WO2018159662A1 - 化合物、発光材料および有機発光素子 - Google Patents

化合物、発光材料および有機発光素子 Download PDF

Info

Publication number
WO2018159662A1
WO2018159662A1 PCT/JP2018/007461 JP2018007461W WO2018159662A1 WO 2018159662 A1 WO2018159662 A1 WO 2018159662A1 JP 2018007461 W JP2018007461 W JP 2018007461W WO 2018159662 A1 WO2018159662 A1 WO 2018159662A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
compound according
substituent
atom
Prior art date
Application number
PCT/JP2018/007461
Other languages
English (en)
French (fr)
Inventor
悠眞 石川
陽一 ▲土▼屋
安達 千波矢
ジャンルク ブレダ
シャンカイ チェン
Original Assignee
国立大学法人九州大学
キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, キング アブドラ ユニバーシティ オブ サイエンス アンド テクノロジー filed Critical 国立大学法人九州大学
Priority to JP2019503052A priority Critical patent/JPWO2018159662A1/ja
Priority to CN201880014536.5A priority patent/CN110520421A/zh
Priority to US16/489,385 priority patent/US20190378997A1/en
Publication of WO2018159662A1 publication Critical patent/WO2018159662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D455/00Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/03Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the present invention relates to a compound, a light emitting material composed of the compound, and an organic light emitting device using the compound.
  • Thermally activated delayed fluorescent material is the transition from excited triplet state to excited singlet state due to the absorption of thermal energy when transitioning to excited triplet state. It is a compound that emits fluorescence when returning to the back.
  • the fluorescence due to such a route is called delayed fluorescence because it is observed later than the fluorescence from the excited singlet state (normal fluorescence) directly generated without passing through the reverse intersystem crossing.
  • delayed fluorescence because it is observed later than the fluorescence from the excited singlet state (normal fluorescence) directly generated without passing through the reverse intersystem crossing.
  • the generation probability of an excited singlet state and an excited triplet state is 25%: 75%, there is a limit to the improvement of the light emission efficiency only with the fluorescence generated directly from the excited singlet state. is there.
  • the excited triplet state energy generated with a probability of 75% can also be effectively used for fluorescence emission, so that higher luminous efficiency can be expected.
  • a material including a structure in which a donor site (D) and an acceptor site (A) are bonded (for example, non-patent document). 1-4). It is recognized that the donor site (D) and the acceptor site (A) are structurally twisted with each other in order to realize high luminous efficiency.
  • R 1 to R 9 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 9 is a substituent.
  • Y 1 to Y 3 are each independently a substituted or unsubstituted methylene group (C (R 10 ) (R 11 );
  • R 10 and R 11 each independently represents a hydrogen atom or a substituent), a carbonyl group (C ⁇ O), a thiocarbonyl group (C ⁇ S), a substituted or unsubstituted imino group (N (R 12 );
  • R 12 represents a hydrogen atom or a substituent), an oxygen atom, a sulfur atom, or a sulfonyl group (SO 2 ).
  • At least one of R 4 to R 6 and at least one of R 7 to R 9 in the general formula (2) is a group containing a diarylamino structure or a carbazole ring.
  • the compound according to [20] The compound according to [19], wherein R 5 and R 8 in the general formula (2) are a group containing a diarylamino structure or a carbazole ring.
  • At least one of R 4 to R 6 and at least one of R 7 to R 9 in the general formula (2) is a group having a structure represented by the following general formula (4).
  • R 21 to R 30 each independently represents a hydrogen atom or a substituent.
  • R 25 and R 26 may be linked to each other to form a single bond or a linking group.
  • L represents a single bond or a substituted or unsubstituted arylene group. * Indicates a binding position.
  • [22] The compound according to [21], wherein R 25 and R 26 in the general formula (4) are not linked to each other.
  • [23] The compound according to [21] or [22], wherein at least one of R 23 and R 28 in the general formula (4) is a substituent.
  • [24] The compound according to any one of [21] to [23], wherein L in the general formula (4) is a single bond.
  • R 11 to R 16 in the general formula (2) are each independently a substituted or unsubstituted alkyl group.
  • R 11 to R 16 in the general formula (2) are methyl groups.
  • R 1 to R 9 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 9 is a substituent.
  • L represents a single bond or a substituted or unsubstituted arylene group. * Indicates a binding position.
  • R 25 and R 26 in formula (4) are linked to each other to form a single bond.
  • L in the general formula (4) is a single bond.
  • [35] The compound according to any one of [30] to [34], wherein R 2 in the general formula (3) is a group represented by the general formula (4).
  • [36] The compound according to any one of [1] to [35], which emits delayed fluorescence.
  • a light emitting material comprising a compound having a structure represented by the general formula (1).
  • An organic light-emitting device comprising a compound having a structure represented by the general formula (1).
  • the organic light-emitting element according to [38] wherein the element is an organic electroluminescence element.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all the hydrogen atoms in the molecule may be 1 H, or a part or all of the hydrogen atoms are 2 H. (Deuterium D) may be used.
  • the entire description of the specification of Japanese Patent Application No. 2017-37588 is cited herein as part of the present application.
  • R 1 to R 9 each independently represents a hydrogen atom or a substituent.
  • substituents that R 1 to R 9 can take include, for example, a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, An alkyl-substituted amino group having 1 to 20 carbon atoms, an aryl-substituted amino group having 12 to 40 carbon atoms, an acyl group having 2 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 40 carbon atoms, Substituted or unsubstituted carbazolyl group having 12 to 40 carbon atoms, alkenyl group having 2 to 10 carbon atoms, alky
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, a substituted or unsubstituted dialkylamino group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, and 12 to 40 carbon atoms A substituted or unsubstituted carbazolyl group; More preferred substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms
  • an unsubstituted dialkylamino group a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms It is a group.
  • At least one of R 1 to R 9 in the general formula (1) represents a substituent. Among these, it is preferable that 1 to 3 selected from R 2 , R 5 and R 8 are substituents. In addition, at least one substituent is preferably a donor group or an acceptor group.
  • the “donor group” means a group having a Hammett ⁇ p + value of less than 0. Examples of the “donor group” that can be employed in the present specification include those having Hammett's ⁇ p + value of less than ⁇ 0.15, those of less than ⁇ 0.3, those of ⁇ 0.45 or less, ⁇ It is possible to adopt one that is 0.6 or less.
  • the “donor group” for example, those having Hammett's ⁇ p + value of ⁇ 2 or more and those of ⁇ 1 or more can be adopted.
  • the “acceptor group” means a group having a Hammett ⁇ p + value larger than 0.
  • Examples of the “acceptor group” that can be adopted in the present specification include those having Hammett's ⁇ p + value of 0.15 or more, those of 0.3 or more, those of 0.45 or more, and 0.6 or more. It is possible to adopt what is.
  • the “acceptor group” that can be adopted in the present specification for example, those having Hammett's ⁇ p + value of 2 or less and those of 1 or less can be adopted.
  • the “Hammett ⁇ p + value” in the present invention is L. P. Proposed by Hammett, it quantifies the effect of substituents on the reaction rate or equilibrium of para-substituted benzene derivatives. Specifically, the following formula is established between the substituent in the para-substituted benzene derivative and the reaction rate constant or equilibrium constant: This is a constant ( ⁇ p ) peculiar to the substituent in.
  • k is a rate constant of a benzene derivative having no substituent
  • k 0 is a rate constant of a benzene derivative substituted with a substituent
  • K is an equilibrium constant of a benzene derivative having no substituent
  • K 0 is a substituent.
  • the equilibrium constant of the benzene derivative substituted with ⁇ , ⁇ represents the reaction constant determined by the type and conditions of the reaction.
  • Y 1 to Y 3 in the general formula (1) are each independently a substituted or unsubstituted methylene group (C (R 10 ) (R 11 ); R 10 and R 11 each independently represents a hydrogen atom or a substituent) , A carbonyl group (C ⁇ O), a thiocarbonyl group (C ⁇ S), a substituted or unsubstituted imino group (N (R 12 ); R 12 represents a hydrogen atom or a substituent), an oxygen atom, a sulfur atom, Or represents a sulfonyl group (SO 2 ).
  • Y 1 to Y 3 may be the same or different, but it is preferable that all of Y 1 to Y 3 are the same.
  • R 10 and R 11 of C (R 10 ) (R 11 ), which is a methylene group that Y 1 to Y 3 can take, are preferably each independently a substituent, and are a substituted or unsubstituted alkyl group. Is more preferable, and a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms is even more preferable.
  • R 12 in Y 1 ⁇ Y 3 is imino group which may take N (R 12) is a substituted group, more preferably a substituted or unsubstituted alkyl group, substituted with 1 to 3 carbon atoms Or it is still more preferable that it is an unsubstituted alkyl group.
  • the compound represented by the general formula (1) may have a symmetric structure.
  • a compound having a line symmetrical structure can be preferably employed.
  • a compound having a rotationally symmetric structure with Z as the central atom as the central axis can also be preferably employed.
  • the compound represented by the general formula (1) is preferably a compound capable of forming a hydrogen bond between R 1 and R 2 .
  • the compound represented by the general formula (1) is more capable of forming a hydrogen bond between R 1 and R 2 and also forming a hydrogen bond between R 2 and R 3. preferable.
  • Such a hydrogen bond is preferably one that can be formed between R 4 and R 5 , between R 5 and R 6 , between R 7 and R 8 , and between R 8 and R 9 .
  • a hydrogen bond can be formed, for example, between a hydrogen atom and a nitrogen atom. It can be illustrated.
  • a compound represented by the general formula (2) can be preferably employed.
  • R 1 to R 9 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 9 is a substituent.
  • R 11 to R 16 each independently represents a substituent.
  • R 2 in the general formula (2) is preferably a substituted or unsubstituted heteroaryl group, more preferably a nitrogen atom as a ring skeleton constituent atom, and adjacent to an atom involved in bonding of the heteroaryl group. More preferably, the ring skeleton constituent atoms are all nitrogen atoms. Specific examples of the heteroaryl group include a substituted or unsubstituted triazinyl group, and preferred examples thereof include a substituted or unsubstituted diaryltriazinyl group. When the ring skeleton constituent atoms adjacent to the atoms involved in the bonding of the heteroaryl group are all nitrogen atoms, a hydrogen bond can be formed if R 1 or R 3 is a hydrogen atom.
  • R 1 and R 3 to R 9 may be hydrogen atoms, or at least one of them is a substituent.
  • at least one of R 4 to R 6 and R 7 to R 9 is a group containing a diarylamino structure or a carbazole ring
  • at least one of R 4 to R 6 and R 7 to R 9 More preferably, at least one of is a group containing a diarylamino structure or a carbazole ring
  • R 5 and R 8 are more preferably a group containing a diarylamino structure or a carbazole ring.
  • R 23 and R 28 is preferably a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms.
  • R 11 to R 16 in the general formula (2) are preferably each independently a substituted or unsubstituted alkyl group, more preferably a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, More preferably, it is an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • a methyl group and an ethyl group can be mentioned.
  • a compound represented by the general formula (3) can also be preferably employed.
  • R 1 to R 9 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 9 is a substituent.
  • P phosphine oxide group
  • at least one of R 1 to R 9 is preferably a donor group.
  • At least one of R 1 to R 9 is preferably a group containing a diarylamino structure or a group containing a carbazole ring, and R 2 is a group containing a diarylamino structure or a group containing a carbazole ring. More preferably.
  • the “diarylamino structure” means both a diarylamino group and a heteroaromatic ring structure in which the aryl groups of the diarylamino group are linked by a single bond or a linking group to form a heterocyclic ring.
  • each aryl group of the diarylamino structure may be a single ring, a condensed ring in which two or more aromatic rings are condensed, or a linked ring in which two or more aromatic rings are connected. Good. When two or more aromatic rings are linked, they may be linked in a straight chain or may be branched.
  • the number of carbon atoms in the aromatic ring constituting each aryl group of the diarylamino structure is preferably 6-22, more preferably 6-18, still more preferably 6-14, and 6-10. Even more preferably.
  • Specific examples of each aryl group include a phenyl group, a naphthyl group, and a biphenyl group, and a phenyl group is preferable.
  • the group containing the diarylamino structure when each aryl group of the diarylamino structure is a phenyl group, and the phenyl groups are linked by a single bond, the group containing the diarylamino structure has the above carbazole ring. Corresponds to the containing group.
  • the nitrogen atom to which each aryl group of the diarylamino structure is bonded may be bonded to the benzene ring in the general formula (3) by a single bond or connected by a linking group. Also good. That is, the group containing a diarylamino structure may contain a linking group that connects the diarylamino structure to a benzene ring.
  • the linking group for linking the diarylamino structure to the benzene ring is not particularly limited, but is preferably a substituted or unsubstituted arylene group.
  • the description and preferred range and specific examples of the substituted or unsubstituted arylene group the description and preferred range and specific examples of the substituted or unsubstituted arylene group in L of the following general formula (4) can be referred to.
  • the group containing a diarylamino structure is particularly preferably a group having a structure represented by the general formula (4).
  • R 21 to R 30 each independently represents a hydrogen atom or a substituent.
  • the number of substituents is not particularly limited, and all of R 21 to R 30 may be unsubstituted (that is, hydrogen atoms).
  • the plurality of substituents may be the same as or different from each other.
  • R 21 to R 30 can take include, for example, a hydroxy group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and 1 to 20 alkyl-substituted amino groups, aryl-substituted amino groups having 12 to 40 carbon atoms, aryl groups having 6 to 40 carbon atoms, heteroaryl groups having 3 to 40 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 2 to And an alkynyl group having 10 to 20 carbon atoms, an alkylamide group having 2 to 20 carbon atoms, an arylamide group having 7 to 21 carbon atoms, and a trialkylsilyl group having 3 to 20 carbon atoms.
  • substituents are alkyl groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, alkylthio groups having 1 to 20 carbon atoms, alkyl-substituted amino groups having 1 to 20 carbon atoms, and 12 to 40 carbon atoms.
  • R 25 and R 26 may be linked to each other to form a single bond or a linking group.
  • R 25 and R 26 are not connected to each other, R 25 and R 26 are connected to each other to form a single bond, or R 25 And R 26 are preferably bonded to each other to form a linking group having a linking chain length of 1 atom, R 25 and R 26 are not connected to each other, and R 25 and R 26 are connected to each other. What forms the bond is more preferable.
  • the cyclic structure formed as a result of the bonding of R 25 and R 26 to each other is a 6-membered ring.
  • linking group formed by bonding R 25 and R 26 to each other are represented by —O—, —S—, —N (R 91 ) — or —C (R 92 ) (R 93 ) —.
  • R 91 to R 93 each independently represents a hydrogen atom or a substituent. Examples of the substituent that R 91 can take include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 40 carbon atoms, and a heteroaryl group having 3 to 40 carbon atoms.
  • R 92 and R 93 can take are each independently a hydroxy group, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, An alkyl-substituted amino group having 1 to 20 carbon atoms, an aryl-substituted amino group having 12 to 40 carbon atoms, an aryl group having 6 to 40 carbon atoms, a heteroaryl group having 3 to 40 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, Examples thereof include an alkynyl group having 2 to 10 carbon atoms, an alkylamide group having 2 to 20 carbon atoms, an arylamide group having 7 to 21 carbon atoms, and a trialkylsilyl group having 3 to 20 carbon atoms.
  • L represents a single bond or a substituted or unsubstituted arylene group. * Indicates a binding position.
  • the aromatic ring constituting the arylene group in L the explanation and preferred range for the aromatic ring constituting each aryl of the diarylamino structure can be referred to, and the arylene group has a substituent.
  • the explanations and preferred ranges of the substituents in the case, and specific examples, the explanations and preferred ranges of the substituents that can be taken by the above R 21 to R 30 can be referred to.
  • substituted or unsubstituted arylene group in L include a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, and a substituted or unsubstituted biphenyl-diyl group.
  • a phenylene group is preferred.
  • the difference ⁇ E ST between the lowest excited singlet energy level E S1 and the lowest excited triplet energy level E T1 in a state doped in mCBP is 0.4 eV or less. Is preferred, More preferably, it is 0.2 eV or less, and more preferably 0.1 eV or less.
  • the compound represented by the general formula (1) can emit delayed fluorescence. Therefore, the present invention includes an invention of a delayed phosphor having a structure represented by the general formula (1).
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by vapor deposition. Preferably, it is preferably 1200 or less, more preferably 1000 or less, and even more preferably 800 or less.
  • the lower limit of the molecular weight is the smallest molecular weight that the general formula (1) can take.
  • the compound represented by the general formula (1) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
  • the compound that emits delayed fluorescence and is capable of intramolecular proton transfer may be a polymer obtained by polymerizing a polymerizable monomer that emits delayed fluorescence and is capable of intramolecular proton transfer.
  • a polymer obtained by polymerizing a polymerizable group in advance in the structure represented by the general formula (1) is used as a material for the organic light emitting device. It is done.
  • a monomer containing a polymerizable functional group is prepared in any one of R 1 to R 9 or Y 1 to Y 3 in the general formula (1), and this is polymerized alone or together with other monomers.
  • a polymer having a repeating unit including the structure represented by the general formula (1) a polymer including a structure represented by the following general formula (11) or (12) can be given.
  • Q represents a group including the structure represented by the general formula (1)
  • L 1 and L 2 represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking group represented by L 1 and L 2 can be bonded to any of R 1 to R 9 or Y 1 to Y 3 in the structure of the general formula (1) constituting Q. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • a polymer having a repeating unit containing these formulas (13) to (16) has a hydroxy group introduced into any of R 1 to R 9 or Y 1 to Y 3 in the structure of the general formula (1). Then, it can be synthesized by reacting the following compound as a linker to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
  • the method for synthesizing the compound represented by the general formula (1) is not particularly limited.
  • the synthesis of compounds wherein R 2 is a substituent of the general formula (1) may be R 2 in the general formula (1) reacting a compound a compound represented by R 2-X is a hydrogen atom or, R 2 in the general formula (1) can be synthesized by reacting a compound is a halogen atom with a compound represented by R 2 over H.
  • X is a halogen atom.
  • the halogen atom is preferably a chlorine atom, a bromine atom or an iodine atom.
  • the details of this reaction can be referred to the synthesis examples described later.
  • the compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
  • Organic light emitting device In the organic light emitting device of the present invention, a compound that emits delayed fluorescence and is capable of intramolecular proton transfer is used.
  • a compound that emits delayed fluorescence and is capable of intramolecular proton transfer exhibits a sufficiently high quantum yield for practical use, and can be effectively used as a light-emitting material of an organic light-emitting device.
  • a compound that emits delayed fluorescence and is capable of intramolecular proton transfer can also be used as a host or assist dopant in an organic light-emitting device.
  • an organic light-emitting device using a compound that emits delayed fluorescence and is capable of intramolecular proton transfer as a light-emitting material has a feature of high luminous efficiency because this compound functions as a delayed fluorescent material.
  • the principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb the heat of the outside air and the heat generated by the device, and cross the terms into the excited singlet to emit fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the light lifetime (luminescence lifetime) generated by the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
  • organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • organic electroluminescence element has a structure in which at least an anode, a cathode, and an organic layer are formed between the anode and the cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer.
  • the light emitting material Preferably including a luminescent material and a host material.
  • the luminescent material one or more selected from a group of compounds that emit delayed fluorescence and are capable of intramolecular proton transfer can be used.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound in which at least one of excited singlet energy and excited triplet energy has a value higher than that of the light-emitting material can be used.
  • singlet excitons and triplet excitons generated in the light emitting material can be confined in the molecule of the light emitting material, and the light emission efficiency can be sufficiently extracted.
  • high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
  • light emission is generated from a light-emitting material (compound that emits delayed fluorescence and is capable of intramolecular proton transfer) contained in the light-emitting layer.
  • This emission includes both fluorescence and delayed fluorescence.
  • light emission from the host material may be partly or partly emitted.
  • the amount of a compound that is a light emitting material, that is, a compound that emits delayed fluorescence and capable of intramolecular proton transfer is preferably 0.1% by weight or more.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • a compound that emits delayed fluorescence and capable of intramolecular proton transfer may be used for a light emitting layer, but also for a layer other than the light emitting layer.
  • the compound that emits delayed fluorescence contained in each layer and is capable of intramolecular proton transfer may be the same or different depending on whether it is used for the light-emitting layer or a layer other than the light-emitting layer.
  • the above injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transport layer, electron transport layer, etc. can emit delayed fluorescence and allow intramolecular proton transfer May be used.
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • preferable materials that can be used for the organic electroluminescence element are shown below.
  • the material that can be used in the present invention is not limited to the following exemplary compounds. Moreover, even if it is a compound illustrated as a material which has a specific function, it can also be diverted as a material which has another function.
  • the organic electroluminescent device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • phosphorescence is hardly observable at room temperature in ordinary organic compounds such as the compounds of the present invention because the excited triplet energy is unstable and converted to heat, etc., and has a short lifetime and immediately deactivates.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • an organic light-emitting device having greatly improved light emission efficiency can be obtained by including in the light-emitting layer a compound that emits delayed fluorescence and allows intramolecular proton transfer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • the organic light emitting device of the present invention may be an organic light emitting transistor.
  • An organic light emitting transistor has a structure in which, for example, a gate electrode is stacked on an active layer that also serves as a light emitting layer via a gate insulating layer, and a source electrode and a drain electrode are connected to the active layer.
  • fluorescence having a light emission lifetime of 100 ns or less was determined as immediate fluorescence, and fluorescence having a light emission lifetime of 0.1 ⁇ s or more was determined as delayed fluorescence.
  • the energy level of HOMO (Highest occupied molecular orbital) and the energy level of LUMO (Lowest unoccupied molecular orbital) are measured using an electrochemical analyzer (manufactured by BAS), cyclic voltammetry and differential pulse bontan using 0.1 mM ferrocene solution as an external standard. Measured by measurement. From the difference Delta] E ST excited singlet energy level (E S1) and the lowest excited triplet energy level (E T1) was measured as follows.
  • E S1 Lowest excited singlet energy level
  • a toluene solution concentration: 1 ⁇ 10 ⁇ 5 M
  • a measurement target compound or a PMMA film compound concentration: 0.1 mol%, thickness 100 nm
  • a measurement target compound formed on a silicon substrate is used as a measurement sample.
  • the tangent drawn at the point taken was taken as the tangent to the rising edge of the phosphorescence spectrum on the short wavelength side.
  • the sample was a toluene solution, it was measured with a phosphorescence measuring device at 77 [K].
  • k represents a reaction rate constant
  • A represents a frequency factor
  • E a represents activation energy
  • R represents a gas constant
  • T represents an absolute temperature.
  • the gas constant R per molecule is 0.8617312 ⁇ 10 ⁇ 4 (eVK ⁇ 1 ).
  • Methyl anthranilate (41.1 mL, 0.318 mol), methyl 2-iodobenzoate (13 mL, 0.909 mol), potassium carbonate (100 g, 0.727 mol), copper (I) iodide (5.89 g, 0 0.0309 mol) and copper (4.04 g, 0.0636 mol) were placed in 370 mL of diphenyl ether and stirred for 76 hours under a nitrogen atmosphere at 190 ° C. The reaction solution was filtered through Celite to remove solids, and then a liquid separation operation was performed using chloroform.
  • the obtained organic layer was dried over sodium sulfate, sodium sulfate was removed by filtration, and then the solvent was removed from the organic layer with an evaporator to obtain a light beige solid of Intermediate 1.
  • the obtained solid was recrystallized with ethyl acetate to obtain 98.7 g of a pale yellow solid of Intermediate 1 in a yield of 74%.
  • the solvent was removed from the obtained filtrate by distillation under reduced pressure, and the precipitated solid was roughly purified by silica gel column chromatography using chloroform as an eluent.
  • the crude product was purified by sublimation to obtain the target compound 2 as an orange solid in a yield of 0.0301 g and a yield of 14%.
  • the obtained organic layer was dried over magnesium sulfate, the magnesium sulfate was removed by filtration, and the solvent was removed with an evaporator.
  • the extracted solid was roughly purified by silica gel column chromatography using chloroform as an eluent.
  • the obtained crude product was purified by sublimation to obtain 0.0237 g of a reddish orange solid of Compound 3 in a yield of 21%.
  • the solvent was removed from the obtained filtrate by distillation under reduced pressure, and the precipitated solid was roughly purified by silica gel column chromatography using chloroform as an eluent.
  • the obtained crude product was further purified by gel column permeation chromatography to obtain a red solid of Compound 4 in a yield of 0.0020 g and a yield of 0.9%.
  • the precipitated solid was purified by silica gel column chromatography using dichloromethane as an eluent to obtain a pale orange powder intermediate 8 in a yield of 1.91 g and a yield of 49%, and a pale orange powder intermediate 9 was obtained.
  • the yield was 0.407 g and the yield was 8%.
  • the sodium sulfate was removed by filtration, and the solvent was removed with an evaporator.
  • the precipitated solid was roughly purified by silica gel column chromatography of distillate dichloromethane.
  • the obtained solid was purified by sublimation to obtain 0.0864 g of a black purple solid compound 6 in a yield of 25%.
  • the sodium sulfate was removed by filtration, and the solvent was removed with an evaporator.
  • the precipitated solid was roughly purified by silica gel column chromatography of distillate dichloromethane.
  • the obtained solid was purified by sublimation to obtain 0.0910 g of a black purple solid compound 7 in a yield of 17%.
  • Example 1 Production and Evaluation of Organic Photoluminescence Device Using Compound 1
  • a toluene solution of Compound 1 (concentration: 1.0 ⁇ 10 ⁇ 5 mol / L) was prepared in a glove box under an Ar atmosphere.
  • a thin film (polymer film) made of Compound 1 and polymethylmethacrylate was formed to a thickness of 200 nm on a quartz substrate by a spin coating method to obtain an organic photoluminescence element.
  • the concentration of Compound 1 was 0.1 mol% or 10 mol%.
  • Compound 1 and DPEPO were deposited from different deposition sources on a quartz substrate by a vacuum deposition method under a vacuum degree of 4 ⁇ 10 ⁇ 4 Pa or less, and the concentration of Compound 1 was 0.5 wt%.
  • a thin film (dope film) of 2% by weight or 10% by weight was formed to a thickness of 40 nm to obtain an organic photoluminescence device.
  • a doped film containing Compound 1 was formed in the same manner as described above except that mCP or mCBP was used instead of DPEPO to obtain an organic photoluminescence device.
  • Compound 1 was subjected to electrochemical measurement in a state of being uniformly dissolved in toluene (homogeneous system). As a result, the HOMO level was ⁇ 5.16 eV and the LUMO level was ⁇ 2.13 eV. In addition, the HOMO level obtained from the photoelectron spectroscopy and absorption spectrum absorption edge performed on the vapor-deposited single film (aggregation system) of Compound 1 in the atmosphere was ⁇ 5.51 eV, and the LUMO level was ⁇ 2.81 eV. It was.
  • the excited singlet energy level E S1 of Compound 1 is 2.884 eV
  • the excited triplet energy level E T1 is 2.758 eV
  • the excited singlet energy level. difference Delta] E ST's place and excited triplet energy level was estimated to 0.128EV.
  • the light emission characteristics of the toluene solution, the polymer film, the single film and each doped film containing Compound 1 prepared in Example 1 were evaluated.
  • Table 1 shows the photoluminescence quantum yield (PL quantum yield) measured in the air or in an argon atmosphere.
  • the emission maximum wavelength of the toluene solution of Compound 1 was 460 nm
  • the emission maximum wavelength of the single film of Compound 1 was 490 nm.
  • the toluene solution containing the compound 1, the polymer film, and each of the doped films all showed higher PL quantum yields in the argon atmosphere than in the atmosphere. This is presumably because the deactivation of triplet excitons by oxygen was suppressed under an argon atmosphere. This suggests that the fluorescence emission process of Compound 1 includes an inverse intersystem crossing process from the excited triplet state T 1 to the excited singlet state S 1 . Moreover, when the transient decay curve of light emission was measured at 300 K for the polymer film containing Compound 1, the single film, and each doped film, delayed fluorescence could be observed for all.
  • Compound 1 is a thermally activated delayed fluorescent material that emits light through reverse intersystem crossing from the excited triplet state T 1 to the excited singlet state S 1 .
  • Examples 2 to 4 Preparation and Evaluation of Organic Photoluminescence Device Using Compounds 2 to 4 Compounds 2 to 4, 6, and 7 were used instead of Compound 1, and only mCBP was used as the host material for the doped film. Except for the above, a toluene solution containing the compounds 2 to 4, a polymer film and a dope film were prepared in the same manner as in Example 1 to obtain an organic photoluminescence device. However, the concentrations of the compounds 2 to 4, 6, and 7 were 1.0 ⁇ 10 ⁇ 5 mol / L in the toluene solution, 0.1 mol% in the polymer film, and 3 wt% in the dope film.
  • Example 5 Production and Evaluation of Organic Photoluminescence Device Using Compound 5
  • a toluene solution of compound 5 (concentration 1.0 ⁇ 10 ⁇ 5 mol / L) and a cyclohexane solution (concentration 1.) in a glove box under an Ar atmosphere. 0 ⁇ 10 ⁇ 5 mol / L) was prepared and used as an organic photoluminescence device.
  • Comparative Example 1 Preparation and Evaluation of Toluene Solution of Comparative Compound 1
  • a toluene solution (concentration: 1.0 ⁇ 10 ⁇ 5 mol / L) of Comparative Compound 1 was prepared in a glove box under an Ar atmosphere, and used as a comparative sample.
  • Table 2 shows HOMO levels and LUMO levels measured in toluene for the compounds 2 to 4, 6, 7 and comparative compound 1, and the toluene solutions prepared in Examples 2 to 4, 6, 7 and comparative example 1 indicates a polymer film, the excitation of the doped film singlet energy level E S1, the excited triplet energy level E T1 and these energy difference Delta] E ST Table 3.
  • each toluene solution, each polymer film, each dope film prepared in Examples 2 to 7 and Comparative Example 1, and the cyclohexane solution prepared in Example 5 were evaluated.
  • PL quantum yield and emission lifetime measured in the air or in the absence of oxygen are shown in Table 4, and for each polymer film and each dope, the PL was measured in the air or in the absence of oxygen.
  • Table 5 shows the quantum yield and the emission lifetime measured in the absence of oxygen.
  • “in the absence of oxygen” means after nitrogen bubbling in a toluene solution or cyclohexane solution, and in an argon atmosphere in a polymer film and a dope film.
  • each solution containing compounds 2 to 5 each polymer film containing compounds 2 to 4 and each doped film were higher in PL quantum yield than in the atmosphere in the absence of oxygen.
  • a delayed fluorescence component on the order of microseconds was observed.
  • the delayed fluorescence lifetime of the toluene solution shown in Table 4 there was a tendency for the delayed fluorescence lifetime to increase by removing oxygen.
  • Example 6 Production of an organic electroluminescence device using Compound 1 (0.5 wt%) and DPEPO as a light emitting layer
  • a glass substrate on which an anode made of indium tin oxide (ITO) having a thickness of 100 nm was formed Further, each thin film was laminated at a vacuum degree of 4.0 ⁇ 10 ⁇ 4 Pa by a vacuum deposition method.
  • NPD was formed on ITO with a thickness of 30 nm
  • TCTA was formed thereon with a thickness of 20 nm.
  • Compound 1 and DPEPO were co-evaporated from different vapor deposition sources to form a 40 nm thick layer as a light emitting layer.
  • the concentration of Compound 1 was 0.5% by weight.
  • DPEPO was formed to a thickness of 10 nm, and TPBi was formed thereon to a thickness of 30 nm.
  • lithium fluoride (LiF) was formed to a thickness of 0.8 nm, and then aluminum (Al) was vapor-deposited to a thickness of 80 nm to form a cathode, whereby an organic electroluminescence element was obtained.
  • Example 7 Preparation of an organic electroluminescence device using Compound 1 (2% by weight or 10% by weight) and DPEPO in the light emitting layer The concentration of Compound 1 in the light emitting layer was changed to 2% by weight or 10% by weight.
  • An organic electroluminescence element was produced in the same manner as in Example 6 except that.
  • Example 9 Preparation of organic electroluminescence device in which two light emitting layers having different concentrations of compound 1 were formed Instead of forming a light emitting layer in which the concentration of compound 1 was 0.5% by weight, the concentration of compound 1 was A light emitting layer having a thickness of 10% by weight was formed to a thickness of 20 nm, and a light emitting layer having a concentration of Compound 1 having a concentration of 2% by weight was formed to a thickness of 20 nm to form a light emitting layer having a two-layer structure.
  • An organic electroluminescence element was produced in the same manner as in Example 6 except that.
  • Example 10 Preparation of an organic electroluminescent device using Compound 1 (2 wt% or 10 wt%) and mCP in the light emitting layer Using mCP instead of DPEPO, the concentration of Compound 1 in the light emitting layer was 2 wt% An organic electroluminescence device was produced in the same manner as in Example 6 except that the content was changed to% or 10% by weight.
  • Example 12 Preparation of an organic electroluminescence device using Compound 1 (2 wt%) and mCBP as a light emitting layer Each thin film was laminated
  • Compound 1 and mCBP were co-evaporated from different vapor deposition sources to form a 30 nm thick layer as a light emitting layer. At this time, the concentration of Compound 1 was 2% by weight.
  • T2T was formed to a thickness of 10 nm, and BPy-TP2 was formed thereon to a thickness of 40 nm. Further, lithium fluoride (LiF) was formed to a thickness of 0.8 nm, and then aluminum (Al) was vapor-deposited to a thickness of 80 nm to form a cathode, whereby an organic electroluminescence element was obtained.
  • LiF lithium fluoride
  • Al aluminum
  • Example 13 Production of organic electroluminescence device using compound 1 (10 wt%) and mCBP in light emitting layer The same manner as in Example 12 except that the concentration of compound 1 in the light emitting layer was changed to 10 wt%. Thus, an organic electroluminescence element was produced.
  • Example 14 to 16 Preparation and evaluation of organic electroluminescence device using compounds 2 to 4 Compound 2 was used instead of compound 1, and the concentration of compound 2 in the light emitting layer was changed to 3% by weight. An organic electroluminescence device was produced in the same manner as in Example 12.
  • Table 6 shows the maximum external quantum efficiencies obtained from the external quantum efficiency-current density characteristics of the organic electroluminescence devices produced in Examples 6 to 12.
  • diagonal lines indicate the boundaries between layers, and numerical values in units of nm in parentheses indicate the thickness of the layers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

下記一般式で表される構造を有する化合物は発光材料として有用である。R1~R9の少なくとも1つは置換基;Y1~Y3はメチレン基、カルボニル基、チオカルボニル基、イミノ基、酸素原子、硫黄原子またはスルホニル基;Zは窒素原子、ホウ素原子またはホスフィンオキシド基を表す。

Description

化合物、発光材料および有機発光素子
 本発明は、化合物と、その化合物からなる発光材料、およびその化合物を用いた有機発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、熱活性化型の遅延蛍光材料を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられる。
 熱活性化型遅延蛍光材料とは、励起三重項状態に遷移したとき、熱エネルギーの吸収により励起三重項状態から励起一重項状態への逆項間交差を生じ、その励起一重項状態から基底状態へ戻る際に蛍光を放射する化合物である。こうした経路による蛍光は、逆項間交差を介さずに直接生じた励起一重項状態からの蛍光(通常の蛍光)よりも遅れて観測されるため、遅延蛍光と称されている。例えば、化合物の電流励起では、励起一重項状態と励起三重項状態の発生確率が25%:75%であるため、直接生じた励起一重項状態からの蛍光のみでは、発光効率の向上に限界がある。一方、熱活性型遅延蛍光材料では、75%の確率で発生する励起三重項状態のエネルギーも蛍光発光に有効利用できるため、より高い発光効率が望めることになる。
 従来の典型的な熱活性化型遅延蛍光材料として、ドナー部位(D)とアクセプター部位(A)が結合した構造(D-A型構造)を含むものが知られている(例えば、非特許文献1~4)。ドナー部位(D)とアクセプター部位(A)は、互いに構造的にねじれていることが高い発光効率を実現させるためには重要であると認識されている。
Nature. 2012, 492, 234 ChemCommun. 2012, 48, 11392 ChemCommun. 2013, 49, 10385 Nat. Photon. 2014, 8, 326
 一方、ドナー部位(D)とアクセプター部位(A)の間に構造的なねじれがない化合物や、ドナー部位(D)とアクセプター部位(A)が結合した構造ではない化合物については、優れた発光特性を実現するための研究がいまだ十分に進められていない。そこで本発明者らは、新たな観点から発光材料の分子設計に取り組み、新しい発光材料を提供することを目的として鋭意検討を行った。
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、以下に記載する新たな発明を完成するに至った。
[1] 下記一般式(1)で表される構造を有する化合物。
Figure JPOXMLDOC01-appb-C000008
[一般式(1)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。Y~Yは各々独立に置換もしくは無置換のメチレン基(C(R10)(R11);R10およびR11は各々独立に水素原子または置換基を表す)、カルボニル基(C=O)、チオカルボニル基(C=S)、置換もしくは無置換のイミノ基(N(R12);R12は水素原子または置換基を表す)、酸素原子、硫黄原子、またはスルホニル基(SO)を表す。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
[2] 前記一般式(1)におけるZが窒素原子である、[1]に記載の化合物。
[3] 前記一般式(1)におけるY~Yがカルボニル基またはジアルキルメチレン基である、[1]または[2]に記載の化合物
[4] 前記一般式(1)におけるRが置換基である、[1]~[3]のいずれか1項に記載の化合物。
[5] 前記一般式(1)におけるRがドナー性基である、[4]に記載の化合物。
[6] 前記一般式(1)におけるRがアクセプター性基である、[4]に記載の化合物。
[7] 前記一般式(1)におけるRとRの間で水素結合を形成しうる、[4]~[6]のいずれか1項に記載の化合物。
[8] 前記一般式(1)におけるRとRの間でも水素結合を形成しうる、[7]に記載の化合物。
[9] 線対称軸を分子内に有する、[1]~[8]のいずれか1項に記載の化合物。
[10] 下記一般式(2)で表される、[1]~[9]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000009
 [一般式(2)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。R11~R16は各々独立に置換基を表す。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
[11] 前記一般式(2)におけるRが、置換もしくは無置換のヘテロアリール基である、[10]に記載の化合物。
[12] 前記ヘテロアリール基が環骨格構成原子として窒素原子を含む、[11]に記載の化合物。
[13] 前記ヘテロアリール基の結合に関与する原子の隣の環骨格構成原子の少なくとも1つが窒素原子である、[12]に記載の化合物。
[14] 前記一般式(2)におけるRが水素原子である、[13]に記載の化合物。
[15] 前記ヘテロアリール基の結合に関与する原子の隣の環骨格構成原子がいずれも窒素原子である、[12]に記載の化合物。
[16] 前記ヘテロアリール基が置換もしくは無置換のトリアジニル基である、[15]に記載の化合物。
[17] 前記ヘテロアリール基が置換もしくは無置換のジアリールトリアジニル基である、[16]に記載の化合物。
[18] 前記一般式(2)におけるRおよびRが水素原子である、[15]~[17]のいずれか1項に記載の化合物。
[19] 前記一般式(2)におけるR~Rの少なくとも1つと、R~Rの少なくとも1つが、ジアリールアミノ構造またはカルバゾール環を含む基である、[11]~[18]のいずれか1項に記載の化合物。
[20] 前記一般式(2)におけるRとRが、ジアリールアミノ構造またはカルバゾール環を含む基である、[19]に記載の化合物。
[21] 前記一般式(2)におけるR~Rの少なくとも1つと、R~Rの少なくとも1つが、下記一般式(4)で表される構造を有する基である、[11]~[20]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000010
 [一般式(4)において、R21~R30は各々独立に水素原子または置換基を表す。R25およびR26は互いに連結して単結合または連結基を形成してもよい。Lは単結合または置換もしくは無置換のアリーレン基を表す。*は結合位置を示す。]
[22] 一般式(4)におけるR25とR26が互いに連結していない、[21]に記載の化合物。
[23] 一般式(4)におけるR23およびR28の少なくとも一方が置換基である、[21]または[22]に記載の化合物。
[24] 一般式(4)におけるLが単結合である、[21]~[23]のいずれか1項に記載の化合物。
[25] 前記一般式(2)におけるR11~R16は各々独立に置換もしくは無置換のアルキル基である、[10]~[24]のいずれか1項に記載の化合物。
[26] 前記一般式(2)におけるR11~R16がメチル基である、[25]に記載の化合物。
[27] 下記一般式(3)で表される、[1]~[9]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000011
 [一般式(3)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
[28] 前記一般式(3)におけるR~Rの少なくとも1つがドナー性基である、[27]に記載の化合物。
[29] 前記一般式(3)におけるRが、ジアリールアミノ構造またはカルバゾール環を含む基である、[27]または[28]に記載の化合物。
[30] 前記一般式(3)におけるR~Rの少なくとも1つが、下記一般式(4)で表される構造を有する基である、[27]~[29]のいずれか1項に記載の化合物。
Figure JPOXMLDOC01-appb-C000012
 [一般式(4)において、R21~R30は各々独立に水素原子または置換基を表す。R25およびR26は互いに連結して単結合または連結基を形成してもよい。Lは単結合または置換もしくは無置換のアリーレン基を表す。*は結合位置を示す。]
[31] 一般式(4)におけるR25とR26が互いに連結していない、請求項30に記載の化合物。
[32] 一般式(4)におけるR25とR26が互いに連結して単結合を形成している、請求項30に記載の化合物。
[33] 前記一般式(4)におけるLが、置換もしくは無置換のフェニレン基である、[30]~[32]のいずれか1項に記載の化合物。
[34] 前記一般式(4)におけるLが単結合である、[30]~[32]のいずれか1項に記載の化合物。
[35] 前記一般式(3)のRが、前記一般式(4)で表される基である、[30]~[34]のいずれか1項に記載の化合物。
[36] 遅延蛍光を放射する、[1]~[35]のいずれか1項に記載の化合物。
[37] 上記一般式(1)で表される構造を有する化合物からなる発光材料。
[38] 上記一般式(1)で表される構造を有する化合物を含む有機発光素子。
[39] 前記素子が有機エレクトロルミネッセンス素子である、[38]に記載の有機発光素子。
[40] 遅延蛍光を放射する、[38]または[39]に記載の有機発光素子。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。
 また、特願2017-37588の明細書の全記載を本出願の一部としてここに引用する。
[一般式(1)で表される化合物]
Figure JPOXMLDOC01-appb-C000013
 本発明に係る一般式(1)で表される構造を有する化合物について説明する。
 一般式(1)において、R~Rは各々独立に水素原子または置換基を表す。R~Rがとりうる置換基としては、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数12~40のアリール置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40の置換もしくは無置換のカルバゾリル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 一般式(1)におけるR~Rの少なくとも1つは置換基を表す。なかでも、R、R、Rから選択される1~3つが置換基であることが好ましい。また、少なくとも1つの置換基は、ドナー性基であるか、あるいは、アクセプター基であることが好ましい。
 本明細書において「ドナー性基」とは、ハメットのσ 値が0未満である基を意味する。本明細書において採用しうる「ドナー性基」として、例えばハメットのσ 値が-0.15未満であるもの、-0.3未満であるもの、-0.45以下であるもの、-0.6以下であるものを採用することが可能である。また、本明細書において採用しうる「ドナー性基」として、例えばハメットのσ 値が-2以上であるもの、-1以上であるものを採用することが可能である。
 本明細書において「アクセプター性基」とは、ハメットのσ 値が0より大きい基を意味する。本明細書において採用しうる「アクセプター性基」として、例えばハメットのσ 値が0.15以上であるもの、0.3以上であるもの、0.45以上であるもの、0.6以上であるものを採用することが可能である。また、本明細書において採用しうる「アクセプター性基」として、例えばハメットのσ 値が2以下であるもの、1以下であるものを採用することが可能である。
 本発明における「ハメットのσ 値」は、L.P.ハメットにより提唱されたものであり、パラ置換ベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したものである。具体的には、パラ置換ベンゼン誘導体における置換基と反応速度定数または平衡定数の間に成立する下記式:
Figure JPOXMLDOC01-appb-M000014
における置換基に特有な定数(σp)である。上式において、kは置換基を持たないベンゼン誘導体の速度定数、kは置換基で置換されたベンゼン誘導体の速度定数、Kは置換基を持たないベンゼン誘導体の平衡定数、Kは置換基で置換されたベンゼン誘導体の平衡定数、ρは反応の種類と条件によって決まる反応定数を表す。ハメットのσp値に関する説明と各置換基の数値については、J.A.Dean編”Lange's Handbook of Chemistry 第13版“、1985年、3-132~3-137頁、McGrow-Hill を参照することができる。
 一般式(1)におけるY~Yは各々独立に置換もしくは無置換のメチレン基(C(R10)(R11);R10およびR11は各々独立に水素原子または置換基を表す)、カルボニル基(C=O)、チオカルボニル基(C=S)、置換もしくは無置換のイミノ基(N(R12);R12は水素原子または置換基を表す)、酸素原子、硫黄原子、またはスルホニル基(SO)を表す。Y~Yは同一であっても異なっていてもよいが、Y~Yのすべてが同一であることが好ましい。Y~Yがとりうるメチレン基であるC(R10)(R11)のR10およびR11は、各々独立に置換基であることが好ましく、置換もしくは無置換のアルキル基であることがより好ましく、炭素数1~3の置換もしくは無置換のアルキル基であることがさらにより好ましい。Y~Yがとりうるイミノ基であるN(R12)のR12は置換基であることが好ましく、置換もしくは無置換のアルキル基であることがより好ましく、炭素数1~3の置換もしくは無置換のアルキル基であることがさらにより好ましい。
 一般式(1)におけるZは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。
 一般式(1)で表される化合物は、対称構造を有するものであってもよい。例えば、線対称構造を有する化合物を好ましく採用することができる。また、中心原子であるZを中心軸とした回転対称構造を有する化合物も好ましく採用することができる。
 一般式(1)で表される化合物は、RとRの間で水素結合を形成しうるものであることが好ましい。また、一般式(1)で表される化合物は、RとRの間で水素結合を形成し、なおかつ、RとRの間でも水素結合を形成しうるものであることがより好ましい。このような水素結合は、RとRの間、RとRの間、RとRの間、RとRの間でも形成しうるものであることが好ましい。水素結合は、例えば水素原子と窒素原子との間で形成することが可能であり、具体的には、水素原子とヘテロアリール基の環骨格構成原子である窒素原子との間で形成する場合を例示することができる。
 一般式(1)で表される化合物として、一般式(2)で表される化合物を好ましく採用することができる。
Figure JPOXMLDOC01-appb-C000015
 一般式(2)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。R11~R16は各々独立に置換基を表す。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。一般式(2)のR~Rが採りうる置換基の説明と好ましい範囲、具体例については、一般式(1)についての対応する記載を参照することができる。
 一般式(2)におけるRは置換もしくは無置換のヘテロアリール基であることが好ましく、環骨格構成原子として窒素原子を含むものであることがより好ましく、ヘテロアリール基の結合に関与する原子の隣の環骨格構成原子がいずれも窒素原子であることがさらに好ましい。具体的なヘテロアリール基として、置換もしくは無置換のトリアジニル基を挙げることができ、置換もしくは無置換のジアリールトリアジニル基を好ましい例として挙げることができる。ヘテロアリール基の結合に関与する原子の隣の環骨格構成原子がいずれも窒素原子であるとき、RかRが水素原子であれば水素結合が形成されうる。
 また、一般式(2)におけるRが置換もしくは無置換のヘテロアリール基であるとき、R、R~Rは全てが水素原子であってもよいし、少なくとも1つが置換基であってもよいが、R~R、R~Rの少なくとも1つがジアリールアミノ構造またはカルバゾール環を含む基であることが好ましく、R~Rの少なくとも1つと、R~Rの少なくとも1つがジアリールアミノ構造またはカルバゾール環を含む基であることがより好ましく、RとRがジアリールアミノ構造またはカルバゾール環を含む基であることがさらに好ましい。ジアリールアミノ構造またはカルバゾール環を含む基の説明と好ましい範囲については、一般式(3)のR~Rが採りうるジアリールアミノ構造を含む基、カルバゾール環を含む基についての説明と好ましい範囲を参照することができる。一般式(2)におけるジアリールアミノ構造を含む基が一般式(4)で表される基であるとき、R25とR26が互いに連結していないことが好ましく、R23およびR28の少なくとも一方が置換基であることも好ましく、Lが単結合であることも好ましく、これらの好ましい構造を全て備えることがより好ましい。また、R23およびR28における置換基は、炭素数1~10の置換もしくは無置換のアルコキシ基であることが好ましい。 一般式(2)におけるR11~R16は各々独立に置換もしくは無置換のアルキル基であることが好ましく、置換もしくは無置換の炭素数1~6のアルキル基であることがより好ましく、置換もしくは無置換の炭素数1~3のアルキル基であることがさらに好ましい。例えばメチル基、エチル基を挙げることができる。
 一般式(1)で表される化合物として、一般式(3)で表される化合物も好ましく採用することができる。
Figure JPOXMLDOC01-appb-C000016
 一般式(3)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。一般式(3)のR~Rが採りうる置換基の説明と好ましい範囲、具体例については、一般式(1)についての対応する記載を参照することができる。一般式(3)におけるR~Rの少なくとも1つはドナー性基であることが好ましい。
 一般式(3)におけるR~Rの少なくとも1つはジアリールアミノ構造を含む基やカルバゾール環を含む基であることが好ましく、Rがジアリールアミノ構造を含む基やカルバゾール環を含む基であることがより好ましい。ここで、「ジアリールアミノ構造」とは、ジアリールアミノ基と、ジアリールアミノ基のアリール基同士が単結合または連結基で連結して複素環を形成している複素芳香環構造の両方を意味することとする。ジアリールアミノ構造の各アリール基を構成する芳香環は、単環であっても、2以上の芳香環が縮合した縮合環であっても、2以上の芳香環が連結した連結環であってもよい。2以上の芳香環が連結している場合は、直鎖状に連結したものであってもよいし、分枝状に連結したものであってもよい。ジアリールアミノ構造の各アリール基を構成する芳香環の炭素数は、6~22であることが好ましく、6~18であることがより好ましく、6~14であることがさらに好ましく、6~10であることがさらにより好ましい。各アリール基の具体例として、フェニル基、ナフチル基、ビフェニル基を挙げることができ、フェニル基であることが好ましい。ジアリールアミノ構造が置換基を有する場合の置換基の説明と好ましい範囲については、下記一般式(4)のR21~R30がとりうる置換基の説明と好ましい範囲を参照することができる。ジアリールアミノ構造が上記の複素芳香環構造である場合のアリール基同士を連結する連結基の説明と好ましい範囲については、下記一般式(4)のR25とR26が互いに連結して連結基を形成している場合の連結基の説明と好ましい範囲を参照することができる。ジアリールアミノ構造を含む基のうち、ジアリールアミノ構造の各アリール基がフェニル基であって、フェニル基同士が単結合で連結している場合、そのジアリールアミノ構造を含む基は、上記のカルバゾール環を含む基に相当する。
 ジアリールアミノ構造を含む基において、ジアリールアミノ構造の各アリール基が結合している窒素原子は一般式(3)におけるベンゼン環へ単結合で結合していてもよいし、連結基で連結していてもよい。すなわち、ジアリールアミノ構造を含む基は、ジアリールアミノ構造をベンゼン環へ連結する連結基を含んでいてもよい。ジアリールアミノ構造をベンゼン環へ連結する連結基は、特に限定されるものではないが、置換もしくは無置換のアリーレン基であることが好ましい。置換もしくは無置換のアリーレン基の説明と好ましい範囲、具体例については、下記一般式(4)のLにおける置換もしくは無置換のアリーレン基の説明と好ましい範囲、具体例を参照することができる。
 ジアリールアミノ構造を含む基は特に一般式(4)で表される構造を有する基であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(4)において、R21~R30は各々独立に水素原子または置換基を表す。置換基の数は特に制限されず、R21~R30のすべてが無置換(すなわち水素原子)であってもよい。R21~R30のうちの2つ以上が置換基である場合、複数の置換基は互いに同一であっても異なっていてもよい。
 R21~R30がとりうる置換基として、例えばヒドロキシ基、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数12~40のアリール置換アミノ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~20のアルキルアミド基、炭素数7~21のアリールアミド基、炭素数3~20のトリアルキルシリル基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数12~40のアリール置換アミノ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基である。
 R25およびR26は互いに連結して単結合または連結基を形成してもよい。一般式(4)で表される基の中では、R25とR26が互いに連結していないもの、R25とR26が互いに連結して単結合を形成しているもの、または、R25とR26が互いに結合して連結鎖長が1原子の連結基を形成しているものが好ましく、R25とR26が互いに連結していないもの、R25とR26が互いに連結して単結合を形成しているものがより好ましい。R25とR26が互いに結合して連結鎖長が1原子の連結基を形成している場合、R25とR26が互いに結合した結果として形成される環状構造は6員環となる。R25とR26が互いに結合して形成される連結基の具体例として、-O-、-S-、-N(R91)-または-C(R92)(R93)-で表される連結基が挙げられる。ここにおいて、R91~R93は各々独立に水素原子または置換基を表す。R91がとりうる置換基としては、炭素数1~20のアルキル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基を例示することができる。R92およびR93がとりうる置換基としては、各々独立に、ヒドロキシ基、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数12~40のアリール置換アミノ基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~20のアルキルアミド基、炭素数7~21のアリールアミド基、炭素数3~20のトリアルキルシリル基等を例示することができる。
 Lは単結合または置換もしくは無置換のアリーレン基を表す。*は結合位置を示す。Lにおけるアリーレン基を構成する芳香環の説明と好ましい範囲については、上記のジアリールアミノ構造の各アリールを構成する芳香環についての説明と好ましい範囲を参照することができ、アリーレン基が置換基を有する場合の置換基の説明と好ましい範囲、具体例については、上記のR21~R30がとりうる置換基の説明と好ましい範囲を参照することができる。Lにおける置換もしくは無置換のアリーレン基の具体例として、置換もしくは無置換のフェニレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のビフェニル-ジイル基を挙げることができ、置換もしくは無置換のフェニレン基であることが好ましい。
 以下において、一般式(1)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000018
 一般式(1)で表される化合物は、mCBPにドープした状態での最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1の差ΔESTが0.4eV以下であることが好ましく、
0.2eV以下であることがより好ましく、0.1eV以下であることがより好ましい。ΔESTの測定方法については、実施例の項を参照することができる。
 一般式(1)で表される化合物は、遅延蛍光を放射しうる。したがって、本発明には、一般式(1)で表される構造を有する遅延蛍光体の発明も含まれる。
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、一般式(1)がとりうる最も小さい分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 また、遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、遅延蛍光を放射し、分子内プロトン移動が可能な重合性モノマーを重合させた重合体であってもよい。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、有機発光素子の材料として用いることが考えられる。具体的には、一般式(1)のR~RかY~Yのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を有機発光素子の材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを有機発光素子の材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(11)または(12)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 一般式(11)または(12)において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(11)または(12)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)の構造のR~RかY~Yのいずれかに結合することができる。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記式(13)~(16)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 これらの式(13)~(16)を含む繰り返し単位を有する重合体は、一般式(1)の構造のR~RかY~Yのいずれかにヒドロキシ基を導入しておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000021
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもよい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物の合成法は特に制限されない。例えば、一般式(1)のRが置換基である化合物の合成は、一般式(1)のRが水素原子である化合物とRーXで表される化合物を反応させることや、一般式(1)のRがハロゲン原子である化合物とRーHで表される化合物を反応させることにより合成することが可能である。ここでXはハロゲン原子である。ハロゲン原子は塩素原子、臭素原子、ヨウ素原子であることが好ましい。この反応の詳細については、後述の合成例を参考にすることができる。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。
[有機発光素子]
 本発明の有機発光素子では、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を使用する。遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、実用上十分な高い量子収率を示し、有機発光素子の発光材料として効果的に用いることができる。また、遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、有機発光素子のホストまたはアシストドーパントとして用いることもできる。例えば、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光材料として用いた有機発光素子は、この化合物が遅延蛍光材料として機能することにより、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、外気の熱やデバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、遅延蛍光を放射し、分子内プロトン移動が可能な化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が発光材料よりも高い値を有する有機化合物を用いることができる。その結果、発光材料に生成した一重項励起子および三重項励起子を、発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる発光材料(遅延蛍光を放射し、分子内プロトン移動が可能な化合物)から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である化合物、すなわち遅延蛍光を放射し、分子内プロトン移動が可能な化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、上記の遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、各層に含まれる遅延蛍光を放射し、分子内プロトン移動が可能な化合物は、発光層に用いるものと、発光層以外の層に用いるものとで、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000027
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000035
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000036
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000040
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000041
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を発光層に含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 また、本発明の有機発光素子は、有機発光トランジスタであってもよい。有機発光トランジスタは、例えば発光層を兼ねる活性層に、ゲート絶縁層を介してゲート電極が積層されるとともに、該活性層にソース電極およびドレイン電極が接続された構造を有する。こうした有機発光トランジスタの活性層に、遅延蛍光を放射し、分子内プロトン移動が可能な化合物を用いることにより、キャリア移動度および発光特性のいずれにも優れた有機発光トランジスタを実現することができる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、紫外可視近赤外分光光度計(パーキンエルマー社製:Lambda950-PKA)、蛍光分光光度計(HORIBA社製:FluoroMax-4)、マルチチャンネル分光器(浜松ホトニクス社製:PMA-12C10027-01)、光励起絶対発光量子収率測定装置(浜松ホトニクス社製:C9920PMA-11)、蛍光寿命測定装置(浜松ホトニクス社製:C11367-25)、およびストリークカメラ(浜松ホトニクス社製:U8167-1)を用いて行った。また、本実施例では、発光寿命が100ns以下の蛍光を即時蛍光と判定し、発光寿命が0.1μs以上の蛍光を遅延蛍光と判定した。
 HOMO(Highest occupiedmolecular orbital)のエネルギー準位およびLUMO(Lowest unoccupiedmolecular orbital)のエネルギー準位は、電気化学アナライザー(BAS社製)を用い、0.1mMフェロセン溶液を外部標準としてサイクリックボルタンメトリーおよび微分パルスボンタンメトリーにより測定した。
 最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)の差ΔESTは下記のようにして測定した。
[トルエンまたはPMMA中での最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)の差ΔEST
 トルエンまたはPMMA中での化合物の最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)の差ΔESTは、最低励起一重項エネルギー準位(ES1)と最低励起三重項エネルギー準位(ET1)を以下の方法で算出し、ΔEST=ES1-ET1により求めた。
(1)最低励起一重項エネルギー準位(ES1
 測定対象化合物を含むトルエン溶液(濃度:1×10-5M)、またはシリコン基板上に形成した測定対象化合物を含むPMMA膜(化合物の濃度:0.1mol%、厚さ100nm)を測定試料として用意し、常温(300K)でこの試料の蛍光スペクトルを測定した。具体的には、励起光入射直後から入射後100ナノ秒までの発光を積算することで、縦軸を発光強度、横軸を波長の蛍光スペクトルを得た。この発光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値 λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をES1とした。
  換算式:ES1[eV]=1239.85/λedge
(2)最低励起三重項エネルギー準位(ET1
 最低励起一重項エネルギー準位(ES1)と同じ試料を5[K]に冷却し、励起光(337nm)を燐光測定用試料に照射し、ストリークカメラを用いて、燐光強度を測定した。励起光入射後1ミリ秒から入射後10ミリ秒の発光を積算することで、縦軸を発光強度、横軸を波長の燐光スペクトルを得た。この燐光スペクトルの短波長側の立ち上がりに対して接線を引き、その接線と横軸との交点の波長値λedge[nm]を求めた。この波長値を次に示す換算式でエネルギー値に換算した値をET1とした。
  換算式:ET1[eV]=1239.85/λedge
 燐光スペクトルの短波長側の立ち上がりに対する接線は以下のように引いた。燐光スペクトルの短波長側から、スペクトルの極大値のうち、最も短波長側の極大値までスペクトル曲線上を移動する際に、長波長側に向けて曲線上の各点における接線を考えた。この接線は、曲線が立ち上がるにつれ(つまり縦軸が増加するにつれ)、傾きが増加する。この傾きの値が極大値をとる点において引いた接線を、当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 スペクトルの最大ピーク強度の10%以下のピーク強度をもつ極大点は、上述の最も短波長側の極大値には含めず、最も短波長側の極大値に最も近い、傾きの値が極大値をとる点において引いた接線を当該燐光スペクトルの短波長側の立ち上がりに対する接線とした。
 なお、試料がトルエン溶液のときは、77[K]で燐光測定装置により測定した。
[mCBP中での最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1との差ΔEST
 mCBP中での化合物の最低励起一重項エネルギー準位ES1と最低励起三重項エネルギー準位ET1との差ΔESTは、ΔESTをアレニウスの式における活性化エネルギーEとして、実験により測定したT-1とln (kRISC)の相関図の傾きaから求めた。
 すなわち、下記式(1)で表されるアレニウスの式の両辺を自然対数に変換すると下記式(2)が得られる。
Figure JPOXMLDOC01-appb-M000042
 式(1)、(2)において、kは反応の速度定数を表し、Aは頻度因子を表し、Eは活性化エネルギーを表し、Rは気体定数を表し、Tは絶対温度を表す。ここで、1分子での気体定数Rは0.86173312×10-4(eVK-1)である。
 式(2)から、T-1とln kは、-E/Rを傾きとする一次関数で表されることがわかる。したがって、T-1とln kの相関図の傾きをaとしたとき、活性化エネルギーEは下記式(4)で近似的に表される。
 E=-a×0.8617×10-4     ・・・・・(4)
 ここで、励起一重項状態から励起三重項状態への逆項間交差では、ΔESTを活性化エネルギー(ポテンシャル障壁の高さ)と見ることができるため、式(4)のEをΔESTに置き換えた下記式(5)が成り立つ。
 ΔEST=-a×0.8617×10-4   ・・・・・(5)
 本実施例では、対象化合物とmCBPの共蒸着膜を対象化合物の濃度が3重量%となるように形成して、その発光の過渡減衰曲線を10~300Kの範囲で温度を変えて測定し、T-1とln (kRISC)(kRISCは逆項間交差の速度定数である)の相関図を得た。この相関図の傾きaから式(5)を用いてΔESTを導いた。
(合成例1) 化合物1の合成 3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,1,5,5,9,9-ヘキサメチル-13-アザトリアングレン)(197mg,0.40mmol)と2-ブロモ-4,6-ジフェニル-1,3,5-トリアジン(140mg,0.45mmol)を、窒素雰囲気下でトルエン30mLに溶解した。さらに、トルエン55mLを追加した後、メチルトリオクチルアンモニウムクロライド3滴を含む2Mの炭酸ナトリウム水溶液(15mL)とテトラキス(トリフェニルホスフィンパラジウム(0))(56mg,2mol%)を添加し、65℃の窒素雰囲気下で3日間撹拌した。その水層をトルエンで3回洗浄し、回収した有機層を硫酸マグネシウムで乾燥し、その溶媒を、減圧下で揮発させて除去した。得られた粗製物を、n-ヘキサン:ジクロロメタン=3:1の混合溶媒を溶離液に用いてシリカゲルカラムクロマトグラフィーにて精製し、化合物1の淡黄色固体を得た。
H-NMR(CDCl,400MHz,δ):1.69(s,6H),1.777(s,12H),7.20(t,2H,J=7.5Hz),7.43(dd,2H,J=7.5,1.5),7.47(dd,2H,J=7.5,1.5),7.61(m,6H),8.80(m,6H),MS(ASAP):m/z=598([M+H]).
(合成例2) 化合物2の合成
Figure JPOXMLDOC01-appb-C000043
 アントラニル酸メチル(41.1mL、0.318mol)、2-ヨウ化安息香酸メチル(13mL,0.909mol)、炭酸カリウム(100g,0.727mol)、ヨウ化銅(I)(5.89g,0.0309mol)、および銅(4.04g,0.0636mol)の混合物をジフェニルエーテル370mLに入れて、190℃の窒素雰囲気下で76時間撹拌した。この反応液にセライトろ過を行って固形物を除去した後、クロロホルムを用いて分液操作を行った。得られた有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ過で除いた後、有機層から溶媒をエバポレーターで除去することにより、中間体1の薄ベージュ色固体を得た。得られた固体を酢酸エチルで再結晶し、中間体1の薄黄色個体を収量98.7g、収率74%で得た。
Figure JPOXMLDOC01-appb-C000044
 中間体1(1.00g,2.39mmol)と硫酸銀(I)(0.750g,2.39mmol)の混合物をエタノール50mLに懸濁させ、エタノール100mLに溶解したヨウ素(0.608g,2.39mmol)を氷冷下でゆっくり滴下した後、室温で15時間撹拌した。この反応液にセライト濾過を行って固体を除き、溶媒をエバポレーターで除去した。析出した固体を、ジクロロメタンを溶離液に用いてシリカゲルカラムクロマトグラフィーにて精製し、中間体2のベージュ色粉末固体を収量0.450g、収率35%で得た。
Figure JPOXMLDOC01-appb-C000045
 中間体2(0.801g,1.47mmol)に水酸化ナトリウム(0.829g,20.7mmol)を加えた混合物を、エタノール:水=1:1の混合溶液6.5mLに入れて3時間加熱還流した後、塩酸を滴下して反応溶液のpHを1程度に調整した。析出した固体を減圧濾過で回収し、減圧乾燥することで、中間体3の白色粉末を収量0.659g、収率89%で得た。
Figure JPOXMLDOC01-appb-C000046
 中間体3(0.600g,1.19mmol)、塩化チオニル(2.57mL,35.7mmol)、およびN,N-ジメチルホルムアミド0.30mLを脱水ジクロロメタン45mLに入れ、窒素雰囲気下で3時間加熱還流した後、四塩化スズ(IV)(2.52mL,21.4mmol)を加え、さらに18時間加熱還流した。反応終了後、この反応液に水酸化ナトリウム水溶液を撹拌しながらゆっくり滴下し、室温下で1時間撹拌した。得られた固体を吸引濾過で回収し、減圧乾燥した後、ニトロベンゼンで再結晶を行った。これにより、中間体4の黄色固体を収量0.287g、収率54%で得た。
Figure JPOXMLDOC01-appb-C000047
 中間体4(0.200g,0.445mmol)、9H-カルバゾール(0.089g,0.534mmol)、ヨウ化銅(I)(0.0169g,0.089mmol)、2,2-ビピリジン(0.0138g,0.089mmol)、および炭酸カリウム(0.741g,4.45mmol)の混合物をo-ジクロロベンゼン45mLに入れ、窒素雰囲気下で44時間加熱還流した。反応終了後、反応溶液を室温程度まで冷却し、ジクロロメタンを加えて希釈した後、減圧濾過により固形物を除去した。得られた濾液から減圧留去にて溶媒を除去し、析出した固体を、クロロホルムを溶離液に用いてシリカゲルカラムクロマトグラフィーにて粗精製した。この粗精製物を昇華精製することにより、目的の化合物2を、橙色固体として収量0.0301g、収率14%で得た。
H-NMR(500MHz,CDCl):δ=9.29(s,2H,ArH),9.11(dd,2H,J=7.5Hz、2.0Hz,ArH),9.08(dd,2H,J=7.5Hz,2.0Hz,ArH),8.19(d,2H,J=8.0Hz,2.0Hz,ArH),7.91(dd,2H,J=7.5Hz,7.5Hz,ArH),7.56(d,2H,J=8.0Hz,ArH),7,47(ddd,2H,J=7.0Hz,7.0Hz,1.0Hz,ArH),7.37(ddd,2H,J=7.5Hz,7.0Hz,ArH),MS(ASAP)m/z488.41[M-H].
(合成例3) 化合物3の合成
Figure JPOXMLDOC01-appb-C000048
 中間体4(0.0906g,0.200mmol)、トリフェニルアミノボロン酸(0.0589g,0.200mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.0106g,0.0095mmol)の混合物にトルエン5mLを加えた後、炭酸カリウム(1.42g,103mmol)と純水5mLを加え、窒素雰囲気下で30時間加熱還流した。反応終了後、反応溶液にクロロホルムを用いて分液操作を行い、得られた有機層を硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ過で除いた後、溶媒をエバボレーターで除去した。柝出した固体を、クロロホルムを溶離液に用いてシリカゲルカラムクロマトグラフィーにて粗精製した。得られた粗精製物を昇華精製することで、化合物3の赤橙色固体を収量0.0237g、収率21%で得た。
H-NMR(500MHz,CDCl):δ=9.25(s,2H,ArH),9.07(ddd,4H,J=6.0Hz,6.0Hz,1.5Hz,ArHa,c),7.87(dd,2H,J=7.5Hz,7.5Hz,ArH),7.77(d,2H,J=9.0Hz,ArH),7.32(dd,4H,J=8.0Hz,7.5Hz,ArHh,j),7.23(d,2H,J=8.5Hz,ArH),7.19(d,2H,J=8.0Hz,ArHg,k),7.10(dd,2H,J=7.5Hz,7.5Hz,ArH),MS(ASAP)m/z566.18[M].
(合成例4) 化合物4の合成
Figure JPOXMLDOC01-appb-C000049
 中間体4(0.201g,0.445mmol)、ジフェニルアミン(0.0898g,0.534mmol)、ヨウ化銅(I)(0.0171g,0.089mmol)、2,2-ビピリジン(0.0133g,0.089mmol)、炭酸カリウム(0.742g,4.45mmol)の混合物をo-ジクロロベンゼン45mLに入れ、窒素雰囲気下で44時間加熱還流した。反応終了後、反応溶液を室温程度まで冷却し、ジクロロメタンを加えて希釈した後、減圧濾過により固形物を除去した。得られた濾液から減圧留去にて溶媒を除去し、析出した固体を、クロロホルムを溶離液に用いてシリカゲルカラムクロマトグラフィーにて粗精製した。得られた粗精製物を、さらにゲルカラムパーミエーションクロマトグラフィーにて精製し、化合物4の赤色固体を収量0.0020g、収率0.9%で得た。
H-NMR(500MHz,CDCl):δ=9.03(dd,2H,J=7.5Hz,2.0Hz,ArH),8.98(dd,2H,J=7.5Hz,1.5Hz,ArH),8,66(s,2H,ArH),7.82(dd,2H,J=8.0Hz,8.0Hz,ArH),7.37(dd,4H,J=8,0Hz,7.5Hz,ArHb,d),7.21(d,4H,J=8.0Hz,ArHa,e),7.18(dd,2H,J=7.5Hz,ArH),MS(ASAP)m/z490[M-H].
(合成例5) 化合物5の合成
Figure JPOXMLDOC01-appb-C000050
 窒素気流下,0.7g(1.34mmol)の2,6-ジブロモー4,4,8,8,12,12-ヘキサメチル-8,12-ジヒドロ-4H-ベンゾ[1,9]キノリジノ[3,4,5,6,7-defg]アクリジン,0.92g(4.02mmol)のN,N-ジ(4-アニソリル)アミン,0.48g(5.00mmol)のt-ブトキシナトリウムおよび15mg(0.03mmol)のビス(トリ-t-ブチルフォスフィン)パラジウム(0)を脱水トルエン50mL中で48時間加熱還流し,得られた反応溶液をセライトで濾過した後,分液し,無水硫酸ナトリウム上で乾燥させ,溶媒を留去することで黄色の反応混合物を得た。目的物はカラムクロマトグラフ法(ヘキサン/酢酸エチル)によって精製し,黄色粉末の中間体5を収量0.9g(1.10mmol)、収率82%で得た。
H-NMR(500MHz,トルエンd-8):δ=7.34(d,2H,J=2.5Hz,ArHdore),7.28(d,2H,J=2.5Hz,ArHdore),7.21(d,1H,J=8.0Hz,ArH),7.17(d,8H,J=9.0Hz,ArH),6.98(s,1H,ArH),6.74(d,8H,J=9.0Hz,ArH),3.36(s,12H,ArH),1.51(s,12H,ArH),1.45(s,6H,ArH).
Figure JPOXMLDOC01-appb-C000051
 窒素気流下,中間体5(410mg,0.5mmol)をテトラヒドロフラン20mLに溶解させ,氷冷下,テトラヒドロフラン10mLに溶解させたN-ブロモスクシンイミド(108mg,0.6mmol)をゆっくり滴下した。1時間攪拌後,室温で一晩攪拌した。得られた反応溶液にチオ硫酸ナトリウム水溶液を少量添加後,分液し,無水硫酸ナトリウム上で乾燥させ,溶媒を留去することで黄色の反応混合物を得た。目的物はカラムクロマトグラフ法(ヘキサン:酢酸エチル=3:1)によって粗精製し、ジエチルエーテルに溶解後メタノールを加えて析出した沈殿を濾過することにより、黄色粉末の中間体6を収量350mg(0.39mmol)、収率78%で得た。
H-NMR(500MHz,トルエンd-8):δ=7.47(s,2H,ArH),7.27(s,4H,ArHd,e),7.16(d,8H,J=8.0Hz,ArH),6.75(d,8H,J=9.0Hz,ArH),3.36(s,12H,ArH),1.44(s,6H,ArH),1.38(s,12H,ArH
MS(ASAP)m/z897.31[M].
Figure JPOXMLDOC01-appb-C000052
 窒素気流下,中間体6(160mg,0.17mmol),ビスピナコラートジボロン(51mg,0.2mmol),酢酸カリウム(59mg,0.6mmol)をジメチルホルムアミド20mLに溶解させ,Pd(dppf)Cl・CHCl(4.1mg,0.005mmol)を加え、85℃で15時間攪拌した。反応終了後,溶媒を留去したのち分液(ジクロロメタン)を行い,無水硫酸ナトリウムで乾燥後、カラムクロマトグラフ法(ヘキサン:酢酸エチル=4:1)によって粗精製し,ジエチルエーテルに溶解後メタノールを加えて析出した沈殿を濾過することで黄色粉末の中間体7を収量92.0mg(0.097mmol)、収率57%で得た。
H-NMR(500MHz,トルエンd-8):δ=8.20(s,2H,ArH),7.34(d,2H,J=2.5Hz,ArHdore),7.26(d,2H,J=2.5Hz,ArHdore),7.16(d,8H,J=9.0Hz,ArH),6.73(d,8H,J=9.0Hz,ArH),3.36(s,12H,ArH),1.57(s,12H,ArH),1.45(s,6H,ArH),1.20(s,12H,ArH
MS(ASAP)m/z945.34[M
Figure JPOXMLDOC01-appb-C000053
 窒素気流下,中間体7(92mg,0.097mmol),2-ブロモ-4,6-ジフェニル-1,3,5-トリアジン(118mg,0.38mmol)をトルエン20mLに溶解させ,2mol/L炭酸ナトリウム2mLおよびPd(PPh(50mg,0.043mmol)を加え、36時間加熱還流した。反応終了後,分液を行い,カラムクロマトグラフ法(ヘキサン:酢酸エチル=4:1)によって精製することで黄色粉末の化合物5を収量47mg(0.045mmol)、収率46%で得た。
H-NMR(500MHz,トルエンd-8):δ=9.06(s,2H,ArH),8.98(dd,4H,J=6.0Hz,2.0Hz,ArH),7.42,7.04,7.36,7.31(m,10H,ArHd,e,f,i),7.21(dd,8H,J=7.0Hz,2.0Hz,ArH),6.78(d,8H,J=7.0Hz,2.0Hz,ArH),3.39(s,12H,ArH),1.69(s,12H,ArH),1.50(s,6H,ArH
MS(ASAP)m/z1050.99[M
(合成例6) 化合物6の合成
Figure JPOXMLDOC01-appb-C000054
 トリメチル-2,2’,2”-ニトリロトリベンゾエート(3.00g,7.16mmol)、硫酸銀(I)(2.23g,7.16mmol)の混合物をエタノール230mLに懸濁させ220mLエタノールに溶解させたヨウ素(1.82g,7.16mmol)を氷冷下でゆっくり滴下した。滴下終了後、反応溶液を室温で12時間撹拌した。セライト濾過で系中の固体を除き、溶媒をエバポレーターで除去した。析出した固体を、溶離液にジクロロメタンを用いてシリカゲルカラムクロマトグラフィーで精製し、淡橙粉末の中間体8を収量1.91g、収率49%で得て、淡橙粉末の中間体9を収量0.407g、収率8%で得た。
中間体8:
H-NMR(500MHz,CDCl):δ=7.87(d,1H,J=2.0Hz,ArH),7.62(dd,1H,J=8.0Hz,7.5Hz,ArH),7.60(d,1H,J=8.5Hz,ArH),7.38(dd,1H,J-=8.0Hz,7.5Hz,ArH),7.12(ddd,2H,J=7.5Hz,7.5Hz,3.5Hz,ArH),7.06(dd,2H,J=8.0Hz,2.0Hz,ArH),6.76(d,1H,J=8.5Hz,ArH),3.43(s,3H,CH),3.41(s,3H,CH),3.35(s,3H,CH),MS(ASAP)m/z545.38[M].
中間体9:
H-NMR(500MHz,CDCl):δ=7.89(dd,2H,J=5.5Hz,2.0Hz,ArH),7.63(d,2H,J=7.0Hz,ArH),7.62(d,1H,J=9.0Hz,ArH),7.39(dd,1H,J-=8.5Hz,7.5Hz,ArH),7.15(dd,1H,J=7.5Hz,8.0Hz,ArH),7.06(d,2H,J=9.0Hz,ArH),6.77(dd,2H,J=8.5Hz,9.0Hz,ArH),3.45(s,3H,CH),3.41(s,3H,CH),3.38(s,3H,CH);MS(ASAP)m/z671.14[M].
Figure JPOXMLDOC01-appb-C000055
 中間体9(1.067g,1.59mmol)に水酸化ナトリウム(0.795g,19.9mmol)を加え、エタノール/水=1/1混合溶液6.7mL中で3時間加熱還流した後、塩酸を滴下して反応溶液のpHを2程度に調整した。析出した固体を減圧濾過で回収したのち、減圧乾燥して白色粉末の中間体10を収量0.913g、収率91%で得た。
H-NMR(500MHz,DMSO-d6):δ=12.75(broad,3H,COOH),7.93(broad,2H,ArH),7.75(broad,3H,ArHa,f),7.47(broad,1H,ArH),7.23(dd,1H,ArH),6.85(b,1H,ArH),6.62(b,2H,ArH);MS(ASAP)m/z629.02[M],585.03[M-CO].
Figure JPOXMLDOC01-appb-C000056
 脱水ジクロロメタン45mL中で中間体10(0.752g,1.20mmol)に塩化チオニル(2.56mL,35.7mmol)、ジメチルホルムアミド0.30mLを加え、窒素雰囲気下で3時間加熱還流した。その後四塩化スズ(IV)(2.50mL,21.4mmol)を加え、さらに18時間加熱還流した。反応終了後、水酸化ナトリウム水溶液を撹拌しながらゆっくり滴下し、室温下で1時間撹拌した。得られた固体を吸引濾過で回収し、減圧乾燥した。その後、固体をニトロベンゼンで再結晶し、黄色固体の中間体11を収量0.336g、収率49%で得た。
MS(ASAP)m/z575.09[M].
Figure JPOXMLDOC01-appb-C000057
 中間体11(0.300g,0.521mmol)、ジフェニルアミン(1.13g,10.4mmol)、ナトリウムtert-ブトキシド(2.00g,20.8mmol)、ビスジベンジリデンアセトンパラジウム(0.0300g,0.0521mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(0.0151g,0.0521mmol)の混合物に脱水トルエン(12mL)を加えて脱気した後、窒素雰囲気下で時間加熱還流した。反応終了後、分液操作を行いジクロロメタンで抽出し、有機層を硫酸ナトリウムで乾燥した。濾過して硫酸ナトリウムを除き、溶媒をエバポレーターで除去した。析出した固体を留出液ジクロロメタンのシリカゲルカラムクロマトグラフィーで粗精製した。得られた固体を昇華精製し、黒紫色固体の化合物6を収量0.0864g、収率25%で得た。
H-NMR(500MHz,CDCl):δ=8.96(dd,2H,J=7.5Hz,ArH),8.96(dd,2H,J=7.5Hz,ArH),(dd,1H,J=7.5Hz,ArH),7.34(dd,8H,J=7.5Hz,8.0Hz,ArHe,g),7.19(d,8H,J=8.0Hz,ArHd,h),7.15(dd,4H,J=7.5Hz,7.5Hz,ArH),MS(ASAP)m/z657.21[M].
(合成例7) 化合物7の合成
Figure JPOXMLDOC01-appb-C000058
 トリメチル-2,2’,2”-ニトリロトリベンゾエート(3.01g,7.16mmol)、硫酸銀(I)(5.40g,21.5mmol)の混合物をエタノール150mLに懸濁させ、300mLエタノールに溶解させたヨウ素(6.69g,21.5mmol)を氷冷下でゆっくり滴下した。滴下終了後、反応溶液を室温で15.5時間撹拌した。セライト濾過で系中の固体を除き、溶媒をエバポレーターで除去した。析出した固体を、溶離液にジクロロメタンを用いてシリカゲルカラムクロマトグラフィーで精製、ベージュ色粉末固体の中間体12を収量1.16g、収率20%で得た。
MS(ASAP)m/z545.38[M].
Figure JPOXMLDOC01-appb-C000059
 中間体12(1.27g,1.59mmol)に水酸化ナトリウム(0.795g,19.9mmol)を加え、エタノール/水=1/1混合溶液6.7mL中で3時間加熱還流した後、塩酸を滴下して反応溶液のpHを2程度に調整した。析出した固体を減圧濾過で回収したのち、減圧乾燥して白色粉末の中間体13を収量1.18g、収率98%で得た。
MS(ASAP)m/z755.00[M],710.99[M-CO].
Figure JPOXMLDOC01-appb-C000060
 脱水ジクロロメタン50mL中で中間体13(0.900g,1.19mmol)に塩化チオニル(2.56mL,35.7mmol)、ジメチルホルムアミド0.30mLを加え、窒素雰囲気下で3時間加熱還流した。その後四塩化スズ(IV)(2.50mL,21.4mmol)を加え、さらに18時間加熱還流した。反応終了後、水酸化ナトリウム水溶液を撹拌しながらゆっくり滴下し、室温下で1時間撹拌した。得られた固体を吸引濾過で回収し、減圧乾燥した。その後、固体をニトロベンゼンで再結晶し、黄色固体の中間体14を収量0.553g、収率66%で得た。
MS(ASAP)m/z700.99[M].
Figure JPOXMLDOC01-appb-C000061
 中間体14(0.450g,0.642mmol)、ジフェニルアミン(3.25g,19.3mmol)、ナトリウムtert-ブトキシド(3.70g,38.5mmol)、ビスジベンジリデンアセトンパラジウム(0.0367g,0.0642mmol)、トリ-tert-ブチルホスホニウムテトラフルオロボラート(0.0186g,0.0642mmol)の混合物に脱水トルエン(15mL)を加えて脱気した後、窒素雰囲気下で19時間加熱還流した。反応終了後、分液操作を行いジクロロメタンで抽出し、有機層を硫酸ナトリウムで乾燥した。濾過して硫酸ナトリウムを除き、溶媒をエバポレーターで除去した。析出した固体を留出液ジクロロメタンのシリカゲルカラムクロマトグラフィーで粗精製した。得られた固体を昇華精製し、黒紫色固体の化合物7を収量0.0910g、収率17%で得た。
H-NMR(500MHz,CDCl):δ=8.57(s,6HArH),7.32(dd,12H,J=8.0Hz,7.5Hz,ArHb,d),7.17(d,12H,J=7.5Hz,ArHa,e),7.13(dd,12H,J=7.5Hz,7.5Hz,ArH),MS(ASAP)m/z825.16[M].
(実施例1) 化合物1を用いた有機フォトルミネッセンス素子の作製と評価
 Ar雰囲気のグローブボックス中で化合物1のトルエン溶液(濃度1.0×10-5mol/L)を調製した。
 また、石英基板上にスピンコート法にて、化合物1とポリメチルメタクリレートからなる薄膜(ポリマー膜)を200nmの厚さで形成して有機フォトルミネッセンス素子とした。このとき、化合物1の濃度は0.1mol%または10mol%とした。なお、化合物1の濃度が0.1mol%であるポリマー膜では化合物1が均一に分散した状態で存在しており、化合物1の濃度が10mol%であるポリマー膜では、化合物1の凝集が認められた。
 さらに、石英基板上に真空蒸着法にて、真空度4×10-4Pa以下の条件で化合物1の薄膜(単独膜)を100nmの厚さで形成して有機フォトルミネッセンス素子とした。
 これとは別に、石英基板上に真空蒸着法にて、真空度4×10-4Pa以下の条件で化合物1とDPEPOとを異なる蒸着源から蒸着し、化合物1の濃度が0.5重量%、2重量%または10重量%である薄膜(ドープ膜)を40nmの厚さで形成して有機フォトルミネッセンス素子とした。
 また、DPEPOの代わりに、mCPまたはmCBPを用いること以外は、上記と同様にして化合物1を含むドープ膜を形成し、有機フォトルミネッセンス素子とした。
 化合物1について、トルエン中に均一に溶解させた状態(均一系)で電気化学測定を行ったところ、HOMO準位が-5.16eV、LUMO準位が-2.13eVであった。また、化合物1の蒸着単膜(凝集系)に対して大気下で行った光電子分光法と吸収スペクトル吸収端から求めたHOMO準位が-5.51eV、LUMO準位が-2.81eVであった。また、化合物1のトルエン溶液の蛍光スペクトルおよびりん光スペクトルから、化合物1の励起一重項エネルギー準位ES1は2.884eV、励起三重項エネルギー準位ET1は2.758eV、励起一重項エネルギー準位と励起三重項エネルギー準位の差ΔESTは0.128eVと見積もられた。
 また、実施例1で作製した化合物1を含むトルエン溶液、ポリマー膜、単独膜および各ドープ膜について、発光特性を評価した。大気下またはアルゴン雰囲気下で測定したフォトルミネッセンス量子収率(PL量子収率)を表1に示す。化合物1のトルエン溶液の発光極大波長は460nmであり、化合物1の単独膜の発光極大波長は490nmであった。
Figure JPOXMLDOC01-appb-T000062
 表1に示したように、化合物1を含むトルエン溶液、ポリマー膜および各ドープ膜は、いずれもアルゴン雰囲気下において、大気下よりも高いPL量子収率を示した。これは、アルゴン雰囲気下では、酸素による三重項励起子の失活が抑制されたためであると考えられる。このことから、化合物1の蛍光発光過程には、励起三重項状態Tから励起一重項状態Sへの逆項間交差過程が介在していることが示唆された。
 また、化合物1を含むポリマー膜、単独膜および各ドープ膜について、300Kで発光の過渡減衰曲線を測定したところ、いずれも遅延蛍光を観測することができた。さらに、300~10Kの範囲で測定を行ったところ、温度の上昇に伴って発光寿命が増加する温度依存性が認められた。
 これらの結果から、化合物1は、励起三重項状態Tから励起一重項状態Sへの逆項間交差を介して発光する熱活性型の遅延蛍光材料であることがわかった。
(実施例2~4) 化合物2~4を用いた有機フォトルミネッセンス素子の作製と評価
 化合物1の代わりに化合物2~4、6、7を用い、ドープ膜のホスト材料としてmCBPのみを用いたこと以外は、実施例1と同様にして化合物2~4を含むトルエン溶液、ポリマー膜およびドープ膜をそれぞれ作製して有機フォトルミネッセンス素子とした。ただし、化合物2~4、6、7の濃度は、トルエン溶液で1.0×10-5mol/L、ポリマー膜で0.1mol%、ドープ膜で3重量%とした。
(実施例5) 化合物5を用いた有機フォトルミネッセンス素子の作製と評価
 Ar雰囲気のグローブボックス中で化合物5のトルエン溶液(濃度1.0×10-5mol/L)およびシクロヘキサン溶液(濃度1.0×10-5mol/L)を調製し、有機フォトルミネッセンス素子とした。
(比較例1) 比較化合物1のトルエン溶液の調製と評価
 Ar雰囲気のグローブボックス中で比較化合物1のトルエン溶液(濃度1.0×10-5mol/L)を調製し、比較サンプルとした。
Figure JPOXMLDOC01-appb-C000063
 化合物2~4、6、7および比較化合物1について、トルエン中で測定したHOMO準位およびLUMO準位を表2に示し、実施例2~4、6、7および比較例1で作製したトルエン溶液、ポリマー膜、ドープ膜の励起一重項エネルギー準位ES1、励起三重項エネルギー準位ET1およびこれらのエネルギー差ΔESTを表3に示す。
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
 また、実施例2~7および比較例1で作製した各トルエン溶液、各ポリマー膜、各ドープ膜、および実施例5で作製したシクロヘキサン溶液の発光特性を評価した。各トルエン溶液およびシクロヘキサン溶液について、大気下または酸素非存在下で測定したPL量子収率と発光寿命を表4に示し、各ポリマー膜および各ドープについて、大気下または酸素非存在下で測定したPL量子収率と、酸素非存在下で測定した発光寿命を表5に示す。ここで、酸素非存在下とは、トルエン溶液またはシクロヘキサン溶液では窒素バブリング後のことをいい、ポリマー膜およびドープ膜ではアルゴン雰囲気下のことをいう。
Figure JPOXMLDOC01-appb-T000066
Figure JPOXMLDOC01-appb-T000067
 表4、5に示したように、化合物2~5を含む各溶液、化合物2~4を含む各ポリマー膜および各ドープ膜は、いずれも酸素非存在下において、大気下よりも高いPL量子収率を示し、マイクロ秒オーダーの遅延蛍光成分を観測することができた。また、表4に示したトルエン溶液の遅延蛍光寿命から、酸素を除去することで遅延蛍光寿命が増加する傾向が認められた。これらの結果は、酸素による三重項励起子の失活が抑制されたことによるものと考えられ、化合物2~5についても、その蛍光発光過程に、励起三重項状態Tから励起一重項状態Sへの逆項間交差過程が介在していることが示唆された。また、化合物2~5を含む各ポリマー膜および各ドープ膜について、300~10Kにおいて発光の過渡減衰曲線を測定したところ、温度の上昇に伴って発光寿命が増加する温度依存性が認められた。 これらの結果から、化合物2~5も、励起三重項状態Tから励起一重項状態Sへの逆項間交差を介して発光する熱活性型の遅延蛍光材料であることが確認された。
(実施例6) 化合物1(0.5重量%)とDPEPOを発光層に用いた有機エレクトロルミネッセンス素子の作製
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度4.0×10-4Paで積層した。まず、ITO上にNPDを30nmの厚さに形成し、その上に、TCTAを20nmの厚さに形成した。次に、化合物1とDPEPOを異なる蒸着源から共蒸着し、40nmの厚さの層を形成して発光層とした。この時、化合物1の濃度は0.5重量%とした。次に、DPEPOを10nmの厚さに形成し、その上に、TPBiを30nmの厚さに形成した。さらにフッ化リチウム(LiF)を0.8nmの厚さに形成し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
(実施例7、8) 化合物1(2重量%または10重量%)とDPEPOを発光層に用いた有機エレクトロルミネッセンス素子の作製
 発光層における化合物1の濃度を2重量%または10重量%に変えたこと以外は、実施例6と同様にして有機エレクトロルミネッセンス素子を作製した。
(実施例9) 化合物1の濃度が異なる2層の発光層を形成した有機エレクトロルミネッセンス素子の作製
 化合物1の濃度が0.5重量%である発光層を形成する代わりに、化合物1の濃度が10重量%である発光層を20nmの厚さに形成し、その上に、化合物1の濃度が2重量%である発光層を20nmの厚さに形成して2層構成の発光層を形成したこと以外は、実施例6と同様にして有機エレクトロルミネッセンス素子を作製した。
(実施例10、11) 化合物1(2重量%または10重量%)とmCPを発光層に用いた有機エレクトロルミネッセンス素子の作製
 DPEPOの代わりにmCPを用い、発光層における化合物1の濃度を2重量%または10重量%に変えたこと以外は、実施例6と同様にして有機エレクトロルミネッセンス素子を作製した。
(実施例12) 化合物1(2重量%)とmCBPを発光層に用いた有機エレクトロルミネッセンス素子の作製
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、実施例1と同じ真空度で、各薄膜を真空蒸着法にて積層した。まず、ITO上にHAT-CNを10nmの厚さに形成し、その上に、Tris-PCzを30nmの厚さに形成した。次に、化合物1とmCBPを異なる蒸着源から共蒸着し、30nmの厚さの層を形成して発光層とした。この時、化合物1の濃度は2重量%とした。次に、T2Tを10nmの厚さに形成し、その上に、BPy-TP2を40nmの厚さに形成した。さらにフッ化リチウム(LiF)を0.8nmの厚さに形成し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
(実施例13) 化合物1(10重量%)とmCBPを発光層に用いた有機エレクトロルミネッセンス素子の作製
 発光層における化合物1の濃度を10重量%に変えたこと以外は、実施例12と同様にして有機エレクトロルミネッセンス素子を作製した。
(実施例14~16) 化合物2~4を用いた有機エレクトロルミネッセンス素子の作製と評価
 化合物1の代わりに化合物2を用い、発光層における化合物2の濃度を3重量%としたこと以外は、実施例12と同様にして有機エレクトロルミネッセンス素子を作製した。
 実施例6~12で作製した有機エレクトロルミネッセンス素子について、外部量子効率-電流密度特性から求めた最大外部量子効率を表6に示す。表6の素子構成の欄において、斜線は層同士の境界を示し、かっこ内のnmを単位とする数値は当該層の厚さを示す。
Figure JPOXMLDOC01-appb-T000068
 表6に示したように、化合物1~4を用いることにより、発光効率が高い有機エレクトロルミネッセンス素子を実現することができた。また、化合物2を用いた有機エレクトロルミネッセンス素子(実施例14)の発光のCIE色度座標は(0.248,0.611)であった。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (40)

  1.  下記一般式(1)で表される構造を有する化合物。
    Figure JPOXMLDOC01-appb-C000001
     [一般式(1)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。Y~Yは各々独立に置換もしくは無置換のメチレン基(C(R10)(R11);R10およびR11は各々独立に水素原子または置換基を表す)、カルボニル基(C=O)、チオカルボニル基(C=S)、置換もしくは無置換のイミノ基(N(R12);R12は水素原子または置換基を表す)、酸素原子、硫黄原子、またはスルホニル基(SO)を表す。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
  2.  前記一般式(1)におけるZが窒素原子である、請求項1に記載の化合物。
  3.  前記一般式(1)におけるY~Yがカルボニル基またはジアルキルメチレン基である、請求項1または2に記載の化合物。
  4.  前記一般式(1)におけるRが置換基である、請求項1~3のいずれか1項に記載の化合物。
  5.  前記一般式(1)におけるRがドナー性基である、請求項4に記載の化合物。
  6.  前記一般式(1)におけるRがアクセプター性基である、請求項4に記載の化合物。
  7.  前記一般式(1)におけるRとRの間で水素結合を形成しうる、請求項4~6のいずれか1項に記載の化合物。
  8.  前記一般式(1)におけるRとRの間でも水素結合を形成しうる、請求項7に記載の化合物。
  9.  線対称軸を分子内に有する、請求項1~8のいずれか1項に記載の化合物。
  10.  下記一般式(2)で表される、請求項1~9のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。R11~R16は各々独立に置換基を表す。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
  11.  前記一般式(2)におけるRが、置換もしくは無置換のヘテロアリール基である、請求項10に記載の化合物。
  12.  前記ヘテロアリール基が環骨格構成原子として窒素原子を含む、請求項11に記載の化合物。
  13.  前記ヘテロアリール基の結合に関与する原子の隣の環骨格構成原子の少なくとも1つが窒素原子である、請求項12に記載の化合物。
  14.  前記一般式(2)におけるRが水素原子である、請求項13に記載の化合物。
  15.  前記ヘテロアリール基の結合に関与する原子の隣の環骨格構成原子がいずれも窒素原子である、請求項12に記載の化合物。
  16.  前記ヘテロアリール基が置換もしくは無置換のトリアジニル基である、請求項15に記載の化合物。
  17.  前記ヘテロアリール基が置換もしくは無置換のジアリールトリアジニル基である、請求項16に記載の化合物。
  18.  前記一般式(2)におけるRおよびRが水素原子である、請求項15~17のいずれか1項に記載の化合物。
  19.  前記一般式(2)におけるR~Rの少なくとも1つと、R~Rの少なくとも1つが、ジアリールアミノ構造またはカルバゾール環を含む基である、請求項11~18のいずれか1項に記載の化合物。
  20.  前記一般式(2)におけるRとRが、ジアリールアミノ構造またはカルバゾール環を含む基である、請求項19に記載の化合物。
  21.  前記一般式(2)におけるR~Rの少なくとも1つと、R~Rの少なくとも1つが、下記一般式(4)で表される構造を有する基である、請求項11~20のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
     [一般式(4)において、R21~R30は各々独立に水素原子または置換基を表す。R25およびR26は互いに連結して単結合または連結基を形成してもよい。Lは単結合または置換もしくは無置換のアリーレン基を表す。*は結合位置を示す。]
  22.  一般式(4)におけるR25とR26が互いに連結していない、請求項21に記載の化合物。
  23.  一般式(4)におけるR23およびR28の少なくとも一方が置換基である、請求項21または22に記載の化合物。
  24.  一般式(4)におけるLが単結合である、請求項21~23のいずれか1項に記載の化合物。
  25.  前記一般式(2)におけるR11~R16は各々独立に置換もしくは無置換のアルキル基である、請求項10~24のいずれか1項に記載の化合物。
  26.  前記一般式(2)におけるR11~R16がメチル基である、請求項25に記載の化合物。
  27.  下記一般式(3)で表される、請求項1~9のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(3)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
  28.  前記一般式(3)におけるR~Rの少なくとも1つがドナー性基である、請求項27に記載の化合物。
  29.  前記一般式(3)におけるRが、ジアリールアミノ構造またはカルバゾール環を含む基である、請求項27または28に記載の化合物。
  30.  前記一般式(3)におけるR~Rの少なくとも1つが、下記一般式(4)で表される構造を有する基である、請求項27~29のいずれか1項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
     [一般式(4)において、R21~R30は各々独立に水素原子または置換基を表す。R25およびR26は互いに連結して単結合または連結基を形成してもよい。Lは単結合または置換もしくは無置換のアリーレン基を表す。*は結合位置を示す。]
  31.  一般式(4)におけるR25とR26が互いに連結していない、請求項30に記載の化合物。
  32.  一般式(4)におけるR25とR26が互いに連結して単結合を形成している、請求項30に記載の化合物。
  33.  前記一般式(4)におけるLが、置換もしくは無置換のフェニレン基である、請求項30~32のいずれか1項に記載の化合物。
  34.  前記一般式(4)におけるLが単結合である、請求項30~32のいずれか1項に記載の化合物。
  35.  前記一般式(3)のRが、前記一般式(4)で表される基である、請求項30~34のいずれか1項に記載の化合物。
  36.  遅延蛍光を放射する、請求項1~35のいずれか1項に記載の化合物。
  37.  下記一般式(1)で表される構造を有する化合物からなる発光材料。
    Figure JPOXMLDOC01-appb-C000006
     [一般式(1)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。Y~Yは各々独立に置換もしくは無置換のメチレン基(C(R10)(R11);R10およびR11は各々独立に水素原子または置換基を表す)、カルボニル基(C=O)、チオカルボニル基(C=S)、置換もしくは無置換のイミノ基(N(R12);R12は水素原子または置換基を表す)、酸素原子、硫黄原子、またはスルホニル基(SO)を表す。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
  38.  下記一般式(1)で表される構造を有する化合物を含む有機発光素子。
    Figure JPOXMLDOC01-appb-C000007
     [一般式(1)において、R~Rは各々独立に水素原子または置換基を表し、R~Rの少なくとも1つは置換基である。Y~Yは各々独立に置換もしくは無置換のメチレン基(C(R10)(R11);R10およびR11は各々独立に水素原子または置換基を表す)、カルボニル基(C=O)、チオカルボニル基(C=S)、置換もしくは無置換のイミノ基(N(R12);R12は水素原子または置換基を表す)、酸素原子、硫黄原子、またはスルホニル基(SO)を表す。Zは、窒素原子、ホウ素原子、またはホスフィンオキシド基(P=O)を表す。]
  39.  前記素子が有機エレクトロルミネッセンス素子である、請求項38に記載の有機発光素子。
  40.  遅延蛍光を放射する、請求項38または39に記載の有機発光素子。

     
PCT/JP2018/007461 2017-02-28 2018-02-28 化合物、発光材料および有機発光素子 WO2018159662A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019503052A JPWO2018159662A1 (ja) 2017-02-28 2018-02-28 化合物、発光材料および有機発光素子
CN201880014536.5A CN110520421A (zh) 2017-02-28 2018-02-28 化合物、发光材料及有机发光元件
US16/489,385 US20190378997A1 (en) 2017-02-28 2018-02-28 Compound, light emitting material and organic light emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-037588 2017-02-28
JP2017037588 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159662A1 true WO2018159662A1 (ja) 2018-09-07

Family

ID=63370035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007461 WO2018159662A1 (ja) 2017-02-28 2018-02-28 化合物、発光材料および有機発光素子

Country Status (4)

Country Link
US (1) US20190378997A1 (ja)
JP (1) JPWO2018159662A1 (ja)
CN (1) CN110520421A (ja)
WO (1) WO2018159662A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109456326A (zh) * 2018-12-10 2019-03-12 苏州大学 有机电致发光器件、羰基桥连的三芳胺衍生物及其应用
CN110437229A (zh) * 2019-07-25 2019-11-12 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110526931A (zh) * 2019-08-29 2019-12-03 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110600612A (zh) * 2019-06-11 2019-12-20 华东理工大学 基于自组装工程的p-i-n型钙钛矿电池空穴传输层
KR20200032658A (ko) * 2018-09-18 2020-03-26 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020149716A1 (ko) * 2019-01-18 2020-07-23 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2021010785A1 (ko) * 2019-07-17 2021-01-21 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN112341461A (zh) * 2019-11-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、聚合物及包含其的有机发光二极管
EP3800679A1 (en) * 2019-10-01 2021-04-07 Samsung Display Co., Ltd. Organic electroluminescence device
JP2021147377A (ja) * 2020-03-23 2021-09-27 東洋紡株式会社 含窒素複素環化合物及びその利用
KR20220123848A (ko) * 2021-03-02 2022-09-13 울산대학교 산학협력단 지연 형광 특성을 갖는 유기 발광 화합물 및 이를 포함하는 유기발광소자
US11557734B2 (en) 2020-03-27 2023-01-17 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303150B (zh) * 2020-03-04 2021-10-19 苏州大学 高效窄半峰宽的聚集态发光材料
CN114539287A (zh) * 2020-11-25 2022-05-27 清华大学 一种多环芳香族化合物及其在电致发光器件中的应用
CN114292284B (zh) * 2021-12-29 2023-06-20 华南理工大学 一种基于7-取代苯并噻嗪吩噻嗪氧化物的发光材料及其制备与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512628A (ja) * 2005-09-12 2009-03-26 メルク パテント ゲーエムベーハー 有機電子素子のための化合物
KR20110111094A (ko) * 2010-04-02 2011-10-10 에스에프씨 주식회사 축합방향족 화합물 및 이를 포함하는 유기전계발광소자
JP2012507507A (ja) * 2008-10-31 2012-03-29 グレイセル・ディスプレイ・インコーポレーテッド 新規な有機電子材料用化合物及びこれを含む有機電子素子
JP2013056859A (ja) * 2011-09-08 2013-03-28 Nagoya Univ π共役有機ホウ素化合物及びその製造方法
WO2015072537A1 (ja) * 2013-11-18 2015-05-21 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2016120166A1 (en) * 2015-01-27 2016-08-04 Sony Corporation Squaraine-based molecules as material for organic photoelectric conversion layers in organic photodiodes
JP2016538323A (ja) * 2013-09-17 2016-12-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Oledのための多環式フェニルピリジンイリジウム錯体およびその誘導体
JP2016219487A (ja) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置、有機エレクトロルミネッセンス素子材料及び新規化合物
US20170077420A1 (en) * 2015-08-25 2017-03-16 Arizona Board Of Regents On Behalf Of Arizona State University Thermally Activated Delayed Fluorescent Material Based on 9,10-Dihydro-9,9-dimethylacridine Analogues for Prolonging Device Longevity

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101027329B1 (ko) * 2008-07-08 2011-04-11 (주)씨에스엘쏠라 유기 발광 화합물 및 이를 구비한 유기 발광 소자

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512628A (ja) * 2005-09-12 2009-03-26 メルク パテント ゲーエムベーハー 有機電子素子のための化合物
JP2012507507A (ja) * 2008-10-31 2012-03-29 グレイセル・ディスプレイ・インコーポレーテッド 新規な有機電子材料用化合物及びこれを含む有機電子素子
KR20110111094A (ko) * 2010-04-02 2011-10-10 에스에프씨 주식회사 축합방향족 화합물 및 이를 포함하는 유기전계발광소자
JP2013056859A (ja) * 2011-09-08 2013-03-28 Nagoya Univ π共役有機ホウ素化合物及びその製造方法
JP2016538323A (ja) * 2013-09-17 2016-12-08 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Oledのための多環式フェニルピリジンイリジウム錯体およびその誘導体
WO2015072537A1 (ja) * 2013-11-18 2015-05-21 国立大学法人九州大学 発光材料、有機発光素子および化合物
WO2016120166A1 (en) * 2015-01-27 2016-08-04 Sony Corporation Squaraine-based molecules as material for organic photoelectric conversion layers in organic photodiodes
JP2016219487A (ja) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置、有機エレクトロルミネッセンス素子材料及び新規化合物
US20170077420A1 (en) * 2015-08-25 2017-03-16 Arizona Board Of Regents On Behalf Of Arizona State University Thermally Activated Delayed Fluorescent Material Based on 9,10-Dihydro-9,9-dimethylacridine Analogues for Prolonging Device Longevity

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, XIAN-KAI ET AL.: "A New Design Strategy for Efficient Thermally Activated Delayed Fluorescence Organic Emitters: From Twisted to Planar Structures", ADVANCED MATERIALS, vol. 29, no. 46, October 2017 (2017-10-01), pages 1702767, XP055538419, ISSN: 0935-9648 *
STEINER, CHRISTIAN ET AL.: "Self-Assembly and Stability of Hydrogen-Bonded Networks of Bridged Triphenylamines on Au(111) and Cu (111)", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 46, 27 October 2015 (2015-10-27), pages 25945 - 25955, XP055538414 *
SUZUKI, SHUICHI ET AL.: "Trinitroxide-Trioxytriphenylamine: Spin-State Conversion from Triradical Doublet to Diradical Cation Triplet by Oxidative Modulation of a pi -Conjugated System", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 51, no. 13, 26 March 2012 (2012-03-26), pages 3193 - 3197, XP055538417, ISSN: 1433-7851 *
YOUICHI TSUCHIYA ET AL: "6p-203-13: New TADF Design with Coplanar Structures and Their Optoelectronic Properties", 78TH JSAP AUTUMN MEETING, 2017 PROCEEDINGS, 6 September 2017 (2017-09-06), XP055538427, ISBN: 978-4-86348-635-5, Retrieved from the Internet <URL:https://confit.atlas.jp/guide/event-img/jsap2017a/6p-A203-13/public/pdf?type=in> *
ZHANG, HUAQIANG ET AL.: "Synthesis, characterization, and electroluminescent properties of star shaped donor-acceptor dendrimers with carbazole dendrons as peripheral branches and heterotriangulene as central core", TETRAHEDRON, vol. 65, no. 23, 9 April 2009 (2009-04-09), pages 4455 - 4463, XP026094746, ISSN: 0040-4020 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102268235B1 (ko) 2018-09-18 2021-06-23 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20200032658A (ko) * 2018-09-18 2020-03-26 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
CN109456326A (zh) * 2018-12-10 2019-03-12 苏州大学 有机电致发光器件、羰基桥连的三芳胺衍生物及其应用
WO2020149716A1 (ko) * 2019-01-18 2020-07-23 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
CN112888695B (zh) * 2019-01-18 2023-12-22 株式会社Lg化学 化合物及包含其的有机发光二极管
CN112888695A (zh) * 2019-01-18 2021-06-01 株式会社Lg化学 化合物及包含其的有机发光二极管
CN110600612A (zh) * 2019-06-11 2019-12-20 华东理工大学 基于自组装工程的p-i-n型钙钛矿电池空穴传输层
WO2021010785A1 (ko) * 2019-07-17 2021-01-21 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN110437229A (zh) * 2019-07-25 2019-11-12 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、电致发光器件
CN110526931A (zh) * 2019-08-29 2019-12-03 武汉华星光电半导体显示技术有限公司 热活化延迟荧光分子材料及其合成方法、电致发光器件
EP3800679A1 (en) * 2019-10-01 2021-04-07 Samsung Display Co., Ltd. Organic electroluminescence device
CN112341461B (zh) * 2019-11-27 2022-05-27 广东聚华印刷显示技术有限公司 有机化合物、聚合物及包含其的有机发光二极管
CN112341461A (zh) * 2019-11-27 2021-02-09 广东聚华印刷显示技术有限公司 有机化合物、聚合物及包含其的有机发光二极管
JP2021147377A (ja) * 2020-03-23 2021-09-27 東洋紡株式会社 含窒素複素環化合物及びその利用
US11557734B2 (en) 2020-03-27 2023-01-17 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
KR20220123848A (ko) * 2021-03-02 2022-09-13 울산대학교 산학협력단 지연 형광 특성을 갖는 유기 발광 화합물 및 이를 포함하는 유기발광소자
KR102604823B1 (ko) * 2021-03-02 2023-11-21 울산대학교 산학협력단 지연 형광 특성을 갖는 유기 발광 화합물 및 이를 포함하는 유기발광소자

Also Published As

Publication number Publication date
US20190378997A1 (en) 2019-12-12
JPWO2018159662A1 (ja) 2020-04-09
CN110520421A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2018159662A1 (ja) 化合物、発光材料および有機発光素子
JP6318155B2 (ja) 化合物、発光材料および有機発光素子
JP6600298B2 (ja) 発光材料、有機発光素子および化合物
JP6668152B2 (ja) 化合物、発光材料および有機発光素子
WO2018155642A1 (ja) 化合物、発光材料および発光素子
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
JP6326050B2 (ja) 化合物、発光材料および有機発光素子
JP6392240B2 (ja) 発光材料、有機発光素子および化合物
JP6430370B2 (ja) 発光材料、有機発光素子および化合物
JP6367189B2 (ja) 発光材料、有機発光素子および化合物
JP6466913B2 (ja) 発光材料、有機発光素子および化合物
WO2015080183A1 (ja) 発光材料、有機発光素子および化合物
WO2015002213A1 (ja) 発光材料、遅延蛍光体、有機発光素子および化合物
WO2013154064A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP2017226838A (ja) 発光材料、有機発光素子および化合物
JP2020031162A (ja) 有機エレクトロルミネッセンス素子
JP2014009224A (ja) 発光材料、化合物および有機発光素子
JPWO2015133501A1 (ja) 発光材料、有機発光素子および化合物
JP2014009352A (ja) 発光材料、化合物および有機発光素子
JP2013256490A (ja) 化合物、発光材料および有機発光素子
JP7267563B2 (ja) 発光材料、化合物、遅延蛍光体および発光素子
WO2016035803A1 (ja) 遅延蛍光体用ホスト材料、有機発光素子および化合物
WO2018159663A1 (ja) 発光材料、有機発光素子および化合物
JP2019206511A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503052

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761225

Country of ref document: EP

Kind code of ref document: A1