WO2018150780A1 - 横型旋盤 - Google Patents

横型旋盤 Download PDF

Info

Publication number
WO2018150780A1
WO2018150780A1 PCT/JP2018/000841 JP2018000841W WO2018150780A1 WO 2018150780 A1 WO2018150780 A1 WO 2018150780A1 JP 2018000841 W JP2018000841 W JP 2018000841W WO 2018150780 A1 WO2018150780 A1 WO 2018150780A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
chuck claw
thermal expansion
rotation axis
horizontal lathe
Prior art date
Application number
PCT/JP2018/000841
Other languages
English (en)
French (fr)
Inventor
高橋 正
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2018568047A priority Critical patent/JP7189776B2/ja
Priority to EP18754351.7A priority patent/EP3584023A4/en
Priority to CN201880011586.8A priority patent/CN110290890B/zh
Publication of WO2018150780A1 publication Critical patent/WO2018150780A1/ja
Priority to US16/535,347 priority patent/US11511357B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B23/00Tailstocks; Centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/16Chucks with simultaneously-acting jaws, whether or not also individually adjustable moving radially
    • B23B31/1627Details of the jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/20Longitudinally-split sleeves, e.g. collet chucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/10Chucks characterised by the retaining or gripping devices or their immediate operating means
    • B23B31/12Chucks with simultaneously-acting jaws, whether or not also individually adjustable
    • B23B31/20Longitudinally-split sleeves, e.g. collet chucks
    • B23B31/201Characterized by features relating primarily to remote control of the gripping means
    • B23B31/207Characterized by features relating primarily to remote control of the gripping means using mechanical transmission through the spindle
    • B23B31/2073Axially fixed cam, moving jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0003Arrangements for preventing undesired thermal effects on tools or parts of the machine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01884Means for supporting, rotating and translating tubes or rods being formed, e.g. lathes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a horizontal lathe for producing an optical fiber porous preform.
  • the glass preform for an optical fiber is produced by a known method such as a VAD (Vapor Phase Axial Deposition) method, an MCVD (Modified Chemical Vapor Deposition) method, or an OVD (Outside Vapor Deposition) method.
  • VAD Vapor Phase Axial Deposition
  • MCVD Modified Chemical Vapor Deposition
  • OVD Outside Vapor Deposition
  • the OVD method deposits glass fine particles generated by introducing a combustible gas, an auxiliary combustible gas, and a glass raw material into a burner to cause a flame hydrolysis reaction in the radial direction of a rotating target (base material).
  • This is a method for producing a porous base material that is the basis of a glass base material for optical fibers.
  • Patent Document 1 uses a vertical lathe that rotates a target while gripping the target so that its longitudinal direction is the gravitational direction (vertical direction), and has a function of preventing a gripping force from being reduced due to a difference in thermal expansion.
  • a mechanism for correcting and improving changes in the radial direction of the porous glass formed on the outer periphery of the target is described. This is because the chuck provided at the upper part of the vertical lathe is heated when the vertical lathe is used to grip and rotate the target, so that the influence of heating the chuck cannot be ignored.
  • the present invention has been made in view of the above, and an object of the present invention is to provide thermal expansion of a target along an axial direction by heating in a horizontal lathe that holds and fixes the target so that its longitudinal direction is horizontal. It is an object of the present invention to provide a horizontal lathe capable of suppressing the whirling caused by the optical fiber and suppressing the eccentricity of the optical fiber core.
  • a horizontal lathe grips and fixes both ends of a target so that the longitudinal direction of the target is substantially horizontal
  • the first chuck claw configured to grip one end of the target and rotate around the rotation shaft, and the other end of the target.
  • a second chuck claw configured to be rotatable about the rotation axis
  • the thermal expansion absorbing mechanism is a mechanism configured such that the second chuck claw is movable in the direction of the rotation axis of the target. It is characterized by being.
  • the horizontal lathe according to an aspect of the present invention includes an elastic member that applies a tensile force in the rotation axis direction to the second chuck claw.
  • the first chuck claw configured to grip one end of the target and rotate around the rotation shaft, and the other end of the target.
  • a second chuck claw configured to be rotatable about the rotation axis, wherein the thermal expansion absorption mechanism includes at least one chuck claw of the first chuck claw and the second chuck claw It is a mechanism comprised so that the frictional force with the said target in a contact part may become less than the thermal expansion force produced in the said rotating shaft direction of the said target by thermal expansion.
  • the horizontal lathe according to one aspect of the present invention is characterized in that a contact portion of the at least one chuck claw with the target is made of mild steel or fluororesin.
  • the horizontal lathe in the horizontal lathe that holds and fixes the target so that the longitudinal direction thereof is the horizontal direction, the whirling due to the thermal expansion of the target along the axial direction due to heating is suppressed, The eccentricity of the core of the optical fiber can be suppressed.
  • FIG. 1 is a side view showing a horizontal lathe according to a first embodiment of the present invention.
  • FIG. 2 is a side view showing a horizontal lathe according to the second embodiment of the present invention.
  • FIG. 3 is a side view showing a horizontal lathe according to the third embodiment of the present invention.
  • FIG. 4 is a graph showing the amplitude of the target rod with respect to the workpiece pressure in the first example in which mild steel is used for the absorption side chuck claw of the horizontal lathe according to the third embodiment of the present invention.
  • FIG. 5 is a graph showing the amplitude of the target rod with respect to the workpiece pressure in the second example in which a fluororesin is used for the absorption side chuck claw of the horizontal lathe according to the third embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining the amplitude of the target rod.
  • FIG. 1 is a side view showing a horizontal lathe according to the first embodiment.
  • the horizontal lathe 1 includes a rotary motor 11, a fixed side chuck block 12, a fixed side chuck claw 13, a bearing portion 14, a movable side chuck block 15, a movable side chuck claw 16, And a bearing 17.
  • the rotation motor 11 is configured to rotate the fixed side chuck block 12 and the fixed side chuck claw 13 as the first chuck claw around the rotation axis O.
  • the fixed side chuck claw 13 is fixed to the fixed side chuck block 12.
  • the movable side chuck claw 16 is fixed to the movable side chuck block 15.
  • the movable side chuck block 15 is provided with a convex portion 15a on the side opposite to the side where the movable side chuck claw 16 as the second chuck claw is provided.
  • the cross section perpendicular to the rotation axis O of the convex portion 15a is, for example, substantially circular.
  • the bearing portion 14 is formed with a concave portion 14a having a substantially circular cross section perpendicular to the rotation axis O so that the convex portion 15a can be inserted.
  • the bearing 17 is made of, for example, a ball bushing, and is provided between the inner peripheral side surface of the concave portion 14a and the outer peripheral side surface of the convex portion 15a. Accordingly, the movable side chuck block 15 and the movable side chuck claw 16 are configured to be movable along the direction of the rotation axis O with respect to the bearing portion 14 and to be rotatable about the rotation axis O.
  • the fixed side chuck claw 13 and the movable side chuck claw 16 can grip both ends of the target rod 50 so that the longitudinal direction of the target rod 50 made of, for example, quartz glass is parallel to the rotation axis O direction and substantially horizontal. Composed.
  • the target rod 50 as a target can be rotated about the rotation axis O. it can.
  • the oxyhydrogen burner 18 can deposit glass fine particles on the target rod 50 by a flame and moves along the rotation axis O direction with respect to the horizontal lathe 1 and the target rod 50. Configured to be possible. Note that the oxyhydrogen burner 18 may be fixed in a stationary state, and the horizontal lathe 1 may be configured to be movable along the direction of the rotation axis O. That is, the oxyhydrogen burner 18 is configured to be movable relative to the horizontal lathe 1 along the rotation axis O direction. Further, the oxyhydrogen burner 18 may be configured to be retractable to a position where the target rod 50 is not heated as necessary. Further, the oxyhydrogen burner 18 is not limited to one, and may be composed of a plurality.
  • the movable side chuck block 15 and the movable side chuck claw 16 are in a state before the target rod 50 is heated, and the surface of the concave portion 14a on the convex portion 15a side and the surface of the convex portion 15a on the concave portion 14a side. It can move within the range of motion between Note that the length of the movable range can be appropriately set according to the extension length due to thermal expansion of the target rod 50 to be heated.
  • the target rod 50 is rotated by driving of the rotary motor 11 while being held at both ends by the fixed side chuck claw 13 and the movable side chuck claw 16 and heated by the flame of the oxyhydrogen burner 18.
  • the target rod 50 is thermally expanded along the direction of the rotation axis O while glass particles are deposited on the outer periphery.
  • a force hereinafter referred to as a thermal expansion force
  • a thermal expansion force due to the thermal expansion of the target rod 50 acts on the movable side chuck block 15 and the movable side chuck claw 16.
  • the movable side chuck block 15 and the movable side chuck claw 16 move in the direction in which the target rod 50 extends along the rotation axis O direction.
  • the convex portion 15a of the movable chuck block 15 moves in the concave portion 14a of the bearing portion 14 along the rotation axis O direction. That is, the movable side chuck block 15 and the movable side chuck pawl 16 move in the extending direction of the target rod 50 without moving the bearing portion 14, so that the rotation axis due to the thermal expansion of the target rod 50 in the horizontal lathe 1.
  • the dimensional change in the O direction is absorbed.
  • the concave portion 14a, the convex portion 15a, and the bearing 17 absorb the dimensional change in the rotational axis O direction due to thermal expansion along the rotational axis O direction of the target rod 50 in the horizontal lathe 1. Configure the mechanism.
  • the target rod 50 even when the target rod 50 is heated, even when it is stretched along the direction of the rotation axis O by thermal expansion, the target rod 50
  • the extension due to the expansion can be absorbed by the concave portion 14 a of the bearing portion 14. Thereby, it can suppress that the target rod 50 bends by extending
  • FIG. 2 is a side view showing a horizontal lathe according to the second embodiment.
  • the horizontal lathe 2 according to the second embodiment includes a rotary motor 21, a fixed side chuck block 22, a fixed side chuck claw 23, a bearing portion 24, a movable side chuck block 25, a movable side chuck claw 26, A bearing 27 and an elastic member 28 are provided.
  • the rotation motor 21, the fixed side chuck block 22, the fixed side chuck claw 23, the bearing 24, the movable side chuck block 25, the movable side chuck claw 26, and the bearing 27 are respectively the rotation motor 11 and the fixed side according to the first embodiment.
  • the oxyhydrogen burner 29 is the same as the oxyhydrogen burner 18 according to the first embodiment, and is not limited to one, and may be composed of a plurality.
  • the elastic member 28 is provided between the side surfaces.
  • the elastic member 28 connects the surface on the convex portion 25a side of the concave portion 24a and the surface on the concave portion 24a side of the convex portion 25a.
  • the elastic member 28 is made of, for example, a tension spring.
  • the elastic member 28 is configured such that a tensile force can be applied to the bearing portion 24 and the movable side chuck block 25 in the direction in which the elastic member 28 contracts within the movable range of the movable side chuck block 25.
  • the length of the movable range can be appropriately set according to the extension length due to thermal expansion of the target rod 50 to be heated.
  • the oxyhydrogen burner 29 can deposit glass fine particles on the target rod 50 by a flame and moves along the rotation axis O direction with respect to the horizontal lathe 2 and the target rod 50.
  • the oxyhydrogen burner 29 may be fixed in a stationary state, and the horizontal lathe 2 may be configured to be movable along the direction of the rotation axis O. That is, the oxyhydrogen burner 29 is configured to be movable relative to the horizontal lathe 2 along the rotation axis O direction. Further, the oxyhydrogen burner 29 may be configured to be retractable to a position where the target rod 50 is not heated as necessary.
  • the target rod 50 is rotated by the drive of the rotary motor 21 while being gripped at both ends by a fixed side chuck claw 23 as a first chuck claw and a movable side chuck claw 26 as a second chuck claw, and at the same time, an oxyhydrogen burner 29 Heated by the flame.
  • the target rod 50 is thermally expanded along the direction of the rotation axis O while glass particles are deposited on the outer periphery. While the target rod 50 is thermally expanded along the direction of the rotation axis O, a force acts in a direction in which the target rod 50 is expanded by the elastic member 28 via the movable side chuck block 25 and the movable side chuck claw 26.
  • the movable chuck block 25 and the movable chuck claw 26 move along the direction of the rotation axis O in the direction in which the force of the elastic member 28 acts, that is, the direction in which the target rod 50 extends by thermal expansion.
  • the convex portion 25a of the movable side chuck block 25 moves in the concave portion 24a of the bearing portion 24 along the rotation axis O direction. That is, the movable side chuck block 25 and the movable side chuck claw 26 move in the extending direction of the target rod 50 without moving the bearing portion 24, so that the rotation axis due to the thermal expansion of the target rod 50 in the horizontal lathe 2.
  • the dimensional change in the O direction is absorbed.
  • the concave portion 24a, the convex portion 25a, the bearing 27, and the elastic member 28 absorb the dimensional change in the rotational axis O direction due to thermal expansion along the rotational axis O direction of the target rod 50 in the horizontal lathe 2.
  • the thermal expansion absorbing mechanism is configured.
  • the elastic member 28 even when the target rod 50 is heated, even if it is stretched along the direction of the rotation axis O due to thermal expansion, the elastic member 28.
  • the extension due to the expansion of the target rod 50 can be absorbed by the concave portion 24 a of the bearing portion 24. Therefore, the same effect as the first embodiment can be obtained.
  • the deflection due to the thermal expansion of the target rod 50 can be reduced by the tensile force of the elastic member 28, the occurrence of the swinging of the target rod 50 can be suppressed.
  • FIG. 3 is a side view showing a horizontal lathe according to the third embodiment.
  • the horizontal lathe 3 according to the third embodiment includes a rotary motor 31, a fixed side chuck block 32, a fixed side chuck claw 33, an absorption side bearing portion 34, an absorption side chuck block 35, and an absorption side chuck.
  • a claw 36 is provided.
  • the rotation motor 31, the fixed side chuck block 32, and the fixed side chuck claw 33 as the first chuck claw are respectively the same as the rotation motor 11, the fixed side chuck block 12, and the fixed side chuck claw 13 according to the first embodiment.
  • the oxyhydrogen burner 37 is the same as the oxyhydrogen burner 18 according to the first embodiment, and is not limited to one, and may be composed of a plurality.
  • the absorption-side bearing portion 34 includes an absorption-side chuck block 35 to which an absorption-side chuck claw 36 is fixed and a rotation axis O of the target rod 50. It is configured to be rotatable around. Thereby, while the fixed side chuck claw 33 holds one end of the target rod 50 and the absorption side chuck claw 36 holds the other end of the target rod 50, the rotation motor 31 is rotated, so that the target rod 50 is moved. It can be rotated around the rotation axis O.
  • At least a portion in contact with the target rod 50 in the absorption side chuck claw 36 as the second chuck claw is made of a material having a low friction coefficient.
  • a material having a low friction coefficient means that even if the force (work pressure) applied to the target rod 50 by the absorption side chuck claw 36 is a force that does not cause rattling of the target rod 50, the target rod 50. This is a material that can make the frictional force generated at the contact portion with the target rod 50 smaller than the thermal expansion force of the target rod 50.
  • the material having a low friction coefficient is a soft steel having a friction coefficient of 0.51 between the target rod 50 and a fluororesin such as polytetrafluoroethylene (PTFE) having a friction coefficient of 0.1.
  • the workpiece pressure can be set in various ranges according to the friction force generated between the absorption side chuck claw 36 and the target rod 50.
  • at least a contact portion of the fixed side chuck claw 33 with the target rod 50 may be made of a material having a low friction coefficient.
  • the target rod 50 is rotated by driving of the rotary motor 31 while being gripped at both ends by the fixed side chuck claw 33 and the absorption side chuck claw 36 and is heated by the flame of the oxyhydrogen burner 37.
  • the target rod 50 is thermally expanded along the direction of the rotation axis O while glass particles are deposited on the outer periphery.
  • the thermal expansion force of the target rod 50 acts on the fixed side chuck claw 33 and the absorption side chuck claw 36.
  • the thermal expansion of the target rod 50 is between the end of the holding part of the absorption side chuck claw 36 and the holding part of the target rod 50. Keep a range of motion greater than minutes.
  • the target rod 50 is gripped by the absorption side chuck claw 36 with a gripping force that does not cause a deviation in the rotational direction and the frictional force at the contact portion with the absorption side chuck claw 36 is smaller than the thermal expansion force. Yes. Therefore, the target rod 50 slides on the contact portion with the absorption side chuck claw 36 while extending in the expanding direction.
  • the extension of the target rod 50 is within the movable range of the absorption side chuck claw 36 without moving the absorption side bearing portion 34. That is, the horizontal lathe 3 absorbs the dimensional change in the direction of the rotation axis O due to the thermal expansion of the target rod 50.
  • the absorption side chuck claw 36 constitutes a thermal expansion absorbing mechanism that absorbs a dimensional change in the rotation axis O direction due to thermal expansion along the rotation axis O direction of the target rod 50 in the horizontal lathe 3.
  • FIG. 4 is a graph showing the amplitude of the target rod 50 with respect to the workpiece pressing force in the first embodiment in which mild steel is used for the absorption side chuck claw 36 of the horizontal lathe 3.
  • a fluororesin is used as a material having a low friction coefficient that constitutes at least a contact portion with the target rod 50 in the absorption side chuck claw 36.
  • FIG. 5 is a graph showing the amplitude of the target rod 50 with respect to the workpiece pressure in the second embodiment in which a fluororesin is used for the absorption side chuck claw 36 of the horizontal lathe 3.
  • the target rod 50 is made of quartz glass.
  • FIG. 6 is a schematic diagram for explaining the amplitude of the target rod 50.
  • the amplitude of the target rod 50 means that the target rod 50 shown in FIG. 6B is compared to the normal state where the target rod 50 shown in FIG. It means the maximum displacement (mm) in a so-called run-out state that bends outward with respect to the rotation axis O.
  • the workpiece pressing force is set to a predetermined value of 12 kgf or less, so that the extension length due to the thermal expansion of the target rod 50 is increased to a horizontal lathe. 3 can be absorbed.
  • the workpiece pressure is 3 kgf or more, preferably 6 kgf or more, the shift in the rotation direction of the target rod 50 can be suppressed to be small.
  • the amplitude of the target rod 50 is greatly increased as compared with the case where the workpiece pressing force is 64 kfg or less. It can be seen that it increases. This is because, when the workpiece pressing force of the absorption side chuck claw 36 is larger than 64 kgf, the maximum static frictional force between the absorption side chuck claw 36 and the target rod 50 becomes larger than the thermal expansion force of the target rod 50, This is because it cannot be absorbed.
  • the workpiece pressure is set to a predetermined value of 64 kgf or less, thereby extending the target rod 50 by thermal expansion.
  • the length can be absorbed by the horizontal lathe 3.
  • the workpiece pressure is set to 5 kgf or more, preferably 20 kgf or more, the shift in the rotation direction of the target rod 50 can be reduced.
  • the present invention can be suitably used when manufacturing an optical fiber porous preform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Gripping On Spindles (AREA)
  • Turning (AREA)

Abstract

横型旋盤が、ターゲットの両端をターゲットの長手方向が略水平方向になるように把持して固定し、長手方向に平行な軸を回転軸としてターゲットを回転させる、光ファイバ多孔質母材製造用の横型旋盤であって、ターゲットの回転軸方向の熱膨張による寸法変化を吸収する熱膨張吸収機構を有する。横型旋盤は、ターゲットの一端を把持し、回転軸を中心として回転可能に構成された第1チャック爪と、ターゲットの他端を把持し、回転軸を中心として回転可能に構成された第2チャック爪とを備え、熱膨張吸収機構は、第2チャック爪が、ターゲットの回転軸方向に可動に構成された機構である。

Description

横型旋盤
 本発明は、光ファイバ多孔質母材製造用の横型旋盤に関する。
 近年、生産性を向上させるため、光ファイバ用ガラス母材の大型化が進んでいる。光ファイバ用ガラス母材は、例えば、VAD(Vapor Phase Axial Deposition)法やMCVD(Modified Chemical Vapor Deposition)法、OVD(Outside Vapor Deposition)法などの周知の方法によって作製される。
 このうち、OVD法は、バーナに可燃性ガス、助燃性ガス、ガラス原料を導入して火炎加水分解反応させて生成されるガラス微粒子を、回転するターゲット(基材)の半径方向に堆積させて、光ファイバ用ガラス母材の元となる多孔質母材を製造する方法である。特許文献1には、ターゲットを、その長手方向が重力方向(垂直方向)になるように把持しつつ回転させる縦型旋盤を用い、熱膨張差によって把持力が低下することを防止する機能によって、ターゲットの外周に形成される多孔質ガラスの径方向の変化を補正して改善する機構が記載されている。縦型旋盤を用いてターゲットを把持しつつ回転させる際に、縦型旋盤の上部に設けられたチャックが加熱されるため、チャックが加熱されることによる影響が無視できないためである。
特開昭63-84804号公報
 一方、多孔質母材の製造時に、長手方向が略水平方向になるようにターゲットを把持しつつ固定する横型旋盤を用いる場合、ターゲットの加熱時に軸方向に沿った熱膨張が発生することによって、ターゲットがたわんで振れ回りが発生する可能性があった。ターゲットの振れ回りが発生すると、光ファイバのガラス母材から製造する最終製品としての光ファイバのコアが偏心して、光ファイバの品質が悪化するという問題が生じる。
 本発明は、上記に鑑みてなされたものであって、その目的は、ターゲットを長手方向が水平方向になるように把持しつつ固定する横型旋盤において、加熱による軸方向に沿ったターゲットの熱膨張に起因した振れ回りを抑制し、光ファイバのコアの偏心を抑制できる横型旋盤を提供することにある。
 上述した課題を解決し、上記目的を達成するために、本発明の一態様に係る横型旋盤は、ターゲットの両端を前記ターゲットの長手方向が略水平方向になるように把持して固定し、前記長手方向に平行な軸を回転軸として前記ターゲットを回転させる、光ファイバ多孔質母材製造用の横型旋盤であって、前記ターゲットの回転軸方向の熱膨張による寸法変化を吸収する熱膨張吸収機構を有することを特徴とする。
 本発明の一態様に係る横型旋盤は、上記の発明において、前記ターゲットの一端を把持し、前記回転軸を中心として回転可能に構成された第1チャック爪と、前記ターゲットの他端を把持し、前記回転軸を中心として回転可能に構成された第2チャック爪とを備え、前記熱膨張吸収機構は、前記第2チャック爪が、前記ターゲットの前記回転軸方向に可動に構成された機構であることを特徴とする。本発明の一態様に係る横型旋盤は、この構成において、前記第2チャック爪に対して前記回転軸方向に引張力を作用する弾性部材を備えることを特徴とする。
 本発明の一態様に係る横型旋盤は、上記の発明において、前記ターゲットの一端を把持し、前記回転軸を中心として回転可能に構成された第1チャック爪と、前記ターゲットの他端を把持し、前記回転軸を中心として回転可能に構成された第2チャック爪とを備え、前記熱膨張吸収機構は、前記第1チャック爪と前記第2チャック爪との少なくとも一方のチャック爪が、前記ターゲットとの接触部分における前記ターゲットとの摩擦力が熱膨張により前記ターゲットの前記回転軸方向に生じる熱膨張力未満になるように構成された機構であることを特徴とする。本発明の一態様に係る横型旋盤は、この構成において、前記少なくとも一方のチャック爪における前記ターゲットとの接触部分が、軟鋼又はフッ素樹脂から構成されていることを特徴とする。
 本発明に係る横型旋盤によれば、ターゲットを長手方向が水平方向になるように把持しつつ固定する横型旋盤において、加熱による軸方向に沿ったターゲットの熱膨張に起因した振れ回りを抑制し、光ファイバのコアの偏心を抑制可能となる。
図1は、本発明の第1の実施形態による横型旋盤を示す側面図である。 図2は、本発明の第2の実施形態による横型旋盤を示す側面図である。 図3は、本発明の第3の実施形態による横型旋盤を示す側面図である。 図4は、本発明の第3の実施形態による横型旋盤の吸収側チャック爪に軟鋼を用いた第1実施例における、ワーク加圧力に対するターゲットロッドの振幅を示すグラフである。 図5は、本発明の第3の実施形態による横型旋盤の吸収側チャック爪にフッ素樹脂を用いた第2実施例における、ワーク加圧力に対するターゲットロッドの振幅を示すグラフである。 図6は、ターゲットロッドの振幅を説明するための略線図である。
 以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態により本発明が限定されるものではない。また、各図面において、同一又は対応する要素には適宜同一の符号を付し、重複した説明を適宜省略する。さらに、図面は模式的なものであり、各要素の寸法の関係などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 まず、本発明の第1の実施形態による光ファイバ多孔質母材製造用の横型旋盤について説明する。図1は、第1の実施形態による横型旋盤を示す側面図である。
 図1に示すように、第1の実施形態による横型旋盤1は、回転モータ11、固定側チャックブロック12、固定側チャック爪13、軸受部14、可動側チャックブロック15、可動側チャック爪16、及びベアリング17を備えて構成される。
 回転モータ11は、固定側チャックブロック12及び第1チャック爪としての固定側チャック爪13を、回転軸Oを中心として回転させるように構成されている。固定側チャック爪13は、固定側チャックブロック12に固定されている。可動側チャック爪16は可動側チャックブロック15に固定されている。
 可動側チャックブロック15には、第2チャック爪としての可動側チャック爪16が設けられた側とは反対側に凸状部15aが設けられている。凸状部15aの回転軸Oに垂直な断面は例えば略円形状である。軸受部14には、回転軸Oに垂直な断面が例えば略円形状の凹状部14aが、凸状部15aを挿入可能に形成されている。ベアリング17は、例えばボールブッシングからなり、凹状部14aの内周側面と凸状部15aとの外周側面との間に設けられている。これにより、可動側チャックブロック15及び可動側チャック爪16は、軸受部14に対して回転軸O方向に沿って可動自在、かつ回転軸Oを中心として回転自在に構成される。
 固定側チャック爪13及び可動側チャック爪16は、例えば石英ガラスからなるターゲットロッド50の長手方向が回転軸O方向に平行で略水平方向になるように、ターゲットロッド50の両端をそれぞれ把持可能に構成される。固定側チャック爪13及び可動側チャック爪16によってターゲットロッド50の両端が把持された状態で、回転モータ11を回転させることにより、回転軸Oを中心としてターゲットとしてのターゲットロッド50を回転させることができる。
 以上のように構成された横型旋盤1において、酸水素バーナ18は、火炎によってターゲットロッド50にガラス微粒子を堆積可能、かつ横型旋盤1及びターゲットロッド50に対して、回転軸O方向に沿って移動可能に構成される。なお、酸水素バーナ18を静止状態に固定して、横型旋盤1を回転軸O方向に沿って移動可能に構成してもよい。すなわち、酸水素バーナ18は、横型旋盤1に対して回転軸O方向に沿って相対移動可能に構成される。また、酸水素バーナ18は、必要に応じてターゲットロッド50が加熱されない位置に退避可能に構成してもよい。また、酸水素バーナ18は、1本に限定されるものではなく、複数本から構成することも可能である。
 また、可動側チャックブロック15及び可動側チャック爪16は、ターゲットロッド50を加熱する前の状態で、凹状部14aの凸状部15a側の面と、凸状部15aの凹状部14a側の面との間の可動域の範囲で移動可能である。なお、可動域の長さは、加熱されるターゲットロッド50の熱膨張による延伸長に応じて、適宜設定可能である。
 次に、ターゲットロッド50にガラス微粒子を堆積させる場合について説明する。ターゲットロッド50は、固定側チャック爪13及び可動側チャック爪16によって両端が把持されつつ、回転モータ11の駆動によって回転されるとともに、酸水素バーナ18の火炎によって加熱される。ターゲットロッド50は、外周にガラス微粒子が堆積されるとともに、回転軸O方向に沿って熱膨張する。ターゲットロッド50が回転軸O方向に沿って熱膨張すると、可動側チャックブロック15及び可動側チャック爪16に、ターゲットロッド50の熱膨張による力(以下、熱膨張力)が作用する。可動側チャックブロック15及び可動側チャック爪16は、回転軸O方向に沿って、ターゲットロッド50が延伸する向きに移動する。この際、可動側チャックブロック15の凸状部15aが、回転軸O方向に沿って軸受部14の凹状部14a内を移動する。すなわち、軸受部14が移動することなく、可動側チャックブロック15及び可動側チャック爪16がターゲットロッド50の延伸する向きに移動することで、横型旋盤1において、ターゲットロッド50の熱膨張による回転軸O方向の寸法変化分を吸収することになる。これにより、凹状部14a、凸状部15a、及びベアリング17が、横型旋盤1において、ターゲットロッド50の回転軸O方向に沿った熱膨張による回転軸O方向の寸法変化分を吸収する熱膨張吸収機構を構成する。
 以上説明した本発明の第1の実施形態による横型旋盤1によれば、ターゲットロッド50が加熱される際に、熱膨張によって回転軸O方向に沿って延伸した場合であっても、ターゲットロッド50の膨張による延伸分を、軸受部14の凹状部14aによって吸収できる。これにより、ターゲットロッド50が延伸によってたわんで振り回りが発生することを抑制できる。したがって、回転軸Oを中心としてターゲットロッド50を回転させつつガラス微粒子を堆積させる場合においても、ターゲットロッド50の振幅を小さくすることができ、最終製品としての光ファイバのコアの偏心を抑制できる。
 次に、本発明の第2の実施形態による光ファイバ多孔質母材製造用の横型旋盤について説明する。図2は、第2の実施形態による横型旋盤を示す側面図である。図2に示すように、第2の実施形態による横型旋盤2は、回転モータ21、固定側チャックブロック22、固定側チャック爪23、軸受部24、可動側チャックブロック25、可動側チャック爪26、ベアリング27、及び弾性部材28を備えて構成される。回転モータ21、固定側チャックブロック22、固定側チャック爪23、軸受部24、可動側チャックブロック25、可動側チャック爪26、及びベアリング27はそれぞれ、第1の実施形態による回転モータ11、固定側チャックブロック12、固定側チャック爪13、軸受部14、可動側チャックブロック15、可動側チャック爪16、及びベアリング17と同様である。また、酸水素バーナ29は、第1の実施形態による酸水素バーナ18と同様であって、1本に限定されるものではなく、複数本から構成することも可能である。
 第2の実施形態による横型旋盤2においては、第1の実施形態と異なり、軸受部24の凹状部24aにおける可動側チャックブロック25の凸状部25a側の面と凸状部25aの凹状部24a側の面との間に、弾性部材28が設けられている。弾性部材28によって、凹状部24aにおける凸状部25a側の面と凸状部25aにおける凹状部24a側の面とが連結されている。弾性部材28は、例えば引張バネからなる。弾性部材28は、可動側チャックブロック25の可動域内において、軸受部24及び可動側チャックブロック25に対して弾性部材28の縮む向きに引張力を作用可能に構成される。なお、可動域の長さは、加熱されるターゲットロッド50の熱膨張による延伸長に応じて、適宜設定可能である。
 以上のように構成された横型旋盤2において、酸水素バーナ29は、火炎によってターゲットロッド50にガラス微粒子を堆積可能、かつ横型旋盤2及びターゲットロッド50に対して、回転軸O方向に沿って移動可能に構成される。なお、酸水素バーナ29を静止状態に固定して、横型旋盤2を回転軸O方向に沿って移動可能に構成してもよい。すなわち、酸水素バーナ29は、横型旋盤2に対して回転軸O方向に沿って相対移動可能に構成される。また、酸水素バーナ29は、必要に応じてターゲットロッド50が加熱されない位置に退避可能に構成してもよい。
 次に、ターゲットロッド50にガラス微粒子を堆積させる場合について説明する。ターゲットロッド50は、第1チャック爪としての固定側チャック爪23及び第2チャック爪としての可動側チャック爪26によって両端が把持されつつ、回転モータ21の駆動によって回転されるとともに、酸水素バーナ29の火炎によって加熱される。ターゲットロッド50は、外周にガラス微粒子が堆積されるとともに、回転軸O方向に沿って熱膨張する。ターゲットロッド50は、回転軸O方向に沿って熱膨張する一方、弾性部材28によって可動側チャックブロック25及び可動側チャック爪26を介してターゲットロッド50が膨張する方向に力が作用している。可動側チャックブロック25及び可動側チャック爪26は、回転軸O方向に沿って、弾性部材28の力が作用する向き、すなわちターゲットロッド50が熱膨張によって延伸する向きに移動する。この際、可動側チャックブロック25の凸状部25aが、回転軸O方向に沿って軸受部24の凹状部24a内を移動する。すなわち、軸受部24が移動することなく、可動側チャックブロック25及び可動側チャック爪26がターゲットロッド50の延伸する向きに移動することで、横型旋盤2において、ターゲットロッド50の熱膨張による回転軸O方向の寸法変化分を吸収することになる。これにより、凹状部24a、凸状部25a、ベアリング27、及び弾性部材28が、横型旋盤2において、ターゲットロッド50の回転軸O方向に沿った熱膨張による回転軸O方向の寸法変化分を吸収する熱膨張吸収機構を構成する。
 以上説明した本発明の第2の実施形態による横型旋盤2によれば、ターゲットロッド50が加熱される際に、熱膨張によって回転軸O方向に沿って延伸した場合であっても、弾性部材28によって、ターゲットロッド50の膨張による延伸分を、軸受部24の凹状部24aに吸収できる。したがって、第1の実施形態と同様の効果を得ることができる。さらに、弾性部材28の引張力によって、ターゲットロッド50の熱膨張によるたわみを低減できるので、ターゲットロッド50の振れ回りの発生を抑制できる。
 次に、本発明の第3の実施形態による光ファイバ多孔質母材製造用の横型旋盤について説明する。図3は、第3の実施形態による横型旋盤を示す側面図である。図3に示すように、第3の実施形態による横型旋盤3は、回転モータ31、固定側チャックブロック32、固定側チャック爪33、吸収側軸受部34、吸収側チャックブロック35、及び吸収側チャック爪36を備えて構成される。回転モータ31、固定側チャックブロック32、及び第1チャック爪としての固定側チャック爪33は、それぞれ、第1の実施形態による回転モータ11、固定側チャックブロック12、及び固定側チャック爪13と同様である。また、酸水素バーナ37は、第1の実施形態による酸水素バーナ18と同様であって、1本に限定されるものではなく、複数本から構成することも可能である。
 第3の実施形態による横型旋盤3においては、第1の実施形態と異なり、吸収側軸受部34は、吸収側チャック爪36が固定された吸収側チャックブロック35を、ターゲットロッド50の回転軸Oの回りで回転可能に構成されている。これにより、固定側チャック爪33がターゲットロッド50の一端を把持するとともに、吸収側チャック爪36がターゲットロッド50の他端を把持した状態で、回転モータ31を回転させることにより、ターゲットロッド50を回転軸Oの回りで回転させることができる。
 第2チャック爪としての吸収側チャック爪36における少なくともターゲットロッド50と接触する部分は、摩擦係数が低い材質から構成されている。摩擦係数が低い材質とは、吸収側チャック爪36によってターゲットロッド50に加圧する力(ワーク加圧力)を、ターゲットロッド50のがたつきが発生しない大きさの力とした場合でも、ターゲットロッド50との接触部分に生じる摩擦力をターゲットロッド50の熱膨張力より小さくできる材質である。摩擦係数が低い材質とは、具体的に、ターゲットロッド50との間において、摩擦係数が0.51の軟鋼や、摩擦係数が0.1の例えばポリテトラフルオロエチレン(PTFE)などのフッ素樹脂である。ワーク加圧力は、吸収側チャック爪36とターゲットロッド50との間に生じる摩擦力に応じて、種々の範囲を設定し得る。また、吸収側チャック爪36の代わりに、固定側チャック爪33における少なくともターゲットロッド50との接触部分を、摩擦係数が低い材質から構成してもよい。また、固定側チャック爪33及び吸収側チャック爪36の両方におけるターゲットロッド50との接触部分を、摩擦係数が低い材質から構成してもよい。
 次に、ターゲットロッド50にガラス微粒子を堆積させる場合について説明する。ターゲットロッド50は、固定側チャック爪33及び吸収側チャック爪36によって両端が把持されつつ、回転モータ31の駆動によって回転されるとともに、酸水素バーナ37の火炎によって加熱される。ターゲットロッド50は、外周にガラス微粒子が堆積されるとともに、回転軸O方向に沿って熱膨張する。ターゲットロッド50が回転軸O方向に沿って熱膨張すると、ターゲットロッド50の熱膨張力は、固定側チャック爪33及び吸収側チャック爪36に作用する。なお、吸収側チャック爪36によってターゲットロッド50の一端を把持する際には、吸収側チャック爪36の把持部分の端部と、ターゲットロッド50の把持部分との間に、ターゲットロッド50の熱膨張分よりも大きい可動域を確保しておく。また、ターゲットロッド50は、吸収側チャック爪36によって、回転方向のずれが発生しない大きさ、かつ吸収側チャック爪36との接触部分における摩擦力が熱膨張力より小さくなる把持力で把持されている。そのため、ターゲットロッド50は、膨張する方向に伸張しつつ吸収側チャック爪36との接触部分を摺動する。すなわち、吸収側軸受部34が移動することなく、ターゲットロッド50の延伸分が吸収側チャック爪36の可動域内に収まる。すなわち、横型旋盤3において、ターゲットロッド50の熱膨張による回転軸O方向の寸法変化分を吸収することになる。これにより、吸収側チャック爪36が、横型旋盤3において、ターゲットロッド50の回転軸O方向に沿った熱膨張による回転軸O方向の寸法変化分を吸収する熱膨張吸収機構を構成する。
 (実施例)
 次に、第3の実施形態による横型旋盤3の実施例について説明する。第1実施例として、吸収側チャック爪36における少なくともターゲットロッド50との接触部分を構成する摩擦係数が低い材質として軟鋼を用いる。図4は、横型旋盤3の吸収側チャック爪36に軟鋼を用いた第1実施例における、ワーク加圧力に対するターゲットロッド50の振幅を示すグラフである。また、第2実施例として、吸収側チャック爪36における少なくともターゲットロッド50との接触部分を構成する摩擦係数が低い材質としてフッ素樹脂を用いる。図5は、横型旋盤3の吸収側チャック爪36にフッ素樹脂を用いた第2実施例における、ワーク加圧力に対するターゲットロッド50の振幅を示すグラフである。ここで、ターゲットロッド50は、石英ガラスからなる。図6は、ターゲットロッド50の振幅を説明するための略線図である。図6に示すように、ターゲットロッド50の振幅とは、図6(a)に示すターゲットロッド50が回転軸Oに平行な通常状態に比して、図6(b)に示すターゲットロッド50が回転軸Oに対して外側にたわんだ、いわゆる振れ回りの状態における最大変位(mm)を意味する。
 図4に示すように、吸収側チャック爪36のワーク加圧力を3kgfから増加させ、12kgfより大きくすると、ワーク加圧力が12kgf以下の場合に比して、ターゲットロッド50の振幅が大幅に増加することが分かる。これは、吸収側チャック爪36のワーク加圧力を12kgfより大きくすると、吸収側チャック爪36とターゲットロッド50との間の最大静止摩擦力がターゲットロッド50の熱膨張力より大きくなり、延伸部分を吸収できなくなるためである。すなわち、吸収側チャック爪36のターゲットロッド50との接触部分を軟鋼から構成する場合、ワーク加圧力を所定値である12kgf以下とすることにより、ターゲットロッド50の熱膨張による延伸長を、横型旋盤3によって吸収できる。その上で、ワーク加圧力を3kgf以上、好適には6kgf以上とすることで、ターゲットロッド50の回転方向のずれを小さく抑制できる。
 また、図5に示すように、吸収側チャック爪36のワーク加圧力を5kgfから増加させ、64kgfより大きくすると、ワーク加圧力が64kfg以下の場合に比して、ターゲットロッド50の振幅が大幅に増加することが分かる。これは、吸収側チャック爪36のワーク加圧力を64kgfより大きくすると、吸収側チャック爪36とターゲットロッド50との間の最大静止摩擦力がターゲットロッド50の熱膨張力より大きくなり、延伸部分を吸収できなくなるためである。すなわち、吸収側チャック爪36のターゲットロッド50との接触部分を例えばPTFEなどのフッ素樹脂から構成する場合、ワーク加圧力を所定値である64kgf以下とすることにより、ターゲットロッド50の熱膨張による延伸長を横型旋盤3によって吸収できる。その上で、ワーク加圧力を5kgf以上、好適には20kgf以上とすることで、ターゲットロッド50の回転方向のずれを小さく抑制できる。
 以上、本発明の実施形態について具体的に説明したが、本発明は、上述した実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述した実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよい。
 以上のように、本発明は、光ファイバ多孔質母材を製造する際に好適に利用できる。
 1,2,3 横型旋盤
 11,21,31 回転モータ
 12,22,32 固定側チャックブロック
 13,23,33 固定側チャック爪
 14,24 軸受部
 14a,24a 凹状部
 15,25 可動側チャックブロック
 15a,25a 凸状部
 16,26 可動側チャック爪
 17,27 ベアリング
 18,29,37 酸水素バーナ
 28 弾性部材
 34 吸収側軸受部
 35 吸収側チャックブロック
 36 吸収側チャック爪
 50 ターゲットロッド
 O 回転軸

Claims (5)

  1.  ターゲットの両端を前記ターゲットの長手方向が略水平方向になるように把持して固定し、前記長手方向に平行な軸を回転軸として前記ターゲットを回転させる、光ファイバ多孔質母材製造用の横型旋盤であって、
     前記ターゲットの前記回転軸方向の熱膨張による寸法変化を吸収する熱膨張吸収機構を有する
     ことを特徴とする横型旋盤。
  2.  前記ターゲットの一端を把持し、前記回転軸を中心として回転可能に構成された第1チャック爪と、
     前記ターゲットの他端を把持し、前記回転軸を中心として回転可能に構成された第2チャック爪とを備え、
     前記熱膨張吸収機構は、前記第2チャック爪が、前記ターゲットの前記回転軸方向に可動に構成された機構である
     ことを特徴とする請求項1に記載の横型旋盤。
  3.  前記第2チャック爪に対して前記回転軸方向に引張力を作用する弾性部材を備えることを特徴とする請求項2に記載の横型旋盤。
  4.  前記ターゲットの一端を把持し、前記回転軸を中心として回転可能に構成された第1チャック爪と、
     前記ターゲットの他端を把持し、前記回転軸を中心として回転可能に構成された第2チャック爪とを備え、
     前記熱膨張吸収機構は、前記第1チャック爪と前記第2チャック爪との少なくとも一方のチャック爪が、前記ターゲットとの接触部分における前記ターゲットとの摩擦力が熱膨張により前記ターゲットの前記回転軸方向に生じる熱膨張力未満になるように構成された機構である
     ことを特徴とする請求項1に記載の横型旋盤。
  5.  前記少なくとも一方のチャック爪における前記ターゲットとの接触部分が、軟鋼又はフッ素樹脂から構成されていることを特徴とする請求項4に記載の横型旋盤。
PCT/JP2018/000841 2017-02-15 2018-01-15 横型旋盤 WO2018150780A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018568047A JP7189776B2 (ja) 2017-02-15 2018-01-15 横型旋盤
EP18754351.7A EP3584023A4 (en) 2017-02-15 2018-01-15 HORIZONTAL TOWER
CN201880011586.8A CN110290890B (zh) 2017-02-15 2018-01-15 卧式车床
US16/535,347 US11511357B2 (en) 2017-02-15 2019-08-08 Horizontal lathe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017025565 2017-02-15
JP2017-025565 2017-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/535,347 Continuation US11511357B2 (en) 2017-02-15 2019-08-08 Horizontal lathe

Publications (1)

Publication Number Publication Date
WO2018150780A1 true WO2018150780A1 (ja) 2018-08-23

Family

ID=63170533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000841 WO2018150780A1 (ja) 2017-02-15 2018-01-15 横型旋盤

Country Status (5)

Country Link
US (1) US11511357B2 (ja)
EP (1) EP3584023A4 (ja)
JP (1) JP7189776B2 (ja)
CN (1) CN110290890B (ja)
WO (1) WO2018150780A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194346B (zh) * 2020-10-10 2021-06-22 上海菲利华石创科技有限公司 用于薄壁曲面半导体用石英部件的制造设备及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997548A (ja) * 1982-11-10 1984-06-05 ウエスターン エレクトリック カムパニー,インコーポレーテツド 導光予備形成チヤツク
JPS62218003A (ja) * 1986-03-20 1987-09-25 Washino Kikai Kk 円筒研削盤等の心押軸
JPS6384804A (ja) 1986-09-26 1988-04-15 Sumitomo Electric Ind Ltd 熱膨張吸収チヤツク
US5711781A (en) * 1993-05-04 1998-01-27 Kabel Rheydt Aktiengesellschaft Apparatus and method for heating an elongated glass
JP2008178956A (ja) * 2007-01-25 2008-08-07 Sumitomo Electric Ind Ltd 把持装置及びガラス体の加熱装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1700837A (en) * 1925-05-07 1929-02-05 Fisher W Reuen Lathe-center holder
US4347069A (en) * 1981-03-11 1982-08-31 Western Electric Company, Inc. Method of supplying fluid to a rotating tube
EP0213075B1 (fr) * 1985-08-19 1990-05-16 Tornos-Bechler SA Fabrique de Machines Moutier Dispositif de serrage d'une pièce ou d'une barre de matériau à usiner
US4971614A (en) * 1988-09-29 1990-11-20 At&T Bell Laboratories Method and apparatus for making optical fiber preform rods
US5167420A (en) * 1989-09-11 1992-12-01 Gte Products Corporation Apparatus for forming a groove in a glass tube
DE4024498C1 (ja) * 1990-07-31 1992-02-27 Schott Glaswerke, 6500 Mainz, De
CA2051305C (en) * 1990-10-25 1999-03-30 Toshihiro Mikami Optical fiber soot synthesis apparatus
JP2562544B2 (ja) * 1992-05-20 1996-12-11 古河電気工業株式会社 光ファイバスートの製造方法
US6286546B1 (en) * 1999-10-26 2001-09-11 Lucent Technologies, Inc. Disposable seal system with integral buffer
DE19952474C1 (de) * 1999-10-29 2001-03-08 Heraeus Quarzglas Vorrichtung und Verfahren zur Herstellung eines Quarzglaskörpers
CN2437453Y (zh) * 2000-08-14 2001-07-04 武汉钢铁(集团)公司 可自动调节的淬火机床新型顶尖
US6611418B2 (en) * 2001-12-06 2003-08-26 Fitel Usa Corp. Compliant collet chuck
DE60214779T2 (de) * 2002-07-31 2007-09-13 Prysmian Cavi E Sistemi Energia S.R.L. Apparat und verfahren zur gewichtsbestimmung einer vorform einer optischen faser während eines chemischen abscheideverfahrens
US20070096403A1 (en) * 2006-03-06 2007-05-03 Sterlite Optical Technologies Ltd Apparatus and method for fabricating optical fiber preform.
JPWO2011068064A1 (ja) * 2009-12-01 2013-04-18 旭硝子株式会社 TiO2を含有するシリカガラス
CN102276144B (zh) * 2011-06-29 2013-08-14 长飞光纤光缆有限公司 一种光纤预制棒沉积车床的旋转密封夹头
CN102658499B (zh) * 2012-04-20 2014-08-06 西安交通大学 一种精密卧式加工中心主轴热误差补偿方法
NL2014519B1 (en) * 2015-03-25 2017-01-25 Draka Comteq Bv A rotary feed-through for mounting a rotating substrate tube in a lathe, a CVD lathe and a corresponding method using the CVD lathe.
US20170361380A1 (en) * 2016-06-17 2017-12-21 Baker Hughes Incorporated Tail stock for a long vertically suspended workpiece that will experience heat expansion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997548A (ja) * 1982-11-10 1984-06-05 ウエスターン エレクトリック カムパニー,インコーポレーテツド 導光予備形成チヤツク
JPS62218003A (ja) * 1986-03-20 1987-09-25 Washino Kikai Kk 円筒研削盤等の心押軸
JPS6384804A (ja) 1986-09-26 1988-04-15 Sumitomo Electric Ind Ltd 熱膨張吸収チヤツク
US5711781A (en) * 1993-05-04 1998-01-27 Kabel Rheydt Aktiengesellschaft Apparatus and method for heating an elongated glass
JP2008178956A (ja) * 2007-01-25 2008-08-07 Sumitomo Electric Ind Ltd 把持装置及びガラス体の加熱装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584023A4

Also Published As

Publication number Publication date
JPWO2018150780A1 (ja) 2019-12-12
CN110290890B (zh) 2021-12-07
JP7189776B2 (ja) 2022-12-14
EP3584023A1 (en) 2019-12-25
US11511357B2 (en) 2022-11-29
US20190358714A1 (en) 2019-11-28
EP3584023A4 (en) 2020-12-09
CN110290890A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2018150780A1 (ja) 横型旋盤
JP2008149344A (ja) 管状部材の曲げ加工装置、及び、曲げ加工方法
JP2016135734A (ja) ガラス管を製造する方法
JP5996203B2 (ja) 回転体の振動低減装置
JP2010521708A (ja) 光学マウントと、この種類のマウントを有する光学要素
JP5435504B2 (ja) 光ファイバ用プリフォームの製造方法
JPWO2017170790A1 (ja) 中空ばね部材
JP2009125759A (ja) 円筒体の製造方法
JP7243946B1 (ja) ガラスロッド製造装置及びガラスロッド製造方法
JP5167514B2 (ja) 転がり軸受アセンブリ
US20060117798A1 (en) Method of manufacturing an optical fiber preform
JP2008178956A (ja) 把持装置及びガラス体の加熱装置
JP5113415B2 (ja) 石英ガラス管の製造方法
JPH03295827A (ja) 光ファイバ母材の製造方法
JP2010099729A (ja) 逐次成形装置およびその方法
WO2019088284A1 (ja) ボールジョイントの製造方法、スタビライザリンクの製造方法、およびボールジョイント
JP2005104763A (ja) 光ファイバ母材の延伸方法
JP5678467B2 (ja) ガラス母材製造方法
WO2003012519A1 (fr) Mecanisme de microscope fin a deplacement vertical
CN205423679U (zh) 一种新型阻尼机构
WO2018025857A1 (ja) 光ファイバ母材製造方法および光ファイバ製造方法
JP7464429B2 (ja) ガラス母材の製造方法
JP2014214045A (ja) ガラス母材の製造装置およびその製造方法
JP2002104836A (ja) 光ファイバ用母材の製造方法及び装置
Santi Lightweight, bubble-free cast mirrors have no ‘print-through’

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754351

Country of ref document: EP

Effective date: 20190916