WO2018138561A1 - Processing machine and methods for processing dip-molded articles - Google Patents

Processing machine and methods for processing dip-molded articles Download PDF

Info

Publication number
WO2018138561A1
WO2018138561A1 PCT/IB2017/056776 IB2017056776W WO2018138561A1 WO 2018138561 A1 WO2018138561 A1 WO 2018138561A1 IB 2017056776 W IB2017056776 W IB 2017056776W WO 2018138561 A1 WO2018138561 A1 WO 2018138561A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
conveyor surface
machine
compression
dip
Prior art date
Application number
PCT/IB2017/056776
Other languages
French (fr)
Inventor
Eli Machlev
Ofer LEVIN
Ziv Shabat
Yoaz MEIRAZ
Omar ELMALAK
Original Assignee
Ortho-Space Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ortho-Space Ltd. filed Critical Ortho-Space Ltd.
Priority to US16/482,102 priority Critical patent/US11045981B2/en
Priority to EP17894291.8A priority patent/EP3573806A4/en
Publication of WO2018138561A1 publication Critical patent/WO2018138561A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/42Removing articles from moulds, cores or other substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2889/00Use of proteins, e.g. casein or gelatine or derivatives thereof, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor

Definitions

  • This disclosure relates to the manufacturing of dip-molded articles.
  • this disclosure relates to the manufacturing of inflatable dip-molded implantable medical devices.
  • Dip molding is performed by submerging a mold that will form the inside of the resulting article into a liquid polymer. A layer of the polymer coats the mold to form the article. After the polymer is sufficiently cured, the polymer article is separated from the mold.
  • Some dip-molded articles preclude the use of a rigid mold because the molded polymer article cannot be stripped from the rigid mold without damaging the article.
  • some balloon-like inflatable medical devices have a small orifice in comparison to the size of its internal space that is created by the mold. Hence, removing a rigid mold from the internal space through the small orifice may be difficult or impossible without tearing the molded polymer article.
  • this disclosure describes processes for manufacturing dip-molded articles such as, but not limited to, dip-molded inflatable implantable medical devices used for the repair and treatment of tissues in bodily joints. More particularly, this disclosure describes apparatuses and methods for processing dip-molded inflatable implantable medical devices to remove substances that are used during dip molding process.
  • this document is directed to a dip-molded article processing machine.
  • a dip-molded article processing machine can include a first conveyor assembly defining a first conveyor surface, a first compression section comprising one or more rollers with an outer peripheral surface spaced apart from the first conveyor surface by a first gap distance, and a second compression section comprising a second conveyor assembly defining a second conveyor surface.
  • the second conveyor surface faces the first conveyor surface and is spaced apart from the first conveyor surface by a second gap distance.
  • Such a dip-molded article processing machine may optionally include one or more of the following features.
  • the first conveyor surface and the second conveyor surface may be generally planar, non-parallel surfaces.
  • the second gap distance may decrease along the longitudinal length of the second conveyor surface.
  • the second gap distance may monotonically decrease along the longitudinal length of the second conveyor surface.
  • the first gap distance may be greater than a minimum gap distance of the second gap distance.
  • the machine may also include an electric motor that, when actuated, concurrently drives the first conveyor assembly, the one or more rollers, and the second conveyor assembly.
  • the machine may also include a manual crank mechanism that, when rotated, concurrently drives the first conveyor assembly, the one or more rollers, and the second conveyor assembly.
  • the machine may also include a power source configured to concurrently drive the first conveyor assembly, the one or more rollers, and the second conveyor assembly at a substantially equal linear speed.
  • the first conveyor surface may be longer than the second conveyor surface. At least one of the first gap distance and the second gap distance may be adjustable. The second gap distance may differ along a longitudinal length of the second conveyor surface.
  • the machine may also include one or more additional conveyor surfaces facing the first conveyor surface. The first conveyor surface may be longer than a combined length of the second conveyor surface and the one or more additional conveyor surfaces.
  • this disclosure is directed to a method for expelling contents from within a volumetric bladder.
  • the method includes positioning the volumetric bladder on a first conveyor surface of a first conveyor assembly (wherein a contiguous gel material is contained within the volumetric bladder), and advancing the volumetric bladder along the first conveyor assembly such that the volumetric bladder receives compression between the first conveyor surface and a second conveyor surface of a second conveyor assembly.
  • the compression expels at least some of the material out of the volumetric bladder.
  • Such a method for expelling contents from within a volumetric bladder may optionally include one or more of the following features.
  • the compression may progressively increase as the volumetric bladder undergoes the advancing.
  • the advancing may include the first conveyor surface, the second conveyor surface, and the inflatable medical device all moving at a same speed.
  • the first conveyor surface and the second conveyor surface may be driven by rotation of a manual crank mechanism by a human operator or by an electric motor.
  • a first compression applied to the volumetric bladder may convert the contiguous gel material to multiple smaller portions of gel material and a second compression applied to the volumetric bladder may expel at least some of the multiple smaller portions of the gel material out of the volumetric bladder.
  • the first conveyor surface may be defined by a first conveyor belt and the second conveyor surface may be defined by a second conveyor belt.
  • the volumetric bladder may be a biodegradable orthopedic spacer implant.
  • the material may include semi-solid agar gel material.
  • the first conveyor surface may be longer than the second conveyor surface.
  • the volumetric bladder may receive additional compression between the first conveyor surface and a third conveyor surface of a third conveyor assembly. The additional compression may expel at least some additional amount of the material out of the volumetric bladder.
  • the first conveyor surface and/or the second conveyor surface may be generally planar surfaces, and may be non-parallel to each other.
  • the positioning may include orienting the volumetric bladder on the first conveyor surface such that an opening of the volumetric bladder is located at a trailing end of the volumetric bladder as the volumetric bladder undergoes the advancing.
  • the volumetric bladder may be contained within a bag during the advancing, and the material expelled by the compression may be contained within the bag.
  • the volumetric bladder may be a dip- molded inflatable medical device.
  • the volumetric bladder may be a non-degradable orthopedic spacer implant.
  • the apparatuses and methods described herein are used to remove molding material from within a dip-molded article while advantageously avoiding damage to the article.
  • the apparatuses and methods described herein can remove molding material from within a dip-molded article in an automated and, therefore, cost-effective manner.
  • the apparatuses and methods described herein remove molding material from within a dip-molded article in a clean manner that avoids contamination of the article, the machine, and the surrounding environment.
  • the apparatuses and methods described herein are designed to be adjustable, maintainable, and safe to operate.
  • FIG. 1 is a schematic representation of a dip molding process
  • FIG. 2 is a schematic representation of a dip-molded article (within which a semi-solid molding material is contained) made by the dip molding process of FIG. 1 ;
  • FIGS. 3 and 4 schematically represent a process for compressively expelling the semi-solid molding material out of the dip-molded article of FIG. 2;
  • FIG. 5 is a perspective view of an example processing machine for compressively expelling a semi-solid molding material out of a dip-molded article
  • FIG. 6 is a perspective longitudinal cross-sectional view of the processing machine of FIG. 5;
  • FIG. 7 is a side view of the processing machine of FIG. 5; and FIG. 8 is a perspective view of the processing machine of FIG. 5 shown in a different configuration.
  • Some devices such as, but not limited to, inflatable implantable medical devices, are manufactured using a dip molding process. While the disclosure provided herein is described in the context of inflatable implantable medical devices, many other types of articles other than inflatable implantable medical devices are also manufactured using dip molded processes, and are just as relevant to the subject matter described herein. Dip molding is performed by submerging a mold that will form the inside of the resulting article into a liquid material. A layer of the material coats the mold to form the article. After the material is sufficiently cured, the dip- molded article is separated from the mold.
  • the configurations of some dip-molded articles preclude the use of a rigid mold because the molded article cannot be stripped from the rigid mold without damaging the article.
  • some balloon-like inflatable medical devices have a small orifice in comparison to the size of its internal space that is created by the mold. Hence, removing a rigid mold from the internal space through the small orifice may be difficult or impossible without tearing the molded polymer article.
  • the mold is made at least partially from a material that can be converted or broken down into a flowable state or condition (as used herein, "flowable state” or “flowable condition” refers to a semi-solid material that is capable of being extracted through an orifice). While the molding material is in the flowable condition, the molding material can be gradually expelled out of the small orifice without damaging the molded polymer article.
  • FIGS. 1-4 schematically represent such a process of manufacturing a polymer article.
  • the dip molding process 100 can be performed using a polymer source 110 and a mold 120.
  • the polymer source 110 e.g., vat, tank, reservoir, etc.
  • the mold 120 can be fully or partially submerged into the liquid polymer. After a period of time, the mold 120 is withdrawn from the polymer source 110, and a layer of the polymer will be covering the mold 120 (to the extent that the mold 120 was submerged in the polymer). After the polymer layer is sufficiently cured (i.e., solidified), the mold 120 will be removed from within the polymer (as described further below), resulting in a dip-molded polymeric article.
  • the mold 120 includes a holder 122 and a mold member 124.
  • the mold member 124 is removably attached to the holder 122.
  • the mold member 124 is shaped as a disk and the holder 122 is an elongate shaft. It should be understood that the size and shape of the mold member 124 are selected in accordance with the desired attributes of the final dip-molded article that is to be made using the mold member 124.
  • the mold member 124 is a disk in this example, it should be understood that the concepts described herein are by no means limited to disk-shaped articles.
  • the mold member 124 of dip molding process 100 is made of a material that can later be converted into a flowable condition to facilitate its removal from within the dip- molded article.
  • the mold member 124 can be made of agar material which is a contiguous semi-solid gel-like substance at room
  • polysaccharides e.g., alginates, carrageenan, pectin, chitosan, and agarose
  • polymers such as hyaluronic acid albumin and gelatin may be used to make the mold member 124 in some cases.
  • the holder 122 is used to manipulate the mold member 124.
  • the holder 122 can be used as a handle for dipping the mold member 124 into the polymer source 110.
  • the coating on the mold 120 is given a chance to cure. Then the holder 122 is separated from the mold member 124.
  • a resulting assembly 130 includes the mold member 124 surrounded by a dip-molded article 140.
  • the dip- molded article 140 is a thin, continuous layer of flexible material (e.g., polymer in some embodiments) that adhered to the mold member 124 during the dip molding process 100.
  • the dip-molded article 140 resembles the size and shape of the mold member 124, which in this example means the dip-molded article 140 resembles a disk-shaped balloon.
  • the dip-molded article 140 includes a small orifice 142 that was created by the holder 122 during the dip molding process 100.
  • the next step of the process represented in FIGS. 1-4 is to remove the mold member 124 from the interior of the dip-molded article 140.
  • the assembly 130 is then placed within a flexible container 150 (shown transparently here).
  • the flexible container 150 can be a sealable polymer bag, for example.
  • the flexible container 150 will serve to protect the dip-molded article 140 during the removal of the mold member 124, and will serve to contain the material of the mold member 124 after it is expelled from within the dip-molded article 140.
  • the compression process converts the semi-solid gel-like mold member 124 to a flowable/extractable state to facilitate its removal from the dip- molded article 140 via the orifice 142.
  • the dip-molded article 140 is substantially void of the material of the mold member 124.
  • the material of the mold member 124 that was expelled from within the dip-molded article 140 is neatly contained within the flexible container 150. Thereafter, the dip-molded article 140, being substantially void of the material of the mold member 124, can be removed from the flexible container 150 for further processing (e.g., rinsing, etc.).
  • an example machine 200 for compressively processing dip-molded articles containing semi-solid molding material includes an input end 202 and an output end 204.
  • the arrangement depicted in FIG. 3 can be inserted into the machine 200 at the input end 202 (with the orifice of the dip-molded article extending generally opposite to the direction the dip-molded article will travel through the machine 200), and the arrangement depicted in FIG. 4 will be ejected from the machine 200 at the output end 204.
  • Between the input end 202 and the output end 204 are a series of mechanisms that apply compression to the dip-molded articles containing the semi-solid molding material. In result, the molding material is expelled from within the dip-molded articles.
  • the machine 200 includes a first conveyor assembly 210.
  • the first conveyor assembly 210 includes a first conveyor belt surface 212 that extends from the input end 202 to the output end 204.
  • the first conveyor surface 212 provides a surface on which a flexible container holding a dip- molded article containing semi-solid molding material (e.g., as shown in FIG. 3) can be positioned while advancing through the machine 200.
  • the first conveyor surface 212 is a generally planar surface.
  • the materials and arrangement of FIG. 3 will be referred to as the "pre-processed arrangement”
  • the materials and arrangement that have received compression from machine 200 but prior to the expulsion of all molding material from the dip-molded article will be referred to as the "mid-processing arrangement”
  • the materials and arrangement of FIG. 4 will be referred to as the "post-processed arrangement.”
  • the pre-processed arrangement, the mid-processing arrangement, and the post-processed arrangement will hereafter be referred to as the "work-in-process material" or "WIP material.”
  • the first conveyor assembly 210 conveys the WIP material through the machine 200.
  • an electric motor is used as the power source for the conveyance.
  • manual exertion by a human operator is used as the power source for the conveyance.
  • a backing plate below the first conveyor belt surface 212 may be included to provide a stable foundation of support for the WIP material as it receives compression by the machine 200.
  • the speed at which the first conveyor assembly 210 conveys the WIP material through the machine 200 results in a cycle time (i.e., the time to convert the pre-processed arrangement to the post-processed arrangement) ranging from about one minutes to about five minutes, or about 10 seconds to about three minutes, or about two minutes to about ten minutes, or any amount of time within those ranges, or any time more than ten minutes.
  • the speed is adjustable.
  • the speed is non-adjustable.
  • the speed may automatically vary depending on the location of the WIP material within the machine 200. In some cases, the speed is selected to be slow enough to substantially prevent incurring damage to the molded dip-molded article as the material of the mold member is expelled from the article.
  • the machine 200 includes a first compression section 220 and a second compression section 240.
  • the first compression section 220 is nearer to the input end 202 than is the second compression section 240.
  • the second compression section 240 is nearer to the output end 204 than is the first compression section 220. Accordingly, as the WIP material advances through the machine 200 from the input end 202 to the output end 204, the WIP material first encounters the first compression section 220 and then subsequently encounters the second compression section 240.
  • the first compression section 220 converts the semi-solid gel-like material of the mold member in the pre-processed arrangement (e.g., mold member 124 of FIG. 3) into a fiowable/extractable state. This is done in preparation for the later expulsion of the molding material from the dip-molded article. In other words, the first compression section 220 crushes and breaks up the continuity of the semi-solid gellike material of the mold member to form pieces of the material that are suitable to be further processed by the second compression section 240.
  • the second compression section processes the material into pieces that are small enough to fit through the orifice of the dip-molded article in a fiowable/extractable manner.
  • the first compression section 220 includes a first compression roller 222a, a second compression roller 222b, and a third compression roller 222c. While the first compression section 220 of the depicted embodiment includes three compression rollers 222a, 222b, and 222c, in some embodiments one, two, four, five, six, seven, eight, nine, ten, or more than ten compression rollers are included.
  • the compression rollers 222a, 222b, and 222c are driven rollers. That is, in some embodiments the compression rollers 222a, 222b, and 222c are rotationally driven by a motor or manual power. In some embodiments, the compression rollers 222a, 222b, and 222c are driven at a rotational speed that results in a surface speed on the periphery of the compression rollers 222a, 222b, and 222c that is substantially equal to the surface speed of the first conveyor belt 212.
  • the compression rollers 222a, 222b, and 222c are driven at a rotational speed that results in a surface speed on the periphery of the compression rollers 222a, 222b, and 222c that is less than or greater than the surface speed of the first conveyor surface 212. In some embodiments, the compression rollers 222a, 222b, and 222c are driven at a rotational speed that is variable and/or adjustable in relation to (or not in relation to) the surface speed of the first conveyor surface 212. In some
  • the compression rollers 222a, 222b, and 222c are not driven, but rather are idler rollers that may or may not turn in response to the WIP material being advanced by the first conveyor assembly 210.
  • the compression rollers 222a, 222b, and 222c are generally cylindrical with generally smooth outer surfaces.
  • one or more of the compression rollers 222a, 222b, and 222c may have shapes other than cylindrical and/or may have outer surfaces that are not smooth.
  • one or more of the compression rollers 222a, 222b, and 222c may have a polygonal, oval, or other regular or irregular cross-sectional shapes.
  • the outer surface of one or more of the compression rollers 222a, 222b, and 222c may include asperities, projections, texturing, knurling, and the like.
  • the gap space between one or more of the compression rollers 222a, 222b, and 222c and the first conveyor surface 212 may differ from the gap space between one or more of the other compression rollers 222a, 222b, and 222c and the first conveyor surface 212.
  • the gap spaces between the compression rollers 222a, 222b, and 222c and the first conveyor surface 212 may be progressively smaller as the WIP material is advanced (i.e., the gap space of the compression roller 222a being the largest, the gap space of the compression roller 222c being the smallest, and the gap space of the compression roller 222b being between the gap spaces of the compression rollers 222a and 222c).
  • the gap spaces of one or more (or all) of the compression rollers 222a, 222b, and 222c are adjustable (either individually or jointly). Any and all such aforementioned variations, and logical extrapolations thereof, pertaining to the first compression section 220 are envisioned, and are within the scope of this disclosure.
  • the gap space between one or more (or all) of the compression rollers 222a, 222b, and 222c and the first conveyor surface 212 may be in a range, without limitation, from about 4 mm to about 6 mm, or about 3 mm to about 7 mm, or about 2 mm to about 8 mm, or about 4 mm to about 12 mm, or about 4 mm to about 10 mm, or about 4 mm to about 8 mm, or about 1 mm to about 6 mm.
  • the machine 200 may include a warming device (e.g., infrared, ultrasonic, radiofrequency, microwave, radiator with water tank, etc.) that raises the temperature of the WIP material to make the material of the mold member less viscous (i.e., more flowable/extractable).
  • a warming device e.g., infrared, ultrasonic, radiofrequency, microwave, radiator with water tank, etc.
  • the machine 200 also includes the second compression section 240.
  • the second compression section 240 includes a second conveyor assembly 241 with a second conveyor surface 242.
  • the second conveyor surface 242 is generally planar. At least a portion of the second conveyor surface 242 faces the first conveyor surface 212 and is spaced apart from the first conveyor surface 212 so that the WIP material can be located therebetween.
  • the generally planar first conveyor surface 212 is non-parallel to the generally planar second conveyor surface 242.
  • the second compression section 240 applies a progressively increasing amount of compression to the WIP material as the WIP material is advanced along the second compression section 240. Accordingly, the material of the mold member within the dip-molded article is gradually expelled from the article as the WIP material advances along the second compression section 240.
  • the gap spacing between the second conveyor surface is the gap spacing between the second conveyor surface
  • the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 differs or is inconsistent along the length of the second conveyor surface 242.
  • the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases along the length of the second conveyor surface 242 (in the direction from the input end 202 toward the output end 204).
  • the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases monotonically along the length of the second conveyor surface 242.
  • the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases linearly along the length of the second conveyor surface 242.
  • the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases non-linearly along the length of the second conveyor surface 242.
  • the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 is adjustable. In some embodiments, the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 is in a range of about 5 mm to about 6 mm at the widest spacing (e.g., at the initial interface between the surfaces 242 and 212) and lessens to a range of about 0.8 mm to about 1.0 mm at the narrowest spacing (e.g., near the output end 204). In such a case, the gap spacing in the middle of the second compression section 240 may be in a range of about 2 mm to about 3 mm. It should be understood that such gap spacing dimensional parameters are merely exemplary and all dimensions of gap spacing and variations thereof are envisioned and within the scope of this disclosure.
  • the machine 200 is motorized.
  • the machine 200 includes a drive train 250 and an electric motor 252.
  • the motor 252 is a variable speed DC motor, and may be a gear motor.
  • the drive train 250 transmits the rotary motion of the motor 252 to various driven portions of the machine 200, such as the first conveyor assembly 210, the first compression section 220, and/or the second conveyor assembly 241.
  • a quick release mechanism is included whereby the electric motor 252 can be decoupled from the drive train 250 for cleaning or the use of manual power input.
  • a manual hand crank input shaft 260 (refer to FIG. 5) can be used to manually power various driven portions of the machine 200, such as the first conveyor assembly 210, the first compression section 220, and/or the second conveyor assembly 241.
  • the machine 200 includes a hinge mechanism 270 that allows the machine 200 to be at least partially opened for cleaning and/or maintenance.
  • the hinge mechanism 270 is arranged to allow the second conveyor assembly 241 to be pivoted away from the first conveyor assembly 210.
  • the drive train 250 is also conveniently configured to allow the second conveyor assembly 241 to be pivoted away from the first conveyor assembly 210 without requiring manual dismantling of the drive train 250.
  • a receptacle 280 is included near the output end 204. Such a receptacle 280 can be used to catch materials such as the material of the mold member in some cases.
  • the receptacle 280 is configured as a sink and can collect water used for cleaning the machine 200.
  • a tray 290 that can receive post-processed arrangement materials.
  • one or more stationary brushes, portable brushes, and/or a combination thereof can be included that clean the conveyor surfaces 212 and/or 242 as the conveyor surfaces 212 and/or 242 pass by the brushes.
  • cloths, abrasive pads, and/or other types of cleaning means can be included that clean the conveyor surfaces 212 and/or 242 as the conveyor surfaces 212 and/or 242 pass by.
  • mechanisms are included for adjusting the tram of the conveyor rollers and/or adjusting the tension of the conveyor belts.
  • the first conveyor assembly 210 can include adjustment mechanisms 214a and 214b.
  • the second conveyor assembly 241 can include adjustment mechanisms 244a and 244b. Any additional conveyers may include additional adjustment mechanisms.
  • Such adjustment mechanisms 214a-b and 244a-b can be manipulated to fine tune the positioning and orientation of the end conveyor rollers of the first conveyor assembly 210 and the second conveyor assembly 241 respectively.
  • a third compression section is included.
  • a pressure plate is rammed against the mostly empty dip- molded article after processing the article through the second compression section 240.
  • Such a third compression can expel a little more material of the mold member out of the dip-molded article.
  • the third compression section may be operated manually.
  • the third compression section may be operated automatically or by a motor.
  • a hood (not shown) can be used to at least partially enclose the machine 200.
  • the hood can enhance safe operations of the machine 200.
  • the hood is movable (e.g., pivotable) away from the machine 200 and a safety interlock switch is included to detect whether the hood is properly positioned. Hence, when the hood is moved away from the machine 200, the machine 200 is prevented from operating in some embodiments.
  • inventive concepts provided herein are described in the context of the manufacturing process of an inflatable medical implant, it should be understood that the inventive concepts are by no means limited to such a context. In fact, the inventive concepts can be applied for the manufacturing processes of many other dip- molded medical devices and for the manufacturing processes of non-medical devices that are dip-molded or manufactured in a method containing a mold and an external article, which may not be by dipping.
  • a numerical value of a parameter, feature, characteristic, object, or dimension may be stated or described in terms of a numerical range format.
  • Such a numerical range format illustrates implementation of some exemplary embodiments of the invention, and does not inflexibly limit the scope of the exemplary embodiments of the invention.
  • a stated or described numerical range also refers to, and encompasses, all possible sub-ranges and individual numerical values (where a numerical value may be expressed as a whole, integral, or fractional number) within that stated or described numerical range.
  • a stated or described numerical range 'from 1 to 6' also refers to, and encompasses, all possible sub-ranges, such as 'from 1 to 3', 'from 1 to 4', 'from 1 to 5', 'from 2 to 4', 'from 2 to 6', 'from 3 to 6', etc., and individual numerical values, such as ⁇ ', '1.3' , '2', '2.8', '3', '3.5', '4', '4.6', '5', '5.2', and '6', within the stated or described numerical range of 'from 1 to 6'. This applies regardless of the numerical breadth, extent, or size, of the stated or described numerical range.
  • the phrase 'in a range of between about a first numerical value and about a second numerical value' is considered equivalent to, and meaning the same as, the phrase 'in a range of from about a first numerical value to about a second numerical value', and, thus, the two equivalently meaning phrases may be used interchangeably.

Abstract

Processes for the manufacturing of dip-molded articles can include the application of compression to remove molding materials from within the dip-molded articles. In some embodiments, inflatable implantable medical devices are dip-molded and can be manufactured using such compression processes.

Description

PROCESSING MACHINE AND METHODS FOR PROCESSING DIP- MOLDED ARTICLES
CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application Serial No. 62/451,960, filed January 30, 2017. The disclosure of the prior application is considered part of and is incorporated by reference in the disclosure of this application.
FIELD AND BACKGROUND
1. Technical Field
This disclosure relates to the manufacturing of dip-molded articles. For example, this disclosure relates to the manufacturing of inflatable dip-molded implantable medical devices.
2. Background Information
Dip molding is performed by submerging a mold that will form the inside of the resulting article into a liquid polymer. A layer of the polymer coats the mold to form the article. After the polymer is sufficiently cured, the polymer article is separated from the mold.
The configurations of some dip-molded articles preclude the use of a rigid mold because the molded polymer article cannot be stripped from the rigid mold without damaging the article. For example, some balloon-like inflatable medical devices have a small orifice in comparison to the size of its internal space that is created by the mold. Hence, removing a rigid mold from the internal space through the small orifice may be difficult or impossible without tearing the molded polymer article.
SUMMARY
This disclosure describes processes for manufacturing dip-molded articles such as, but not limited to, dip-molded inflatable implantable medical devices used for the repair and treatment of tissues in bodily joints. More particularly, this disclosure describes apparatuses and methods for processing dip-molded inflatable implantable medical devices to remove substances that are used during dip molding process. In one aspect, this document is directed to a dip-molded article processing machine. Such a dip-molded article processing machine can include a first conveyor assembly defining a first conveyor surface, a first compression section comprising one or more rollers with an outer peripheral surface spaced apart from the first conveyor surface by a first gap distance, and a second compression section comprising a second conveyor assembly defining a second conveyor surface. The second conveyor surface faces the first conveyor surface and is spaced apart from the first conveyor surface by a second gap distance.
Such a dip-molded article processing machine may optionally include one or more of the following features. The first conveyor surface and the second conveyor surface may be generally planar, non-parallel surfaces. The second gap distance may decrease along the longitudinal length of the second conveyor surface. The second gap distance may monotonically decrease along the longitudinal length of the second conveyor surface. The first gap distance may be greater than a minimum gap distance of the second gap distance. The machine may also include an electric motor that, when actuated, concurrently drives the first conveyor assembly, the one or more rollers, and the second conveyor assembly. The machine may also include a manual crank mechanism that, when rotated, concurrently drives the first conveyor assembly, the one or more rollers, and the second conveyor assembly. The machine may also include a power source configured to concurrently drive the first conveyor assembly, the one or more rollers, and the second conveyor assembly at a substantially equal linear speed. The first conveyor surface may be longer than the second conveyor surface. At least one of the first gap distance and the second gap distance may be adjustable. The second gap distance may differ along a longitudinal length of the second conveyor surface. The machine may also include one or more additional conveyor surfaces facing the first conveyor surface. The first conveyor surface may be longer than a combined length of the second conveyor surface and the one or more additional conveyor surfaces.
In another aspect, this disclosure is directed to a method for expelling contents from within a volumetric bladder. The method includes positioning the volumetric bladder on a first conveyor surface of a first conveyor assembly (wherein a contiguous gel material is contained within the volumetric bladder), and advancing the volumetric bladder along the first conveyor assembly such that the volumetric bladder receives compression between the first conveyor surface and a second conveyor surface of a second conveyor assembly. The compression expels at least some of the material out of the volumetric bladder.
Such a method for expelling contents from within a volumetric bladder may optionally include one or more of the following features. The compression may progressively increase as the volumetric bladder undergoes the advancing. The advancing may include the first conveyor surface, the second conveyor surface, and the inflatable medical device all moving at a same speed. The first conveyor surface and the second conveyor surface may be driven by rotation of a manual crank mechanism by a human operator or by an electric motor. During the advancing, a first compression applied to the volumetric bladder may convert the contiguous gel material to multiple smaller portions of gel material and a second compression applied to the volumetric bladder may expel at least some of the multiple smaller portions of the gel material out of the volumetric bladder. The first conveyor surface may be defined by a first conveyor belt and the second conveyor surface may be defined by a second conveyor belt. The volumetric bladder may be a biodegradable orthopedic spacer implant. The material may include semi-solid agar gel material. The first conveyor surface may be longer than the second conveyor surface. The volumetric bladder may receive additional compression between the first conveyor surface and a third conveyor surface of a third conveyor assembly. The additional compression may expel at least some additional amount of the material out of the volumetric bladder. The first conveyor surface and/or the second conveyor surface may be generally planar surfaces, and may be non-parallel to each other. The positioning may include orienting the volumetric bladder on the first conveyor surface such that an opening of the volumetric bladder is located at a trailing end of the volumetric bladder as the volumetric bladder undergoes the advancing. The volumetric bladder may be contained within a bag during the advancing, and the material expelled by the compression may be contained within the bag. The volumetric bladder may be a dip- molded inflatable medical device. The volumetric bladder may be a non-degradable orthopedic spacer implant.
Particular embodiments of the subject matter described in this document can be implemented to realize one or more of the following advantages. First, in some embodiments the apparatuses and methods described herein are used to remove molding material from within a dip-molded article while advantageously avoiding damage to the article. Second, the apparatuses and methods described herein can remove molding material from within a dip-molded article in an automated and, therefore, cost-effective manner. Third, the apparatuses and methods described herein remove molding material from within a dip-molded article in a clean manner that avoids contamination of the article, the machine, and the surrounding environment. Fourth, the apparatuses and methods described herein are designed to be adjustable, maintainable, and safe to operate.
Unless otherwise defined, all technical or/and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods or/and materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments of the invention are herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of embodiments of the invention. In this regard, the description taken with the drawings makes apparent to those skilled in the art how embodiments of the invention may be practiced.
In the drawings:
FIG. 1 is a schematic representation of a dip molding process;
FIG. 2 is a schematic representation of a dip-molded article (within which a semi-solid molding material is contained) made by the dip molding process of FIG. 1 ;
FIGS. 3 and 4 schematically represent a process for compressively expelling the semi-solid molding material out of the dip-molded article of FIG. 2;
FIG. 5 is a perspective view of an example processing machine for compressively expelling a semi-solid molding material out of a dip-molded article;
FIG. 6 is a perspective longitudinal cross-sectional view of the processing machine of FIG. 5;
FIG. 7 is a side view of the processing machine of FIG. 5; and FIG. 8 is a perspective view of the processing machine of FIG. 5 shown in a different configuration.
Like reference numbers represent corresponding parts throughout.
DETAILED DESCRIPTION
Some devices, such as, but not limited to, inflatable implantable medical devices, are manufactured using a dip molding process. While the disclosure provided herein is described in the context of inflatable implantable medical devices, many other types of articles other than inflatable implantable medical devices are also manufactured using dip molded processes, and are just as relevant to the subject matter described herein. Dip molding is performed by submerging a mold that will form the inside of the resulting article into a liquid material. A layer of the material coats the mold to form the article. After the material is sufficiently cured, the dip- molded article is separated from the mold.
The configurations of some dip-molded articles preclude the use of a rigid mold because the molded article cannot be stripped from the rigid mold without damaging the article. For example, some balloon-like inflatable medical devices have a small orifice in comparison to the size of its internal space that is created by the mold. Hence, removing a rigid mold from the internal space through the small orifice may be difficult or impossible without tearing the molded polymer article. In some cases, therefore, the mold is made at least partially from a material that can be converted or broken down into a flowable state or condition (as used herein, "flowable state" or "flowable condition" refers to a semi-solid material that is capable of being extracted through an orifice). While the molding material is in the flowable condition, the molding material can be gradually expelled out of the small orifice without damaging the molded polymer article. FIGS. 1-4 schematically represent such a process of manufacturing a polymer article.
Referring to FIG. 1, a simplified version of a dip molding process 100 is represented. For example, the dip molding process 100 can be performed using a polymer source 110 and a mold 120. The polymer source 110 (e.g., vat, tank, reservoir, etc.) contains a liquid polymer (e.g., silicone, plastisol, latex, neoprene, urethane, and other polymer dispersions or solutions). The mold 120 can be fully or partially submerged into the liquid polymer. After a period of time, the mold 120 is withdrawn from the polymer source 110, and a layer of the polymer will be covering the mold 120 (to the extent that the mold 120 was submerged in the polymer). After the polymer layer is sufficiently cured (i.e., solidified), the mold 120 will be removed from within the polymer (as described further below), resulting in a dip-molded polymeric article.
In the depicted example, the mold 120 includes a holder 122 and a mold member 124. The mold member 124 is removably attached to the holder 122. In this illustrative example, the mold member 124 is shaped as a disk and the holder 122 is an elongate shaft. It should be understood that the size and shape of the mold member 124 are selected in accordance with the desired attributes of the final dip-molded article that is to be made using the mold member 124. Hence, while the mold member 124 is a disk in this example, it should be understood that the concepts described herein are by no means limited to disk-shaped articles.
While in some cases rigid molds are used for dip molding processes, the mold member 124 of dip molding process 100 is made of a material that can later be converted into a flowable condition to facilitate its removal from within the dip- molded article. For example, in some cases the mold member 124 can be made of agar material which is a contiguous semi-solid gel-like substance at room
temperature. In addition to agar, other materials such as, but not limited to, polysaccharides (e.g., alginates, carrageenan, pectin, chitosan, and agarose) and polymers such as hyaluronic acid albumin and gelatin may be used to make the mold member 124 in some cases.
The holder 122 is used to manipulate the mold member 124. For example, the holder 122 can be used as a handle for dipping the mold member 124 into the polymer source 110.
After removing the mold 120 from the polymer source 110, the coating on the mold 120 is given a chance to cure. Then the holder 122 is separated from the mold member 124.
Referring also to FIG. 2, after separating the holder 122, a resulting assembly 130 includes the mold member 124 surrounded by a dip-molded article 140. The dip- molded article 140 is a thin, continuous layer of flexible material (e.g., polymer in some embodiments) that adhered to the mold member 124 during the dip molding process 100. Hence, the dip-molded article 140 resembles the size and shape of the mold member 124, which in this example means the dip-molded article 140 resembles a disk-shaped balloon. The dip-molded article 140 includes a small orifice 142 that was created by the holder 122 during the dip molding process 100.
The next step of the process represented in FIGS. 1-4 is to remove the mold member 124 from the interior of the dip-molded article 140.
Referring also to FIG. 3, in this example process the assembly 130 is then placed within a flexible container 150 (shown transparently here). The flexible container 150 can be a sealable polymer bag, for example. The flexible container 150 will serve to protect the dip-molded article 140 during the removal of the mold member 124, and will serve to contain the material of the mold member 124 after it is expelled from within the dip-molded article 140.
With the assembly 130 located within the flexible container 150, compression is applied to the assembly 130 (as described further below) to expel the material of the mold member 124 from within the dip-molded article 140. The material of the mold member 124 will be expelled through the orifice 142, without damaging the dip- molded article 140. Hence, the compression process converts the semi-solid gel-like mold member 124 to a flowable/extractable state to facilitate its removal from the dip- molded article 140 via the orifice 142.
Referring also to FIG. 4, after the compression has expelled the mold member 124 material from the dip-molded article 140, the dip-molded article 140 is substantially void of the material of the mold member 124. The material of the mold member 124 that was expelled from within the dip-molded article 140 is neatly contained within the flexible container 150. Thereafter, the dip-molded article 140, being substantially void of the material of the mold member 124, can be removed from the flexible container 150 for further processing (e.g., rinsing, etc.).
Referring to FIG. 5, an example machine 200 for compressively processing dip-molded articles containing semi-solid molding material includes an input end 202 and an output end 204. Broadly summarizing the function of the machine 200, the arrangement depicted in FIG. 3 can be inserted into the machine 200 at the input end 202 (with the orifice of the dip-molded article extending generally opposite to the direction the dip-molded article will travel through the machine 200), and the arrangement depicted in FIG. 4 will be ejected from the machine 200 at the output end 204. Between the input end 202 and the output end 204 are a series of mechanisms that apply compression to the dip-molded articles containing the semi-solid molding material. In result, the molding material is expelled from within the dip-molded articles.
Referring also to the longitudinal cross-sectional view of the machine 200 shown in FIG. 6, the machine 200 includes a first conveyor assembly 210. In the depicted embodiment, the first conveyor assembly 210 includes a first conveyor belt surface 212 that extends from the input end 202 to the output end 204. The first conveyor surface 212 provides a surface on which a flexible container holding a dip- molded article containing semi-solid molding material (e.g., as shown in FIG. 3) can be positioned while advancing through the machine 200. In some embodiments, the first conveyor surface 212 is a generally planar surface.
For the sake of brevity and clarity, hereafter: (i) the materials and arrangement of FIG. 3 will be referred to as the "pre-processed arrangement," (ii) the materials and arrangement that have received compression from machine 200 but prior to the expulsion of all molding material from the dip-molded article will be referred to as the "mid-processing arrangement," and (iii) the materials and arrangement of FIG. 4 will be referred to as the "post-processed arrangement." Collectively, the pre-processed arrangement, the mid-processing arrangement, and the post-processed arrangement will hereafter be referred to as the "work-in-process material" or "WIP material."
The first conveyor assembly 210 conveys the WIP material through the machine 200. In some embodiments, an electric motor is used as the power source for the conveyance. In some embodiments, manual exertion by a human operator is used as the power source for the conveyance. In some embodiments, a backing plate below the first conveyor belt surface 212 may be included to provide a stable foundation of support for the WIP material as it receives compression by the machine 200.
In some embodiments, the speed at which the first conveyor assembly 210 conveys the WIP material through the machine 200 results in a cycle time (i.e., the time to convert the pre-processed arrangement to the post-processed arrangement) ranging from about one minutes to about five minutes, or about 10 seconds to about three minutes, or about two minutes to about ten minutes, or any amount of time within those ranges, or any time more than ten minutes. In some embodiments, the speed is adjustable. In some embodiments, the speed is non-adjustable. In some embodiments, the speed may automatically vary depending on the location of the WIP material within the machine 200. In some cases, the speed is selected to be slow enough to substantially prevent incurring damage to the molded dip-molded article as the material of the mold member is expelled from the article.
In the depicted non-limiting example, the machine 200 includes a first compression section 220 and a second compression section 240. The first compression section 220 is nearer to the input end 202 than is the second compression section 240. Conversely, the second compression section 240 is nearer to the output end 204 than is the first compression section 220. Accordingly, as the WIP material advances through the machine 200 from the input end 202 to the output end 204, the WIP material first encounters the first compression section 220 and then subsequently encounters the second compression section 240.
The first compression section 220 converts the semi-solid gel-like material of the mold member in the pre-processed arrangement (e.g., mold member 124 of FIG. 3) into a fiowable/extractable state. This is done in preparation for the later expulsion of the molding material from the dip-molded article. In other words, the first compression section 220 crushes and breaks up the continuity of the semi-solid gellike material of the mold member to form pieces of the material that are suitable to be further processed by the second compression section 240. The second compression section processes the material into pieces that are small enough to fit through the orifice of the dip-molded article in a fiowable/extractable manner.
In the depicted embodiment, the first compression section 220 includes a first compression roller 222a, a second compression roller 222b, and a third compression roller 222c. While the first compression section 220 of the depicted embodiment includes three compression rollers 222a, 222b, and 222c, in some embodiments one, two, four, five, six, seven, eight, nine, ten, or more than ten compression rollers are included.
In some embodiments, the compression rollers 222a, 222b, and 222c are driven rollers. That is, in some embodiments the compression rollers 222a, 222b, and 222c are rotationally driven by a motor or manual power. In some embodiments, the compression rollers 222a, 222b, and 222c are driven at a rotational speed that results in a surface speed on the periphery of the compression rollers 222a, 222b, and 222c that is substantially equal to the surface speed of the first conveyor belt 212. In some embodiments, the compression rollers 222a, 222b, and 222c are driven at a rotational speed that results in a surface speed on the periphery of the compression rollers 222a, 222b, and 222c that is less than or greater than the surface speed of the first conveyor surface 212. In some embodiments, the compression rollers 222a, 222b, and 222c are driven at a rotational speed that is variable and/or adjustable in relation to (or not in relation to) the surface speed of the first conveyor surface 212. In some
embodiments, the compression rollers 222a, 222b, and 222c are not driven, but rather are idler rollers that may or may not turn in response to the WIP material being advanced by the first conveyor assembly 210.
In the depicted embodiment, the compression rollers 222a, 222b, and 222c are generally cylindrical with generally smooth outer surfaces. In some embodiments, one or more of the compression rollers 222a, 222b, and 222c may have shapes other than cylindrical and/or may have outer surfaces that are not smooth. For example, in some embodiments one or more of the compression rollers 222a, 222b, and 222c may have a polygonal, oval, or other regular or irregular cross-sectional shapes. In some embodiments, the outer surface of one or more of the compression rollers 222a, 222b, and 222c may include asperities, projections, texturing, knurling, and the like.
In some embodiments, the gap spaces between the compression rollers 222a,
222b, and 222c and the first conveyor surface 212 are all substantially equal to each other. In some embodiments, the gap space between one or more of the compression rollers 222a, 222b, and 222c and the first conveyor surface 212 may differ from the gap space between one or more of the other compression rollers 222a, 222b, and 222c and the first conveyor surface 212. For example, in some embodiments the gap spaces between the compression rollers 222a, 222b, and 222c and the first conveyor surface 212 may be progressively smaller as the WIP material is advanced (i.e., the gap space of the compression roller 222a being the largest, the gap space of the compression roller 222c being the smallest, and the gap space of the compression roller 222b being between the gap spaces of the compression rollers 222a and 222c). In some embodiments, the gap spaces of one or more (or all) of the compression rollers 222a, 222b, and 222c are adjustable (either individually or jointly). Any and all such aforementioned variations, and logical extrapolations thereof, pertaining to the first compression section 220 are envisioned, and are within the scope of this disclosure.
In some embodiments, the gap space between one or more (or all) of the compression rollers 222a, 222b, and 222c and the first conveyor surface 212 may be in a range, without limitation, from about 4 mm to about 6 mm, or about 3 mm to about 7 mm, or about 2 mm to about 8 mm, or about 4 mm to about 12 mm, or about 4 mm to about 10 mm, or about 4 mm to about 8 mm, or about 1 mm to about 6 mm.
In some embodiments, the machine 200 may include a warming device (e.g., infrared, ultrasonic, radiofrequency, microwave, radiator with water tank, etc.) that raises the temperature of the WIP material to make the material of the mold member less viscous (i.e., more flowable/extractable).
Still referring to FIGS. 5 and 6, the machine 200 also includes the second compression section 240. The second compression section 240 includes a second conveyor assembly 241 with a second conveyor surface 242. In some embodiments, the second conveyor surface 242 is generally planar. At least a portion of the second conveyor surface 242 faces the first conveyor surface 212 and is spaced apart from the first conveyor surface 212 so that the WIP material can be located therebetween. In some embodiments, the generally planar first conveyor surface 212 is non-parallel to the generally planar second conveyor surface 242.
The second compression section 240 applies a progressively increasing amount of compression to the WIP material as the WIP material is advanced along the second compression section 240. Accordingly, the material of the mold member within the dip-molded article is gradually expelled from the article as the WIP material advances along the second compression section 240.
In some embodiments, the gap spacing between the second conveyor surface
242 and the first conveyor surface 212 differs or is inconsistent along the length of the second conveyor surface 242. For example, in some embodiments the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases along the length of the second conveyor surface 242 (in the direction from the input end 202 toward the output end 204). In some embodiments, the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases monotonically along the length of the second conveyor surface 242. In some embodiments, the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases linearly along the length of the second conveyor surface 242. In some embodiments, the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 decreases non-linearly along the length of the second conveyor surface 242. In some embodiments, the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 is adjustable. In some embodiments, the gap spacing between the second conveyor surface 242 and the first conveyor surface 212 is in a range of about 5 mm to about 6 mm at the widest spacing (e.g., at the initial interface between the surfaces 242 and 212) and lessens to a range of about 0.8 mm to about 1.0 mm at the narrowest spacing (e.g., near the output end 204). In such a case, the gap spacing in the middle of the second compression section 240 may be in a range of about 2 mm to about 3 mm. It should be understood that such gap spacing dimensional parameters are merely exemplary and all dimensions of gap spacing and variations thereof are envisioned and within the scope of this disclosure.
Referring also to FIG. 7, in some embodiments the machine 200 is motorized.
For example, in the depicted embodiment the machine 200 includes a drive train 250 and an electric motor 252. In some embodiments, the motor 252 is a variable speed DC motor, and may be a gear motor. The drive train 250 transmits the rotary motion of the motor 252 to various driven portions of the machine 200, such as the first conveyor assembly 210, the first compression section 220, and/or the second conveyor assembly 241. In some embodiments, a quick release mechanism is included whereby the electric motor 252 can be decoupled from the drive train 250 for cleaning or the use of manual power input. For the use of manual power input, in some embodiments a manual hand crank input shaft 260 (refer to FIG. 5) can be used to manually power various driven portions of the machine 200, such as the first conveyor assembly 210, the first compression section 220, and/or the second conveyor assembly 241.
Referring also to FIG. 8, in some embodiments the machine 200 includes a hinge mechanism 270 that allows the machine 200 to be at least partially opened for cleaning and/or maintenance. For example, in the depicted embodiment the hinge mechanism 270 is arranged to allow the second conveyor assembly 241 to be pivoted away from the first conveyor assembly 210. The drive train 250 is also conveniently configured to allow the second conveyor assembly 241 to be pivoted away from the first conveyor assembly 210 without requiring manual dismantling of the drive train 250.
In some embodiments, a receptacle 280 is included near the output end 204. Such a receptacle 280 can be used to catch materials such as the material of the mold member in some cases. In some embodiments, the receptacle 280 is configured as a sink and can collect water used for cleaning the machine 200. In some embodiments, also near the output end 204 is a tray 290 that can receive post-processed arrangement materials.
In some embodiments, one or more stationary brushes, portable brushes, and/or a combination thereof can be included that clean the conveyor surfaces 212 and/or 242 as the conveyor surfaces 212 and/or 242 pass by the brushes. In certain embodiments, cloths, abrasive pads, and/or other types of cleaning means can be included that clean the conveyor surfaces 212 and/or 242 as the conveyor surfaces 212 and/or 242 pass by.
In some embodiments, mechanisms are included for adjusting the tram of the conveyor rollers and/or adjusting the tension of the conveyor belts. For example, the first conveyor assembly 210 can include adjustment mechanisms 214a and 214b. Additionally, the second conveyor assembly 241 can include adjustment mechanisms 244a and 244b. Any additional conveyers may include additional adjustment mechanisms. Such adjustment mechanisms 214a-b and 244a-b can be manipulated to fine tune the positioning and orientation of the end conveyor rollers of the first conveyor assembly 210 and the second conveyor assembly 241 respectively.
In some embodiments, a third compression section is included. For example, in some embodiments a pressure plate is rammed against the mostly empty dip- molded article after processing the article through the second compression section 240. Such a third compression can expel a little more material of the mold member out of the dip-molded article. In some embodiments, the third compression section may be operated manually. In some embodiments, the third compression section may be operated automatically or by a motor.
In some embodiments, a hood (not shown) can be used to at least partially enclose the machine 200. The hood can enhance safe operations of the machine 200. In some embodiments, the hood is movable (e.g., pivotable) away from the machine 200 and a safety interlock switch is included to detect whether the hood is properly positioned. Hence, when the hood is moved away from the machine 200, the machine 200 is prevented from operating in some embodiments.
While the inventive concepts provided herein are described in the context of the manufacturing process of an inflatable medical implant, it should be understood that the inventive concepts are by no means limited to such a context. In fact, the inventive concepts can be applied for the manufacturing processes of many other dip- molded medical devices and for the manufacturing processes of non-medical devices that are dip-molded or manufactured in a method containing a mold and an external article, which may not be by dipping.
Throughout this disclosure, a numerical value of a parameter, feature, characteristic, object, or dimension, may be stated or described in terms of a numerical range format. Such a numerical range format, as used herein, illustrates implementation of some exemplary embodiments of the invention, and does not inflexibly limit the scope of the exemplary embodiments of the invention.
Accordingly, a stated or described numerical range also refers to, and encompasses, all possible sub-ranges and individual numerical values (where a numerical value may be expressed as a whole, integral, or fractional number) within that stated or described numerical range. For example, a stated or described numerical range 'from 1 to 6' also refers to, and encompasses, all possible sub-ranges, such as 'from 1 to 3', 'from 1 to 4', 'from 1 to 5', 'from 2 to 4', 'from 2 to 6', 'from 3 to 6', etc., and individual numerical values, such as Ί', '1.3' , '2', '2.8', '3', '3.5', '4', '4.6', '5', '5.2', and '6', within the stated or described numerical range of 'from 1 to 6'. This applies regardless of the numerical breadth, extent, or size, of the stated or described numerical range.
Moreover, for stating or describing a numerical range, the phrase 'in a range of between about a first numerical value and about a second numerical value', is considered equivalent to, and meaning the same as, the phrase 'in a range of from about a first numerical value to about a second numerical value', and, thus, the two equivalently meaning phrases may be used interchangeably.
The term 'about', as used herein, refers to ± 10 % of the stated numerical value.
It is to be fully understood that certain aspects, characteristics, and features, of the invention, which are, for clarity, illustratively described and presented in the context or format of a plurality of separate embodiments, may also be illustratively described and presented in any suitable combination or sub-combination in the context or format of a single embodiment. Conversely, various aspects,
characteristics, and features, of the invention which are illustratively described and presented in combination or sub-combination in the context or format of a single embodiment, may also be illustratively described and presented in the context or format of a plurality of separate embodiments. Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any invention or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular inventions. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described herein as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system modules and components in the embodiments described herein should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single product or packaged into multiple products.
Particular embodiments of the subject matter have been described. Other embodiments are within the scope of the following claims. For example, the actions recited in the claims can be performed in a different order and still achieve desirable results. As one example, the processes depicted in the accompanying figures do not necessarily require the particular order shown, or sequential order, to achieve desirable results.

Claims

WHAT IS CLAIMED IS:
1. A dip-molded article processing machine comprising:
a first conveyor assembly defining a first conveyor surface;
a first compression section comprising one or more rollers with an outer peripheral surface spaced apart from the first conveyor surface by a first gap distance; and a second compression section comprising a second conveyor assembly defining a second conveyor surface, the second conveyor surface facing the first conveyor surface and spaced apart from the first conveyor surface by a second gap distance.
2. The machine of claim 1, wherein the first conveyor surface and the second conveyor surface are generally planar, non-parallel surfaces.
3. The machine of claim 1, wherein the second gap distance decreases along the longitudinal length of the second conveyor surface.
4. The machine of claim 1, wherein the second gap distance monotonically decreases along the longitudinal length of the second conveyor surface.
5. The machine of claim 1, wherein the first gap distance is greater than a minimum gap distance of the second gap distance.
6. The machine of claim 1, further comprising an electric motor that, when actuated, concurrently drives the first conveyor assembly, the one or more rollers, and the second conveyor assembly.
7. The machine of claim 1, further comprising a manual crank mechanism that, when rotated, concurrently drives the first conveyor assembly, the one or more rollers, and the second conveyor assembly.
8. The machine of claim 1, further comprising a power source configured to concurrently drive the first conveyor assembly, the one or more rollers, and the second conveyor assembly at a substantially equal linear speed.
9. The machine of claim 1, wherein the first conveyor surface is longer than the second conveyor surface.
10. The machine of claim 1, wherein at least one of the first gap distance and the second gap distance are adjustable.
11. The machine of claim 1, wherein the second gap distance differs along a longitudinal length of the second conveyor surface.
12. The machine of claim 1, further comprising one or more additional conveyor surfaces facing the first conveyor surface.
13. The machine of claim 12, wherein the first conveyor surface is longer than a combined length of the second conveyor surface and the one or more additional conveyor surfaces.
14. A method for expelling contents from within a volumetric bladder, the method comprising:
positioning the volumetric bladder on a first conveyor surface of a first conveyor assembly, wherein a contiguous gel material is contained within the volumetric bladder; and
advancing the volumetric bladder along the first conveyor assembly such that the volumetric bladder receives compression between the first conveyor surface and a second conveyor surface of a second conveyor assembly, wherein the compression expels at least some of the material out of the volumetric bladder.
15. The method of claim 14, wherein the compression progressively increases as the volumetric bladder undergoes the advancing.
16. The method of claim 14, wherein the advancing comprises the first conveyor surface, the second conveyor surface, and the inflatable medical device all moving at a same speed.
17. The method of claim 16, wherein the first conveyor surface and the second conveyor surface are driven by rotation of a manual crank mechanism by a human operator or by an electric motor.
18. The method of claim 14, wherein, during the advancing, a first compression applied to the volumetric bladder converts the contiguous gel material to multiple smaller portions of gel material and a second compression applied to the volumetric bladder expels at least some of the multiple smaller portions of the gel material out of the volumetric bladder.
19. The method of claim 14, wherein the first conveyor surface comprises a first conveyor belt and the second conveyor surface comprises a second conveyor belt.
20. The method of claim 14, wherein the volumetric bladder comprises a biodegradable orthopedic spacer implant.
21. The method of claim 14, wherein the material comprises semi-solid agar gel material.
22. The method of claim 14, wherein the first conveyor surface is longer than the second conveyor surface.
23. The method of claim 14, wherein the volumetric bladder receives additional compression between the first conveyor surface and a third conveyor surface of a third conveyor assembly, and wherein the additional compression expels at least some additional amount of the material out of the volumetric bladder.
24. The method of claim 14, wherein the first conveyor surface and the second conveyor surface are generally planar surfaces that are non-parallel to each other.
25. The method of claim 14, wherein the positioning comprises orienting the volumetric bladder on the first conveyor surface such that an opening of the volumetric bladder is located at a trailing end of the volumetric bladder as the volumetric bladder undergoes the advancing.
26. The method of claim 14, wherein the volumetric bladder is contained within a bag during the advancing, and wherein the material expelled by the compression is contained within the bag.
27. The method of claim 14, wherein the volumetric bladder is a dip-molded inflatable medical device.
28. The method of claim 14, wherein the volumetric bladder comprises a non-degradable orthopedic spacer implant.
PCT/IB2017/056776 2017-01-30 2017-10-31 Processing machine and methods for processing dip-molded articles WO2018138561A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/482,102 US11045981B2 (en) 2017-01-30 2017-10-31 Processing machine and methods for processing dip-molded articles
EP17894291.8A EP3573806A4 (en) 2017-01-30 2017-10-31 Processing machine and methods for processing dip-molded articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762451960P 2017-01-30 2017-01-30
US62/451,960 2017-01-30

Publications (1)

Publication Number Publication Date
WO2018138561A1 true WO2018138561A1 (en) 2018-08-02

Family

ID=62979210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/056776 WO2018138561A1 (en) 2017-01-30 2017-10-31 Processing machine and methods for processing dip-molded articles

Country Status (3)

Country Link
US (1) US11045981B2 (en)
EP (1) EP3573806A4 (en)
WO (1) WO2018138561A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110076945B (en) * 2019-04-30 2020-02-07 北京航空航天大学 Preparation method and application of resistance-reducing flexible elastic film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2389319A (en) * 1941-11-10 1945-11-20 Dewey And Almy Chem Comp Dipping machine
US5305963A (en) * 1992-12-03 1994-04-26 Schuller International, Inc. Method and apparatus for forming rolls from strips of compressible material
US5909800A (en) * 1997-11-13 1999-06-08 Huang; Tsai-Hsiu Film article release machine
WO2014122595A1 (en) * 2013-02-06 2014-08-14 Altevo Limited Apparatus and method for stripping and conveying a flexible product from a dip moulding former

Family Cites Families (299)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631854A (en) 1969-05-19 1972-01-04 Robert Howard Fryer Inflatable medical assemblies
FI53066C (en) 1969-06-27 1978-02-10 Nyegaard & Co As
US3800788A (en) 1972-07-12 1974-04-02 N White Antral catheter for reduction of fractures
DE2909439A1 (en) 1979-03-08 1980-09-18 Schering Ag NEW NON-ionic x-ray contrast agents
US4638803A (en) 1982-09-30 1987-01-27 Rand Robert W Medical apparatus for inducing scar tissue formation in a body
FR2553744B1 (en) * 1983-10-21 1986-03-28 Saint Gobain Isover COMPRESSION COILER
US4669478A (en) 1985-03-21 1987-06-02 Robertson Jack R Device for diagnosing and relieving female incontinence
US4662883A (en) 1985-07-17 1987-05-05 Mentor Corporation Self-sealing valve for fluid fillable device
US4892550A (en) 1985-12-30 1990-01-09 Huebsch Donald L Endoprosthesis device and method
US4719918A (en) 1986-05-08 1988-01-19 Cox-Uphoff Corporation Subperiosteal tissue expander
US4798205A (en) 1986-05-08 1989-01-17 Cox-Uphoff International Method of using a subperiosteal tissue expander
WO1988003817A1 (en) 1986-11-29 1988-06-02 Terumo Kabushiki Kaisha Catheter equipped with balloon
AU592279B2 (en) 1987-05-22 1990-01-04 Intelhearts Co. Ltd. Method of producing a porous ceramic panel
US4819637A (en) 1987-09-01 1989-04-11 Interventional Therapeutics Corporation System for artificial vessel embolization and devices for use therewith
US4932956A (en) 1988-05-10 1990-06-12 American Medical Systems, Inc. Prostate balloon dilator
US4932958A (en) 1988-05-10 1990-06-12 American Medical Systems, Inc. Prostate balloon dilator
DE68922497T2 (en) 1988-08-24 1995-09-14 Marvin J Slepian ENDOLUMINAL SEAL WITH BISDEGRADABLE POLYMERS.
US4906244A (en) 1988-10-04 1990-03-06 Cordis Corporation Balloons for medical devices and fabrication thereof
US4932938A (en) 1989-05-05 1990-06-12 Medical Engineering Corporation Urethral indwelling catheter with incontinence control
US5021043A (en) 1989-09-11 1991-06-04 C. R. Bard, Inc. Method and catheter for dilatation of the lacrimal system
DK0441516T3 (en) 1990-02-08 1995-06-12 Howmedica Inflatable catheter
US5345927A (en) 1990-03-02 1994-09-13 Bonutti Peter M Arthroscopic retractors
US5295994A (en) 1991-11-15 1994-03-22 Bonutti Peter M Active cannulas
US5454365A (en) 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5514153A (en) 1990-03-02 1996-05-07 General Surgical Innovations, Inc. Method of dissecting tissue layers
US5331975A (en) 1990-03-02 1994-07-26 Bonutti Peter M Fluid operated retractors
US5163949A (en) 1990-03-02 1992-11-17 Bonutti Peter M Fluid operated retractors
US5954739A (en) 1990-03-02 1999-09-21 General Surgical Innovations, Inc. Method of dissecting tissue layers
JP2514087Y2 (en) 1990-05-25 1996-10-16 幸三 牧田 Balloon with detachable double-sided check valve
US5163950A (en) 1990-08-24 1992-11-17 Medical Engineering Corporation Balloon catheter and endoscope kit
US5071429A (en) 1990-08-24 1991-12-10 Medical Engineering Corporation Method for inserting a balloon catheter through an endoscope
US5990382A (en) 1990-08-29 1999-11-23 Biomedical Enterprises, Inc. Method and implant for surgical manipulation of bone
US5033481A (en) 1990-10-12 1991-07-23 Inamed Development Company Intraoperative or interoperative longitudinal tissue expander
US5102413A (en) 1990-11-14 1992-04-07 Poddar Satish B Inflatable bone fixation device
US5176698A (en) 1991-01-09 1993-01-05 Scimed Life Systems, Inc. Vented dilatation cathether and method for venting
US5071410A (en) 1991-03-14 1991-12-10 Pazell John A Arthroscopic surgery system
US5122113A (en) 1991-03-27 1992-06-16 Hattler Brack G Inflatable percutaneous oxygenator
US5779728A (en) 1991-05-29 1998-07-14 Origin Medsystems, Inc. Method and inflatable chamber apparatus for separating layers of tissue
US5728119A (en) 1991-05-29 1998-03-17 Origin Medsystems, Inc. Method and inflatable chamber apparatus for separating layers of tissue
US5361752A (en) 1991-05-29 1994-11-08 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
US7744617B2 (en) 1991-05-29 2010-06-29 Covidien Ag Method and inflatable chamber apparatus for separating layers of tissue
US5222970A (en) 1991-09-06 1993-06-29 William A. Cook Australia Pty. Ltd. Method of and system for mounting a vascular occlusion balloon on a delivery catheter
US5524633A (en) 1991-11-25 1996-06-11 Advanced Surgical, Inc. Self-deploying isolation bag
US5344459A (en) 1991-12-03 1994-09-06 Swartz Stephen J Arthroscopically implantable prosthesis
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5344451A (en) 1992-06-24 1994-09-06 Dayton Michael P Synthetic reconstructive implant device
EP0656794B1 (en) 1992-08-25 1997-07-16 Bard Connaught Dilatation catheter with stiffening wire
US5370691A (en) 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
US5453235A (en) 1993-01-29 1995-09-26 Impra, Inc. Method of forming dual porosity FTFE tubes by extrusion of concentric preforms
NL9300500A (en) 1993-03-22 1994-10-17 Industrial Res Bv Expandable hollow sleeve for locally supporting and / or strengthening a body vessel, as well as a method for manufacturing it.
ES2119201T3 (en) 1993-04-28 1998-10-01 Focal Inc APPARATUS, PRODUCT AND USE RELATED TO INTRALUMINAL PHOTOTERMOCONFORMATION.
FR2704431B1 (en) 1993-04-30 1995-07-21 Sebbin Laboratoires Use of hydrogels based on hyaluronic acid and / or polydeoxyribonucleotides as filling materials for prostheses and prostheses resulting therefrom.
US5423850A (en) 1993-10-01 1995-06-13 Berger; J. Lee Balloon compressor for internal fixation of bone fractures
US5480400A (en) 1993-10-01 1996-01-02 Berger; J. Lee Method and device for internal fixation of bone fractures
DE69535492T2 (en) 1994-01-26 2007-09-06 Kyphon Inc., Sunnyvale Improved inflatable device for use in surgical methods for fixation of bones
US20030229372A1 (en) 1994-01-26 2003-12-11 Kyphon Inc. Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bone
US20030032963A1 (en) 2001-10-24 2003-02-13 Kyphon Inc. Devices and methods using an expandable body with internal restraint for compressing cancellous bone
US7166121B2 (en) 1994-01-26 2007-01-23 Kyphon Inc. Systems and methods using expandable bodies to push apart cortical bone surfaces
US6716216B1 (en) 1998-08-14 2004-04-06 Kyphon Inc. Systems and methods for treating vertebral bodies
US7044954B2 (en) 1994-01-26 2006-05-16 Kyphon Inc. Method for treating a vertebral body
US20060100635A1 (en) 1994-01-26 2006-05-11 Kyphon, Inc. Inflatable device for use in surgical protocol relating to fixation of bone
EP0741547B1 (en) 1994-01-26 2005-04-20 Kyphon Inc. Improved inflatable device for use in surgical protocol relating to fixation of bone
US6248110B1 (en) 1994-01-26 2001-06-19 Kyphon, Inc. Systems and methods for treating fractured or diseased bone using expandable bodies
US5468245A (en) 1994-02-03 1995-11-21 Vargas, Iii; Joseph H. Biomedical cement bonding enhancer
US6027486A (en) 1996-05-02 2000-02-22 Radiance Medical Systems, Inc. Interactive angioplasty
US6120523A (en) 1994-02-24 2000-09-19 Radiance Medical Systems, Inc. Focalized intraluminal balloons
US5645560A (en) 1995-12-15 1997-07-08 Cardiovascular Dynamics, Inc. Fixed focal balloon for interactive angioplasty and stent implantation
US5843116A (en) 1996-05-02 1998-12-01 Cardiovascular Dynamics, Inc. Focalized intraluminal balloons
ES2159316T3 (en) 1994-03-31 2001-10-01 Ernest C Manders DIMENSIONALLY ADJUSTABLE SOFT FABRIC EXTENSIONER.
US5452732A (en) 1994-04-26 1995-09-26 Bircoll; Mel Method of dissecting along connective tissue lines
US6248131B1 (en) 1994-05-06 2001-06-19 Advanced Bio Surfaces, Inc. Articulating joint repair
US20050043808A1 (en) 1994-05-06 2005-02-24 Advanced Bio Surfaces, Inc. Knee joint prosthesis
ES2132682T3 (en) 1994-07-11 1999-08-16 Dacomed Corp APPARATUS FOR OCCLUDING GLASSES.
JP2779899B2 (en) * 1994-07-20 1998-07-23 トスコ株式会社 Continuous sliver mercerizing method and processing apparatus
UA10911C2 (en) 1994-08-10 1996-12-25 Мале Впроваджувальне Підприємство "Іhтерфалл" Biocompatible hydrogel
US5507770A (en) 1994-11-23 1996-04-16 Aeroquip Corporation Intraluminal grafting stent and method for implanting same in a blood vessel
US5941909A (en) 1995-02-14 1999-08-24 Mentor Corporation Filling material for soft tissue implant prostheses and implants made therewith
US5658329A (en) 1995-02-14 1997-08-19 Mentor Corporation Filling material for soft tissue implant prostheses and implants made therewith
US5749851A (en) 1995-03-02 1998-05-12 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
WO1996032153A1 (en) 1995-04-14 1996-10-17 Interventional Therapeutics Corporation Dual valve detachable occlusion balloon and over-the-wire delivery apparatus and method for use therewith
US5634937A (en) 1995-05-19 1997-06-03 General Surgical Innovations, Inc. Skin seal with inflatable membrane
US20040138690A1 (en) 1995-06-05 2004-07-15 Bonutti Peter M. Fluid operated retractors
EP1561427B1 (en) 1995-06-07 2010-01-06 Conceptus, Inc. Catheter system for expandable contraceptive transcervical fallopian tube occlusion devices having mechanical fallopian tube attachment
US5979452A (en) 1995-06-07 1999-11-09 General Surgical Innovations, Inc. Endoscopic linton procedure using balloon dissectors and retractors
US20050131267A1 (en) 1995-06-07 2005-06-16 Talmadge Karen D. System and method for delivering a therapeutic agent for bone disease
US20050131269A1 (en) 1995-06-07 2005-06-16 Talmadge Karen D. System and method for delivering a therapeutic agent for bone disease
US20050131268A1 (en) 1995-06-07 2005-06-16 Talmadge Karen D. System and method for delivering a therapeutic agent for bone disease
US6705323B1 (en) 1995-06-07 2004-03-16 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and methods
US6176240B1 (en) 1995-06-07 2001-01-23 Conceptus, Inc. Contraceptive transcervical fallopian tube occlusion devices and their delivery
US5725568A (en) 1995-06-27 1998-03-10 Scimed Life Systems, Inc. Method and device for recanalizing and grafting arteries
US5683405A (en) 1995-08-25 1997-11-04 Research Medical Inc. Vascular occluder
US20020143402A1 (en) 1995-09-04 2002-10-03 Limber Ltd. Hip joint prostheses
US5632762A (en) 1995-11-09 1997-05-27 Hemodynamics, Inc. Ostial stent balloon
US5665117A (en) 1995-11-27 1997-09-09 Rhodes; Valentine J. Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
US5871537A (en) 1996-02-13 1999-02-16 Scimed Life Systems, Inc. Endovascular apparatus
CA2250775C (en) 1996-03-20 2004-01-20 General Surgical Innovations, Inc. Method and apparatus for combined dissection and retraction
US6036640A (en) 1996-04-29 2000-03-14 Medtronic, Inc. Device and method for repositioning the heart during surgery
WO1997046268A1 (en) 1996-06-04 1997-12-11 Cook Incorporated Implantable medical device
US5746762A (en) 1996-06-24 1998-05-05 Bass; Lawrence S. Device and method for surgical flap dissection
US6059750A (en) 1996-08-01 2000-05-09 Thomas J. Fogarty Minimally invasive direct cardiac massage device and method
US6186978B1 (en) 1996-08-07 2001-02-13 Target Therapeutics, Inc. Braid reinforced infusion catheter with inflatable membrane
US5941249A (en) 1996-09-05 1999-08-24 Maynard; Ronald S. Distributed activator for a two-dimensional shape memory alloy
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US7749585B2 (en) 1996-10-08 2010-07-06 Alan Zamore Reduced profile medical balloon element
EP1230902A1 (en) 1996-11-15 2002-08-14 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
US7073504B2 (en) 1996-12-18 2006-07-11 Ams Research Corporation Contraceptive system and method of use
US6096052A (en) 1998-07-08 2000-08-01 Ovion, Inc. Occluding device and method of use
US7618451B2 (en) 2001-05-25 2009-11-17 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools facilitating increased accuracy, speed and simplicity in performing total and partial joint arthroplasty
DE69840110D1 (en) 1997-02-13 2008-11-20 Boston Scient Ltd Attachment for sewing thread with quick-release
US5971992A (en) 1997-03-13 1999-10-26 Solar; Ronald J. Hydraulic method and apparatus for uniform radial compression and catheter mounting of radially expandable intraluminal stents and stented grafts
US5984942A (en) 1997-04-02 1999-11-16 Femrx, Inc. Methods and systems for reducing tissue adhesion
US6106541A (en) 1997-05-16 2000-08-22 Hurbis; Charles G. Surgically implantable nasal dilator
DE69842144D1 (en) 1997-06-05 2011-04-07 Adiana Inc Device for female sterilization
US5972015A (en) 1997-08-15 1999-10-26 Kyphon Inc. Expandable, asymetric structures for deployment in interior body regions
US6045498A (en) 1997-06-12 2000-04-04 Uromedica, Inc. Method for adjustably restricting a body lumen
EP0890346A1 (en) 1997-06-13 1999-01-13 Gary J. Becker Expandable intraluminal endoprosthesis
GB9713624D0 (en) 1997-06-28 1997-09-03 Anson Medical Ltd Expandable device
US6331191B1 (en) 1997-11-25 2001-12-18 Trivascular Inc. Layered endovascular graft
KR100550717B1 (en) 1997-11-26 2006-02-08 이시카와지마-하리마 주고교 가부시키가이샤 Apparatus and method for changing metal molds for plate thickness reducing presses, and press metal die
WO1999029246A1 (en) 1997-12-08 1999-06-17 Kyphon Inc. Systems and methods using expandable bodies to push apart cortical bone surfaces
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6423032B2 (en) 1998-03-13 2002-07-23 Arteria Medical Science, Inc. Apparatus and methods for reducing embolization during treatment of carotid artery disease
JPH11299725A (en) 1998-04-21 1999-11-02 Olympus Optical Co Ltd Hood for endoscope
US6293960B1 (en) 1998-05-22 2001-09-25 Micrus Corporation Catheter with shape memory polymer distal tip for deployment of therapeutic devices
US6719773B1 (en) 1998-06-01 2004-04-13 Kyphon Inc. Expandable structures for deployment in interior body regions
EP1083836B1 (en) 1998-06-01 2010-10-13 Kyphon SÀRL Expandable preformed structures for deployment in interior body regions
US6074341A (en) 1998-06-09 2000-06-13 Timm Medical Technologies, Inc. Vessel occlusive apparatus and method
US6165193A (en) 1998-07-06 2000-12-26 Microvention, Inc. Vascular embolization with an expansible implant
US6591838B2 (en) 1998-07-06 2003-07-15 Scimed Life Systems, Inc. Implant system and method for bulking tissue
US6238335B1 (en) 1998-12-11 2001-05-29 Enteric Medical Technologies, Inc. Method for treating gastroesophageal reflux disease and apparatus for use therewith
US6395208B1 (en) 1999-01-25 2002-05-28 Atrium Medical Corporation Method of making an expandable fluoropolymer device
CA2359318C (en) 1999-02-01 2009-06-30 Donald Elbert Biomaterials formed by nucleophilic addition reaction to conjugated unsaturated groups
US6958212B1 (en) 1999-02-01 2005-10-25 Eidgenossische Technische Hochschule Zurich Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds
US6533799B1 (en) 1999-04-27 2003-03-18 Ams Research Corporation Cavity measurement device and method of assembly
US6860892B1 (en) 1999-05-28 2005-03-01 General Surgical Innovations, Inc. Specially shaped balloon device for use in surgery and method of use
US6379329B1 (en) 1999-06-02 2002-04-30 Cordis Neurovascular, Inc. Detachable balloon embolization device and method
US6280457B1 (en) 1999-06-04 2001-08-28 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
ATE492251T1 (en) 1999-08-23 2011-01-15 Conceptus Inc TUBAL CONTRACEPTIVE DELIVERY AND DEPLOYMENT CATHETER SYSTEM
AU7065300A (en) 1999-08-23 2001-03-19 Conceptus, Inc. Deployment actuation system for intrafallopian contraception
US6312462B1 (en) 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US7060100B2 (en) 1999-10-08 2006-06-13 Ferree Bret A Artificial disc and joint replacements with modular cushioning components
US6391538B1 (en) 2000-02-09 2002-05-21 The Children's Hospital Of Philadelphia Stabilization of implantable bioprosthetic tissue
KR100717224B1 (en) 2000-04-05 2007-05-11 키폰 인크. Methods and devices for treating fractured and/or diseased bone
US8092480B2 (en) 2000-04-07 2012-01-10 Kyphon Sarl Platform cannula for guiding the expansion of expandable bodies and method of use
US7815649B2 (en) 2000-04-07 2010-10-19 Kyphon SÀRL Insertion devices and method of use
US6682473B1 (en) 2000-04-14 2004-01-27 Solace Therapeutics, Inc. Devices and methods for attenuation of pressure waves in the body
US8622739B2 (en) 2001-05-09 2014-01-07 Ben-Zion Karmon Method for enlarging a jaw bone using a hollow dental implant having a side perforation
EP1284776A1 (en) 2000-05-26 2003-02-26 Wallsten Medical S.A. Balloon catheter
US6668836B1 (en) 2000-06-02 2003-12-30 Reconstructive Technologies, Inc. Method for tissue expansion using pulsatile motion
US20080086133A1 (en) 2003-05-16 2008-04-10 Spineology Expandable porous mesh bag device and methods of use for reduction, filling, fixation and supporting of bone
DE60141653D1 (en) 2000-07-21 2010-05-06 Spineology Group Llc A STRONG, POROUS NET BAG DEVICE AND ITS USE IN BONE SURGERY
CA2420898A1 (en) 2000-08-28 2002-03-07 Advanced Bio Surfaces, Inc. Method for mammalian joint resurfacing
US7204851B2 (en) 2000-08-30 2007-04-17 Sdgi Holdings, Inc. Method and apparatus for delivering an intervertebral disc implant
US6547767B1 (en) 2000-11-14 2003-04-15 Advanced Cardiovascular Systems, Inc. Syringe assembly for a catheter
CA2365376C (en) 2000-12-21 2006-03-28 Ethicon, Inc. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US20020161388A1 (en) 2001-02-27 2002-10-31 Samuels Sam L. Elastomeric balloon support fabric
CA2439212C (en) 2001-03-09 2014-02-11 Scimed Life Systems, Inc. Medical slings
US20050209629A1 (en) 2001-04-19 2005-09-22 Kerr Sean H Resorbable containment device and process for making and using same
US6632235B2 (en) 2001-04-19 2003-10-14 Synthes (U.S.A.) Inflatable device and method for reducing fractures in bone and in treating the spine
US7160325B2 (en) 2001-05-15 2007-01-09 Ams Research Corporation Implantable medical balloon and valve
US20040220669A1 (en) 2001-06-27 2004-11-04 Armin Studer Intervertebral disk prosthesis
US7156877B2 (en) 2001-06-29 2007-01-02 The Regents Of The University Of California Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
US20090234457A1 (en) 2001-06-29 2009-09-17 The Regents Of The University Of California Systems, devices and methods for treatment of intervertebral disorders
US6684754B2 (en) 2001-07-10 2004-02-03 Alan Elbert Comer Pneumatic muscle analogs for exoskeletal robotic limbs and associated control mechanisms
WO2003007784A2 (en) 2001-07-16 2003-01-30 Depuy Products, Inc. Meniscus regeneration device and method
US20040243170A1 (en) 2001-09-05 2004-12-02 Mitta Suresh Method and device for percutaneous surgical ventricular repair
JP2005503865A (en) 2001-09-28 2005-02-10 ボストン サイエンティフィック リミテッド Medical device comprising nanomaterial and treatment method using the same
US6666817B2 (en) 2001-10-05 2003-12-23 Scimed Life Systems, Inc. Expandable surgical implants and methods of using them
US6755861B2 (en) 2001-10-16 2004-06-29 Granit Medical Innovation, Inc. Device for providing a portion of an organism with a desired shape
US6746465B2 (en) 2001-12-14 2004-06-08 The Regents Of The University Of California Catheter based balloon for therapy modification and positioning of tissue
EP1474071B1 (en) 2002-01-22 2010-05-19 ABS Corporation Interpositional arthroplasty system
US9155544B2 (en) 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
US7695488B2 (en) 2002-03-27 2010-04-13 Boston Scientific Scimed, Inc. Expandable body cavity liner device
US6960215B2 (en) 2002-05-08 2005-11-01 Boston Scientific Scimed, Inc. Tactical detachable anatomic containment device and therapeutic treatment system
US6837850B2 (en) 2002-05-14 2005-01-04 Loubert Suddaby Percutaneous tissue dissection
DE10223332A1 (en) 2002-05-25 2003-12-04 Efmt Entwicklungs Und Forschun Medical implant
CA2492339A1 (en) 2002-06-12 2003-12-24 Boston Scientific Limited Bulking agents
US20030236513A1 (en) 2002-06-19 2003-12-25 Scimed Life Systems, Inc. Implantable or insertable medical devices for controlled delivery of a therapeutic agent
AU2003270524A1 (en) 2002-09-10 2004-04-30 Bret A. Ferree Shock-absorbing joint and spine replacements
US7488337B2 (en) 2002-09-30 2009-02-10 Saab Mark A Apparatus and methods for bone, tissue and duct dilatation
US7300448B2 (en) 2002-10-04 2007-11-27 Tyco Healthcare Group Lp Balloon dissector with cannula
TWI231755B (en) 2002-10-07 2005-05-01 Conformis Inc An interpositional articular implant and the method for making the same
AU2003299714A1 (en) 2002-10-11 2004-05-04 Cartificial A/S Medical device comprising a bio-compatible polymeric product with a layered structure
EP1560546A2 (en) 2002-11-12 2005-08-10 Regenex Ltd. Expandable devices and methods for tissue expansion, regenerationand fixation
US8197837B2 (en) 2003-03-07 2012-06-12 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US7368124B2 (en) 2003-03-07 2008-05-06 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US20040186504A1 (en) 2003-03-18 2004-09-23 Cagenix, Inc. Oral tissue contourer
US6981980B2 (en) 2003-03-19 2006-01-03 Phagia Technology Self-inflating intragastric volume-occupying device
US20060241765A1 (en) 2003-04-03 2006-10-26 Burn Peter J Load bearing intervertebral disk
US7967835B2 (en) 2003-05-05 2011-06-28 Tyco Healthcare Group Lp Apparatus for use in fascial cleft surgery for opening an anatomic space
US6966931B2 (en) 2003-05-21 2005-11-22 Tain-Yew Shi Artificial intervertebral disc with reliable maneuverability
US7632291B2 (en) 2003-06-13 2009-12-15 Trivascular2, Inc. Inflatable implant
ES2569853T3 (en) 2003-06-25 2016-05-12 Biedermann Technologies Gmbh & Co. Kg Tissue integration design for fixing implants without welding
US20050015140A1 (en) 2003-07-14 2005-01-20 Debeer Nicholas Encapsulation device and methods of use
US7632294B2 (en) 2003-09-29 2009-12-15 Promethean Surgical Devices, Llc Devices and methods for spine repair
US7316822B2 (en) 2003-11-26 2008-01-08 Ethicon, Inc. Conformable tissue repair implant capable of injection delivery
US20070151570A1 (en) 2003-11-26 2007-07-05 Farmache Alejandro H Repairing procedure for the treatment of superficial and/or perforant venous insufficiency of the lower limbs by means of the application of clips, stoppers and/or artificial valves
US8133500B2 (en) 2003-12-04 2012-03-13 Kensey Nash Bvf Technology, Llc Compressed high density fibrous polymers suitable for implant
WO2005057165A2 (en) 2003-12-05 2005-06-23 The Regents Of The University Of Michigan Biodegradable/bioresorbable tissue augmentation/reconstruction device
US20050229433A1 (en) 2004-03-03 2005-10-20 Cachia Victor V Catheter deliverable foot implant and method of delivering the same
US20050197711A1 (en) 2004-03-03 2005-09-08 Cachia Victor V. Catheter deliverable foot implant and method of delivering the same
US7654997B2 (en) 2004-04-21 2010-02-02 Acclarent, Inc. Devices, systems and methods for diagnosing and treating sinusitus and other disorders of the ears, nose and/or throat
US20070190108A1 (en) 2004-05-17 2007-08-16 Arindam Datta High performance reticulated elastomeric matrix preparation, properties, reinforcement, and use in surgical devices, tissue augmentation and/or tissue repair
US7641688B2 (en) 2004-09-16 2010-01-05 Evera Medical, Inc. Tissue augmentation device
EP1811914B1 (en) 2004-09-21 2015-07-01 Shalon Ventures Inc. Tissue expansion devices
US20090088846A1 (en) 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
US7309324B2 (en) 2004-10-15 2007-12-18 Futuremed Interventional, Inc. Non-compliant medical balloon having an integral woven fabric layer
US7354419B2 (en) 2004-10-15 2008-04-08 Futuremed Interventional, Inc. Medical balloon having strengthening rods
US7682335B2 (en) 2004-10-15 2010-03-23 Futurematrix Interventional, Inc. Non-compliant medical balloon having an integral non-woven fabric layer
AU2005311863A1 (en) 2004-12-01 2006-06-08 The Regents Of The University Of California Systems, devices and methods of treatment of intervertebral disorders
US20060173484A1 (en) 2004-12-22 2006-08-03 Stephen Solomon Percutaneous breast and buttock modification
US20070078477A1 (en) 2005-02-04 2007-04-05 Heneveld Scott H Sr Anatomical spacer and method to deploy
US8828080B2 (en) 2005-02-22 2014-09-09 Barry M. Fell Method and system for knee joint repair
WO2006108067A2 (en) 2005-04-05 2006-10-12 Triage Medical, Inc. Tissue dilation systems and related methods
AU2006243216B2 (en) 2005-05-04 2011-09-22 Synthes Gmbh Joining element
US20070042326A1 (en) 2005-06-01 2007-02-22 Osseous Technologies Of America Collagen antral membrane expander
ATE446120T1 (en) 2005-06-10 2009-11-15 Cook Inc BENDING-RESISTANT BALLOON CATHETER
US7988735B2 (en) 2005-06-15 2011-08-02 Matthew Yurek Mechanical apparatus and method for delivering materials into the inter-vertebral body space for nucleus replacement
US20070010846A1 (en) 2005-07-07 2007-01-11 Leung Andrea Y Method of manufacturing an expandable member with substantially uniform profile
US20070010845A1 (en) 2005-07-08 2007-01-11 Gorman Gong Directionally controlled expandable device and methods for use
US20070010844A1 (en) 2005-07-08 2007-01-11 Gorman Gong Radiopaque expandable body and methods
WO2008131498A1 (en) 2007-05-01 2008-11-06 Columna Pty Ltd Systems methods and apparatuses for formation and insertion of tissue prostheses
TWI273902B (en) 2005-08-29 2007-02-21 Shr-You Tzuo Hole-reaming device for orthopedic use
US20070050032A1 (en) 2005-09-01 2007-03-01 Spinal Kinetics, Inc. Prosthetic intervertebral discs
EP1948045A2 (en) 2005-11-10 2008-07-30 T.A.G. Medical Products a Limited Partnership Medical implement particularly useful in arthroscopic surgical procedures
WO2007058943A2 (en) 2005-11-10 2007-05-24 Zimmer, Inc. Minamally invasive orthopaedic delivery devices and tools
WO2007076308A2 (en) 2005-12-15 2007-07-05 Stout Medical Group, L.P. Expandable support device and method of use
CA2633578A1 (en) 2005-12-16 2007-07-05 Interface Associates, Inc. Multi-layer balloons for medical applications and methods for manufacturing the same
US7699894B2 (en) 2005-12-22 2010-04-20 Depuy Spine, Inc. Nucleus pulposus trial device and technique
RU2008129766A (en) 2006-01-23 2010-02-27 Оссеон Терапеутикс Инк. (Us) COMPOSITE BONE CEMENT WITH INHOMOGENEOUS SPATIAL DISTRIBUTION OF PARTICLES AND DEVICES FOR IMPLEMENTATION
EP1989289B1 (en) 2006-02-07 2017-01-04 Spinalcyte, LLC Methods and compositions for repair of cartilage using an in vivo bioreactor
US20070225810A1 (en) 2006-03-23 2007-09-27 Dennis Colleran Flexible cage spinal implant
DE102006016985B3 (en) 2006-04-06 2007-10-11 Aesculap Ag & Co. Kg Intervertebral implant
US7520876B2 (en) 2006-04-21 2009-04-21 Entellus Medical, Inc. Device and method for treatment of sinusitis
US8632601B2 (en) 2006-04-28 2014-01-21 Zimmer, Gmbh Implant
US8092536B2 (en) 2006-05-24 2012-01-10 Disc Dynamics, Inc. Retention structure for in situ formation of an intervertebral prosthesis
US20080004596A1 (en) 2006-05-25 2008-01-03 Palo Alto Institute Delivery of agents by microneedle catheter
US8236057B2 (en) 2006-06-12 2012-08-07 Globus Medical, Inc. Inflatable multi-chambered devices and methods of treatment using the same
EP3381463A1 (en) 2006-06-30 2018-10-03 BioMimetic Therapeutics, LLC Pdgf-biomatrix compositions and methods for treating rotator cuff injuries
US20080051707A1 (en) 2006-08-25 2008-02-28 Phan Christopher U Apparatus and methods for use of expandable members in surgical applications
JP2008131793A (en) 2006-11-22 2008-06-05 Sanken Electric Co Ltd Dc conversion device
DE102006059564B4 (en) * 2006-12-16 2009-06-18 Siempelkamp Maschinen- Und Anlagenbau Gmbh & Co. Kg Method and device for pressing pressed material mats
US20080154233A1 (en) 2006-12-20 2008-06-26 Zimmer Orthobiologics, Inc. Apparatus for delivering a biocompatible material to a surgical site and method of using same
TW200833307A (en) 2007-02-09 2008-08-16 A Spine Holding Group Corp Medical implant
US9055949B2 (en) 2007-02-09 2015-06-16 B & D Medical Development, Llc Balloon tamponade
JP4208018B2 (en) 2007-02-16 2009-01-14 サンケン電気株式会社 DC converter
US20080255569A1 (en) 2007-03-02 2008-10-16 Andrew Kohm Bone support device, system, and method
US8157804B2 (en) 2007-03-07 2012-04-17 Vertech, Inc. Expandable blade device for stabilizing long bone fractures
EP2124831B1 (en) 2007-03-15 2016-07-06 Ortho-Space Ltd. Prosthetic devices
US20080249529A1 (en) 2007-03-15 2008-10-09 Depuy Spine, Inc. Dual incision disc repair device and method
US20080243122A1 (en) 2007-03-29 2008-10-02 Kohm Andrew C Apparatuses and methods for bone screw augmentation
US20080249604A1 (en) 2007-03-30 2008-10-09 Brian Donovan Apparatus and method for medical procedures within a spine
US20080255624A1 (en) 2007-03-30 2008-10-16 Gregory Arcenio Methods and devices for multipoint access of a body part
US9687353B2 (en) 2007-03-31 2017-06-27 Spinal Kinetics, Inc. Prosthetic intervertebral discs having balloon-based fillable cores that are implantable by minimally invasive surgical techniques
US20080294187A1 (en) 2007-04-13 2008-11-27 Biomet Microfixation, Llc Neurosurgical Balloon Retractor
US20080269745A1 (en) 2007-04-24 2008-10-30 Osteolign, Inc. Thermo-chemically activated intramedullary bone stent
JP4935499B2 (en) 2007-05-18 2012-05-23 サンケン電気株式会社 DC converter
EP2164405A2 (en) 2007-05-21 2010-03-24 AOI Medical Inc. Articulating cavitation device
US7988696B2 (en) 2007-06-01 2011-08-02 Joy Medical Devices Corporation Perforated balloon and method for forming a hardened orthopaedic paste in a bone using same
US20110054408A1 (en) 2007-07-10 2011-03-03 Guobao Wei Delivery systems, devices, tools, and methods of use
US9492278B2 (en) 2007-07-10 2016-11-15 Warsaw Orthopedic, Inc. Delivery system
US20090043344A1 (en) 2007-08-06 2009-02-12 Zimmer, Inc. Methods for repairing defects in bone
JP2010537736A (en) 2007-08-27 2010-12-09 スパイン ビュー, インコーポレイテッド Balloon cannula system and related methods for accessing and visualizing the spine
US8328875B2 (en) 2009-12-30 2012-12-11 Linares Medical Devices, Llc Combination male/female hip joint and installation kit
US20090157084A1 (en) 2007-09-19 2009-06-18 Arthur Martinus Michael Aalsma Collapsible and expandable device and methods of using same
US20090088789A1 (en) 2007-09-28 2009-04-02 O'neil Michael J Balloon With Shape Control For Spinal Procedures
US20090088788A1 (en) 2007-09-28 2009-04-02 Steven Mouw Methods and apparatus having multiple separately actuatable expandable members
CN101902991B (en) 2007-10-19 2015-07-15 新特斯有限责任公司 Hemi-prosthesis
US8858563B2 (en) 2007-10-30 2014-10-14 Hipco, Inc. Device and method for hip distention and access
US20090177206A1 (en) 2008-01-08 2009-07-09 Zimmer Spine, Inc. Instruments, implants, and methods for fixation of vertebral compression fractures
US8992620B2 (en) 2008-12-10 2015-03-31 Coalign Innovations, Inc. Adjustable distraction cage with linked locking mechanisms
US8377135B1 (en) 2008-03-31 2013-02-19 Nuvasive, Inc. Textile-based surgical implant and related methods
US7976578B2 (en) 2008-06-04 2011-07-12 James Marvel Buffer for a human joint and method of arthroscopically inserting
US9808345B2 (en) 2008-07-24 2017-11-07 Iorthopedics, Inc. Resilient arthroplasty device
ES2394317T3 (en) 2009-02-06 2013-01-30 Ortho-Space Ltd. Expandable Joint Implant
US9186181B2 (en) 2009-03-17 2015-11-17 Pivot Medical, Inc. Method and apparatus for distracting a joint
WO2010126915A1 (en) 2009-04-27 2010-11-04 Spinal Kinetics, Inc. Prosthetic intervertebral discs implantable by minimally invasive surgical techniques
GB2476124A (en) 2009-12-08 2011-06-15 R Thomas Grotz Inflatable arthroplasty implant
US20130018479A1 (en) 2010-01-22 2013-01-17 Grotz R Thomas Resilient interpositional hip arthroplasty device
WO2013033447A2 (en) 2011-09-01 2013-03-07 Grotz R Thomas Resilient interpositional arthroplasty device
US8771363B2 (en) 2010-01-22 2014-07-08 R. Thomas Grotz Resilient knee implant and methods
US20110295370A1 (en) 2010-06-01 2011-12-01 Sean Suh Spinal Implants and Methods of Use Thereof
US20130116794A1 (en) 2010-08-04 2013-05-09 Shaul Shohat Shoulder implant
US8486149B2 (en) 2011-02-23 2013-07-16 DePuy Synthes Products, LLC Expandable interbody fusion implant
WO2013057566A2 (en) 2011-10-18 2013-04-25 Ortho-Space Ltd. Prosthetic devices and methods for using same
US8632593B2 (en) 2011-11-23 2014-01-21 Globus Medical, Inc. Stabilizing vertebrae with expandable spacers
WO2013082497A1 (en) 2011-11-30 2013-06-06 Beth Israel Deaconess Medical Center Systems and methods for endoscopic vertebral fusion
US8926622B2 (en) 2012-04-03 2015-01-06 Warsaw Orthopedic, Inc. Bone delivery systems including holding and filling devices and methods
US20150127104A1 (en) 2012-05-03 2015-05-07 ULTIMATE JOINT LTD. a corporation In-situ formation of a joint replacement prosthesis
US9044342B2 (en) 2012-05-30 2015-06-02 Globus Medical, Inc. Expandable interbody spacer
EP2877129B1 (en) 2012-07-25 2017-10-11 Spineology, Inc. Mesh spacer hybrid
WO2014070204A1 (en) 2012-11-05 2014-05-08 Empire Technology Development Llc Tumid implant and pump
US20140277467A1 (en) 2013-03-14 2014-09-18 Spinal Stabilization Technologies, Llc Prosthetic Spinal Disk Nucleus
US9585761B2 (en) 2013-03-14 2017-03-07 DePuy Synthes Products, Inc. Angulated rings and bonded foils for use with balloons for fusion and dynamic stabilization
US9345577B2 (en) 2013-03-14 2016-05-24 Microaire Surgical Instruments Llc Balloon implant device
US20140378980A1 (en) 2013-06-24 2014-12-25 Roman Lomeli Cortical Rim-Supporting Interbody Device
EP3215069B1 (en) 2014-11-04 2023-03-08 Spinal Stabilization Technologies LLC Percutaneous implantable nuclear prosthesis
US10449055B2 (en) 2015-04-23 2019-10-22 Disc Fix L.L.C. Systems and methods for treatment of intervertebral disc derangements
ITUA20164307A1 (en) * 2016-06-13 2017-12-13 Sacmi MACHINE AND METHOD FOR THE COMPACTION OF CERAMIC POWDER

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2389319A (en) * 1941-11-10 1945-11-20 Dewey And Almy Chem Comp Dipping machine
US5305963A (en) * 1992-12-03 1994-04-26 Schuller International, Inc. Method and apparatus for forming rolls from strips of compressible material
US5909800A (en) * 1997-11-13 1999-06-08 Huang; Tsai-Hsiu Film article release machine
WO2014122595A1 (en) * 2013-02-06 2014-08-14 Altevo Limited Apparatus and method for stripping and conveying a flexible product from a dip moulding former

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573806A4 *

Also Published As

Publication number Publication date
EP3573806A1 (en) 2019-12-04
US20200223108A1 (en) 2020-07-16
US11045981B2 (en) 2021-06-29
EP3573806A4 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
US7976303B2 (en) Method and moulding devices for moulding three-dimensional products
CN104589634B (en) Automated rubber molding and demolding
KR20240039206A (en) Integrated elastomeric article manufacturing system and process
US11045981B2 (en) Processing machine and methods for processing dip-molded articles
EP2258200A2 (en) Moulding
CN107428041B (en) Impregnate removing of the moulded glove from model
KR20160074547A (en) Portable frozen confection machine
US20170332681A1 (en) Method and Device for Producing a Hollow Cylindrical, Edible Container Composed of a Vegetable Item or Fruit Item
KR102648071B1 (en) Integrated elastomeric article manufacturing system and process
WO2017207457A1 (en) Ice cream machine and a method for producing an ice cream product using an ice cream machine
US7559332B2 (en) Media removal apparatus and methods of removing media
JPH10505297A (en) Method and apparatus for producing molded bodies made of polymer concrete
WO2018015980A1 (en) Apparatus for removing the stalk and the core of peppers and the like
JP5785719B2 (en) Cooked rice molding equipment
CN105283279B (en) Cutter with not equal type chamber draw taper
US2627824A (en) Apparatus for molding and packaging ice cream
WO2014029967A1 (en) Surgical swab washing method and apparatus
CN212150877U (en) Sealing piston feeding device
WO1999042004A1 (en) Method for producing and shaping food, such as meat products and sausages
FI92278C (en) Process for making whole meat products
US20190359916A1 (en) Bar soap forming assembly and method of forming shaped soap bars from soap slabs
US2822152A (en) Apparatus for removing butter from the containers of combined churns and butter-workers
KR101189761B1 (en) Apparatus and method for producing clay container
US20020070481A1 (en) Automated molding and demolding system; mold; molding process employing pressurized demolding; and products made thereby
WO2018059652A1 (en) Method for manufacturing an elongated hollow body, in particular a urinary catheter, by injection moulding a thermoplastic material in a mould

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017894291

Country of ref document: EP

Effective date: 20190830