁇ 3.2 ° is applied to the 14 permanent magnets 21 coated with adhesive so that the magnetization directions of the adjacent permanent magnets 21 are opposite to each other in the holes 221 of the holding frame 22. Then, the permanent magnet 21 was adhered and fixed to the holding frame 22 and the fixing plate 23.
  • the thickness of the holding frame 22 is set to 3 mm with respect to the thickness of the permanent magnet 21 so that both the weight reduction of the mover 2 and the large rigidity of the magnet arrangement can be realized.
  • the holding frame 22 may be manufactured by a method in which six SUS plates having a thickness of 0.5 mm are punched by pressing and stacked and fixed by caulking. good. In this case, the manufacturing cost can be reduced.
  • FIG. 6 is a view showing a side shape of the back yoke 3 in the linear motor 1 according to the first embodiment.
  • a block having dimensions as shown in FIG. 6 is cut out from mild steel (JIS standard G3101 type symbol SS400 material) and 18 magnetic pole teeth 31 having the same shape (width: 6 mm, height: 3 mm, length: 82 mm, A back yoke 3 having a magnetic pole area of 492 mm 2 ) at an equal pitch (15.12 mm) was produced.
  • FIG. 7 is a plan view showing an armature material used for manufacturing the armature 4 in the linear motor 1 of the first embodiment.
  • 164 pieces of an armature material 44 having a shape as shown in FIG. 7 are cut out from a 0.5 mm-thick silicon steel plate (JIS standard C2552 type symbol 50A800 material), and the cut out 164 pieces are overlapped with a CO 2 laser.
  • FIG. 8 is a diagram illustrating windings of the armature 4 in the linear motor 1 according to the first embodiment.
  • a drive coil 43 was obtained by impregnating an arm portion of each magnetic pole tooth 42 of the armature 4 with an enamel-coated conductor wire having a diameter of 2 mm 17 times by impregnating with varnish.
  • U, V, and W represent the U-phase, V-phase, and W-phase, respectively, of the three-phase AC power supply, and the coils of each phase are all connected in series.
  • the U, V, and W coils are wired so that the current flows clockwise when viewed from above, and the -U, -V, and -W coils are wired so that the current flows counterclockwise when viewed from above.
  • an armature 4 was produced.
  • Six U coils, -U coils, V coils, -V coils, W coils, and -W coils were connected in a star connection to a three-phase AC power source.
  • the manufactured back yoke 3 and armature 4 were fixed using a jig so that the distance between them was kept constant at 6 mm. Although the gap between the back yoke 3 and the armature 4 is fixed to 6 mm, the gap can be adjusted after the linear motor 1 is assembled. Next, after a linear guide (not shown) is attached to the side surface of the mover 2, the gap between the back yoke 3 and the armature 4 is separated from the back yoke 3 and the armature 4 by a predetermined distance, and the thickness is 5 mm. The linear motor 1 was produced by inserting the mover 2.
  • the distance of the gap between the mover 2 and the magnetic pole teeth 31 of the back yoke 3 and the distance of the gap between the mover 2 and the magnetic pole teeth 42 of the armature 4 were both 0.5 mm. Further, a load cell was provided between the linear guide and the armature 4 so that the suction force could be measured.
  • the distance between the mover 2 and the armature 4 is constant, and the mover 2 and the back yoke 3 ( The distance of the gap with the magnetic pole teeth 31) can be arbitrarily set to be variable. It should be noted that by adjusting the insertion position of the mover 2 into the gap between the back yoke 3 and the armature 4, the distance between the mover 2 and the back yoke 3 (the magnetic pole teeth 31), and the mover 2 and the electric machine It is also possible to set the ratio of the gap distance to the child 4 (the magnetic pole teeth 42) to a desired value.
  • a mechanism for adjusting the gap between the linear guide that supports the armature 4 and the mover 2 and between the armature 4 and the back yoke 3 a mechanism for adjusting the height by inserting a gap adjusting screw or a cross-sectional shape It is possible to employ a mechanism for adjusting the height by inserting a shim plate having a taper shape with a screw.
  • FIGS 9A and 9B are diagrams showing a configuration of the linear motor 1 as an example of the first embodiment manufactured as described above, FIG. 9A is a top view thereof, and FIG. 9B is a side view thereof.
  • the white arrow indicates the magnetization direction of the permanent magnet 21, and the solid arrow indicates the movable direction of the mover 2.
  • the details of the production specifications of the linear motor 1 are as follows.
  • Magnetic pole configuration 7 poles, 6 slots Permanent magnet 21
  • Material Nd-Fe-B rare earth magnet (NMX made by Hitachi Metals) -S49CH material
  • the shape of the permanent magnet 21 thickness 5.0mm, width 12mm, length 82mm Permanent magnet 21 pitch: 12.96 mm Skew angle of the permanent magnet 21: 3.2 °
  • Shape of back yoke 3 thickness 6.0 mm, width 90 mm, length 263.04 mm Back Yoke 3
  • Material Mild Steel (JIS Standard G3101 Type Code SS400 Material)
  • Material of core 41 silicon steel plate (JIS standard C2552 type symbol 50A800 material)
  • the shape of the magnetic pole teeth 42 width 6.0 mm, height: 25 mm, length: 82 mm Pitch of magnetic pole teeth 42:
  • the length (190 mm) of the mover 2 is shorter than the lengths of the back yoke 3 and the armature 4 (both 263.04 mm).
  • the pitch of the magnetic pole teeth 31 in the back yoke 3 and the pitch of the magnetic pole teeth 42 in the armature 4 are all equal to 15.12 mm, and the magnetic pole teeth 31 and the magnetic pole teeth 42 are at the same position in the movable direction.
  • the shape of the magnetic pole face of the magnetic pole teeth 31 facing the magnet arrangement and the shape of the magnetic pole face of the magnetic pole teeth 42 facing the magnet arrangement are rectangular with the same dimensions. That is, the width of the magnetic pole teeth 31 (the dimension in the movable direction) and the width of the magnetic pole teeth 42 (the dimensions in the movable direction) are both 6 mm and are equal, and the magnetic pole area of the magnetic pole teeth 31 facing the magnet arrangement and the magnet arrangement.
  • the magnetic pole areas of the opposing magnetic pole teeth 42 are all equal to 492 mm 2 .
  • the linear motor 1 assembled in this way is installed on a test bench for thrust measurement, and is driven by a three-phase constant current power source synchronized with the position of the mover 2 (magnet arrangement) to move the mover 2 to generate thrust and suction. The force was measured.
  • FIG. 10 is a graph showing the thrust fluctuation with respect to the electrical angle of the linear motor 1 as an example of the first embodiment.
  • the horizontal axis represents the electrical angle [°]
  • the vertical axis represents the thrust [N].
  • a represents the thrust by the armature 4
  • b in the figure represents the thrust by the back yoke 3
  • c in the figure represents the total thrust (thrust added by the thrust by the armature 4 and the thrust by the back yoke 3).
  • FIG. 11 is a graph showing the thrust characteristics of the linear motor 1 as an example of the first embodiment.
  • This thrust characteristic represents a characteristic when the current applied to the drive coil 43 is changed.
  • the horizontal axis represents the drive magnetomotive force [A]
  • the left vertical axis represents the thrust [N]
  • the right vertical axis represents the thrust magnetomotive force ratio [N / A].
  • a represents the thrust
  • b in the figure represents the thrust magnetomotive force ratio.
  • the thrust proportional limit is 1000 N when the driving magnetomotive force is 1200A.
  • FIG. 12 is a graph showing the attractive force characteristics of the linear motor 1 as an example of the first embodiment.
  • This attraction force characteristic represents a characteristic when the current applied to the drive coil 43 is changed.
  • the horizontal axis represents the driving magnetomotive force [A]
  • the vertical axis represents the attractive force [N].
  • the suction force indicates that the mover 2 is attracted to the armature 4 side on the + side, and the mover 2 is attracted to the back yoke 3 side on the ⁇ side.
  • the attractive force increases. For example, when the driving magnetomotive force is 1200 A, the movable element 2 is attracted to the back yoke 3 side with an attractive force of about 290 N.
  • linear motor 1 of the first embodiment in comparison with the conventional linear motor, two types of linear motors (first conventional example and second conventional example) are manufactured as conventional examples, and those linear motors 1 are manufactured. Characteristics (thrust force and suction force) were measured.
  • FIG. 13 is a side view showing the configuration of the linear motor of the first conventional example.
  • the first conventional example is a linear motor (integrated linear motor) having a configuration according to Patent Document 1 or 2.
  • the linear motor 50 of the first conventional example includes a mover 51 in which a magnet array 52 and a back yoke 53 are integrated, and an armature 54 that is disposed to face the mover 51 with a gap.
  • a structure in which the magnet array 52 and the back yoke 53 are integrated functions as a mover, and the armature 54 functions as a stator.
  • the configuration of the magnet array 52 is the same as the configuration of the magnet array of the mover 2 described above. That is, the magnet array 52 is configured by holding and fixing a plurality of rectangular permanent magnets 55 on a nonmagnetic material holding frame at an equal pitch and installing them in a movable direction (left-right direction in FIG. 13). 55 is magnetized in the thickness direction (vertical direction in FIG. 13), and the magnetization directions of the adjacent permanent magnets 55, 55 are opposite to each other.
  • the magnet array 52 is bonded to a flat steel back yoke 53 made of mild steel.
  • the configuration of the armature 54 is the same as the configuration of the armature 4 described above, and a plurality of magnetic pole teeth 57 are integrally provided on the core 56 at an equal pitch in the movable direction.
  • the drive coil 58 is wound on the front.
  • FIG. 14A and 14B are diagrams showing the configuration of the linear motor 50 of the first conventional example, FIG. 14A is a top view thereof, and FIG. 14B is a side view thereof.
  • the white arrow indicates the magnetization direction of the permanent magnet 55, and the solid arrow indicates the movable direction of the mover 51.
  • mover 51 and the armature 54 was 0.5 mm or 1 mm. Details of the production specifications of the linear motor 50 are as follows.
  • Magnetic pole configuration 7 poles, 6 slots Permanent magnet 55
  • Material Nd-Fe-B rare earth magnet (NMX made by Hitachi Metals) -S49CH material)
  • Shape of the permanent magnet 55 thickness 5.0mm, width 12mm, length 82mm Permanent magnet 55 pitch: 12.96 mm Skew angle of permanent magnet 55: 3.2 °
  • Shape of the back yoke 53 thickness 6.0mm, width 90mm, length 190mm
  • Material of back yoke 53 Mild steel (JIS standard G3101 type symbol SS400 material)
  • Material of core 56 silicon steel plate (JIS standard C2552 type symbol 50A800 material)
  • the shape of the drive coil 58 width 15.12mm, height 23mm, length 91.12mm Winding thickness of drive coil 58: 4.06
  • the length of the mover 51 (integrated configuration of the magnet array 52 and the back yoke 53) in the movable direction (left-right direction in FIG. 13) is shorter than the length of the armature 54, and the difference in length is the difference of the linear motor 50.
  • the stroke is operable.
  • FIG. 15 is a side view showing the configuration of the linear motor of the second conventional example.
  • the second conventional example is a linear motor (separated linear motor) having a configuration according to Patent Documents 3 to 6.
  • the magnet array 62 represents a cross section from a direction parallel to the movable direction so that the arrangement of the magnets can be understood.
  • the linear motor 60 of the second conventional example has a magnet array 62, a back yoke 63 disposed opposite to the magnet array 62 with a gap therebetween, and a counter arrangement opposite to the back yoke 63 with a gap formed between the magnet arrays 62. Armature 64. Only the magnet array 62 functions as a mover, and the back yoke 63 and the armature 64 function as a stator.
  • the configuration of the magnet array 62 is the same as the configuration of the magnet array of the mover 2 described above. That is, the magnet array 62 is configured by a plurality of rectangular permanent magnets 65 being held and fixed on a nonmagnetic material holding frame at an equal pitch and installed in a movable direction (left and right direction in FIG. 15). 65 is magnetized in the thickness direction (vertical direction in FIG. 15), and the magnetization directions of the adjacent permanent magnets 65, 65 are opposite to each other.
  • the back yoke 63 made of mild steel has a flat plate shape not only on the surface that does not face the magnet array 62 but also on the surface that faces the magnet array 62, and the magnetic pole teeth like the linear motor 1 of the first embodiment. Does not exist.
  • the configuration of the armature 64 is the same as the configuration of the armature 4 described above, and a plurality of magnetic pole teeth 67 are integrally provided on the core 66 at an equal pitch in the movable direction.
  • the drive coil 68 is wound on the front.
  • FIG. 16A and 16B are diagrams showing the configuration of the linear motor 60 of the second conventional example, FIG. 16A is a top view thereof, and FIG. 16B is a side view thereof.
  • the white arrow indicates the magnetization direction of the permanent magnet 65
  • the solid arrow indicates the movable direction of the magnet array 62 (movable element). Note that the size of the gap between the magnet array 62 and the back yoke 63 and the size of the gap between the magnet array 62 and the armature 64 were both 0.5 mm. Details of the production specifications of the linear motor 60 are as follows.
  • Magnetic pole configuration 7 poles, 6 slots Permanent magnet 65
  • Material Nd-Fe-B rare earth magnet (NMX made by Hitachi Metals) -S49CH material)
  • Permanent magnet 65 shape thickness 5.0 mm, width 12 mm, length 82 mm Permanent magnet 65 pitch: 12.96 mm Skew angle of permanent magnet 65: 3.2 °
  • Back yoke 63 shape thickness 6.0 mm, width 90 mm, length 215 mm
  • Material of back yoke 63 Mild steel (JIS standard G3101 type symbol SS400 material)
  • Material of core 66 silicon steel plate (JIS standard C2552 type symbol 50A800 material)
  • the length of the magnet array 62 in the movable direction (left-right direction in FIG. 15) is shorter than the length of the armature 64, and the difference in length is an operable stroke of the linear motor 60.
  • FIG. 17 is a graph showing average thrusts in the linear motors of the first conventional example, the second conventional example, and the first embodiment.
  • FIG. 17 represents the average thrust [N] when the driving magnetomotive force is 1200 A.
  • FIG. 18 is a graph showing the average suction force in the linear motors of the first conventional example, the second conventional example, and the example.
  • FIG. 18 shows the average attractive force [N] when the driving magnetomotive force is 1200A.
  • the average thrust and the average attractive force are obtained by measuring (calculating) 25 thrusts and attractive forces at 15 ° intervals in the range of the U-phase electrical angle of 0 ° to 360 °, and calculating the average.
  • A is a first conventional example in which the magnet array 52 and the back yoke 53 are integrated, and the linear motor 50 (hereinafter referred to as “the gap between the movable element 51 and the armature 54” is 0.5 mm).
  • B is a linear motor 50 (hereinafter referred to as a linear motor) in which a gap between the mover 51 and the armature 54 is 1 mm in the first conventional example in which the magnet array 52 and the back yoke 53 are integrated.
  • C is the second conventional example in which the magnet array 62 and the back yoke 63 are separated from each other, and the gap between the magnet array 62 and the back yoke 63, and the magnet array 62 and the armature 64
  • the linear motor 60 has a gap of 0.5 mm
  • D is an example of Embodiment 1 in which magnetic pole teeth 31 are formed on the back yoke 3 separated from the mover 2 (magnet arrangement). back Gap between the over click 3, and a linear motor 1 that both was 0.5mm the gap between the mover 2 and the armature 4.
  • the linear motor 50A (A in the figure) of the first conventional example has the largest thrust of 1030N, but the suction force is 4200N, which is a large value about four times the thrust.
  • the thrust obtained is significantly reduced to 909N, whereas the suction force is not reduced so much and is 3360N. Therefore, it is understood that it is not a sufficient measure.
  • the linear motor 1 (D in the figure) as an example of the first embodiment, a large thrust of 1000 N, which is comparable to the linear motor 50A, can be obtained. Further, the suction force can be greatly reduced to 290 N (about 1/14 of the linear motor 50A) on the back yoke 3 side. Therefore, in the linear motor 1 as an example of the first embodiment, it has been proved that the suction force can be significantly reduced while maintaining a large thrust.
  • the magnitude of the attractive force varies depending on the magnitude of the driving magnetomotive force. Therefore, if the size of the gap between the mover 2 and the back yoke 3 is adjusted in accordance with a frequently used thrust region (drive magnetomotive force), the attractive force can be further reduced.
  • the gap between the mover 2 and the back yoke 3 and the gap between the mover 2 and the armature 4 are both equal to 0.5 mm.
  • the gap between the mover 2 and the armature 4 remains 0.5 mm, and the gap between the mover 2 and the back yoke 3 is 0.74 mm.
  • Other configurations are the same as the above-described example.
  • FIG. 19 is a graph showing the thrust characteristics of the linear motor 1 of another example of the first embodiment
  • FIG. 20 is a graph showing the attractive force characteristics of the linear motor 1 of another example of the first embodiment.
  • the horizontal axis represents the drive magnetomotive force [A]
  • the left vertical axis represents the thrust [N]
  • the right vertical axis represents the thrust magnetomotive force ratio [N / A]
  • a is the thrust
  • b is the thrust magnetomotive force.
  • Each represents a ratio
  • the horizontal axis represents the drive magnetomotive force [A]
  • the vertical axis represents the attractive force [N].
  • the thrust is 978 N when the driving magnetomotive force is 1200 A, which is a little lower than the above-described example, but the attractive force is only 18 N when the driving magnetomotive force is 1200 A and is almost zero.
  • This is a suction force at which the linear guide, the mover, and the surrounding structure can be ignored due to the deformation and life reduction due to the suction force. Therefore, when using with the driving magnetomotive force of 1200 A vicinity, it turns out that the linear motor 1 of another example is more suitable for the objective of reduction of an attractive force compared with the example mentioned above.
  • the linear motor 1 in which the gap between the mover 2 and the armature 4 remains 0.5 mm and the gap between the mover 2 and the back yoke 3 is 0.66 mm. was made.
  • Other configurations are the same as the above-described example.
  • FIG. 21 is a graph showing thrust characteristics of the linear motor 1 of still another example of the first embodiment
  • FIG. 22 is a graph showing suction force characteristics of the linear motor 1 of still another example of the first embodiment. It is.
  • the horizontal axis represents the driving magnetomotive force [A]
  • the left vertical axis represents the thrust [N]
  • the right vertical axis represents the thrust magnetomotive force ratio [N / A]
  • a is the thrust
  • b is the thrust magnetomotive force.
  • Each represents a ratio
  • the horizontal axis represents the driving magnetomotive force [A]
  • the vertical axis represents the attractive force [N].
  • the linear motor 1 of still another example is optimal for reducing the attractive force.
  • the example in which the size of the gap between the mover 2 and the armature 4 is fixed and the size of the gap between the mover 2 and the back yoke 3 is changed has been described. Further, an example in which the size of the gap between the mover 2 and the armature 4 is changed by fixing the size of the gap between the mover 2 and the back yoke 3, the size of the gap between the back yoke 3 and the armature 4. It is also possible to realize a suction force close to zero by, for example, changing the position of the mover 2 while fixing.
  • the linear motor 1 having the structure in which the movable element 2 is shorter than the armature 4 has been described.
  • the linear motor having the structure in which the movable element is longer than the armature is also described in the present invention.
  • the feature formation of magnetic pole teeth on the back yoke is applicable.
  • the linear motor 1 includes the mover 2, the back yoke 3, and the armature 4, and the back yoke 3 and the armature 4 function as a stator.
  • the configurations of the mover 2 and the armature 4 in the linear motor 1 of the second embodiment are the same as the configurations of the mover 2 and the armature 4 in the linear motor 1 of the first embodiment described above. The description is omitted.
  • the back yoke 3 includes magnetic pole teeth 31 and a base plate 32.
  • the base plate 32 has a rectangular plate shape.
  • the magnetic pole teeth 31 are fixed to the base plate 32.
  • the magnetic pole teeth 31 are fixed so that a part thereof protrudes from the base plate 32.
  • the shape of the protruding part is a rectangular parallelepiped shape.
  • the plurality of magnetic pole teeth 31 are arranged at an equal pitch along the longitudinal direction of the base plate 32.
  • the magnetic pole teeth 31 are formed of a laminated silicon steel plate as will be described later.
  • the base plate 32 is made of carbon steel such as SS400, for example.
  • the back yoke 3 and the armature 4 are arranged to face each other with a gap.
  • the mover 2 is disposed in the gap.
  • the first surface of the mover 2 faces the back yoke 3 with a gap.
  • the second surface facing the first surface of the mover 2 faces the armature 4 with a gap.
  • the lengths of the back yoke 3 and the armature 4 in the movable direction are substantially equal.
  • the pitch of the magnetic pole teeth 31 in the back yoke 3 is equal to the pitch of the magnetic pole teeth 42 of the armature 4.
  • the positions of the magnetic pole teeth 31 in the back yoke 3 are the same as the positions of the magnetic pole teeth 42 of the armature 4 in the moving direction of the mover 2.
  • the magnetic pole surface of the magnetic pole tooth 31 and the magnetic pole surface of the magnetic pole tooth 42 have the same rectangular shape and the same area.
  • the gap between the mover 2 and the back yoke 3 is substantially the same as the gap between the mover 2 and the armature 4.
  • the magnetization directions of the adjacent permanent magnets 21 and 21 are opposite to each other.
  • the permanent magnet 21 magnetized in the direction from the back yoke 3 side to the armature 4 side, and from the armature 4 side to the back yoke 3 side.
  • the permanent magnets 21 magnetized in the direction are alternately arranged.
  • an attractive force is generated between the magnetic pole teeth 31 of the back yoke 3 and the permanent magnet 21 of the mover 2.
  • An attractive force is also generated between the magnetic pole teeth 42 of the armature 4 and the permanent magnet 21 of the mover 2.
  • Two suction forces acting on the mover 2 are in opposite directions.
  • the magnitude of the attractive force can be made substantially equal.
  • the attractive force generated between the magnetic pole teeth 31 and the permanent magnet 21 and the attractive force generated between the magnetic pole teeth 42 and the permanent magnet 21 can be balanced. That is, the two suction forces can be canceled out. If it is difficult to balance the two attractive forces due to factors such as processing errors and assembly errors, the distance between the magnetic pole teeth 31 and the permanent magnet 21 or the distance between the magnetic pole teeth 42 and the permanent magnet 21 is adjusted. To balance the two suction forces.
  • the linear motor 1 according to the second embodiment has the same configuration as the linear motor 1 according to the first embodiment described above.
  • the suction force acting on the mover 2 can be greatly reduced while maintaining a large thrust.
  • the detent force of the mover 2 can be reduced as in the linear motor 1 according to the first embodiment.
  • FIG. 25 is a perspective view illustrating a configuration example of the magnetic pole teeth 31 included in the back yoke 3.
  • the magnetic pole tooth 31 has a T-shaped cross section and has two projecting portions 31a and 31a projecting from the bottom portion (lower side in FIG. 25) in the lateral direction.
  • the protrusions 31 a and 31 a are portions that engage with recesses 32 a and 32 a of an ant groove 321 described later).
  • the short direction of the magnetic pole teeth 31 is parallel to the movable direction of the mover 2.
  • the magnetic pole teeth 31 are formed by laminating magnetic pole pieces 311.
  • the pole piece 311 includes an engaging protrusion 311a formed by cutting out a part of a rectangular plate shape.
  • the pole piece 311 is formed of a thin plate such as silicon steel having soft magnetism.
  • the stacked magnetic pole pieces 311 are fixed by heat welding or caulking. In the case of heat welding, for example, first, a surface of the pole piece 311 is coated with a thermosetting adhesive or a heat-welding coating is applied, and then heated while applying pressure to the plate surface after lamination. .
  • the pole pieces 311 are fixed by heating.
  • the eddy current loss decreases as the thickness of the magnetic pole piece 311 constituting the magnetic pole tooth 31 is reduced, that is, as the number of the magnetic pole pieces 311 is increased.
  • the thickness of the pole piece 311 is preferably about 0.2 to 0.5 mm.
  • the number and thickness of the magnetic pole pieces 311 constituting the magnetic pole teeth 31 may be appropriately designed according to required specifications.
  • FIG. 26 is a partial perspective view showing a configuration example of the base plate 32 included in the back yoke 3.
  • FIG. 26 is drawn upside down from FIGS. 24 and 25 for convenience of explanation.
  • the base plate 32 is provided with dovetail grooves 321 along the short direction.
  • the dovetail 321 has a shape corresponding to the protruding portion 311 a of the magnetic pole piece 311 (the protruding portion 31 a of the magnetic pole tooth 31).
  • the dovetail 321 has a recess 32a corresponding to the protrusion 311a (protrusion 31a).
  • the base plate 32 is formed with a plurality of dovetail grooves 321.
  • the plurality of dovetail grooves 321 are provided at an equal pitch along the movable direction of the mover 2.
  • the arrangement direction of the plurality of dovetail grooves 321 is a direction parallel to the movable direction of the mover 2 when the linear motor 1 is operated.
  • FIG. 27 is a partial perspective view of the back yoke 3. Similarly to FIG. 26, for the convenience of explanation, it is drawn with the up and down directions of FIGS. 24 and 25 reversed.
  • the protruding portion 31 a of the magnetic pole tooth 31 is engaged with the dovetail groove 321.
  • the fixing of the magnetic pole teeth 31 to the base plate 32 is performed as follows, for example. Adhesive is applied to one or both of the dovetail 321 and the magnetic pole teeth 31. Using a jig or the like, the magnetic pole teeth 31 are fitted into the dovetail groove 321 for positioning. When the adhesive is cured, remove the jig.
  • the fixing method is not limited to this. Other methods may be used as long as the pitch of the magnetic pole teeth 31 and the amount of protrusion of the magnetic pole teeth 31 from the base plate 32 can be fixed within a predetermined error range.
  • the linear motor 1 generates magnetic flux that flows through the magnetic pole teeth 42 of the armature 4, the permanent magnet 21 of the mover 2, and the magnetic pole teeth 31 of the back yoke 3 by applying a three-phase alternating current to the drive coil 43 of the armature 4. To do.
  • the attraction force generated between the mover 2 and the armature 4 by the generated magnetic flux and the attraction force generated between the mover 2 and the back yoke 3 become the thrust of the mover 2, and the mover 2 moves. .
  • FIG. 28 is a partial side view of the linear motor 1.
  • an example of the flow of magnetic flux is indicated by a solid line arrow
  • an example of eddy current is indicated by a dotted line arrow.
  • the magnetic flux flows in the vertical direction on the paper. That is, it flows in a direction parallel to the plate surface of the magnetic pole piece 311 constituting the magnetic pole tooth 31.
  • the eddy current tends to flow in a direction that prevents the magnetic flux from changing on a plane perpendicular to the direction in which the magnetic flux flows. That is, in the case shown in FIG.
  • the direction of the eddy current is a direction that tries to penetrate the plate surface of the magnetic pole piece 311 constituting the magnetic pole tooth 31.
  • the magnetic pole teeth 31 are formed by laminating a plurality of magnetic pole pieces 311 and the electric resistance between the magnetic pole pieces 311 is large, so that eddy current can be reduced. Further, when an insulating film is applied to the plate surface (front surface) of the magnetic pole piece 311, the eddy current flowing between the magnetic pole pieces 311 can be further reduced.
  • FIG. 29A and 29B are graphs showing an example of Joule loss due to eddy current
  • FIG. 29A is a graph showing Joule loss of a linear motor according to a related technique
  • FIG. 29B is a linear motor in a basic example of the second embodiment. It is a graph which shows 1 Joule loss.
  • the difference in configuration between the linear motor according to the related technology and the linear motor in the second embodiment is as follows.
  • the former does not have a laminated structure of magnetic pole teeth.
  • the magnetic pole teeth in the former are soft magnetic blocks.
  • the base plate 32 and the magnetic pole teeth 31 may be integrally formed of a soft magnetic material.
  • the magnetic pole teeth 31 have a laminated structure.
  • Other conditions, the structure and dimensions of the linear motor, the number of coil turns, and the driving conditions were the same.
  • the driving current of the coil is 70.6 A
  • the moving speed of the mover is 1000 mm / s.
  • the horizontal axis is an electrical angle indicating the position of the mover 2.
  • the unit of the horizontal axis is degree (°).
  • the vertical axis in FIGS. 29A and 29B is Joule loss due to eddy current.
  • the unit is watt (W).
  • the graph attached with the back yoke shows the Joule loss at the back yoke.
  • FIG. 29A in a linear motor according to a related technology that does not have a laminated structure of magnetic pole teeth, the Joule loss at the back yoke is around 80 W, whereas the magnetic pole teeth 31 have a laminated structure. In the linear motor 1, the Joule loss in the back yoke 3 is reduced to about 50W.
  • the graphs labeled U, V, and W show the Joule loss due to energization generated in the coil U phase, V phase, and W phase, respectively, in absolute values.
  • the Joule loss in the coil due to energization of the coil is the same, but there is a large difference in the Joule loss in the back yoke.
  • This result is an example showing that Joule loss due to eddy currents can be reduced when a laminated structure is used instead of a laminated structure of magnetic pole teeth under the same size and shape, and the linear motor size and linear motor speed are reduced.
  • the absolute value of Joule loss due to eddy current changes, but the ratio of both effects at the same speed is maintained.
  • the linear motor 1 in Embodiment 2 has the following effects.
  • the magnetic pole teeth 31 are formed by laminating magnetic pole pieces 311 formed of silicon steel plates. Therefore, the direction of the eddy current is a direction to penetrate the plate surface. At this time, the electric resistance in the eddy current direction in the magnetic pole teeth 31 is caused by the gap between the surfaces of the magnetic pole pieces 311, the contact resistance between the magnetic pole pieces, the oxide film formed on the surface of the magnetic pole pieces 311, etc. It is larger than the case where it is formed with. Therefore, the eddy current flowing through the magnetic pole teeth 31 can be reduced.
  • the surface (stacked surface) of the pole piece 311 may be subjected to an insulation process such as forming a coating of an insulating material. When the insulation process is performed, eddy currents can be further reduced between the silicon steel plates.
  • the magnetic pole teeth 31 of the back yoke 3 have a laminated structure.
  • the entire back yoke is formed of a laminated steel plate, there is a concern that the rigidity is lowered.
  • the back yoke 3 may be bent due to the suction force generated between the movable element 2 and the back yoke 3.
  • the base plate 32 to which the magnetic pole teeth 31 are fixed is not a laminated structure.
  • the bending of the back yoke 3 is based on a related technique (when the magnetic pole teeth 31 and the base plate 32 are each formed of a soft magnetic material, or when the magnetic pole teeth 31 and the base plate 32 are integrally formed of a soft magnetic material). Compared with, it is slight.
  • FIG. 30 is a side view showing another configuration example of the back yoke 3.
  • the back yoke 3 includes a base portion 33 and a magnetic pole tooth block 34.
  • the magnetic pole tooth block 34 includes a fitted portion 34 a and a plurality of magnetic pole teeth 31.
  • FIG. 31 is a perspective view showing a configuration example of the magnetic pole tooth block 34.
  • the magnetic pole tooth block 34 is formed by laminating a plurality of magnetic pole tooth pieces (plate-like members) 341.
  • the stacking direction of the magnetic pole tooth pieces 341 is a direction that intersects the arrangement direction of the magnetic pole teeth 31.
  • the magnetic pole tooth piece 341 includes a fitted portion 341a, a connecting portion 341b, and a plurality of protruding portions 341c.
  • the fitted portion 341a has an inverted trapezoidal cross section.
  • the fitted portion 341 a is a portion that becomes the fitted portion 34 a of the magnetic pole tooth block 34.
  • the protrusion 341c has a rectangular cross section.
  • the plurality of protrusions 341 c are formed at an equal pitch in the longitudinal direction of the magnetic pole piece 341.
  • the protruding portion 341 c is a portion that becomes the magnetic pole teeth 31 of the magnetic pole tooth block 34.
  • the connecting portion 341b is a portion located between the fitted portion 341a and the protruding portion 341c in the height direction of the magnetic pole tooth piece 341.
  • the connecting portion 341b connects the plurality of protruding portions 341c.
  • the magnetic pole tooth piece 341 is made of, for example, a silicon steel plate.
  • the connecting portion 341b is a plate-like member that constitutes a laminated portion that becomes a part of the base portion of the back yoke 3.
  • the protruding portion 341 c is a plate-like member that constitutes the magnetic pole teeth 31.
  • the magnetic pole tooth piece 341 is obtained by integrating two plate-like members.
  • FIG. 32 is a perspective view showing a configuration example of the base portion 33.
  • the base portion 33 shown in FIG. 32 is inverted upside down from the base portion 33 shown in FIG.
  • the base part 33 has a rectangular plate shape.
  • the base portion 33 has a fitting groove 33a having a trapezoidal cross section.
  • the fitted portion 34 a of the magnetic pole tooth block 34 is fitted into the fitting groove 33 a of the base portion 33.
  • the length of the movable element 2 in the movable direction may be set according to the length of the magnetic pole tooth block 34 in the movable direction.
  • the magnetic pole tooth block 34 is fixed to the base portion 33 as follows. After the adhesive is applied to one or both of the fitting groove 33a and the fitting portion 34a, the fitting is performed. Thereby, the base part 33 and the magnetic pole tooth block 34 are fixed. As a result, the back yoke 3 is formed.
  • FIG. 33 is a partial side view of the linear motor 1.
  • an example of the flow of magnetic flux is indicated by a solid arrow
  • an example of an eddy current is indicated by a dotted arrow.
  • the reduction of the eddy current in the magnetic pole teeth 31 is the same as that in the basic example described above, and thus the description thereof is omitted.
  • the reduction of the eddy current at the connection portion 341b of the magnetic pole tooth block 34 will be described.
  • the magnetic flux flows in the left-right direction on the paper surface at the connecting portion 341b. That is, it flows in a direction parallel to the plate surface of the magnetic pole tooth piece 341 constituting the magnetic pole tooth block 34.
  • the eddy current tends to flow in a direction that prevents the magnetic flux from changing on a plane perpendicular to the direction in which the magnetic flux flows. That is, as shown in FIG. 33, the magnetic flux tends to flow counterclockwise about the direction in which the magnetic flux flows.
  • the direction of this eddy current is a direction that tries to penetrate the plate surface of the magnetic pole tooth piece 341 constituting the magnetic pole tooth block 34.
  • the magnetic pole tooth block 34 has a plurality of magnetic pole tooth pieces 341 stacked and the electric resistance between the magnetic pole tooth pieces 341 is increased, eddy current can be reduced. Furthermore, when an insulating coating is applied to the plate surface, the eddy current flowing between the magnetic pole tooth pieces 341 can be further reduced.
  • connection part 341b will be described. As shown in FIG. 33, let d be the height of the connecting portion 341b. Magnetic flux flowing between adjacent magnetic pole teeth 31 flows in the left-right direction on the paper. The path through which the magnetic flux flows is the shortest path. Therefore, the magnetic flux does not flow in a portion away from the magnetic pole teeth 31 by a certain distance or more. Therefore, the height d of the connecting portion 341b may be a value that allows a sufficient amount of magnetic flux in the left-right direction on the paper surface to flow. Further, the base portion 33 where the magnetic flux does not flow can be formed of a nonmagnetic material. For example, the base portion 33 is formed of alumina having a high rigidity and a high Young's modulus. Alternatively, nonmagnetic stainless steel or aluminum alloy can be used.
  • FIG. 34A and 34B are graphs showing an example of Joule loss due to eddy current
  • FIG. 34A is a graph showing Joule loss of the linear motor 1 in the basic example.
  • FIG. 34A is a reproduction of FIG. 29B.
  • FIG. 34B is a graph showing Joule loss of the linear motor 1 in the first modification.
  • the magnetic pole teeth 31 have a laminated structure
  • a part of the magnetic pole teeth and the base plate has a laminated structure.
  • Other conditions, the structure and dimensions of the linear motor, the number of coil turns, and the driving conditions were the same.
  • the driving current of the coil is 70.6 A
  • the moving speed of the mover is 1000 mm / s.
  • the Joule loss of the back yoke 3 is around 50 W
  • the back yoke 3 joule loss is reduced to around 2.5W.
  • the connection part 341b has a laminated structure, and eddy currents due to magnetic flux flowing through the connection part 341b are also reduced.
  • the graphs labeled U, V, and W indicate absolute values of Joule loss due to energization generated in the coil U phase, V phase, and W phase, respectively.
  • the Joule loss in the coil due to energization of the coil is the same, but there is a large difference in the Joule loss in the back yoke.
  • This result shows that the latter can reduce Joule loss due to eddy current when the magnetic pole teeth and the back yoke are partly laminated with the same dimension and shape.
  • the absolute value of Joule loss due to eddy current varies depending on the size of the linear motor and the speed of the linear motor, but the ratio of both effects at the same speed is maintained.
  • the magnetic pole tooth block 34 is configured by laminating silicon steel plates (magnetic pole tooth pieces 341).
  • the linear motor 1 has a laminated structure in a part in the thickness direction from the connection portion with the magnetic pole teeth 31 of the back yoke 3. For this reason, the magnetic flux flowing between the adjacent magnetic pole teeth 31 to the connecting portion 341 b is in a direction parallel to the surface of the magnetic pole tooth piece 341. The direction of the eddy current generated by the flow of the magnetic flux is a direction to penetrate the plate surface of the magnetic pole piece 341.
  • the electrical resistance in the eddy current direction in the connecting portion 341b is larger than that in the case of not having a laminated structure due to a gap on the surface of the magnetic pole tooth piece 341 or an oxide film formed on the surface. Therefore, it is possible to reduce the eddy current flowing through the connection portion 341b. Therefore, the eddy current flowing through the back yoke 3 can be further reduced.
  • the base portion 33 which is a part of the back yoke 3 can be formed of a nonmagnetic material, it can be formed of a material having a high Young's modulus, such as alumina. Thereby, since the rigidity of the entire back yoke 3 is increased, it is possible to reduce the bending due to the attractive force generated between the back yoke 3 and the mover 2. Furthermore, when the rigidity of the entire back yoke 3 is higher than the required rigidity of the base portion 33, the back yoke 3 can be made thinner.
  • FIG. 35 is a side view showing another configuration example of the back yoke 3.
  • the back yoke 3 includes a plurality of back yoke units 301 and a back yoke unit 302.
  • the back yoke unit 301 includes a base portion 35 and a magnetic pole tooth unit 36.
  • the back yoke unit 302 includes a base portion 35 and a magnetic pole tooth unit 37.
  • the difference between the back yoke unit 301 and the back yoke unit 302 is the difference between the magnetic pole tooth units included.
  • One end of the back yoke 3 is a back yoke unit 301 and the other end is a back yoke unit 302. Thereby, as shown in FIG. 35, it is possible to constitute the back yoke 3 having the magnetic pole teeth 31 at both ends.
  • FIG. 36A and 36B are perspective views showing a configuration example of the magnetic pole tooth units 36 and 37
  • FIG. 36A shows a configuration example of the magnetic pole tooth unit 36
  • FIG. 36B shows a configuration example of the magnetic pole tooth unit 37
  • the magnetic pole tooth unit 36 includes a plurality of magnetic pole teeth 31 formed in a comb shape and a fitted portion 36a.
  • the magnetic pole teeth 31 have a rectangular cross section.
  • the fitted portion 36a has an inverted trapezoidal cross section.
  • the magnetic pole tooth unit 36 is formed by laminating a plurality of magnetic pole tooth pieces (plate-like members) 361.
  • the stacking direction of the magnetic pole tooth pieces 361 is a direction crossing the arrangement direction of the magnetic pole teeth 31.
  • the magnetic pole tooth piece 361 includes a fitted portion 361a, a connecting portion 361b, and a plurality of protruding portions 361c.
  • the fitted portion 361a has an inverted trapezoidal cross section.
  • the fitted portion 361 a is a portion that becomes the fitted portion 36 a of the magnetic pole tooth unit 36.
  • the protrusion 361c has a rectangular cross section.
  • the plurality of protrusions 361 c are formed at an equal pitch in the longitudinal direction of the magnetic pole piece 361.
  • the protruding portion 361 c is a portion that becomes the magnetic pole teeth 31 of the magnetic pole tooth unit 36.
  • the connecting portion 361b is a portion located between the fitted portion 361a and the protruding portion 361c in the height direction of the magnetic pole tooth piece 361.
  • the connecting portion 361b connects the plurality of protruding portions 361c.
  • the magnetic pole tooth piece 361 is made of, for example, a silicon steel plate.
  • the connecting portion 361b is a plate-like member that constitutes a laminated portion that becomes a part of the base portion of the back yoke 3.
  • the protruding portion 361 c is a plate-like member that constitutes the magnetic pole teeth 31.
  • the magnetic pole tooth piece 361 is formed by integrating two plate-like members.
  • the magnetic pole tooth unit 37 is formed by laminating a plurality of magnetic pole tooth pieces 371.
  • the stacking direction of the magnetic pole tooth pieces 371 is a direction intersecting the arrangement direction of the magnetic pole teeth 31.
  • the magnetic pole tooth piece 371 has substantially the same configuration as the magnetic pole tooth piece 361.
  • the magnetic pole tooth piece 371 includes a fitted portion 371a, a connecting portion 371b, and a plurality of protruding portions 371c.
  • the connection portion 361b of the magnetic pole tooth piece 361 protrudes in the longitudinal direction at one end portion in the longitudinal direction.
  • the connecting portion 371b of the magnetic pole tooth piece 371 does not protrude in the longitudinal direction at both ends in the longitudinal direction. Since the other configuration of the magnetic pole tooth piece 371 is the same as that of the magnetic pole tooth piece 361, the description thereof is omitted.
  • FIG. 37 is a perspective view showing a configuration example of the base portion 35.
  • the base part 35 shown in FIG. 37 is inverted upside down from the base part 35 shown in FIG.
  • the base part 35 has a rectangular plate shape.
  • the base portion 35 is formed with a fitting groove 35a having a trapezoidal cross section.
  • the fitted portion 36a of the magnetic pole tooth unit 36 or the fitted portion 37a of the magnetic pole tooth unit 37 is fitted.
  • the length of the movable element 2 in the movable direction may be set according to the length of the magnetic pole tooth unit 36 or the magnetic pole tooth unit 37 in the movable direction.
  • the base 35 and the magnetic pole tooth unit 36 or the magnetic pole tooth unit 37 are fixed as follows. After the adhesive is applied to one or both of the fitting groove 35a and the fitted portion 361a or the fitted portion 371a, the fitting is performed. Thereby, the base part 33 and the magnetic pole tooth unit 36 or the magnetic pole tooth unit 37 are fixed.
  • the back yoke unit 301 or the back yoke unit 302 is formed. Then, by selecting the number of back yoke units 301 according to the stroke of the linear motor 1 and combining a plurality of back yoke units 301 and one back yoke unit 302, the back yoke 3 can be made as shown in FIG. It is formed.
  • the respective back yoke units 301 and 302 may be coupled by a known method, for example, the back surfaces of the back yoke units 301 and 302 may be fixed by a rectangular plate member.
  • the magnetic pole tooth units 36 and 37 are configured by laminating silicon steel plates (magnetic pole tooth pieces 361 and 371).
  • the linear motor 1 has a laminated structure in a part in the thickness direction from the connection portion with the magnetic pole teeth 31 of the back yoke 3. Therefore, the magnetic flux flowing between the adjacent magnetic pole teeth 31 to the connecting portions 361b and 371b is in a direction parallel to the surfaces of the magnetic pole tooth pieces 361 and 371.
  • the direction of the eddy current generated by the flow of the magnetic flux is a direction to penetrate the plate surfaces of the magnetic pole tooth pieces 361 and 371.
  • connection portions 361b and 371b are larger than that in the case of not using the laminated structure due to the gap between the surfaces of the magnetic pole teeth 361 and 371 or the oxide film formed on the surface. . Therefore, it is possible to reduce eddy currents flowing through the connection portions 361b and 371b. Therefore, the eddy current flowing through the back yoke 3 can be further reduced.
  • the base portion 35 which is a part of the back yoke 3 can be formed of a nonmagnetic material, it can be formed of a material having a high Young's modulus, such as alumina.
  • the rigidity of the entire back yoke 3 is increased, it is possible to reduce the bending due to the attractive force generated between the back yoke 3 and the mover 2.
  • the rigidity of the back yoke 3 as a whole is higher than the rigidity required for the material of the base portion 35, the back yoke 3 can be made thinner.
  • the stroke of the linear motor 1 can be changed by making the number of back yoke units 301 included in the back yoke 3 variable.
  • the back yoke units 301 and 302 each have five magnetic pole teeth 31, but the invention is not limited thereto.
  • the base portion 33 includes one magnetic pole tooth unit 36 or magnetic pole tooth unit 37, the present invention is not limited thereto.
  • the magnetic pole tooth unit 36 and the magnetic pole tooth unit 37 are each provided with the same number of magnetic pole teeth 31, but the present invention is not limited thereto.
  • FIG. 38A is a side view showing another configuration example of the back yoke 3.
  • the back yoke 3 includes a base portion 33, a plurality of magnetic pole tooth units 36 and a magnetic pole tooth unit 37.
  • the configurations of the magnetic pole tooth unit 36 and the magnetic pole tooth unit 37 are the same as those of the second modified example described above, and thus the description thereof is omitted.
  • FIG. 38B is a perspective view showing a configuration example of the base portion 33.
  • the base part 33 shown in FIG. 38B is upside down with respect to the base part 33 shown in FIG. 38A.
  • the base portion 33 is formed with a plurality of dovetail grooves (fitting grooves) 33a in a rectangular plate material.
  • the dovetail groove 33 a has a shape corresponding to the fitted portions 36 a and 37 a of the magnetic pole tooth units 36 and 37.
  • the back yoke 3 is fixed to the dovetail groove 33a of the base portion 33 with the fitting portions 36a and 37a of the magnetic pole tooth units 36 and 37, and then fixed with an adhesive or the like.
  • the base portion 33 is made of a nonmagnetic material.
  • the base portion 33 which is a part of the back yoke 3 can be made of a nonmagnetic material having a high Young's modulus, such as alumina. Thereby, since the rigidity of the entire back yoke 3 is increased, it is possible to reduce the bending due to the attractive force generated between the back yoke 3 and the mover 2.
  • the gap between the adjacent magnetic pole teeth 31 may be filled with a nonmagnetic material such as a resin mold.
  • the base plate 32 in the basic example described above may have a laminated structure in a part opposite to the direction in which the magnetic pole teeth 31 protrude from the root portion of the magnetic pole teeth 31 (thickness direction).
  • the magnetic pole teeth 31 (projections 31a and 31a) having a laminated structure may be engaged with the recesses 32a and 32a in the laminated structure portion of the base plate 32 having a partially laminated structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

小型の構成及び大きな推力の発生を達成しながら、吸引力を大幅に低減できるとともにディテント力を低減できるリニアモータを提供する。リニアモータは、複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、可動子に隙間をあけて対向配置した固定子としてのバックヨークと、可動子に隙間をあけてバックヨークとは反対側に対向配置した固定子としての電機子とを備え、複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有し、バックヨークは、可動子に対向する面に、電機子の磁極歯と可動子の可動方向にあって同じ位置に複数の磁極歯を有する。

Description

リニアモータ
 本発明は、可動子と固定子とを組み合わせて直線運動出力を取り出すリニアモータに関する。
 従来、X,Y移動には、回転型モータの出力をボールねじにて直線運動に変換する方法が用いられてきたが、移動速度が遅いため、直線運動出力を直接に取り出し可能なリニアモータの利用が進められている。リニアモータは、一般的には、複数の矩形状の永久磁石を有する可動子と、複数の磁極歯を有する電機子とを組み合わせて構成される。
 また、半導体製造装置の加工機におけるワイヤボンダ、チップマウンタでは高速な反復運動が必要であるため、質量が小さくて大きな加速度が得られるリニアモータの使用が好ましい。このようなリニアモータとして、小型化を図るために、例えば特許文献1または2に開示されているように、固定子としての電機子の全面に可動子の永久磁石が対向するのではなく、可動子における永久磁石の配列長さを電機子の長さよりも短くした構成をなすリニアモータが採用されている。
 この種のリニアモータは、複数の永久磁石を配列した磁石配列とこの磁石配列に一体化した平板状のバックヨークとを有する可動子と、複数の磁極歯夫々に駆動コイルを捲いた電機子とを隙間をあけて対向させた構成をなしている。駆動コイルへの通電によって、可動子(磁石配列及びバックヨーク)が移動し、可動子と電機子との長さの差がリニアモータの動作可能なストロークとなる。
 可動子を強磁性体で形成したバックヨークと磁石配列とで構成した場合、対向する固定子との間に吸引力が発生する。発生する吸引力により、可動子を所定方向に移動可能に支持するベアリングに大きな垂直抗力が働く。この垂直抗力は、ベアリングの短寿命化をもたらす。また、垂直抗力が働く方向は可動子の可動方向と交差する方向である。したがって、当該垂直抗力を考慮して、ベアリングの選定が必要となる。そのため、可動子による荷重に則したベアリングよりも、大型のベアリングを選定することになる。これは、リニアモータ全体の大型化につながる。
 そこで、上述のリニアモータとは異なり、磁石配列のみを可動子として機能させ、バックヨークは固定子として機能させるリニアモータが提案されている(特許文献3~5など)。
 この種のリニアモータでは、磁石配列と平板状のバックヨークとを分離して、電機子とは反対側で隙間をあけてバックヨークを磁石配列に対向させ、磁石配列のみを移動可能としている。磁石配列のみが移動し、バックヨークは電機子と同様に移動しない。磁石配列の長さは電機子の長さより短く、この長さの差がリニアモータの動作可能なストロークとなる。
特開2005-269822号公報 再公表特許WO2016/159034号公報 特開2005-117856号公報 特開2015-130754号公報 特開2005-184984号公報
 可動子は、対向する電機子の磁極歯面に強く吸引される。この際の吸引力Fは、下記式で表される。
   F=B2 S/2μ0
      (但し、B:電極子の磁極歯上の磁束密度、S:可動子と電機
子との対向有効面積、μ:真空の透磁率)
 磁石配列と平板状のバックヨークとを一体化させた可動子を有するリニアモータ(一体型リニアモータ:特許文献1または2など)では、この吸引力は、通常定格推力の数倍から十倍以上となる。よって、大きな吸引力によって可動子が撓むという問題がある。この結果、このような撓みが発生するリニアモータを利用する加工機の寸法精度が悪化する。また、可動子の剛性を大きくする必要があり、構成が大型化するという難点がある。
 過大な吸引力は、可動子を支持するリニアガイドにも及ぼされるので、この過大な吸引力に耐え得るようにリニアガイドは定格荷重が大きいものが必要となり、この点でも構成の大型化が避けられない。よって、上記のような吸引力を低減することが望まれる。但し、吸引力を低減させる際に、小型の構成と大きな推力の発生とを何れも実現できるようにしておく必要がある。
 また、一体型リニアモータでは、大きなエッジ効果によってコギングトルクが大きくなり、ディテント力が大きいという課題がある。
 磁石配列と平板状のバックヨークとを分離して磁石配列のみを移動させる構成のリニアモータ(分離型リニアモータ:特許文献3~5など)にあっては、磁石配列にはバックヨークと電機子との双方から吸引力が働くため、一体型リニアモータに比べて、全体の吸引力は小さくなる。しかしながら、分離型リニアモータでは、磁石配列に対向する磁極面積が、電機子側では対向する磁極歯の面積だけであるのに対して、バックヨーク側では全磁石の面積とほぼ同じ面積になる。よって、両隙間内での磁束密度が同じである場合には、この磁極面積の比率に応じて、バックヨーク側でより大きな吸引力が働くことになるため、全体的な吸引力の大幅な低減は望めない。
 そこで、磁石配列とバックヨークとの隙間を広くして隙間の磁束密度を小さくし、磁石配列と電機子との間の吸引力と同程度にまで磁石配列とバックヨークとの吸引力を低減させることが考えられる。しかしながら、磁石配列とバックヨークとの隙間を広くした場合には、電機子からの推力発生のための磁束密度も低下するため、推力が小さくなるという問題がある。したがって、これまでに提案された分離型リニアモータにあっては、可動子に働く吸引力を低減させるためには推力の低下が避けられないという課題がある。
 また、分離型リニアモータでは、前述したように、可動子(磁石配列)と固定子(電機子)との間の吸引力、及び可動子とバックヨークとの吸引力が、略同じ大きさで、逆向きとなるため、可動子に働く吸引力を低減させることが可能となる。しかし、バックヨークと磁石配列とを分離したことにより、動作時のバックヨークに発生する渦電流が増大することが明らかとなった。渦電流の増大は発熱につながる。このようなリニアモータは、環境温度を所定の範囲に保つ必要がある装置、例えば半導体製造装置におけるステージの駆動源には適していない。
 本発明は斯かる事情に鑑みてなされたものであり、小型の構成及び大きな推力の発生を達成しながら、吸引力を大幅に低減することが可能であるとともにディテント力を低減できるリニアモータを提供することを目的とする。
 本発明の他の目的は、磁石配列に働く吸引力を低減しつつ、渦電流を抑制可能なリニアモータを提供することにある。
 本発明に係るリニアモータは、複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、前記可動子に隙間をあけて対向配置した固定子としてのバックヨークと、前記可動子に隙間をあけて前記バックヨークとは反対側に対向配置した固定子としての電機子とを備えており、前記複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、前記電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有しており、前記バックヨークは、前記可動子に対向する面に、前記電機子の磁極歯と前記可動子の可動方向にあって同じ位置に複数の磁極歯を有しており、前記バックヨークにおける磁極歯の磁極面積は、前記電機子における磁極歯の磁極面積の0.9倍~1.1倍であり、前記可動子と前記バックヨークとの隙間は、前記可動子と前記電機子との隙間に等しいかまたは大きいことを特徴とする。
 本発明のリニアモータにあっては、複数の永久磁石を並べた磁石配列を有する可動子と、可動子に隙間をあけて対向配置したバックヨークと、バックヨークとは反対側で隙間をあけて可動子に対向配置した電機子とを有している。磁石配列が可動子として機能し、バックヨーク及び電機子は固定子として機能する。磁石配列における複数の矩形状の永久磁石夫々は厚さ方向に磁化されており、隣り合う永久磁石間でその磁化方向は逆向きである。電機子は、複数の磁極歯を等ピッチで有しており、各磁極歯には駆動コイルが捲かれている。バックヨークは、可動子に対向する面が平板状ではなく、複数の磁極歯が等ピッチで形成されている。バックヨークにおける磁極歯のピッチは、電機子の磁極歯のピッチに等しく、バックヨークにおける磁極歯の位置は、可動子(リニアモータ)の可動方向において電機子の磁極歯と同じ位置である。また、バックヨークの磁極歯の磁極面積は、電機子の磁極歯の磁極面積の0.9倍~1.1倍である。また、可動子とバックヨークとの隙間は、可動子と電機子との隙間以上である。
 本発明のリニアモータでは、バックヨークにも電機子と同じ位置に略同じ磁極面積の磁極歯を設けている。つまり、電機子からの駆動磁束が印加されるバックヨーク部分のみを可動子に近接させて、電機子の磁極歯に対向する部分以外で可動子からの隙間をあける構成としている。可動子に対向する電機子の磁極面積と、可動子に対向するバックヨークの磁極面積とが略等しくなるので、互いに効率良く相殺されて、全体の吸引力は大幅に小さくなる。したがって、可動子とバックヨークとの隙間を大きくしなくても吸引力の大幅な低減を実現できる。この際、可動子とバックヨークとの隙間を大きくする必要がないため、推力の低下が小さい。
 また、バックヨークへの磁極歯の形成による凹凸形状により、駆動磁束の剪断領域がバックヨークに生じるため、電機子だけでなくバックヨークも推力の発生に寄与する。この推力発生が、可動子との間隙(エアギャップ)が2箇所に増えたことに起因する推力の低下を補うことになり、全体としての大きな推力が得られる。したがって、大きな推力を維持しながら、磁石配列(可動子)に働く吸引力を大幅に低減できる。
 本発明のリニアモータでは、複数の磁極歯を等ピッチで有する電機子と、この電機子の磁極歯と可動方向にあって同じ位置に複数の磁極歯を有するバックヨークとの間に、可動子を配置した構成であるため、可動方向に垂直な方向での磁石配列のコギングが少なくなるため、可動子のディテント力の低減を図ることができる。
 バックヨークの磁極歯の磁極面積をあまり広くした場合には、周りから磁束を多く拾って吸引力が大きくなり、一方、バックヨークの磁極歯の磁極面積をあまり狭くした場合には、推力を得るための磁束が減って推力が低下する。よって、バックヨークの磁極歯の磁極面積を、電機子の磁極歯の磁極面積の0.9倍~1.1倍とする。
 電機子の磁極歯には駆動コイルが捲かれるため、電機子の磁極歯はあまり低く構成されず、電機子の磁極歯の高さはバックヨークにおける磁極歯の高さよりも高くなる。このためバックヨークでは磁極歯の高さが低いため磁極歯以外の部分にも磁束が発生して吸引力が電機子側より大きくなる傾向にある。よって、吸引力の効率的な相殺が行えるように、可動子とバックヨークとの隙間を、可動子と電機子との隙間に等しいかまたは大きくする。
 本発明に係るリニアモータは、前記バックヨークにおける前記磁極歯の高さは、該磁極歯のピッチの1/20倍以上2倍以下であることを特徴とする。
 本発明のリニアモータにあっては、バックヨークの磁極歯の高さをピッチに比べて小さくし過ぎた場合には、磁極歯(凹凸形状)を設けた効果が得られず、一方、磁極歯の高さをピッチに比べて大きくし過ぎた場合には、効果が変わらずに小型化に逆行する。よって、バックヨークにおける磁極歯の高さを、磁極歯のピッチの1/20倍以上2倍以下とする。
 本発明に係るリニアモータは、前記可動子の長さは、前記電機子の長さよりも短く、前記バックヨークの長さよりも短いことを特徴とする。
 本発明のリニアモータにあっては、可動子の長さが電機子及びバックヨーク夫々の長さよりも短い。よって、小型の構成であり、大きな加速度を確保できる。また、エッジ効果が小さくなるため、コギングトルクは小さくなって、ディテント力の低減を図れる。
 本発明に係るリニアモータは、前記可動子と前記バックヨークとの隙間の大きさ、及び/または、前記可動子と前記電機子との隙間の大きさは可変であることを特徴とする。
 本発明のリニアモータにあっては、可動子とバックヨークとの隙間の大きさ、及び/または、可動子と電機子との隙間の大きさが可変である。よって、使用時の駆動起磁力の大きさに応じて可動子とバックヨークとの隙間の大きさ及び/または可動子と電機子との隙間の大きさを調整することにより、吸引力をほぼ零にすることが可能である。
 本発明に係るリニアモータは、複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、前記可動子に隙間をあけて対向配置した固定子としてのバックヨークと、前記可動子に隙間をあけて前記バックヨークとは反対側に対向配置した固定子としての電機子とを備えており、前記複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、前記電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有しており、前記バックヨークは、前記可動子に対向する面に、前記電機子の磁極歯と前記可動子の可動方向にあって同じ位置に複数の磁極歯を有しており、前記バックヨークが有する前記磁極歯は、複数の板状部材を前記可動子の可動方向と交差する方向に積層してなることを特徴とする。
 本発明のリニアモータにあっては、磁極歯を積層構造とすることにより、可動子に働く吸引力を低減しつつ、渦電流を低減することが可能となる。
 本発明に係るリニアモータは、前記バックヨークは、前記磁極歯の根元部から前記磁極歯の突出する方向とは逆方向の一部が、複数の板状部材を前記磁極歯の積層方向に積層してなり、前記バックヨークの積層部分を構成する板状部材と、前記磁極歯を構成する板状部材とは、一体となっていることを特徴とする。
 本発明のリニアモータにあっては、バックヨークは、磁極歯との接続部分から厚さ方向の一部を積層構造とすることにより、更に渦電流を低減することが可能となる。また、バックヨークの積層部分を構成する板状部材と、磁極歯を構成する板状部材とは、一体となっているため、製造工数が削減される。
 本発明に係るリニアモータは、前記複数の板状部材は、積層面に絶縁処理を施してあることを特徴とする。
 本発明のリニアモータにあっては、複数の板状部材は、積層面に絶縁処理を施してあるので、更に渦電流を低減することが可能となる。
 本発明に係るリニアモータは、前記可動子は、前記磁石配列を保持する保持部材を有しており、前記保持部材は、前記複数の永久磁石それぞれが挿入される複数の孔を有していることを特徴とする。
 本発明のリニアモータにあっては、保持部材により磁石配列(複数の永久磁石)を保持している。よって、可動子(磁石配列)の剛性が大きくなるため、永久磁石の撓み、曲げなどの変形が生じにくくディテント力を低減できる。
 本発明に係るリニアモータは、前記可動子は、前記保持部材及び前記複数の永久磁石が接着固定される板状のベース材を有することを特徴とする。
 本発明のリニアモータにあっては、複数の永久磁石が保持部材の孔に挿入された状態で、磁石配列(複数の永久磁石)及び保持部材が板状のベース材に接着固定されている。よって、可動子(磁石配列)の剛性を更に高めてディテント力の更なる低減を図れるとともに、永久磁石の抜け落ちを防止できる。
 本発明のリニアモータでは、小型の構成と大きな推力の発生とを実現しながら、可動子(磁石配列)に働く吸引力を大幅に低減することができるとともに、可動子のディテント力を低減することができる。よって、大きな吸引力に伴う撓みによる変形を抑制でき、リニアモータが利用される装置の寸法精度の悪化を防止できる。吸引力を小さくできるため、可動子の剛性と可動子を支持する支持系の剛性とを小さくでき、小型化を図れるだけでなく、可動質量の軽量化によって加速度を改善できる。また、バックヨークに磁極歯構造を設けることにより、バックヨークからの推力が可動子に付加されるため、磁石配列とバックヨークとの間に隙間を設けたことによる推力の低下を最小限に抑えることができる。
 また、本発明のリニアモータでは、可動子(磁石配列)に働く吸引力を低減しつつ、渦電流を抑制することが可能である。
実施の形態1のリニアモータの構成を示す斜視図である。 実施の形態1のリニアモータの構成を示す側面図である。 実施の形態1のリニアモータにおける可動子の構成を示す平面図である。 実施の形態1のリニアモータにおける可動子の構成を示す分解斜視図である。 実施の形態1のリニアモータにおける磁束の流れを示す側面図である。 実施の形態1のリニアモータにおけるバックヨークの側面形状を示す図である。 実施の形態1のリニアモータにおける電機子の作製に用いる電機子素材を示す平面図である。 実施の形態1のリニアモータにおける電機子の巻き線を示す図である。 実施の形態1のリニアモータの構成を示す上面図である。 実施の形態1のリニアモータの構成を示す側面図である。 実施の形態1の一例のリニアモータの電気角に対する推力変動を示すグラフである。 実施の形態1の一例のリニアモータの推力特性を示すグラフである。 実施の形態1の一例のリニアモータの吸引力特性を示すグラフである。 第1従来例(磁石配列とバックヨークとを一体化して可動子とした構成)のリニアモータの構成を示す側面図である。 第1従来例のリニアモータの構成を示す上面図である。 第1従来例のリニアモータの構成を示す側面図である。 第2従来例(磁石配列のみを可動子とし平板状のバックヨークを固定子とした構成)のリニアモータの構成を示す側面図である。 第2従来例のリニアモータの構成を示す上面図である。 第2従来例のリニアモータの構成を示す側面図である。 第1従来例、第2従来例、及び実施の形態1の一例のリニアモータにおける平均推力を示すグラフである。 第1従来例、第2従来例、及び実施の形態1の一例のリニアモータにおける平均吸引力を示すグラフである 実施の形態1の他の例のリニアモータの推力特性を示すグラフである。 実施の形態1の他の例のリニアモータの吸引力特性を示すグラフである。 実施の形態1の更に他の例のリニアモータの推力特性を示すグラフである。 実施の形態1の更に他の例のリニアモータの吸引力特性を示すグラフである。 実施の形態2のリニアモータの構成例を示す斜視図である。 実施の形態2のリニアモータの構成例を示す側面図である。 バックヨークに含まれる磁極歯の構成例を示す斜視図である。 バックヨークに含まれるベース板の構成例を示す部分斜視図である。 バックヨークの部分斜視図である。 リニアモータの部分側面図である。 関連する技術によるリニアモータのジュール損失を示すグラフである。 実施の形態2の基本例におけるリニアモータのジュール損失を示すグラフである。 バックヨークの他の構成例を示す側面図である。 磁極歯ブロックの構成例を示す斜視図である。 ベース部の構成例を示す斜視図である。 リニアモータの部分側面図である。 実施の形態2の基本例におけるリニアモータのジュール損失を示すグラフである。 実施の形態2の第1変形例におけるリニアモータのジュール損失を示すグラフである。 バックヨークの他の構成例を示す側面図である。 磁極歯ユニットの構成例を示す斜視図である。 磁極歯ユニットの構成例を示す斜視図である。 ベース部の構成例を示す斜視図である。 バックヨークの他の構成例を示す側面図である。 ベース部の構成例を示す斜視図である。
 以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
 図1及び図2は、実施の形態1のリニアモータ1の構成を示す斜視図及び側面図である。図3及び図4は、実施の形態1のリニアモータ1における可動子2の構成例を示す平面図及び分解斜視図である。なお、図1及び図2では、可動子2のみは磁石の配置がわかるように可動方向に平行な方向からの断面を表している。
 リニアモータ1は、可動子2とバックヨーク3と電機子4とを含む。可動子2に隙間をあけてバックヨーク3が対向配置され、可動子2に隙間をあけてバックヨーク3とは反対側に電機子4が対向配置されている。バックヨーク3及び電機子4は固定子として機能する。
 長尺状をなす可動子2は、図4に示すように、複数の永久磁石21と保持枠22と固定板23とを含む。複数の永久磁石21の並置方向が、可動子2の長手方向となっている。各永久磁石21は矩形状をなす。各永久磁石21は例えば、Nd-Fe-B系の希土類磁石である。各永久磁石21は厚さ方向(図2の上下方向)に磁化されており、隣り合う永久磁石21,21同士でその磁化方向は逆向きである。即ち、磁石配列では、バックヨーク3側から電機子4側に向かう方向に磁化された永久磁石21と、電機子4側からバックヨーク3側に向かう方向に磁化された永久磁石21とが交互に配置されている。
 図4に示すように、保持枠22は矩形板状をなしている。保持枠22の厚さは、永久磁石21の厚さより小さい。保持枠22には矩形状の孔221が複数設けてある。保持枠22は、例えばSUS、アルミニウムなどの非磁性材料により構成される。孔221は永久磁石21と対応する形状としてある。各永久磁石21は孔221に嵌め込まれ、接着剤で保持枠22に固定される。保持枠22に固定された各永久磁石21が等ピッチで並置されるように、孔221は設けてある。また、永久磁石21を保持枠22に固定する際には、隣り合う永久磁石21、21同士の磁化方向が逆向きとなるように、孔221に嵌め込む。図3に示すように、各永久磁石21は角度θでスキュー配置としてある。
 複数の永久磁石21が保持枠22の孔221に挿入されて保持された状態で、保持枠22が固定板23に接着剤で固定されている。また、各永久磁石21の底面も固定板23に接着されている。固定板23は非磁性のSUS等で構成される。このように、磁石配列が保持枠22に保持されて固定板23に接着固定されているため、可動子2の剛性は高く、永久磁石21の抜け落ちも起こらない。固定板23がバックヨーク3に対向するように、バックヨーク3と電機子4との間隙に可動子2が配置される。なお、固定板23は必須ではなく、永久磁石21が保持枠22にて十分保持される場合には不要である。
 バックヨーク3及び電機子4の可動方向(図2の左右方向)における長さは略等しく、可動子2の可動方向(図2の左右方向)における長さは、これらのバックヨーク3及び電機子4における長さよりも短く、この長さの差がリニアモータ1の動作可能なストロークとなる。このような構成により、エッジ効果の低減を図っている。
 軟鋼製、好ましくは軟質磁性体(例えば、珪素鋼板)であるバックヨーク3の可動子2と対向しない側の面は平板状であるが、バックヨーク3の可動子2と対向する側の面は平板状ではなく、可動方向に等ピッチにて複数の矩形状の磁極歯31が形成されている。各磁極歯31の高さは、磁極歯31の形成ピッチの1/20倍以上2倍以下、好ましくは、1/10倍以上1倍以下である。例えば、各磁極歯31の高さは、磁極歯31の形成ピッチの半分程度である。
 電機子4では、軟質磁性体製であるコア41に可動方向に等ピッチにて軟質磁性体製の複数の矩形状の磁極歯42が一体的に設けられており、各磁極歯42に駆動コイル43が捲かれている。
 バックヨーク3における磁極歯31のピッチは、電機子4の磁極歯42のピッチに等しく、バックヨーク3における各磁極歯31の位置は、可動子2の可動方向において電機子4の各磁極歯42の位置と同じである。また、バックヨーク3の磁極歯31の可動子2に対向する磁極面の形状は、電機子4の磁極歯42の可動子2に対向する磁極面とほぼ同じ形の矩形状をなしており、前者の磁極面積は後者の磁極面積の0.9倍~1.1倍である。例えば、磁極歯31の磁極面と磁極歯42の磁極面とは、同一の矩形状であって、同一の面積を有する。また、可動子2とバックヨーク3との隙間は、可動子2と電機子4との隙間と同じかまたは大きい。例えば、後者の隙間は0.5mmであり、前者の隙間は0.5mm以上である。この場合の可動子2とバックヨーク3との隙間とは固定板23を構成として含む場合であっても、固定板23の厚さを含まず、可動子2そのものとバックヨーク3の間隔(最短距離)を示している。言い換えるとこの隙間は磁気的な隙間(磁気ギャップ)であり、非磁性体である固定板23の厚さを考慮する必要は無い。
 実施の形態1のリニアモータ1は、7個の永久磁石21と6個の磁極歯31及び磁極歯42が対向する7極6スロットを基本構成としている。図1及び図2に示す形態では、基本構成を2倍した14極12スロット構成を有している。
 実施の形態1のリニアモータ1では、バックヨーク3の可動子2に対向する側の面に、電機子4の磁極歯42と可動方向での同じ位置にほぼ同一形状の磁極面を有して磁極面積がほぼ同じである磁極歯31を形成している。よって、可動子2及びバックヨーク3間に生じる吸引力の大きさと、可動子2及び電機子4間に生じる吸引力の大きさとがほぼ等しくなり、図2の上下方向にあって両方の吸引力が効果的に相殺されるため、リニアモータ1全体として可動子2に働く吸引力は非常に小さくなる。このように、実施の形態1のリニアモータ1では、可動子2とバックヨーク3との隙間を大きくしなくても吸引力の大幅な低減を実現できる。よって、可動子2とバックヨーク3との隙間を大きくする必要がないため、推力の低下を起こすことがない。
 また、実施の形態1のリニアモータ1では、上述したように、複数の磁極歯42を等ピッチで有する電機子4と、この電機子4の磁極歯42と可動方向にあって同じ位置に複数の磁極歯31を有するバックヨーク3との間に、可動子2を配置した構成であるので、可動方向に垂直な方向での磁石配列のコギングトルクが少なくなるため、可動子2のディテント力の低減を図ることができる。更に、磁石配列を保持枠22で保持して固定板23に接着固定するようにしたので、可動子2の剛性を大きくできるため、永久磁石21の撓み、曲げなどの変形が生じにくく、この点でも可動子2のディテント力の低減に寄与する。
 実施の形態1のリニアモータ1では、バックヨーク3に複数の磁極歯31を形成しており、この可動子2に対向する凹凸形状により駆動磁束の剪断領域が発生するため、電機子4だけでなくバックヨーク3も推力の発生に寄与する。図5は、実施の形態1のリニアモータ1における磁束の流れを示す側面図である。図5において、矢印は磁束の流れを示している。リニアモータ1では、電機子4側における磁束の剪断によって推力が発生すると共に、バックヨーク3側における磁束の剪断によっても推力が発生することになり、リニアモータ1に生じる推力は、これらの両推力を合計したものとなる。なお、実施の形態1のような磁極歯31を形成せずにバックヨークが平板状であるようなリニアモータでは、バックヨーク側では推力が発生せず、電機子側における磁束の剪断による推力のみとなる。
 実施の形態1のリニアモータ1では、可動子2とバックヨーク3との間にも隙間を設けるので、この隙間によって推力が低下することが懸念される。しかしながら、上述したようにバックヨーク3側でも推力を発生できるため、隙間に起因する推力の低下を補えて大きな推力を実現できる。
 以上のことから、実施の形態1のリニアモータ1にあっては、大きな推力を維持しながら、可動子2に働く吸引力を大幅に低減することができる。したがって、可動子2には吸引力に伴う撓みがほとんど発生せず、リニアモータ1を用いた半導体製造装置での加工機などにおける寸法精度は非常に高くなる。
 また、実施の形態1のリニアモータ1では、吸引力を小さくできるため、剛性が小さい永久磁石21及び保持枠22を使用しても支障は生じない。よって、可動子2の小型化を図れると共に、可動子2の軽量化に伴って大きな加速度を実現することが可能である。また、可動子2の摩耗も少ないため、リニアモータ1の長寿命化を図れる。
 リニアモータでは、可動子の移動を平滑に行うために、後述するように可動子の側面にリニアガイドを設けることが一般的であるが、実施の形態1のリニアモータ1では吸引力が小さくなるので、リニアガイドも剛性が小さいものを使用でき、この点でもリニアモータの小型化と長寿命化に寄与できる。
 実施の形態1のリニアモータ1では、可動子2の長さをバックヨーク3及び電機子4の長さよりも短くして、更なる小型化及び軽量化と高速化とを図っている。
 以下、本発明者が作製した実施の形態1におけるリニアモータ1の具体的な構成と、作製したリニアモータ1の特性とについて説明する。
 まず、可動子2を作製した。Nd-Fe-B系の希土類磁石(B=1.395T、HcJ=1273kA/m)ブロックから、厚さ5mm、幅12mm、長さ82mmの矩形状の14個の永久磁石21を切り出した。切り出した永久磁石21を、厚さ方向に着磁した。次に、厚さ3mmのSUS板から図4に示すような保持枠22をワイアーカットにて切り出した。切り出した保持枠22を、厚さ0.2mmのSUS板からなる固定板23に接着固定した。そして、保持枠22の孔221に、隣り合う永久磁石21の磁化方向が互いに逆向きになるように、接着剤が塗布された14個の永久磁石21をスキュー角θ=3.2°を付与して嵌めこみ、永久磁石21を保持枠22及び固定板23に接着固定した。ここでは、可動子2の軽量化と磁石配列の大きな剛性との両立を実現できるように、永久磁石21の厚さ5mmに対して、保持枠22の厚さを3mmとした。
 なお、上記の例とは異なり、厚さ0.5mmのSUS板にプレス加工で孔を空けたものを6枚重ねてカシメ処理で固定する手法にて、保持枠22を作製するようにしても良い。この場合には、作製コストの低減を図れる。
 次いで、バックヨーク3を作製した。図6は、実施の形態1のリニアモータ1におけるバックヨーク3の側面形状を示す図である。
 軟鋼(JIS規格 G3101 種類記号 SS400材)から図6に示すような寸法を有するブロックを削り出して、18個の同一形状の磁極歯31(幅:6mm、高さ:3mm、長さ:82mm、磁極面積492mm)を等ピッチ(15.12mm)に有するバックヨーク3を作製した。
 次いで、電機子4を作製した。図7は、実施の形態1のリニアモータ1における電機子4の作製に用いる電機子素材を示す平面図である。図7に示すような形状をなす電機子素材44を0.5mm厚さの珪素鋼板(JIS規格 C2552 種類記号 50A800材)から164枚切り出し、切り出した164枚を重ねて側面をCOレーザにて溶融一体化させて、幅82mm、高さ31mm、長さ263.04mmのブロック体(コア41に18個の同一形状の磁極歯42(幅:6mm、高さ:25mm、長さ:82mm、磁極面積492mm)を等ピッチ(15.12mm)に有する構成)を得た。
 次に、このブロック体に巻き線を挿入した。図8は、実施の形態1のリニアモータ1における電機子4の巻き線を示す図である。電機子4の各磁極歯42のアーム部に、直径2mmのエナメル被覆導線を17回捲き付けたものをワニス含浸させて固定することにより、駆動コイル43とした。
 図8におけるU、V、Wは夫々3相交流電源のU相、V相、W相を示し、各相のコイルはすべて直列接続とした。Uコイル、Vコイル、Wコイルは上から見て電流が時計回りに流れるように結線し、-Uコイル、-Vコイル、-Wコイルは上から見て電流が反時計回りに流れるように結線して、電機子4を作製した。そして、6個ずつのUコイル、-Uコイル、Vコイル、-Vコイル、Wコイル、-Wコイルをスター結線して3相交流電源に接続した。
 次いで、作製したバックヨーク3及び電機子4を、両者の間隔が一定の6mmに保たれるように、治具を用いて固定した。なお、バックヨーク3と電機子4との隙間が6mmになるように固定したが、この隙間はリニアモータ1組み立て後に調整できる構造とした。次いで、可動子2の側面にリニアガイド(図示せず)を取り付けた後、バックヨーク3及び電機子4の隙間に、バックヨーク3及び電機子4夫々と所定の距離を隔てて、厚さ5mmの可動子2を挿入して、リニアモータ1を作製した。この際、可動子2とバックヨーク3の磁極歯31との隙間の距離、及び、可動子2と電機子4の磁極歯42との隙間の距離を、何れも0.5mmとした。また、リニアガイドと電機子4間には、吸引力を測定できるようにロードセルを設けた。
 バックヨーク3と電機子4との隙間を調整できる構造としているため、可動子2と電機子4(磁極歯42)との隙間の距離を一定とした状態で、可動子2とバックヨーク3(磁極歯31)との隙間の距離を任意に設定して可変とすることができる。なお、バックヨーク3及び電機子4の隙間への可動子2の挿入位置を調整することにより、可動子2とバックヨーク3(磁極歯31)との隙間の距離、及び、可動子2と電機子4(磁極歯42)との隙間の距離の比を所望の値に設定することも可能である。
 その他、電機子4と可動子2を支持するリニアガイドの間及び電機子4とバックヨーク3の間における隙間を調節する機構として、隙間調整ネジを挿入して高さを調整する機構や断面形状がテーパ状になっているシム板をネジにより挿入して高さを調節する機構が採用可能である。
 図9A及び9Bは、このようにして作製した実施の形態1の一例のリニアモータ1の構成を示す図であり、図9Aはその上面図、図9Bはその側面図である。図9Bにあって、白抜き矢符は永久磁石21の磁化方向を表し、実線矢符は、可動子2の可動方向を表している。また、このリニアモータ1の作製仕様の詳細は以下の通りである。
  磁極構成:7極6スロット
  永久磁石21の材質:Nd-Fe-B系希土類磁石(日立金属製NMX
-S49CH材)
  永久磁石21の形状:厚さ5.0mm,幅12mm,長さ82mm
  永久磁石21のピッチ:12.96mm
  永久磁石21のスキュー角:3.2°
  バックヨーク3の形状:厚さ6.0mm,幅90mm,長さ263.04mm
  バックヨーク3の材質:軟鋼(JIS規格 G3101 種類記号 SS400材)
  磁極歯31の形状:幅6.0mm,高さ:3.0mm,長さ:82mm
  磁極歯31のピッチ:15.12mm
  コア41の体格:高さ31mm,幅82mm,長さ263.04mm
  コア41の材質:珪素鋼板(JIS規格 C2552 種類記号 50A800材)
  磁極歯42の形状:幅6.0mm,高さ:25mm,長さ:82mm
  磁極歯42のピッチ:15.12mm
  駆動コイル43の形状:幅15.12mm,高さ23mm,長さ91.12mm
  駆動コイル43の巻き厚:4.06mm
  駆動コイル43の巻き線の径,巻き数:直径2mm,17ターン
  巻き線抵抗(1個):0.0189Ω
  可動子2の質量:516.6g
 上述したリニアモータ1では、可動子2の長さ(190mm)は、バックヨーク3及び電機子4の長さ(何れも263.04mm)よりも短い。バックヨーク3における磁極歯31のピッチ、電機子4における磁極歯42のピッチは、何れも15.12mmであって等しく、磁極歯31及び磁極歯42は、可動方向において同じ位置にある。
 磁石配列に対向する磁極歯31の磁極面の形状と、磁石配列に対向する磁極歯42の磁極面の形状とは、同一寸法の矩形状である。つまり、磁極歯31の幅(可動方向の寸法)及び磁極歯42の幅(可動方向の寸法)は、何れも6mmであって等しく、磁石配列に対向する磁極歯31の磁極面積及び磁石配列に対向する磁極歯42の磁極面積は、何れも492mmであって等しい。
 このようにして組み立てたリニアモータ1を推力測定用テストベンチに設置し、可動子2(磁石配列)の位置に同期した3相定電流電源により駆動して可動子2を移動させ、推力と吸引力とを測定した。
 図10は、実施の形態1の一例のリニアモータ1の電気角に対する推力変動を示すグラフである。この推力変動は、駆動起磁力(=駆動電流の大きさ×駆動コイル43の巻き数)を1200Aとした場合における可動子2位置に対する推力(U相、V相、W相の3相合成推力)の変化を表している。図10において、横軸は電気角[°]であり、縦軸は推力[N]である。また、図中aは電機子4による推力、図中bはバックヨーク3による推力、図中cは全体の推力(電機子4による推力とバックヨーク3による推力との加算推力)を夫々表している。図10に示すように、全域にわたってほぼ一定の大きな推力を得られていることが分かる。
 図11は、実施の形態1の一例のリニアモータ1の推力特性を示すグラフである。この推力特性は、駆動コイル43への印加電流を変化させた場合の特性を表している。図11において、横軸は駆動起磁力[A]であり、左縦軸は推力[N]、右縦軸は推力起磁力比[N/A]である。また、図中aは推力、図中bは推力起磁力比を夫々表している。このリニアモータ1では、推力比例限(推力起磁力比が10%低下)が駆動起磁力1200A時の1000Nである。
 図12は、実施の形態1の一例のリニアモータ1の吸引力特性を示すグラフである。この吸引力特性は、駆動コイル43への印加電流を変化させた場合の特性を表している。図12において、横軸は駆動起磁力[A]であり、縦軸は吸引力[N]である。なお、吸引力は、+側で可動子2が電機子4側へ吸引され、-側で可動子2がバックヨーク3側へ吸引されることを示している。駆動起磁力の増加に応じて吸引力も大きくなっていき、例えば駆動起磁力が1200Aである場合に、290Nほどの吸引力で可動子2がバックヨーク3側へ吸引されている。
 ところで、実施の形態1のリニアモータ1を従来のリニアモータと比較して評価するために、従来例として2種のリニアモータ(第1従来例及び第2従来例)を作製して、それらの特性(推力と吸引力)を測定した。
 まず、第1従来例の構成について説明する。図13は、第1従来例のリニアモータの構成を示す側面図である。第1従来例は、特許文献1または2に準じた構成を有するリニアモータ(一体型リニアモータ)である。
 第1従来例のリニアモータ50は、磁石配列52とバックヨーク53とを一体化させてなる可動子51と、可動子51に隙間をあけて対向配置した電機子54とを有している。第1従来例では、磁石配列52及びバックヨーク53を一体化させた構造物が可動子として機能し、電機子54は固定子として機能する。
 磁石配列52の構成は、前述した可動子2の磁石配列の構成と同様である。即ち、磁石配列52は、複数の矩形状の永久磁石55を、等ピッチで非磁性材の保持枠に保持固定して可動方向(図13の左右方向)に設置させて構成され、各永久磁石55は厚さ方向(図13の上下方向)に磁化されており、隣り合う永久磁石55,55同士でその磁化方向は逆向きである。第1従来例のリニアモータ50では、この磁石配列52が軟鋼製の平板状のバックヨーク53に接着している。また、電機子54の構成は、前述した電機子4の構成と同様であって、コア56に可動方向に等ピッチにて複数の磁極歯57が一体的に設けられており、各磁極歯57に駆動コイル58が捲かれている。
 図14A及び14Bは、このような第1従来例のリニアモータ50の構成を示す図であり、図14Aはその上面図、図14Bはその側面図である。図14Bにあって、白抜き矢符は永久磁石55の磁化方向を表し、実線矢符は可動子51の可動方向を表している。なお、可動子51と電機子54との隙間の大きさは、0.5mmまたは1mmとした。このリニアモータ50の作製仕様の詳細は以下の通りである。
  磁極構成:7極6スロット
  永久磁石55の材質:Nd-Fe-B系希土類磁石(日立金属製NMX
-S49CH材)
  永久磁石55の形状:厚さ5.0mm,幅12mm,長さ82mm
  永久磁石55のピッチ:12.96mm
  永久磁石55のスキュー角:3.2°
  バックヨーク53の形状:厚さ6.0mm,幅90mm,長さ190mm
  バックヨーク53の材質:軟鋼(JIS規格 G3101 種類記号 SS400材)
  コア56の体格:高さ31mm,幅82mm,長さ263.04mm
  コア56の材質:珪素鋼板(JIS規格 C2552 種類記号 50A800材)
  磁極歯57の形状:幅6.0mm,高さ:25mm,長さ:82mm
  磁極歯57のピッチ:15.12mm
  駆動コイル58の形状:幅15.12mm,高さ23mm,長さ91.12mm
  駆動コイル58の巻き厚:4.06mm
  駆動コイル58の巻き線の径,巻き数:直径2mm,17ターン
  巻き線抵抗(1個):0.0189Ω
  可動子51(磁石配列52+バックヨーク53)の質量:1321.01g
 可動子51(磁石配列52及びバックヨーク53の一体化構成)の可動方向(図13の左右方向)における長さは、電機子54の長さよりも短く、この長さの差がリニアモータ50の動作可能なストロークとなる。
 次に、第2従来例の構成について説明する。図15は、第2従来例のリニアモータの構成を示す側面図である。第2従来例は、特許文献3~6に準じた構成を有するリニアモータ(分離型リニアモータ)である。なお、図15では、磁石配列62のみは磁石の配置がわかるように可動方向に平行な方向からの断面を表している。
 第2従来例のリニアモータ60は、磁石配列62と、磁石配列62に隙間をあけて対向配置したバックヨーク63と、磁石配列62に隙間をあけてバックヨーク63とは反対側に対向配置した電機子64とを有している。磁石配列62のみが可動子として機能し、バックヨーク63及び電機子64は固定子として機能する。
 磁石配列62の構成は、前述した可動子2の磁石配列の構成と同様である。即ち、磁石配列62は、複数の矩形状の永久磁石65を、等ピッチで非磁性材の保持枠に保持固定して可動方向(図15の左右方向)に設置させて構成され、各永久磁石65は厚さ方向(図15の上下方向)に磁化されており、隣り合う永久磁石65,65同士でその磁化方向は逆向きである。軟鋼製であるバックヨーク63は、磁石配列62に対向しない側の面だけでなく、磁石配列62に対向する側の面も平板状であり、実施の形態1のリニアモータ1のような磁極歯は存在しない。また、電機子64の構成は、前述した電機子4の構成と同様であって、コア66に可動方向に等ピッチにて複数の磁極歯67が一体的に設けられており、各磁極歯67に駆動コイル68が捲かれている。
 図16A及び16Bは、このような第2従来例のリニアモータ60の構成を示す図であり、図16Aはその上面図、図16Bはその側面図である。図16Bにあって、白抜き矢符は永久磁石65の磁化方向を表し、実線矢符は磁石配列62(可動子)の可動方向を表している。なお、磁石配列62とバックヨーク63との隙間の大きさ、及び、磁石配列62と電機子64との隙間の大きさを、何れも0.5mmとした。また、このリニアモータ60の作製仕様の詳細は以下の通りである。
  磁極構成:7極6スロット
  永久磁石65の材質:Nd-Fe-B系希土類磁石(日立金属製NMX
-S49CH材)
  永久磁石65の形状:厚さ5.0mm,幅12mm,長さ82mm
  永久磁石65のピッチ:12.96mm
  永久磁石65のスキュー角:3.2°
  バックヨーク63の形状:厚さ6.0mm,幅90mm,長さ215mm
  バックヨーク63の材質:軟鋼(JIS規格 G3101 種類記号 SS400材)
  コア66の体格:高さ31mm,幅82mm,長さ263.04mm
  コア66の材質:珪素鋼板(JIS規格 C2552 種類記号 50A800材)
  磁極歯67の形状:幅6.0mm,高さ:25mm,長さ:82mm
  磁極歯67のピッチ:15.12mm
  駆動コイル68の形状:幅15.12mm,高さ23mm,長さ91.12mm
  駆動コイル68の巻き厚:4.06mm
  駆動コイル68の巻き線の径,巻き数:直径2mm,17ターン
  巻き線抵抗(1個):0.0189Ω
  可動子(磁石配列62)の質量:516.6g
 磁石配列62の可動方向(図15の左右方向)における長さは、電機子64の長さよりも短く、この長さの差がリニアモータ60の動作可能なストロークとなる。
 上述した第1従来例、第2従来例、及び実施の形態1の一例における特性(推力と吸引力)の比較について説明する。
 図17は、第1従来例、第2従来例、及び実施の形態1の一例のリニアモータにおける平均推力を示すグラフである。図17は、駆動起磁力を1200Aとした場合の平均推力[N]を表している。また、図18は、第1従来例、第2従来例、及び実施例のリニアモータにおける平均吸引力を示すグラフである。図18は、駆動起磁力を1200Aとした場合の平均吸引力[N]を表している。ここで、平均推力と平均吸引力は、U相電気角0°から360°の範囲において15°間隔で25点の推力と吸引力を測定(計算)し、その平均を算出したものである。
 図17及び図18にあって、Aは磁石配列52・バックヨーク53一体型の第1従来例にあって可動子51と電機子54との隙間を0.5mmとしたリニアモータ50(以下、リニアモータ50Aともいう)であり、Bは磁石配列52・バックヨーク53一体型の第1従来例にあって可動子51と電機子54との隙間を1mmとしたリニアモータ50(以下、リニアモータ50Bともいう)であり、Cは磁石配列62とバックヨーク63とを離隔させた第2従来例にあって磁石配列62とバックヨーク63との隙間、及び、磁石配列62と電機子64との隙間を何れも0.5mmとしたリニアモータ60であり、Dは可動子2(磁石配列)から離隔したバックヨーク3に磁極歯31を形成した実施の形態1の一例にあって可動子2とバックヨーク3との隙間、及び、可動子2と電機子4との隙間を何れも0.5mmとしたリニアモータ1である。
 第1従来例のリニアモータ50A(図中A)では、推力が最も大きくて1030Nあるが、吸引力は4200Nで推力の4倍程度の大きな数値となっている。この吸引力を低減する対策としてのリニアモータ50B(図中B)では、得られる推力の低下が著しく909Nになるのに対して吸引力はあまり低減せずに3360Nである。よって、十分な対策になっていないことが理解される。
 第2従来例のリニアモータ60(図中C)では、980Nの比較的大きい推力を得ることができるが、吸引力については1712Nもの大きな力によってバックヨーク63側に吸引されており、吸引力の十分な低減がなされていない。
 これに対して、実施の形態1の一例のリニアモータ1(図中D)では、リニアモータ50Aと遜色がない1000Nの大きな推力を得ることができている。また、吸引力についてはバックヨーク3側に290N(リニアモータ50Aの1/14程度)まで大幅に低減できている。したがって、実施の形態1の一例のリニアモータ1では、大きな推力を維持しながら、吸引力を大幅に低減できることが立証されている。
 ところで、実施の形態1の一例のリニアモータ1にあっては、図12にも示すように、吸引力の大きさは駆動起磁力の大きさによって変化する。よって、よく使用される推力領域(駆動起磁力)に合わせて、可動子2とバックヨーク3との隙間の大きさを調整するようにすれば、より吸引力を小さくできる。
 前述した実施の形態1の一例では、可動子2とバックヨーク3との隙間、及び、可動子2と電機子4との隙間を何れも0.5mmと等しくしたが、実施の形態1の他の例では、可動子2と電機子4との隙間は0.5mmのままで、可動子2とバックヨーク3との隙間を0.74mmとした。なお、他の構成は前述した一例と同じである。
 図19は、実施の形態1の他の例のリニアモータ1の推力特性を示すグラフであり、図20は、実施の形態1の他の例のリニアモータ1の吸引力特性を示すグラフである。図19において、横軸は駆動起磁力[A]であり、左縦軸は推力[N]、右縦軸は推力起磁力比[N/A]であり、aは推力、bは推力起磁力比を夫々表している。また、図20において、横軸は駆動起磁力[A]であり、縦軸は吸引力[N]である。
 他の例では、駆動起磁力が1200Aである場合に推力は978Nとなって、前述した一例に比べて少し落ちるが、吸引力については駆動起磁力が1200Aである場合に18Nしかなくてほぼ零を実現できている。これは、リニアガイドや可動子や周辺の構造物に吸引力による変形や寿命低下が無視できるレベルの吸引力である。よって、1200A近傍の駆動起磁力にて使用する場合には、他の例のリニアモータ1の方が、前述した一例と比べて、吸引力の低減という目的には適していることが分かる。
 また、実施の形態1の更に他の例として、可動子2と電機子4との隙間は0.5mmのままで、可動子2とバックヨーク3との隙間を0.66mmとしたリニアモータ1を作製した。なお、他の構成は前述した一例と同じである。
 図21は、実施の形態1の更に他の例のリニアモータ1の推力特性を示すグラフであり、図22は、実施の形態1の更に他の例のリニアモータ1の吸引力特性を示すグラフである。図21において、横軸は駆動起磁力[A]であり、左縦軸は推力[N]、右縦軸は推力起磁力比[N/A]であり、aは推力、bは推力起磁力比を夫々表している。また、図22において、横軸は駆動起磁力[A]であり、縦軸は吸引力[N]である。
 更に他の例では、駆動起磁力が1200Aである場合に推力は984Nとなって、前述した一例に比べて少し落ちるが、吸引力については駆動起磁力が600Aである場合に5Nしかなくてほぼ零を実現できている。よって、600A近傍の駆動起磁力にて使用する場合には、更に他の例のリニアモータ1が、吸引力を低減するためには最適であることが分かる。
 以上のことから、頻度が高い使用領域に応じて、可動子2とバックヨーク3との隙間の大きさを最適に設定することにより、吸引力を大幅に低減できてほぼ零が達成可能である。この結果、可動子2(磁石配列)の撓みに起因した寸法精度の悪化、リニアガイドへの過重負荷による寿命の低下などを防止することができる。
 なお、上述した形態では、可動子2と電機子4との隙間の大きさを固定して可動子2とバックヨーク3との隙間の大きさを変動させる例について説明したが、これとは逆に、可動子2とバックヨーク3との隙間の大きさを固定して可動子2と電機子4との隙間の大きさを変動させる例、バックヨーク3と電機子4との隙間の大きさを固定して可動子2の位置を変動させる例などにより、零に近い吸引力を実現することも可能である。
 また、上述した形態では、可動子2が電機子4よりも短い構成のリニアモータ1について説明したが、これとは逆に、可動子が電機子よりも長い構成のリニアモータについても、本発明の特徴(バックヨークに磁極歯を形成)は適用可能である。
(実施の形態2の基本例)
 図23及び図24は実施の形態2のリニアモータ1の構成例を示す斜視図及び側面図である。なお、図23及び図24では、可動子2のみは磁石の配置がわかるように可動方向に平行な方向からの断面を表している。
 実施の形態2のリニアモータ1は、実施の形態1と同様に、可動子2とバックヨーク3と電機子4とを含み、バックヨーク3及び電機子4が固定子として機能する。
 なお、実施の形態2のリニアモータ1における可動子2及び電機子4の構成は、前述した実施の形態1のリニアモータ1における可動子2及び電機子4の構成と同じであるので。その説明は省略する。
 実施の形態2のリニアモータ1では、バックヨーク3の構成が、実施の形態1のリニアモータ1と異なっている。バックヨーク3は磁極歯31及びベース板32を含む。ベース板32は矩形板状をなしている。磁極歯31はベース板32に固定されている。磁極歯31は、その一部分がベース板32から突出するように固定されている。突出している部分の形状は直方体状である。複数の磁極歯31はベース板32の長手方向に沿って、等ピッチで配置されている。磁極歯31は例えば、後述するように積層珪素鋼板により形成する。ベース板32は例えば、SS400などの炭素鋼により形成する。
 バックヨーク3と電機子4とは、間隙を隔てて対向配置される。そして、当該間隙に可動子2が配置される。可動子2の第一の面は隙間をあけてバックヨーク3と対向している。可動子2の第一の面と対向する第二の面は隙間をあけて電機子4と対向する。
 図24に示すように、バックヨーク3及び電機子4の可動方向(図24の左右方向)における長さは略等しい。また、バックヨーク3における磁極歯31のピッチは、電機子4の磁極歯42のピッチに等しい。バックヨーク3における各磁極歯31の位置は、可動子2の可動方向において電機子4の各磁極歯42の位置と同じである。また、磁極歯31の磁極面と磁極歯42の磁極面とは、同一の矩形状であって、同一の面積を有する。また、可動子2とバックヨーク3との隙間は、可動子2と電機子4との隙間とほぼ同じである。
 可動子2において、隣り合う永久磁石21、21の磁化方向が逆向きとなっている。可動子2をバックヨーク3と電機子4との間隙に配置すると、バックヨーク3側から電機子4側に向かう方向に磁化された永久磁石21と、電機子4側からバックヨーク3側に向かう方向に磁化された永久磁石21とが交互に配置される構成となる。
 リニアモータ1の動作時には、バックヨーク3の磁極歯31と可動子2の永久磁石21との間に吸引力が発生する。また、電機子4の磁極歯42と可動子2の永久磁石21との間にも吸引力が発生する。可動子2に働く2つの吸引力は互いに反対方向である。磁極歯31の磁極面と磁極歯42の磁極面とを、同一の矩形状また同一の面積とする等磁気回路を調整することで、吸引力の大きさは略等しくすることができる。それによって、磁極歯31と永久磁石21との間に発生する吸引力、及び磁極歯42と永久磁石21との間に発生する吸引力をバランスさせることができる。すなわち、2つの吸引力を互いに打ち消すことができる。なお、加工誤差、組立誤差などの要因で、2つの吸引力をバランスさせることが困難な場合、磁極歯31と永久磁石21との間隔、または磁極歯42と永久磁石21との間隔を調整して、2つの吸引力をバランスさせる。
 以上のように、実施の形態2のリニアモータ1は、前述した実施の形態1のリニアモータ1と同様な構成を有しているため、実施の形態2のリニアモータ1にあっても、実施の形態1のリニアモータ1と同じく、大きな推力を維持しながら、可動子2に働く吸引力を大幅に低減することができる。また、実施の形態2のリニアモータ1にあっても、実施の形態1のリニアモータ1と同じく、可動子2のディテント力の低減を図ることができる。
 以下、実施の形態2の特徴であるバックヨーク3の構成について、詳細を説明する。図25はバックヨーク3に含まれる磁極歯31の構成例を示す斜視図である。磁極歯31は断面T字状をなしておりその底部(図25における下側)から短手方向に突出した2つの突出部31a、31aを有している。(このため図25においてはH字状を横にした形状としてある)突出部31a、31aは後述のアリ溝321の凹部32a、32aと係合する部位である。リニアモータ1の動作時において、磁極歯31の短手方向は可動子2の可動方向に平行な方向となる。
 磁極歯31は磁極片311を積層してなる。磁極片311は矩形板状の一部を切り欠いて形成した係合用の突出部311aを含む。磁極片311は軟磁性を有する珪素鋼等の薄板により形成する。積層された磁極片311同士の固定は、熱溶着やカシメなどにて行う。熱溶着の場合は、例えば、まず、磁極片311の表面に熱硬化性の接着剤を塗布するか熱溶着性の塗膜を付したものを、積層した後に板面に圧力を掛けながら加熱する。加熱により磁極片311同士が固定される。
 なお、磁極歯31を構成する磁極片311の板厚を薄くするほど、すなわち磁極片311の枚数を増やすほど渦電流損は低減する。強度や組み立ての手間を考慮すると、磁極片311の板厚は0.2~0.5mm程度とすることが望ましい。磁極歯31を構成する磁極片311の枚数や板厚は、求められる仕様に応じて適宜設計すれば良い。
 図26はバックヨーク3に含まれるベース板32の構成例を示す部分斜視図である。図26は説明の都合上、図24及び図25と上下方向を逆にして描いている。ベース板32は短手方向に沿ってアリ溝321が設けてある。アリ溝321は磁極片311の突出部311a(磁極歯31の突出部31a)に対応した形状としてある。アリ溝321は突出部311a(突出部31a)に対応する凹部32aを有している。図24及び図25に示すように、ベース板32には複数のアリ溝321が形成してある。複数のアリ溝321は、可動子2の可動方向に沿って、等ピッチで設けてある。複数のアリ溝321の配列方向は、リニアモータ1動作時において、可動子2の可動方向に平行な方向である。
 図27はバックヨーク3の部分斜視図である。図26と同様に、説明の都合上、図24及び図25と上下方向を逆にして描いている。バックヨーク3において、磁極歯31の突出部31aはアリ溝321に係合している。
 磁極歯31のベース板32への固定は、例えば次のように行う。アリ溝321と磁極歯31片方あるいは両方に接着剤を塗布する。治具等を用い、アリ溝321に磁極歯31をはめ込み位置決めをする。接着剤が硬化したら治具を取り外す。なお、固定方法はこれに限らない。磁極歯31のピッチや、磁極歯31のベース板32から突出量が所定の誤差範囲内に収まるように固定できるのであれば、他の方法でもよい。
 リニアモータ1は、電機子4の駆動コイル43に3相交流を印加することにより、電機子4の磁極歯42、可動子2の永久磁石21及びバックヨーク3の磁極歯31を流れる磁束が発生する。発生した磁束による可動子2と電機子4との間に発生する吸引力、及び可動子2とバックヨーク3との間に発生する吸引力が可動子2の推力となり、可動子2が移動する。
 次に渦電流の低減について説明する。図28はリニアモータ1の部分側面図である。図28において、磁束の流れの一例を実線の矢印で、渦電流の一例を点線の矢印で示す。図28に示すように、磁極歯31において、磁束は紙面上下方向に流れる。すなわち、磁極歯31を構成する磁極片311の板面に平行な方向に流れる。渦電流は磁束の流れる方向と垂直な平面上で磁束の変化を妨げる方向に流れようとする。すなわち、図28に示す場合では、磁束の流れる方向に対して直交し反時計回りに流れようとする。この渦電流の方向は、磁極歯31を構成する磁極片311の板面を貫こうとする方向である。しかし、磁極歯31は複数の磁極片311を積層しており、磁極片311間の電気抵抗が大きいため、渦電流を低減することが可能となる。更に、磁極片311の板面(表面)に絶縁被膜を施した場合には、磁極片311間で流れる渦電流を更に低減することが可能となる。
 図29A及び29Bは渦電流によるジュール損失の一例を示すグラフであって、図29Aは関連する技術によるリニアモータのジュール損失を示すグラフであり、図29Bは実施の形態2の基本例におけるリニアモータ1のジュール損失を示すグラフである。関連する技術によるリニアモータと実施の形態2におけるリニアモータとの構成の違いは次のとおりである。前者は磁極歯を積層構造としていない。例えば、前者における磁極歯は軟磁性体のブロックである。またはベース板32と磁極歯31が一体として軟磁性体で構成されていても良い。それに対して、後者は磁極歯31が積層構造となっている。それ以外の条件、リニアモータの構造、寸法、及びコイルの巻き数、並びに駆動条件は同一とした。例えばコイルの駆動電流70.6Aであり可動子の移動速度は1000mm/sとした。
 図29A及び29Bの横軸は可動子2の位置を示す電気角である。横軸の単位は度(°)である。図29A及び29Bの縦軸は渦電流によるジュール損失である。単位はワット(W)である。バックヨークと付したグラフはバックヨークでのジュール損失を示す。図29Aに示すように、磁極歯を積層構造としない関連する技術によるリニアモータでは、バックヨークでのジュール損失が80W前後であるのに対して、磁極歯31を積層構造とした実施の形態2のリニアモータ1では、バックヨーク3でのジュール損失が50W前後まで低減している。
 図29A及び29Bにおいて、U、V、Wと付したグラフはそれぞれコイルU相、V相、W相で発生する通電によるジュール損失を絶対値で示したものである。なお、図29A及び29Bにおいてコイルへの通電によるコイルでのジュール損失は同じであるが、バックヨークでのジュール損失に大きな違いが出ている。本結果は、同一寸法形状下において磁極歯を積層構造としない場合に対して積層構造とした場合で渦電流によるジュール損失を低減できることを示す例であって、リニアモータの大きさやリニアモータの速度によって渦電流によるジュール損失の絶対値は変わってくるが同一速度における両者の効果の比率は維持される。
 実施の形態2におけるリニアモータ1は、次のような効果を奏する。磁極歯31は珪素鋼板により形成した磁極片311を積層して構成してある。そのため、渦電流の方向は板面を貫こうとする方向となる。この際、磁極片311表面の隙間や磁極片同士の接触抵抗、磁極片311表面に形成される酸化皮膜などにより、磁極歯31における渦電流方向の電気抵抗は、磁極歯31を軟磁性体ブロックで形成した場合と比べて、大きくなっている。したがって、磁極歯31に流れる渦電流を低減することが可能となる。なお、磁極片311の表面(積層面)を、絶縁物質の被膜を形成するなどをした絶縁処理を施してもよい。絶縁処理を施した場合には、各珪素鋼板間で渦電流をより低減することが可能になる。
 また、実施の形態2においては、バックヨーク3が有する磁極歯31を積層構造とした。例えばバックヨーク全体を積層鋼板で形成した場合には、剛性が下がることが懸念される。その場合は可動子2との間で発生する吸引力により、バックヨーク3に撓みが生じるおそれがある。しかし、基本例では、磁極歯31のみを積層構造とし、磁極歯31が固定されるベース板32は積層構造としない。そのため、バックヨーク3の撓みは関連する技術(磁極歯31とベース板32を軟磁性体でそれぞれ形成した場合や、磁極歯31とベース板32を軟質磁性体により一体で形成した場合)による構成と比較しても、軽微である。
(実施の形態2の第1変形例)
 第1変形例は、バックヨーク3を構成するベース板の一部を積層構造とする形態に関する。図30はバックヨーク3の他の構成例を示す側面図である。バックヨーク3はベース部33及び磁極歯ブロック34を含む。磁極歯ブロック34は被嵌合部34a及び複数の磁極歯31を含む。
 図31は磁極歯ブロック34の構成例を示す斜視図である。磁極歯ブロック34は複数の磁極歯片(板状部材)341を積層してなる。磁極歯片341の積層方向は、磁極歯31の配列方向に交差する方向である。磁極歯片341は被嵌合部341a、接続部341b及び複数の突出部341cを含む。被嵌合部341aは断面逆台形状をなす。被嵌合部341aは磁極歯ブロック34の被嵌合部34aとなる部分である。突出部341cは断面矩形状をなす。複数の突出部341cは、磁極歯片341の長手方向に等ピッチで形成してある。突出部341cは磁極歯ブロック34の磁極歯31となる部分である。接続部341bは磁極歯片341の高さ方向で被嵌合部341aと突出部341cとの間に位置する部分である。接続部341bは複数の突出部341cを接続している。磁極歯片341は例えば、珪素鋼板で形成する。接続部341bは、バックヨーク3のベース部分の一部となる積層部分を構成する板状部材である。突出部341cは磁極歯31を構成する板状部材である。磁極歯片341は、2つの板状部材を一体としたものである。
 図32はベース部33の構成例を示す斜視図である。図32に示すベース部33は図30に示すベース部33とは、上下を反転している。ベース部33は矩形板状をなす。ベース部33は断面が台形状の嵌合溝33aが形成してある。
 ベース部33の嵌合溝33aには磁極歯ブロック34の被嵌合部34aが嵌合する。なおベース部33において、可動子2の可動方向の長さは、磁極歯ブロック34の可動方向の長さに合わせて設定すれば良い。磁極歯ブロック34のベース部33への固定は次のように行う。嵌合溝33aまたは被嵌合部34aの片方または両方に接着剤を塗布した後に、嵌合し行う。それにより、ベース部33と磁極歯ブロック34とは、固定される。以上の結果、バックヨーク3が形成される。
 次に渦電流の低減について説明する。図33はリニアモータ1の部分側面図である。図33において、磁束の流れの一例を実線の矢印で、渦電流の一例を点線の矢印で示す。磁極歯31における渦電流の低減については、前述した基本例と同様であるから、説明を省略する。ここでは、磁極歯ブロック34の接続部341bでの渦電流の低減について説明する。図33に示すように、接続部341bにおいて、磁束は紙面左右方向に流れる。すなわち、磁極歯ブロック34を構成する磁極歯片341の板面に平行な方向に流れる。渦電流は磁束の流れる方向と垂直な平面上で磁束の変化を妨げる方向に流れようとする。すなわち、図33に示すように、磁束の流れる方向を軸として反時計回りに流れようとする。この渦電流の方向は、磁極歯ブロック34を構成する磁極歯片341の板面を貫こうとする方向である。しかし、磁極歯ブロック34は複数の磁極歯片341を積層し、磁極歯片341間の電気抵抗は大きくなっているため、渦電流を低減することが可能となる。更に、板面に絶縁被膜が施した場合には、磁極歯片341間で流れる渦電流を更に低減することが可能となる。
 更に、接続部341bの高さについて、説明する。図33に示すように、接続部341bの高さをdとする。隣接する磁極歯31間を流れる磁束は、紙面左右方向に流れる。磁束が流れる経路は最短となるような経路を辿る。そのため、磁極歯31から一定以上の距離が離れた部分には磁束は流れない。したがって、接続部341bの高さdは、紙面左右方向の磁束を十分に流せる値とすればよい。また、磁束が流れないベース部33については非磁性材で形成することが可能である。例えば、高剛性でヤング率が大きいアルミナなどにより、ベース部33を形成する。あるいは非磁性ステンレスやアルミニウム合金等が使用可能である。
 図34A及び34Bは渦電流によるジュール損失の一例を示すグラフであり、図34Aは基本例におけるリニアモータ1のジュール損失を示すグラフである。図34Aは図29Bを再掲したものである。図34Bは第1変形例におけるリニアモータ1のジュール損失を示すグラフである。基本例は磁極歯31が積層構造となっているのに対し、第1変形例においては磁極歯及びベース板の一部が積層構造となっている。それ以外の条件、リニアモータの構造、寸法、及びコイルの巻き数、並びに駆動条件は同一とした。例えばコイルの駆動電流70.6Aであり可動子の移動速度は1000mm/sとした。
 図34Aに示すように、基本例におけるリニアモータ1では、バックヨーク3のジュール損失が50W前後であるのに対して、第1変形例のリニアモータ1では、図34Bに示すように、バックヨーク3のジュール損失が2.5W前後まで低減している。接続部341bが積層構造であるため、接続部341bに流れる磁束による渦電流も低減されるからである。図34A及び34Bにおいて、U、V、Wと付したグラフはそれぞれコイルU相、V相、W相で発生する通電によるジュール損失を絶対値で示したものである。なお、図34A及び34Bにおいてコイルへの通電によるコイルでのジュール損失は同じであるが、バックヨークでのジュール損失に大きな違いが出ている。本結果は、同一寸法形状下において磁極歯のみを積層構造とした場合と、磁極歯とバックヨークの一部を積層構造とした場合では、後者の方が渦電流によるジュール損失を低減できることを示す例であって、リニアモータの大きさやリニアモータの速度によって渦電流によるジュール損失の絶対値は変わってくるが同一速度における両者の効果の比率は維持される。
 第1変形例におけるリニアモータ1では、磁極歯ブロック34は珪素鋼板(磁極歯片341)を積層して構成してある。リニアモータ1は、磁極歯31に加えて、バックヨーク3の磁極歯31との接続部分から厚さ方向の一部を積層構造としてある。そのため、隣接する磁極歯31間を接続部341bに流れる磁束は磁極歯片341の表面に平行な方向である。磁束の流れにより発生する渦電流の方向は磁極歯片341の板面を貫こうとする方向となる。しかし、磁極歯片341表面の隙間やその表面に形成される酸化皮膜などにより、接続部341bにおける渦電流方向の電気抵抗は、積層構造としない場合と比べて、大きくなっている。したがって、接続部341bに流れる渦電流を低減することが可能となる。よって、バックヨーク3に流れる渦電流を更に低減することが可能となる。
 また、第1変形例においては、基本例1が奏する前述した効果に加えて、次のような効果を奏する。バックヨーク3の一部であるベース部33を非磁性材料で形成することが可能であるから、ヤング率の高い材料、例えばアルミナで構成することが可能となる。それにより、バックヨーク3全体の剛性が増加するので、可動子2との間で生じる吸引力による撓みを軽減することが可能なる。更にまた、ベース部33の材質によりバックヨーク3全体の剛性が求められる剛性を上回っている場合には、バックヨーク3を薄くすることが可能となる。
(実施の形態2の第2変形例)
 第2変形例はバックヨーク3を構成するベース板32の一部を積層構造とする形態に関する。図35はバックヨーク3の他の構成例を示す側面図である。バックヨーク3は複数のバックヨークユニット301及びバックヨークユニット302を含む。バックヨークユニット301はベース部35及び磁極歯ユニット36を含む。バックヨークユニット302はベース部35及び磁極歯ユニット37を含む。バックヨークユニット301とバックヨークユニット302との違いは、含まれる磁極歯ユニットの違いである。バックヨーク3の一端部をバックヨークユニット301とし、他端部をバックヨークユニット302とする。それにより、図35に示すように、両端部に磁極歯31を備えるバックヨーク3を構成することが可能となっている。
 図36A及び36Bは磁極歯ユニット36、37の構成例を示す斜視図であり、図36Aは磁極歯ユニット36の構成例を示し、図36Bは磁極歯ユニット37の構成例を示している。磁極歯ユニット36は櫛歯状に形成された複数の磁極歯31及び被嵌合部36aを含む。磁極歯31は断面矩形状をなしている。被嵌合部36aは断面逆台形状をなしている。
 磁極歯ユニット36は複数の磁極歯片(板状部材)361を積層してなる。磁極歯片361の積層方向は、磁極歯31の配列方向に交差する方向である。磁極歯片361は被嵌合部361a、接続部361b及び複数の突出部361cを含む。被嵌合部361aは断面逆台形状をなす。被嵌合部361aは磁極歯ユニット36の被嵌合部36aとなる部分である。突出部361cは断面矩形状をなす。複数の突出部361cは、磁極歯片361の長手方向に等ピッチで形成してある。突出部361cは磁極歯ユニット36の磁極歯31となる部分である。接続部361bは磁極歯片361の高さ方向で被嵌合部361aと突出部361cとの間に位置する部分である。接続部361bは複数の突出部361cを接続している。磁極歯片361は例えば、珪素鋼板で形成する。接続部361bは、バックヨーク3のベース部分の一部となる積層部分を構成する板状部材である。突出部361cは磁極歯31を構成する板状部材である。磁極歯片361は、2つの板状部材を一体としたものである。
 磁極歯ユニット37は複数の磁極歯片371を積層してなる。磁極歯片371の積層方向は、磁極歯31の配列方向に交差する方向である。磁極歯片371は磁極歯片361とほぼ同様な構成である。以下では、磁極歯片371が磁極歯片361と異なる点を主として説明する。磁極歯片371は被嵌合部371a、接続部371b及び複数の突出部371cを含む。磁極歯片361の接続部361bは長手方向の一方の端部において、長手方向に飛び出ている。それに対して、磁極歯片371の接続部371bは長手方向の両端部において、長手方向に飛び出てはいない。磁極歯片371のその他の構成は、磁極歯片361と同様であるから説明を省略する。
 図37はベース部35の構成例を示す斜視図である。図37に示すベース部35は図35に示すベース部35とは、上下を反転している。ベース部35は矩形板状をなす。ベース部35は断面が台形状の嵌合溝35aが形成してある。
 ベース部35の嵌合溝35aには磁極歯ユニット36の被嵌合部36a、または磁極歯ユニット37の被嵌合部37aが嵌合する。なおベース部35において、可動子2の可動方向の長さは、磁極歯ユニット36あるいは磁極歯ユニット37の可動方向の長さに合わせて設定すれば良い。ベース部35と磁極歯ユニット36または磁極歯ユニット37との固定は、次のように行う。嵌合溝35aと被嵌合部361aまたは被嵌合部371aの片方あるいは両方に接着剤を塗布した後に、嵌合し行う。それにより、ベース部33と磁極歯ユニット36または磁極歯ユニット37とは、固定される。以上の結果、バックヨークユニット301またはバックヨークユニット302が形成される。そして、リニアモータ1のストロークに応じて、バックヨークユニット301の個数を選択し、複数のバックヨークユニット301及び1つのバックヨークユニット302を結合することにより、図35に示すようにバックヨーク3が形成される。それぞれのバックヨークユニット301及び302は、公知の方法で結合、例えばバックヨークユニット301及び302の背面を矩形板状部材にて固定すればよい。
 第2変形例におけるリニアモータ1では、磁極歯ユニット36及び37は珪素鋼板(磁極歯片361及び371)を積層して構成してある。リニアモータ1は、磁極歯31に加えて、バックヨーク3の磁極歯31との接続部分から厚さ方向の一部を積層構造としてある。そのため、隣接する磁極歯31間を接続部361b及び371bに流れる磁束は磁極歯片361及び371の表面に平行な方向である。磁束の流れにより発生する渦電流の方向は磁極歯片361及び371の板面を貫こうとする方向となる。しかし、磁極歯片361及び371表面の隙間やその表面に形成される酸化皮膜などにより、接続部361b及び371bにおける渦電流方向の電気抵抗は、積層構造としない場合と比べて、大きくなっている。したがって、接続部361b及び371bに流れる渦電流を低減することが可能となる。よって、バックヨーク3に流れる渦電流を更に低減することが可能となる。
 また、第2変形例においては、基本例1が奏する前述した効果に加えて、次のような効果を奏する。バックヨーク3の一部であるベース部35を非磁性材料で形成することが可能であるから、ヤング率の高い材料、例えばアルミナで構成することが可能となる。それにより、バックヨーク3全体の剛性が増加するので、可動子2との間で生じる吸引力による撓みを軽減することが可能なる。更にまた、ベース部35の材質によりバックヨーク3全体の剛性が求められる剛性を上回っている場合には、バックヨーク3を薄くすることが可能となる。また、第2変形例においては、バックヨーク3に含めるバックヨークユニット301の個数を可変とすることにより、リニアモータ1のストロークを変えることが可能となる。
 なお、バックヨークユニット301、302がそれぞれ備える磁極歯31は5本としたが、それに限らない。ベース部33は1つの磁極歯ユニット36または磁極歯ユニット37を備えるとしたが、それに限らない。磁極歯ユニット36及び磁極歯ユニット37はそれぞれ同じ個数の磁極歯31を備えるとしたが、それに限らない。
(実施の形態2の第3変形例)
 第3変形例は第2変形例において、ベース部35を一枚板にした構成に関する。図38Aはバックヨーク3の他の構成例を示す側面図である。バックヨーク3はベース部33、複数の磁極歯ユニット36及び磁極歯ユニット37を含む。磁極歯ユニット36及び磁極歯ユニット37の構成は、上述の第2変形例と同様であるから、説明を省略する。
 図38Bはベース部33の構成例を示す斜視図である。図38Bに示すベース部33は図38Aに示すベース部33とは上下を反転している。ベース部33は矩形状の板材に複数のアリ溝(嵌合溝)33aを形成してある。アリ溝33aの形状は、磁極歯ユニット36及び37の被嵌合部36a及び37aと対応した形状としてある。バックヨーク3は、ベース部33のアリ溝33aに、磁極歯ユニット36及び37の被嵌合部36a及び37aに嵌合後に、接着剤等で固定する。ベース部33は非磁性材料で形成する。
 第3変形例においては、基本例1が奏する前述した効果に加えて、次のような効果を奏する。バックヨーク3の一部であるベース部33をヤング率の高い非磁性材料、例えば、アルミナで構成することが可能となる。それにより、バックヨーク3全体の剛性が増加するので、可動子2との間で生じる吸引力による撓みを軽減することが可能なる。
 上述の基本例及び第1-第3変形例において、隣接する磁極歯31間の隙間を非磁性材料、例えば樹脂モールドなどにより埋めてもよい。それにより、バックヨーク3の強度が増し、可動子2との間で発生する吸引力に起因するバックヨーク3の撓みをより効果的に抑制可能となる。
 上述した基本例でのベース板32は、磁極歯31の根元部から磁極歯31の突出する方向とは逆方向(厚さ方向)の一部を積層構造としてもよい。言い換えると積層構造である磁極歯31(突出部31a、31a)が、一部を積層構造としたベース板32の積層構造部分おいて、凹部32a,32aと係合されていても良い。それにより、第1変形例及び第2変形例と同様に、可動子2の可動方向に流れる磁束による渦電流を抑制することが可能となる。
 各実施の形態で記載されている技術的特徴(構成要件)はお互いに組み合わせ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 リニアモータ
 2 可動子
 3 バックヨーク
 4 電機子
 21 永久磁石
 22 保持枠
 23 固定板
 31 磁極歯
 32 ベース板
 33 ベース部
 34 磁極歯ブロック
 35 ベース部
 36 磁極歯ユニット
 37 磁極歯ユニット
 41 コア
 42 磁極歯
 43 駆動コイル
 221 孔
 301 バックヨークユニット
 302 バックヨークユニット
 311 磁極片
 341 磁極歯片
 361 磁極歯片
 371 磁極歯片

Claims (9)

  1.  複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、前記可動子に隙間をあけて対向配置した固定子としてのバックヨークと、前記可動子に隙間をあけて前記バックヨークとは反対側に対向配置した固定子としての電機子とを備えており、
     前記複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、
     前記電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有しており、
     前記バックヨークは、前記可動子に対向する面に、前記電機子の磁極歯と前記可動子の可動方向にあって同じ位置に複数の磁極歯を有しており、
     前記バックヨークにおける磁極歯の磁極面積は、前記電機子における磁極歯の磁極面積の0.9倍~1.1倍であり、前記可動子と前記バックヨークとの隙間は、前記可動子と前記電機子との隙間に等しいかまたは大きい
     ことを特徴とするリニアモータ。
  2.  前記バックヨークにおける前記磁極歯の高さは、該磁極歯のピッチの1/20倍以上2倍以下であることを特徴とする請求項1記載のリニアモータ。
  3.  前記可動子の長さは、前記電機子の長さよりも短く、前記バックヨークの長さよりも短いことを特徴とする請求項1または2に記載のリニアモータ。
  4.  前記可動子と前記バックヨークとの隙間の大きさ、及び/または、前記可動子と前記電機子との隙間の大きさは可変であることを特徴とする請求項1から3の何れか1項に記載のリニアモータ。
  5.  複数の矩形状の永久磁石を配列させた磁石配列を有する可動子と、前記可動子に隙間をあけて対向配置した固定子としてのバックヨークと、前記可動子に隙間をあけて前記バックヨークとは反対側に対向配置した固定子としての電機子とを備えており、
     前記複数の永久磁石夫々の磁化方向は厚さ方向であって、隣り合う永久磁石同士の磁化方向は逆向きであり、
     前記電機子は、夫々に駆動コイルが捲かれている複数の磁極歯を等ピッチで有しており、
     前記バックヨークは、前記可動子に対向する面に、前記電機子の磁極歯と前記可動子の可動方向にあって同じ位置に複数の磁極歯を有しており、
     前記バックヨークが有する前記磁極歯は、複数の板状部材を前記可動子の可動方向と交差する方向に積層してなる
     ことを特徴とするリニアモータ。
  6.  前記バックヨークは、前記磁極歯の根元部から前記磁極歯の突出する方向とは逆方向の一部が、複数の板状部材を前記磁極歯の積層方向に積層してなり、
     前記バックヨークの積層部分を構成する板状部材と、前記磁極歯を構成する板状部材とは、一体となっている
     ことを特徴とする請求項5に記載のリニアモータ。
  7.  前記複数の板状部材は、積層面に絶縁処理を施してある
     ことを特徴とする請求項5または6に記載のリニアモータ。
  8.  前記可動子は、前記磁石配列を保持する保持部材を有しており、前記保持部材は、前記複数の永久磁石それぞれが挿入される複数の孔を有していることを特徴とする請求項1から7の何れか1項に記載のリニアモータ。
  9.  前記可動子は、前記保持部材及び前記複数の永久磁石が接着固定される板状のベース材を有することを特徴とする請求項8に記載のリニアモータ。
PCT/JP2018/011655 2017-03-24 2018-03-23 リニアモータ WO2018174235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019507014A JP7151698B2 (ja) 2017-03-24 2018-03-23 リニアモータ
KR1020197026824A KR102339956B1 (ko) 2017-03-24 2018-03-23 리니어 모터
CN201880020494.6A CN110476340B (zh) 2017-03-24 2018-03-23 直线电动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017059699 2017-03-24
JP2017-059699 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174235A1 true WO2018174235A1 (ja) 2018-09-27

Family

ID=63585844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011655 WO2018174235A1 (ja) 2017-03-24 2018-03-23 リニアモータ

Country Status (5)

Country Link
JP (1) JP7151698B2 (ja)
KR (1) KR102339956B1 (ja)
CN (1) CN110476340B (ja)
TW (1) TWI664795B (ja)
WO (1) WO2018174235A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124426A1 (ja) * 2019-12-17 2021-06-24 ヤマハ発動機株式会社 リニアコンベアおよびそのリニアコンベアの設置方法
WO2022118761A1 (ja) * 2020-12-01 2022-06-09 株式会社神戸製鋼所 磁場発生装置及びこれを備えた電動機
DE102022000363A1 (de) 2022-01-31 2023-08-03 Roland Burk Mehrkammer-Sorptionsmodul für große Temperaturspreizung und Betriebsverfahren desselben

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213461501U (zh) * 2020-09-04 2021-06-15 瑞声科技(南京)有限公司 直线电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249460A (ja) * 1987-04-06 1988-10-17 Hitachi Ltd 永久磁石機
JPH0295162A (ja) * 1988-09-27 1990-04-05 Matsushita Electric Works Ltd リニアステップモータ
JPH10290560A (ja) * 1997-04-11 1998-10-27 Yaskawa Electric Corp 可動磁石形リニアモータ
JP2015119531A (ja) * 2013-12-17 2015-06-25 ファナック株式会社 リニアモータを備えた直線駆動装置を有する工作機械
JP2016073005A (ja) * 2014-09-26 2016-05-09 日立金属株式会社 リニアモータ用固定子
JP2018050430A (ja) * 2016-09-23 2018-03-29 日立金属株式会社 リニアモータ

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198582A (en) * 1977-06-24 1980-04-15 Exxon Research & Engineering Co. High performance stepper motor
US5032746A (en) * 1988-03-22 1991-07-16 Sharp Kabushiki Kaisha Linear motor with driving device
JP4535231B2 (ja) 2003-10-10 2010-09-01 株式会社安川電機 可動磁石形リニアアクチュエータ
JP2005184984A (ja) 2003-12-19 2005-07-07 Yaskawa Electric Corp ムービングマグネット形リニアアクチュエータ
JP2005269822A (ja) 2004-03-19 2005-09-29 Yaskawa Electric Corp ムービングマグネット形リニアスライダ
JP4537745B2 (ja) * 2004-03-30 2010-09-08 株式会社日立製作所 リニアモータ
CN100521468C (zh) * 2004-08-20 2009-07-29 清华大学 永磁同步平面电动机
JP4640375B2 (ja) * 2007-05-15 2011-03-02 セイコーエプソン株式会社 電動機
DE102009044528A1 (de) * 2008-11-14 2010-06-02 Denso Corporation, Kariya-City Reluktanzmotor
TWI460966B (zh) * 2009-01-23 2014-11-11 Hitachi Metals Ltd Moving elements and linear motors
DE112011100996T5 (de) * 2010-03-23 2013-01-24 Hitachi Metals, Ltd. Linearmotor
WO2011155022A1 (ja) * 2010-06-08 2011-12-15 株式会社日立製作所 リニアモータ
CN102299607B (zh) * 2011-08-25 2013-02-13 哈尔滨工业大学 永磁偏置型横向磁通直线磁阻电机
CN102403872B (zh) * 2011-11-04 2013-05-08 哈尔滨工业大学 定位力补偿型直线永磁同步电机
CN202455246U (zh) * 2012-02-23 2012-09-26 南京埃斯顿自动控制技术有限公司 一种内置式永磁同步直线电机次级结构
WO2014047104A1 (en) * 2012-09-20 2014-03-27 Magnemotion, Inc. Short block linear synchronous motors and switching mechanisms
KR20150127748A (ko) * 2013-04-12 2015-11-17 미쓰비시덴키 가부시키가이샤 가동자 및 리니어 모터
JP5991286B2 (ja) * 2013-08-28 2016-09-14 株式会社安川電機 リニアモータの電機子及びリニアモータ
DE102013019958B4 (de) * 2013-12-09 2024-06-27 Jenny Science Ag Linearmotor mit optimierter Leistung
JP6115729B2 (ja) 2014-01-08 2017-04-19 株式会社安川電機 リニアモータ及びリニアモータの製造方法
JP2016152668A (ja) * 2015-02-17 2016-08-22 住友重機械工業株式会社 リニアモータ、磁石ユニット、ステージ装置
TWI612753B (zh) 2015-03-31 2018-01-21 日立金屬股份有限公司 線性馬達
CN204858933U (zh) * 2015-07-01 2015-12-09 深圳德康威尔科技有限公司 一种c型无铁芯直线电机
CN105119463A (zh) * 2015-07-22 2015-12-02 北京顿一科技有限公司 新型有铁芯直线电机、电机伺服***及铁芯的制备方法
CN105871171B (zh) * 2016-04-08 2018-06-01 浙江大学 一种变磁通直线同步电动机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249460A (ja) * 1987-04-06 1988-10-17 Hitachi Ltd 永久磁石機
JPH0295162A (ja) * 1988-09-27 1990-04-05 Matsushita Electric Works Ltd リニアステップモータ
JPH10290560A (ja) * 1997-04-11 1998-10-27 Yaskawa Electric Corp 可動磁石形リニアモータ
JP2015119531A (ja) * 2013-12-17 2015-06-25 ファナック株式会社 リニアモータを備えた直線駆動装置を有する工作機械
JP2016073005A (ja) * 2014-09-26 2016-05-09 日立金属株式会社 リニアモータ用固定子
JP2018050430A (ja) * 2016-09-23 2018-03-29 日立金属株式会社 リニアモータ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124426A1 (ja) * 2019-12-17 2021-06-24 ヤマハ発動機株式会社 リニアコンベアおよびそのリニアコンベアの設置方法
WO2022118761A1 (ja) * 2020-12-01 2022-06-09 株式会社神戸製鋼所 磁場発生装置及びこれを備えた電動機
DE102022000363A1 (de) 2022-01-31 2023-08-03 Roland Burk Mehrkammer-Sorptionsmodul für große Temperaturspreizung und Betriebsverfahren desselben

Also Published As

Publication number Publication date
TW201840105A (zh) 2018-11-01
TWI664795B (zh) 2019-07-01
KR102339956B1 (ko) 2021-12-16
CN110476340B (zh) 2021-07-06
KR20190112153A (ko) 2019-10-02
JP7151698B2 (ja) 2022-10-12
JPWO2018174235A1 (ja) 2020-01-23
CN110476340A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
JP5370313B2 (ja) リニアモータ
WO2018174235A1 (ja) リニアモータ
US7456528B2 (en) High performance linear motor and magnet assembly therefor
JP5253114B2 (ja) リニアモータ
JP4458238B2 (ja) 永久磁石型同期リニアモータ
WO2001080408A1 (fr) Moteur lineaire synchrone a aimants permanents
US20090256428A1 (en) Linear Motor with Force Ripple Compensation
WO2005060076A1 (ja) リニアモータおよび吸引力相殺形リニアモータ
EP0959549B1 (en) Brushless permanent magnet electric motor
US8164223B2 (en) Linear motor mounting structure
JP2004364374A (ja) リニアモータ
JP2011067030A (ja) リニアモータの界磁およびそれを備えたリニアモータ
JP2002209371A (ja) リニアモータ
JP6790656B2 (ja) リニアモータ
JP2003244930A (ja) 駆動装置
JP4110335B2 (ja) リニアモータ
JP3944766B2 (ja) 永久磁石形同期リニアモータ
JP2006527576A (ja) ディテント力を弱めた鉄心を備えたリニアブラシレスdcモータ
JP3824060B2 (ja) リニアモータ
JP5460991B2 (ja) リニアモータの固定子
JP2002095232A (ja) リニアモータの電機子構造
KR20080058572A (ko) 횡자속 선형전동기
CN118264069A (zh) 励磁、电动机、发电机以及励磁的制造方法
JP2013021819A (ja) リニアモータの固定子
JP2005229778A (ja) リニアモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507014

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197026824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771832

Country of ref document: EP

Kind code of ref document: A1