WO2018107493A1 - 串并联自动转换低残压电涌保护电路 - Google Patents

串并联自动转换低残压电涌保护电路 Download PDF

Info

Publication number
WO2018107493A1
WO2018107493A1 PCT/CN2016/110482 CN2016110482W WO2018107493A1 WO 2018107493 A1 WO2018107493 A1 WO 2018107493A1 CN 2016110482 W CN2016110482 W CN 2016110482W WO 2018107493 A1 WO2018107493 A1 WO 2018107493A1
Authority
WO
WIPO (PCT)
Prior art keywords
components
series
parallel
surge protection
protection circuit
Prior art date
Application number
PCT/CN2016/110482
Other languages
English (en)
French (fr)
Inventor
肖小驹
Original Assignee
深圳市辰驹电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市辰驹电子科技有限公司 filed Critical 深圳市辰驹电子科技有限公司
Priority to PCT/CN2016/110482 priority Critical patent/WO2018107493A1/zh
Publication of WO2018107493A1 publication Critical patent/WO2018107493A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the invention relates to the field of electronic technology, and in particular relates to a series-parallel automatic conversion low-resistance piezoelectric surge protection circuit.
  • SPD surge protector
  • the basic function of the SPD is to suppress the surge voltage and shunt the inrush current. Whenever the inrush current is reduced as much as possible, the voltage across the SPD (or “restricted voltage”, “residual voltage”) is an eternal goal of SPD technology. From a technical and economic point of view, the low residual pressure of SPD has at least the following three beneficial effects:
  • the MOV is connected in parallel on the power supply, and its performance degradation rate is positively related to the “pressure ratio k ap ” (the ratio of the power supply voltage peak to the varistor voltage).
  • k ap the ratio of the power supply voltage peak to the varistor voltage.
  • the purpose of the present invention is to address the above deficiencies of the prior art, providing a surge protection circuit that can reduce the residual voltage to a large extent.
  • a series-parallel automatic conversion low-resistance piezoelectric surge protection circuit characterized in that the circuit is three components A, B, C connected in series, and the three components A , B, C can be:
  • the three series connected components A, B, and C are varistor of the same characteristic of the components A and C at both ends, and the intermediate component B is a linear resistor or a capacitor or an inductor component;
  • the three series connected components A, B, and C are varistor having the same characteristics of the components A and C at both ends, and the intermediate component B is a varistor having different characteristics from the components A and C at both ends;
  • Voltage switching characteristic elements are connected in parallel at both ends of the elements A, B and the elements B and C which form the series circuit of the elements A, B, and C in series.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit has a series connected voltage switch characteristic component in parallel between the components A, B and the components B and C which are composed of the series circuit A, B and C. And linear resistance.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit in which the components A, B, and C constitute a series circuit, the components A, B and the components B and C are connected in series at one end of the series, and the voltage switch characteristic components are connected in parallel. And linear resistance.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit in which components A, B and C form a series circuit, components A, B and components B, C are connected in series with a series connected voltage switch characteristic component and Inductive component.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit in which the components A, B, and C constitute a series circuit, the components A, B and the components B and C are connected in series at one end of the series, and the voltage switch characteristic components are connected in parallel. And inductive components.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit in which the components A, B, and C constitute a series circuit, the components A, B and the components B and C are connected in series, and the voltage switch characteristic components are connected in parallel respectively. Linear resistance and inductance components.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit in which the components A, B, and C constitute a series circuit, the components A, B and the components B and C are connected in series at one end of the series, and the voltage switch characteristic components are connected in parallel. , linear resistors and inductive components.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit is characterized in that: the components A, B and the components B and C which form the series circuit in the components A, B, and C are connected in series and connected in parallel.
  • the voltage switch features components and capacitors.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit is characterized in that the components A, B, and C One of the two ends of the series A and B and the elements B and C which are formed in series are connected in parallel with a voltage switch characteristic element and a capacitor connected in series.
  • the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit the pairing of component characteristics can ensure that the current difference of the two-way parallel discharge is not more than 10%.
  • the technical advancement of the present invention lies in the fact that the function of the series-parallel automatic conversion low-resistance piezoelectric surge protection circuit is that the operating state can be automatically converted to ensure a low residual voltage with the peak value of the inrush surge voltage.
  • FIG. 1 is a schematic diagram of the basic principle of the circuit of the present invention.
  • FIG. 2 is a schematic diagram showing the principle of a voltage switch characteristic element and a linear resistance in series with a series connection of components A, B and B and C of a series circuit of components A, B and C in series;
  • FIG. 3 is a schematic diagram showing the principle of a voltage switch characteristic element and a linear resistance in which one end of the components A, B and the components B and C of the series circuit of the components A, B, and C are connected in series, and the terminals are connected in series;
  • FIG. 4 is a schematic diagram showing the principle of a voltage switch characteristic element and an inductance element in which the components A, B and the components B and C of the circuit A, B, and C which constitute the series circuit are connected in series at the two ends of the circuit of the present invention;
  • FIG. 5 is a schematic diagram showing the principle of voltage switching characteristic components and inductance components in which one end of the components A, B and the components B and C of the series circuit of the components A, B, and C are connected in series and connected in parallel at one end of the circuit of the present invention
  • FIG. 6 is a schematic diagram of a specific application of a protection circuit in a single-phase three-wire power supply according to the present invention.
  • FIG. 7 is a schematic diagram of an overvoltage protection circuit composed of three three-voltage two-tube basic circuit units
  • FIG. 8 is a schematic diagram of a circuit in which components A, B, and C are connected in series, and components A, B, and B, C are connected in series with voltage switching characteristic components D1 and D2 and capacitors G1 and G2 connected in series.
  • FIG. 9 is a schematic diagram of a conventional two-voltage one-tube structure circuit for protecting L-N and N-PE between L-N and N-PE;
  • 10, 11, 12, 13, and 14 are schematic diagrams of performance testing of the present invention.
  • the invention relates to a series-parallel automatic conversion low-resistance piezoelectric surge protection circuit, which is mainly used for lightning protection and anti-operation over-voltage protection of a power frequency power supply circuit, in particular for applications requiring low residual voltage and high reliability, and the working mode can be It is "phase line - phase line”, “phase line - center line”, “phase line - ground line”, and “middle line - ground line”.
  • FIG. 1 it is a basic circuit unit of the present invention, that is, components A, B, and components B and C which are connected in series with components A, B, and C are connected in series with voltage switching characteristic components D, that is, D1. , D2.
  • the three components A, B and C are connected in series, and the design can be realized relatively accurately.
  • the protection start voltage is turned on, so that the varistor is changed from a series structure to a parallel structure, so that the flow capacity thereof is greatly increased, and the residual voltage is also greatly reduced.
  • the final residual pressure value is basically intended to be the residual pressure when a pressure sensitive one-third current is passed.
  • Embodiment 1 As shown in FIG. 1 , a basic circuit unit embodiment of the present invention adopts a three-voltage two-tube structure, that is, components A, B, and C are three varistor and two pressure switch characteristic components D1 and D2. .
  • the three varistors are 14D271. When connected in series, the combined varistor is 810V, and the leakage current is small.
  • the two-tube voltage switch characteristic elements D1, D2 are gas discharge tubes;
  • the residual voltage measured by this circuit is 680V.
  • the series connection of three 14D271 is equivalent to a 14D811, and the residual voltage of a 14D811 is usually 1880V to 2200V.
  • Embodiment 2 As shown in FIG. 2, in an embodiment of the present invention, in a 220/240V low-voltage power supply circuit, a probability of occurrence of a surge voltage having a magnitude slightly higher than a system voltage is high.
  • the voltage switch characteristic element D is a gas discharge tube
  • the pulse breakdown voltage is high, it is usually 800V to 1000V, and this surge voltage cannot be suppressed. Therefore, the serial-to-parallel conversion low-resistance piezoelectric surge protection circuit of the present invention uses a combination of "varistor + voltage switching characteristic element D + linear resistance E" to suppress such surge voltage. That is, the varistor A, B, and C are connected in series with the varistor A and B and the varistor B and C are connected in series with a series connected voltage switch characteristic components D1 and D2 and linear resistors E1 and E2. .
  • FIG. 3 is a voltage switch characteristic component D1 in which a series connection of varistor A, B, and varistor A, B, and varistor B, C in series is connected in parallel with one end of the circuit of the present invention;
  • the linear resistor E has a voltage switch characteristic element D2 connected in parallel with the other end.
  • Embodiment 3 As shown in FIG. 6, it is a schematic diagram of a specific application of the protection circuit of the present invention in a single-phase three-wire power supply, which is spliced by two three-pressure two-tube units.
  • the grounding discharge tube D and the two are one and can be used in a general L-N-PE three-wire protection circuit.
  • Embodiment 4 As shown in FIG. 7, an overvoltage protection circuit composed of three three-voltage two-tube basic circuit units is a combination of basic circuit units used in an L-N-PE three-wire protection circuit.
  • Embodiment 5 As shown in FIG. 8, the varistor A, B, and C constitute a series circuit varistor A, B and the varistor B, C are connected in series and have a series connected voltage switch characteristic element D1 , D2 and capacitors G1, G2.
  • Embodiment 6 as shown in FIG. 9, the present invention adopts a three-pressure two-tube structure in the L-N protection, that is, the components A, B, and C are three varistor and two voltage switching characteristic elements D1 and D2.
  • N-PE protection uses the commonly used two-pressure one-tube structure, namely the varistor A, B and the voltage switch characteristic element D3.
  • FIG. 10 The working characteristics and characteristics of the pulse current peak from small to large, as shown in Figures 10, 11, 12, 13, and 14.
  • the performance test results are shown in Table 1.
  • the time value t, current i and voltage u values are taken from Oscilloscope waveform sampling table.
  • Figure 14 is a pulse current operating characteristic of the present invention which has a maximum residual voltage of less than 1000 V at a maximum discharge current of 4840 A (target value of 5000 A).
  • the varistor that has been subjected to reliability screening shall be qualified for the qualification test of the specified life, and the life maintenance management shall be implemented. If there are no special regulations, the life span is 10 years.
  • the nominal discharge current I n is divided into 8 / 20-2kA, 5kA, 10k three levels, in the I n current, through the component characteristics pairing, and change the series linear impedance, so that the current difference between the two GDT is not more than 10%
  • the present invention for a 220/240 power frequency power supply circuit having a residual voltage of no more than 1000 volts at a nominal discharge current.
  • the working process of the present invention is (taking an overvoltage protection circuit composed of basic circuit units as an example):
  • single-channel “voltage switching characteristic component D and voltage limiting component” are connected in series with D1-C or A-D2 to suppress surge voltage and shunt surge current;

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

一种串并转换低残压电涌保护电路,其所述电路为,三个元件A、B、C串联,其所述的三个元件A、B、C可分别为:(1)、三个串联的元件A、B、C是同一特性的压敏电阻器。(2)、三个串联的元件A、B、C是两端的元件A、C为同一特性的压敏电阻器,中间元件B为线性电阻或电容或电感元件。(3)、三个串联的元件A、B、C是两端的元件A、C为同一特性的压敏电阻器,中间的元件B为与两端的元件A、C不同特性的压敏电阻器。在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端各并联有电压开关特性元件。本技术可大幅度的降低残压的电涌保护电路。

Description

串并联自动转换低残压电涌保护电路 技术领域
本发明涉及电子技术领域,具体涉及一种串并联自动转换低残压电涌保护电路。
背景技术
现代电子产品的存活离不开电磁环境防护,SPD(电涌保护器)是电磁环境防护的基础器件。SPD的基本功能是抑制浪涌电压,分流浪涌电流。尽可能减低浪涌电流涌入时,SPD两端的电压(或称“限制电压”,“残压”),是SPD技术永恒的努力目标。从技术经济的角度看,SPD的低残压,至少有以下三个方面的有益效果:
⑴被保护器件的耐电压等级降低,成本下降;
⑵保护器安装部位的空气间隙可以减低,爬电距离减小,耐电压等级下降;
⑶由于上面两个原因,使“小型化”容易实现。
因此,尽管降低SPD残压可能使这种器件本身的价格上升,但电路***的总费用下降的更多。
在氧化锌压敏电阻器(MOV)进入市场的早期,在220(240)V工频电源电路中,用的是压敏电压(Un)470V的器件,它在标称放电电流下的残压(限制电压)大体为1100V。但它们在使用现场起火,造成严重后果的事故时有发生,于是,所用MOV的规格逐步提高到Un=620V、680V。这个措施是有效的,极大地减低了起火事故的概率,但残压相应地提高到1400V、1500V,这使成本加大,体积增加。从技术角度看,MOV并联在供电电源上,其性能劣化速度与“加压比kap”(电源电压峰值对于压敏电压之比)成正相关,提高压敏电压,就降低了kap,结果寿命加长。
为减低MOV在连续电压下的起火概率,另外一个通行的做法,是用“压敏电阻器+气体放电管”(“MOV+GDT”)串联组合代替单一的MOV。这样的GDT在等待工作状态,MOV不承受连续***电压,也就没有连续***电压应力造成的劣化问题,以及劣化进一步发展所造成的起火事故。这是“MOV+GDT”对于单一MOV的优点,但也有其缺点,就是保护性能变差。因为GDT的冲击击穿电压较高,通常在1000V左右,因此对于低于这个数值的窄脉冲没有抑制作用,而单一MOV对于幅值高于其压敏电压的任何脉冲过电压,都有一定抑制作用。需要考虑的一点是实际电路中的低幅值浪涌电压的出现概率,远高于高幅值浪涌电压的出现概率;这种低幅值浪涌电压尽管不会造成电路器件的破坏,但会加速有些电路器件的劣化。
发明内容
本发明目的是针对以上现有技术的不足,提供一种可大限度的降低残压的电涌保护电路.
发明目的可以通过以下技术方案实现;一种串并联自动转换低残压电涌保护电路,其特征在于,所述电路为,三个元件A、B、C串联,其所述的三个元件A、B、C可分别为:
(1)、三个串联的元件A、B、C是同一特性的压敏电阻器;
(2)、三个串联的元件A、B、C是两端的元件A、C为同一特性的压敏电阻器,中间元件B为线性电阻或电容或电感元件;;
(3)、三个串联的元件A、B、C是两端的元件A、C为同一特性的压敏电阻器,中间的元件B为与两端的元件A、C不同特性的压敏电阻器;
在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端各并联有电压开关特性元件。
所述的串并联自动转换低残压电涌保护电路,其在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及线性电阻。
所述的串并联自动转换低残压电涌保护电路,在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及线性电阻。
所述的串并联自动转换低残压电涌保护电路,在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及电感元件。
所述的串并联自动转换低残压电涌保护电路,在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及电感元件。
所述的串并联自动转换低残压电涌保护电路,在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件、线性电阻及电感元件。
所述的串并联自动转换低残压电涌保护电路,在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件、线性电阻及电感元件。
所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及电容。
所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C 组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及电容。
所述的串并联自动转换低残压电涌保护电路,其元件特性的配对能保证双路并联放电的电流差不大于10%。
本发明的技术进步在于本串并联自动转换低残压电涌保护电路的功能特点是随着侵入浪涌电压峰值的不同,能自动转换工作状态,保证低残压。
附图说明:
图1为本发明电路的基本原理示意图;
图2为本发明电路的在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及线性电阻原理示意图;
图3为本发明电路的在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及线性电阻原理示意图;
图4为本发明电路的在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及电感元件原理示意图;
图5为本发明电路的在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及电感元件原理示意图;
图6为本发明在单相三线电源中的防护电路的具体应用示意图;
图7为三个三压两管基本电路单元组成的过电压防护电路示意图;
图8为本发明元件A、B、C组成串联电路,其元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件D1、D2及电容G1、G2电路示意图。
图9为本发明在L-N间防护采用三压两管结构,在L-PE,N-PE间防护采用常用的两压一管结构电路示意图;
图10、图11、图12、图13、图14为本发明性能测试示意图。
具体实施方式:
本发明串并联自动转换低残压电涌保护电路,主要用于工频电源电路的防雷和防操作过电压保护,特别是用于要求低残压和高可靠性的应用场合,工作模式可以是“相线-相线”,“相线-中线”,“相线-地线”,以及“中线-地线”等。
如图1所示,是本发明的基本电路单元,即在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端各并联有电压开关特性元件D,即D1、D2。
采用本发明的方案,浪涌前期,三个元件A、B、C串联,可以比较精准地实现设计 的保护启动电压。随后电压开关特性元件D导通,使压敏电阻由串联结构变为并联结构,使其通流能力大幅度增加,残压也跟着大幅度下降。其最后残压值基本上想当于一个压敏通过三分之一电流时的残压。
当浪涌结束后,由于压敏电阻的作用,电压开关特性元件D的续流不能维持,电压开关特性元件D又重新回到断开状态,压敏电阻也由并联转回到串联状态。
实施例1:如图1所示为本发明的一个基本电路单元实施例,采用三压两管结构,即元件A、B、C为三个压敏电阻及二个压开关特性元件D1、D2。三个压敏电阻采用14D271,串联后,其合并压敏电阻为810V,漏电流很小。两管电压开关特性元件D1、D2是气体放电管;
在5000A,8/20浪涌脉冲的冲击下,本电路测得的残压值为680V。而三个14D271的串联相当于一个14D811,一个14D811的残压通常为1880V~2200V。
实施例2:如图2所示,为本发明的一个实施例,在220/240V低压电源电路中,幅值略高于***电压的浪涌电压的发生概率很高。电压开关特性元件D为气体放电管时,因其脉冲击穿电压高,通常为800V到1000V,不能对这类浪涌电压起抑制作用。因此本发明串并转换低残压电涌保护电路采用“压敏电阻器+电压开关特性元件D+线性电阻E”的组合来抑制这类浪涌电压。即在压敏电阻A、B、C组成串联电路的压敏电阻A、B和压敏电阻B、C串联组合两端分别并联有串接的电压开关特性元件D1、D2及线性电阻E1、E2。
图3为本发明电路的在压敏电阻A、B、C组成串联电路的压敏电阻A、B和压敏电阻B、C串联组合两端的其中一端并联有串接的电压开关特性元件D1及线性电阻E,另一端并联有电压开关特性元件D2。
实施例3:如图6所示,是本发明在单相三线电源中的防护电路的具体应用示意图,该电路利用两个三压两管单元拼接。接地放电管D和二为一,可用于一般的L-N-PE三线防护电路中。
实施例4:如图7所示,是三个三压两管基本电路单元组成的过电压防护电路,是基本电路单元的组合在L-N-PE三线防护电路中应用。
实施例5:如图8所示,压敏电阻A、B、C组成串联电路的压敏电阻A、B和压敏电阻B、C串联组合两端分别并联有串接的电压开关特性元件D1、D2及电容G1、G2。
实施例6,如图9所示,本发明在L-N间防护采用三压两管结构,即元件A、B、C为三个压敏电阻及二个电压开关特性元件D1及D2。在L-PE,N-PE间防护采用常用的两压一管结构,即压敏电阻A、B和电压开关特性元D3。
脉冲电流峰值从小到大时的工作特点和特性,如图10、11、12、13、14所示,性能测试结果见表1,图中的时间值t,电流i和电压u值都取自示波器波形采样表。图14是本发明脉冲电流工作特性,它在最大放电电流4840A(目标值5000A)的最高残压小于1000V。
表1 脉冲电流峰值从小到大时的工作特点和特性
Figure PCTCN2016110482-appb-000001
本发明在具体应用中,需要注意:
1、对压敏电阻器进行百分之百的可靠性筛选,剔除有早期失效隐患的产品
2、经过可靠性筛选的压敏电阻器,应进行规定寿命的鉴定试验合格,并实施寿命维持管理。若无特殊规定,寿命年限为10年。
3、标称放电电流In分为8/20-2kA,5kA,10k三个等级,在In电流下,通过元件特性配对,和改变串联线性阻抗,使得两GDT的电流差不大于10%
4,用于220/240工频电源电路的本发明,在标称放电电流下的残压不大于1000V。
本发明的工作过程为(以基本电路单元组成的过电压防护电路为例):
1、对于“低幅值浪涌”,仅有3只元件A、B、C串联导通,抑制浪涌电压,分流浪涌电流(两只开关元件D,即D1、D2不导通);
2、对于“中等幅值浪涌”,单路“电压开关特性元件D和限压元件”串联组合D1-C或A-D2导通,抑制浪涌电压,分流浪涌电流;
3、对于“高幅值浪涌”双路“开关元件-限压元件”D1-C和A-D2导通,抑制浪涌电压,分流浪涌电流。

Claims (10)

  1. 一种串并联自动转换低残压电涌保护电路,其特征在于,所述电路为,三个元件A、B、C串联,其所述的三个元件A、B、C可分别为:
    (1)、三个串联的元件A、B、C是同一特性的压敏电阻器;
    (2)、三个串联的元件A、B、C是两端的元件A、C为同一特性的压敏电阻器,中间元件B为线性电阻或电容或电感元件;
    (3)、三个串联的元件A、B、C是两端的元件A、C为同一特性的压敏电阻器,中间的元件B为与两端的元件A、C不同特性的压敏电阻器;
    在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端各并联有电压开关特性元件。
  2. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及线性电阻。
  3. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及线性电阻。
  4. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及电感元件。
  5. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及电感元件。
  6. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件、线性电阻及电感元件。
  7. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件、线性电阻及电感元件。
  8. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端分别并联有串接的电压开关特性元件及电容。
  9. 根据权利要求1所述的串并联自动转换低残压电涌保护电路,其特征在于,所述在元件A、B、C组成串联电路的元件A、B和元件B、C串联组合两端的其中一端并联有串接的电压开关特性元件及电容。
  10. 根据权利要求1至7所述的串并联自动转换低残压电涌保护电路,其特征在于,元件特性的配对能保证双路并联放电的电流差不大于10%。
PCT/CN2016/110482 2016-12-16 2016-12-16 串并联自动转换低残压电涌保护电路 WO2018107493A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110482 WO2018107493A1 (zh) 2016-12-16 2016-12-16 串并联自动转换低残压电涌保护电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/110482 WO2018107493A1 (zh) 2016-12-16 2016-12-16 串并联自动转换低残压电涌保护电路

Publications (1)

Publication Number Publication Date
WO2018107493A1 true WO2018107493A1 (zh) 2018-06-21

Family

ID=62557691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110482 WO2018107493A1 (zh) 2016-12-16 2016-12-16 串并联自动转换低残压电涌保护电路

Country Status (1)

Country Link
WO (1) WO2018107493A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108035A1 (zh) * 2018-11-28 2020-06-04 厦门赛尔特电子有限公司 一种电涌保护装置及***
CN112763879A (zh) * 2020-12-18 2021-05-07 国网辽宁省电力有限公司经济技术研究院 一种反向电压可调的反向恢复特性测试电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2513208Y (zh) * 2001-12-05 2002-09-25 深圳市威尔利实业有限公司 一种电源防雷器
JP2007116868A (ja) * 2005-10-24 2007-05-10 Sankosha Corp 保安装置
CN106026065A (zh) * 2016-07-22 2016-10-12 四川中光防雷科技股份有限公司 一种桥式结构电涌保护器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2513208Y (zh) * 2001-12-05 2002-09-25 深圳市威尔利实业有限公司 一种电源防雷器
JP2007116868A (ja) * 2005-10-24 2007-05-10 Sankosha Corp 保安装置
CN106026065A (zh) * 2016-07-22 2016-10-12 四川中光防雷科技股份有限公司 一种桥式结构电涌保护器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG, MEI ET AL.: "Presses the Sensitive Resistor and the Gaseous Tube Coordination Use Principal Characteristic Searches Analyzes", THE WORLD OF POWER SUPPLY, 31 May 2012 (2012-05-31), ISSN: 1561-0349 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020108035A1 (zh) * 2018-11-28 2020-06-04 厦门赛尔特电子有限公司 一种电涌保护装置及***
CN112763879A (zh) * 2020-12-18 2021-05-07 国网辽宁省电力有限公司经济技术研究院 一种反向电压可调的反向恢复特性测试电路

Similar Documents

Publication Publication Date Title
US20150222109A1 (en) Surge protection circuit
EP3128633B1 (en) Transient over voltage and lightning protection of power connected equipment
CN101752858B (zh) 多间隙金属气体放电管电源过电压保护模块
CN104638629B (zh) 分压触发的对称式过电压防雷电路
CN109787203B (zh) 一种防雷防浪涌电路
CN201478825U (zh) 多间隙金属气体放电管电源过电压保护模块
WO2014067272A1 (zh) 保护装置
WO2018107493A1 (zh) 串并联自动转换低残压电涌保护电路
CN105981241A (zh) 具有一非对称组件的过电压保护的驱动电路的设计
CN206559037U (zh) 一种浪涌保护器的多级间隙逐级触发电路装置
CN206250763U (zh) 串并联自动转换低残压电涌保护电路
US11489438B2 (en) Inrush current limiting and surge protection circuit and system
CN204190376U (zh) 预电离多间隙金属陶瓷气体放电管过电压保护装置
CN209267432U (zh) 一种lcl滤波并网逆变器保护电路
CN203933004U (zh) 一种无漏流无续流的大通流容量电涌保护器
WO2022083709A1 (zh) 放电电路、浪涌保护电路、点火电路及电子设备
CN213093862U (zh) 一种直流电源防雷电路
Howell Comparing Circuit Protection Technologies for 48 V DC in High Surge Environments
CN210091838U (zh) 一种提高氧化锌非线性电阻阀片耐压水平的保护套
CN203562772U (zh) 一种悬浮式高过压浪涌抑制电源滤波电路
KR20210103679A (ko) 모드 조합 기술을 이용한 누설전류 방지형 서지 보호기
CN106505544B (zh) 串并联自动转换低残压电涌保护电路
JPS6348124A (ja) 雷サ−ジ保護装置
CN201639288U (zh) 一种抑制连续脉冲的电涌保护器
JP5396591B2 (ja) 避雷器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923688

Country of ref document: EP

Kind code of ref document: A1