WO2018069055A1 - Flammgeschützte polyamide - Google Patents

Flammgeschützte polyamide Download PDF

Info

Publication number
WO2018069055A1
WO2018069055A1 PCT/EP2017/074636 EP2017074636W WO2018069055A1 WO 2018069055 A1 WO2018069055 A1 WO 2018069055A1 EP 2017074636 W EP2017074636 W EP 2017074636W WO 2018069055 A1 WO2018069055 A1 WO 2018069055A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molding compositions
thermoplastic molding
compositions according
component
Prior art date
Application number
PCT/EP2017/074636
Other languages
English (en)
French (fr)
Inventor
Michael Roth
Christoph Minges
Klaus Uske
Michaela HEUßLER
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2019520112A priority Critical patent/JP7026680B2/ja
Priority to BR112019006385-4A priority patent/BR112019006385B1/pt
Priority to EP17777036.9A priority patent/EP3526283B1/de
Priority to US16/339,738 priority patent/US11787920B2/en
Priority to KR1020197013740A priority patent/KR102491411B1/ko
Priority to CN201780063447.5A priority patent/CN109844001B/zh
Publication of WO2018069055A1 publication Critical patent/WO2018069055A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/07Addition of substances to the spinning solution or to the melt for making fire- or flame-proof filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K2003/343Peroxyhydrates, peroxyacids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics

Definitions

  • the invention relates to thermoplastic molding compositions containing
  • the invention relates to the use for the production of moldings of any kind and moldings, which were obtained from the molding compositions of the invention.
  • Fire-resistant polyamides have recently become increasingly important. There is a particular interest in products with bright color settings for the electrical sector. Of the known fire protection systems, however, red phosphorus and halogen compounds in combination with synergists are not suitable for this field of application. Halogen compounds reduce the electrical properties such as creep resistance and breakdown resistance. Red phosphorus is out of the question because of its inherent color for bright color settings.
  • melamine is recommended in DE-A 1694254.
  • glass fiber reinforced polyamides is melamine and melamine salts such. As melamine cyanurate less effective, the filament strength of these products is very low - especially in thin wall thicknesses.
  • Unreinforced molding compositions which generally have a higher glow wire resistance, however, have the disadvantage that the mechanical properties such as stiffness and strength are not sufficient.
  • the addition of glass fibers to polyamide blends with melamine cyanurate Although improves the mechanical properties, however, the flame retardancy properties are adversely affected, since glass fibers drastically worsen the flame retardant by the so-called wick effect. Accordingly, it is known from EP-A 241 702, EP-A 848 729 that PA mixtures of glass fibers with melamine cyanurate can be improved in their flameproofing behavior by using short glass fibers in the mixture. By adjusting certain particle sizes of the melamine cyanurate used, the flame retardance can also be improved (see EP-A 1423 460).
  • glass fibers if used, can be used as conventional continuous fibers (rovings) or cut fibers (4-6 mm long fiber bundles). Shearing in the extruder then results in a distribution of the glass fiber length in the product, which is usually about 250-300 ⁇ m (based on a product with 25% glass fiber content).
  • the average fiber length generally decreases with increasing fiber content, as it leads to increased fiber interactions in the incorporation zone and thus increased fiber breakage (F. Kunststoffsteiner, R. Theysohn, Comp., Sei. Techn. 23 (1985) ) 231).
  • mineral fillers should allow flame retardancy, resulting in the lowest possible afterburning times in Glühdrahtprü- tion.
  • a naturally occurring mineral filler which consists of a mixture of corpuscular, (crypto) crystalline and amorphous silica and calcined lamellar kaolin (Neuburg Siliceous Earth).
  • the mineral mixture is a loose, crystalline mass that can not be separated by physical methods.
  • the silicic acid fraction has a round grain shape and consists of approx. 200 nm agglomerated cryptocrystalline primary particles which are opal-like coated with amorphous silicic acid. This structure results in the relatively high specific surface area and oil number.
  • thermoplastic molding compositions according to the invention are described below.
  • Component (A) is described below.
  • the molding compositions according to the invention contain 30 to 97, preferably 40 to 92 and in particular 40 to 80 wt .-% of at least one polyamide, with partially crystalline polyamides are preferred.
  • the polyamides of the molding compositions according to the invention generally have a viscosity number of from 79.9 to 350, preferably from 110 to 240 ml / g, determined in a 0.5% strength by weight solution in 96% strength by weight sulfuric acid 25 ° C according to ISO 307.
  • Semicrystalline or amorphous resins having a weight average molecular weight of at least 5,000 such as e.g. U.S. Patents 2,071,250, 2,071,251, 2,130,523, 2,130,948, 2,241,322, 2,312,966, 2,512,606 and 3,393,210 are preferred.
  • polyamides which are derived from lactams having 7 to 13 ring members, such as polycaprolactam, polycapryllactam and polylaurolactam and also polyamides which are obtained by reacting dicarboxylic acids with diamines.
  • Suitable dicarboxylic acids are alkanedicarboxylic acids having 6 to 12, in particular 6 to 10, carbon atoms and aromatic dicarboxylic acids.
  • adipic acid, azelaic acid, sebacic acid, dodecanedioic acid and terephthalic and / or isophthalic acid may be mentioned as acids.
  • Suitable diamines are particularly alkanediamines having 6 to 12, especially 6 to 8 atoms of carbon and m-xylylenediamine (for example Ultramid ® X17 from BASF SE, a 1: 1 molar proportionality nis of MXDA with adipic acid), di- (4- aminophenyl) methane, di- (4-amino-cyclohexyl) -methane, 2,2-di- (4-aminophenyl) -propane, 2,2-di- (4-aminocyclohexyl) -propane or 1, 5-diamino 2-methyl-pentane.
  • Ultramid ® X17 from BASF SE, a 1: 1 molar proportionality nis of MXDA with adipic acid
  • di- (4- aminophenyl) methane di- (4-amino-cyclohexyl) -methane
  • Preferred polyamides are polyhexamethylene adipamide, polyhexamethylene sebacamide and polycaprolactam and copolyamides 6/66, in particular with an on part of Figure 5 to 95 wt .-% of caprolactam units (for example Ultramid ® C31 BASF SE).
  • polyamides are obtainable from ⁇ -aminoalkylnitriles such as aminocapronitrile (PA 6) and adiponitrile with hexamethylenediamine (PA 66) by so-called direct polymerization in the presence of water, as for example in DE-A 10313681, EP-A 1 198491 and EP 922065.
  • PA 6 aminocapronitrile
  • PA 66 adiponitrile with hexamethylenediamine
  • polyamides which are e.g. are obtainable by condensation of 1, 4-diaminobutane with adipic acid at elevated temperature (polyamide 4.6). Production methods for polyamides of this structure are known from e.g. in EP-A 38 094, EP-A 38 582 and EP-A 39 524 described.
  • polyamides which are obtainable by copolymerization of two or more of the abovementioned monomers or mixtures of a plurality of polyamides are suitable, where the ratio is arbitrary. Particular preference is given to mixtures of polyamide 66 with other polyamides, in particular copolyamides 6/66.
  • partially aromatic copolyamides as PA 6 / 6T and PA 66 / 6T have proven to be particularly advantageous, whose triamine content is less than 0.5, preferably less than 0.3,% by weight (see EP-A 299 444).
  • Further high-temperature-resistant polyamides are known from EP-A 19 94 075 (PA 6T / 6I / MXD6). Such polyamides are used in particular in amounts of up to 20, preferably up to 10% by weight, based on 100% A), with partially crystalline polyamides.
  • the production of the preferred partly aromatic copolyamides with a low triamine content can be carried out by the processes described in EP-A 129 195 and 129 196.
  • PA 46 tetramethylenediamine, adipic acid
  • PA 66 hexamethylenediamine, adipic acid
  • PA 610 hexamethylenediamine, sebacic acid
  • PA 612 hexamethylenediamine, decanedicarboxylic acid
  • PA 613 hexamethylenediamine, undecanedicarboxylic acid
  • PA 1212 1, 12-dodecanediamine, decanedicarboxylic acid
  • PA 1313 1, 13-diaminotridecane, undecanedicarboxylic acid
  • PA 6T hexamethylenediamine, terephthalic acid
  • PA 9T 1, 9-nonanediamine, terephthalic acid
  • PA MXD6 m-xylylenediamine, adipic acid
  • PA 6I hexamethylenediamine, isophthalic acid
  • PA 6-3-T trimethylhexamethylenediamine, terephthalic acid
  • PA 6 / 6T (see PA 6 and PA 6T)
  • PA 6/66 see PA 6 and PA 66
  • PA 6/12 see PA 6 and PA 12
  • PA 66/6/610 see PA 66, PA 6 and PA 610)
  • PA 6I / 6T see PA 61 and PA 6T
  • PA PA PACM 12 diaminodicyclohexylmethane, laurolactam
  • PA 6I / 6T / PACM such as PA 6I / 6T + diaminodicyclohexylmethane
  • PA 12 / MACMI laurolactam dimethyldiaminodicyclohexylmethane, isophthalic acid
  • PA 12 / MACMT laurolactam dimethyldiaminodicyclohexylmethane, terephthalic acid
  • mixtures of these polyamides can be used, wherein the mixing ratio is arbitrary.
  • the molding compositions according to the invention contain from 1 to 20, preferably from 2 to 15 and in particular from 2 to 13,% by weight of a melamine compound.
  • the melamine cyanurate which is preferably suitable according to the invention (component B) is a reaction product of preferably equimolar amounts of melamine (formula I) and cyanuric acid or isocyanuric acid (formulas Ia and Ib)
  • the commercially available product is a white powder with a mean particle size döo of 1, 5-7 microns and a dg9 value less than 50 ⁇ .
  • melamine sulfate melamine
  • melamine borate oxalate
  • phosphate prim. Phosphate sec.
  • pyrophosphate sec Neopentylglycolboronic acid melamine and polymeric melamine phosphate (CAS No. 56386-64-2 or 218768-84-4).
  • melamine cyanurate whose particle size distribution is: dge ⁇ 25 ⁇ m, preferably ⁇ 20 ⁇ m
  • döo ⁇ 4.5 microns, preferably ⁇ 3 microns. Under a döo
  • the expert generally understands the particle size value at which 50% of the particles have a smaller particle size and 50% have a larger particle size.
  • the particle size distribution is usually determined by laser diffraction (analogous to ISO 13320).
  • the molding compositions according to the invention contain 1 to 50, preferably 5 to 45 and in particular 10 to 40 wt .-% of a mineral filler composed of a mixture of substantially (crypto) crystalline (C1) and amorphous silica (C2) and kal - Zinc kaolin (C3).
  • a naturally occurring mineral filler which consists of a mixture of corpuscular, (crypto) crystalline and amorphous silica and lamellar kaolin (Neuburg Siliceous Earth).
  • the mineral mixture is a loose, crystalline mass that can not be separated by physical methods, but can be determined by X-ray diffraction analysis.
  • the silicic acid fraction has a round grain shape and consists of approx. 200 nm agglomerated cryptocrystalline primary particles which are opal-like coated with amorphous silicic acid.
  • the kaolin content in this mineral filler is calcined and is commercially available as such a mixture.
  • a preferred mineral filler C) comprises a mixture of 45 to 70, preferably 53 to 65 wt .-% C1 with 5 to 15, preferably 7 to 12 wt .-% C2 and 20 to 40, preferably 25 to 35 wt. -% C3, based on 100% C.
  • the component C) has an Al content of less than 15%, preferably 2 to 10 and in particular 3 to 8 wt .-%, based on 100% C).
  • the component C) has a Si content greater than 30, preferably 35 to 50 and in particular 38 to 45 wt .-%, based on 100% C).
  • Both the Si and the AI content can be determined by means of RFA (X-ray fluorescence analysis) according to DIN 51001.
  • Preferred components C) have a BET specific surface area according to DIN ISO 9277 of 5 to 15, preferably 6 to 10 m 2 / g.
  • Preferred components C) have an oil number according to DIN ISO 787 Part 5 of 50 to 60, preferably from 52 to 58 g / 100 g.
  • the mineral filler C can be surface-pretreated.
  • component D For detailed information please refer to component D).
  • Fibrous fillers D which may be mentioned are carbon fibers, glass fibers, glass beads, amorphous silica, calcium silicate, calcium metasilicate, magnesium carbonate, kaolin, chalk, powdered quartz, mica, barium sulfate and feldspar, which are used in amounts of 0 to 20, preferably 0 , 5 to 20, in particular from 5 to 20 wt .-% are used.
  • Preferred fibrous fillers are carbon fibers, aramid fibers and potassium titanate fibers, glass fibers being particularly preferred as E glass. These can be used as rovings or cut glass in the commercial forms.
  • the fibrous fillers can be surface-pretreated for better compatibility with the thermoplastics with a silane compound.
  • Suitable silane compounds are those of the general formula
  • Preferred silane compounds are aminopropyltrimethoxysilane, aminobutyltrimethoxysilane, aminopropyltriethoxysilane, aminobutyltriethoxysilane and the corresponding silanes which contain a glycidyl group as substituent X.
  • the silane compounds are generally used in amounts of 0.01 to 2, preferably 0.025 to 1, 0 and in particular 0.05 to 0.5 wt .-% (based on D) for surface coating. Also suitable are acicular mineral fillers.
  • the term "needle-shaped mineral fillers” is understood to mean a mineral filler with a pronounced, needle-like character.
  • calligraphic wollastonite is mentioned.
  • the mineral has an L / D (length: diameter) ratio of 8: 1 to 35: 1, preferably 8: 1 to 1: 1: 1.
  • the mineral filler may optionally be pretreated with the silane compounds mentioned above; However, the pre-treatment is not absolutely necessary.
  • the polyamide molding compositions according to the invention may contain a fibrous filler having an average arithmetic fiber length of from 70 to 200 .mu.m, preferably from 80 to 180 .mu.m and in particular from 100 to 150 .mu.m.
  • the average diameter is generally from 3 to 30 .mu.m or mm, preferably from 8 to 20 .mu.m or mm and in particular from 10 to 14 .mu.m or mm.
  • the desired fiber length may e.g. be adjusted by grinding in a ball mill, whereby a fiber length distribution is formed.
  • the reduction of the fiber length leads, if the average fiber length is ⁇ 200 ⁇ m, to a free-flowing bulk material, which can be mixed into the polymer like a powder. Due to the small fiber length occurs during incorporation only a small further shortening of the fiber length.
  • the fiber content is usually determined after ashing of the polymer.
  • the ash residue is generally taken up in silicone oil and photographed at 20 ⁇ magnification of the microscope. In the pictures, the length can be measured with at least 500 fibers and the (arithmetic) mean value (d 50 ) calculated from them.
  • the d 50 value is preferably less than or equal to 180, preferably less than or equal to 160, and in particular less than or equal to 150 ⁇ m.
  • the d 10 and d 90 values of the glass fiber length distribution can also be determined.
  • Derd 10 value here means that 10% of the glass fibers of the sample have a length x.
  • the molding compositions according to the invention contain from 0 to 25% by weight of talc.
  • Talc is a hydrated magnesium silicate of the composition Mg3 [(OH) 2 Si40io] or 3 MgOx4Si02xH20. These so-called three-layer phyllosilicates have a triclinic, monoclinic or rhombic crystal structure with a platelet-like appearance.
  • Other trace elements may be Mn, Ti, Cr, Ni, Na, and K, where the OH group may be replaced by fluoride.
  • talc whose particle sizes are 100% less than 20 ⁇ m.
  • the particle size distribution is usually determined by sedimentation analysis and is preferably ⁇ 20 ⁇ m: 100% by weight, ⁇ 10 ⁇ m: 99% by weight, ⁇ 5 ⁇ m: 85% by weight, ⁇ 3 ⁇ m: 60% by weight , ⁇ 2 ⁇ m: 43% by weight.
  • Such products are known as Micro-Tale I.T. extra available in stores.
  • thermoplastic molding compositions of the invention 0 to 2, preferably 0.01 to 2 wt .-%, preferably 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1, 5 wt .-% contain at least one heat stabilizer.
  • the heat stabilizers are selected from the group consisting of
  • Compounds of monovalent or divalent copper e.g. Salts of mono- or divalent copper with inorganic or organic acids or mono- or dihydric phenols, the oxides of mono- or divalent copper, or the complex compounds of copper salts with ammonia, amines, amides, lactams, cyanides or phosphines, preferably Cu (I) - or Cu (II) salts of hydrohalic acids, hydrocyanic acids or the copper salts of aliphatic carboxylic acids.
  • the monovalent copper compounds CuCl, CuBr, Cul, CuCN and CU2O and the bivalent copper compounds CuC, CuSC, CuO, copper (II) acetate or copper (II) stearate.
  • the amount of copper is preferably 0.005 to 0.5, in particular 0.005 to 0.3 and particularly preferably 0.01 to 0.2% by weight.
  • the copper compounds are commercially available or their preparation is known to the person skilled in the art.
  • the copper compound can be used as such or in the form of concentrates. Concentrate is to be understood as meaning a polymer, preferably of the same chemical nature as component (A), which contains the copper salt in high concentration.
  • component (A) which contains the copper salt in high concentration.
  • the use of concentrates is a common method and is particularly often used when very small amounts of a feedstock are to be dosed.
  • the copper compounds are advantageously used in combination with other metal halides, in particular alkali metal halides such as Nal, Kl, NaBr, KBr, the molar ratio of metal halide to copper being 0.5 to 20, preferably 1 to 10 and particularly preferably 2 is up to 5,
  • Stabilizers based on secondary aromatic amines these stabilizers preferably being present in an amount of 0.2 to 2, preferably 0.5 to 1.5,% by weight,
  • Stabilizers based on sterically hindered phenols these stabilizers preferably being present in an amount of from 0.05 to 1.5, preferably 0.1 to 1,% by weight, and
  • stabilizers based on secondary aromatic amines which can be used according to the invention are adducts of phenylenediamine with acetone (Naugard A),
  • Preferred examples of stabilizers based on sterically hindered phenols which can be used according to the invention are N, N'-hexamethylene-bis-3- (3,5-di-tert-butyl-4-hydroxyphenyl) -propionamide (V), bis (3 , 3-bis- (4'-hydroxy-3 , -tert-butylphenyl) -butanoic acid) -glycol ester (VI), 2,1'-thioethylbis (3- (3,5-di-tert-butyl-4-) hydroxyphenyl) propionate (VII), 4-4'-butylidene bis (3-methyl-6-tert-butylphenol) (VIII), triethylene glycol 3- (3-tert-butyl-4-hydroxy-5- methylphenyl) propionate (IX) or mixtures of two or more thereof
  • thermoplastic molding compositions of the invention may contain from 0 to 1, 5 wt .-%, preferably 0.05 to 1, 5 wt .-%, particularly preferably 0.1 to 1 wt .-% of a mold release agent.
  • Release agents are added to the molding compound to facilitate demolding of the product produced, i. the detachment of the molding from the mold, to facilitate.
  • the mold release agents are selected from the group consisting of fatty acids and their alkali or alkaline earth or zinc salts, diamides of alkylenediamine and fatty acids. It is particularly preferable to use mold release agents selected from the group consisting of calcium montanate, stearic acid, behenic acid, stearyl alcohol, stearic acid alkyl esters and amides, and esters of pentaerythritol with long-chain fatty acids such as stearin, ca- or zn-stearate.
  • the novel thermoplastic molding compositions may contain from 0 to 40% by weight, preferably from 0 to 30% by weight, of further additives F) (also called additives).
  • thermoplastic molding compositions containing polyamides or copolyamides are preferably selected from the group consisting of pigments, impact modifiers, nucleating agents and mixtures thereof.
  • thermoplastics are well known, see e.g. R. Gumbleter and H. Müller, Paperback of the plastic additives, Carl Hanser Verlag, 1983, pages 494 to 510.
  • the first preferred group of pigments are white pigments, such as zinc oxide, lead white (2 PbCC “3 Pb (OH) 2), lithopone, antimony white, and titanium dioxide, of the two most common (rutile and anatase-type) crystal modifications Titanium dioxide is used in particular the rutile form for whitening the molding compositions of the invention.
  • Black color pigments which can be used according to the invention are iron oxide black (Fe30 4 ), spinel black (Cu (Cr, Fe) 20 4 ), manganese black (mixture of manganese dioxide, silicon dioxide and iron oxide), cobalt black and antimony black, and particularly preferably carbon black which is mostly used in the form of furnace or gas black.
  • inorganic color pigments such as chromium oxide green or organic colored pigments such as azo pigments and phthalocyanines can be used according to the invention to adjust certain hues.
  • organic colored pigments such as azo pigments and phthalocyanines
  • Such pigments are generally commercially available.
  • pigments or dyes mentioned in mixtures for example carbon black with copper phthalocyanines, since color dispersion in the thermoplastic is generally facilitated.
  • nigrosine can be used in addition to pigments.
  • thermoplastic molding compositions of the invention can be prepared by known methods by mixing the starting components A) to C) and optionally D) to F) in conventional mixing devices and then extruded. Suitable processing machines are in Handbook of Plastics Extrusion, Vol. 1 Basics, Editors F. Hensen, W. Knappe, H. Potente, 1989, pp. 43-44. 3-7, ISBN: 3-446-14339-4 (Vol. 2 extrusion lines 1986, ISBN 3-446-14329-7) described. After extrusion, the extrudate can be cooled and comminuted. It is also possible to premix individual components and then to add the remaining starting materials individually and / or likewise mixed - also as a concentrate in a carrier polymer (masterbatch). The mixing temperatures are generally 230 to 320 ° C.
  • thermoplastic molding compositions according to the invention are distinguished by good mechanical properties and HDT and a good flame retardance evaluation according to UL 94, which is reproducible to a high degree, and a very good glow wire resistance (low afterburning times).
  • connectors are suitable for the production of fibers, films and moldings of any kind.
  • the following are some examples: connectors, plugs, connector parts, harness components, circuit carriers, circuit carrier components, three-dimensional injection-molded circuit carriers, electrical connectors and mechatronic components.
  • thermoplastic molding compositions can be used, for example, in the motor vehicle, electrical, electronics, telecommunications, information technology, entertainment, computer industry, in vehicles and other means of transportation, in ships, spaceships, in the household, in Office equipment, sports, medicine and, in general, objects and parts of buildings which require increased fire protection.
  • Component A Component A
  • VZ Viscosity number
  • Melamine cyanurate with an average particle size d 50 of -2.6 ⁇ m (Melapur® MC 25 from BASF SE).
  • calcined mineral filler which consists of a mixture of amorphous (10 wt .-%) and crystalline silicic acid (60 wt .-%) and calcined lamellar kaolin (30 wt .-%) according to X-ray diffraction analysis with Rietveld evaluation. (SILFIT ® Z91 of Hoffmann Mineral)
  • Oil number 55 g / 100g (DIN ISO 787 part 5),
  • calcined mineral filler which consists of a mixture of amorphous (10 wt .-%) and crystalline silicic acid (60 wt .-%) and calcined lamellar kaolin (30 wt .-%) according to X-ray diffraction analysis with Rietveld evaluation.
  • Oil number 55 g / 100g (DIN ISO 787 part 5),
  • talc (Grade HP 325 from Pechel GmbH) containing 60-62% by weight of silica, 30-32% by weight of magnesium oxide and an average particle size d 50 of 10 - 14 ⁇ m
  • Components F 0.3% by weight of 3,3'-bis (3,5-di-tert-butyl-4-hydroxyphenyl) -N, N'-hexamethylene-dipropionamide (CAS No. 23128-) was added as further additives in all formulations. 74-7), 0.3% by weight of aluminum stearate (CAS No. 300-92-5), and 2.5% by weight of titanium dioxide (CAS No. 13463-67-7).
  • the flame retardancy of the molding compositions was determined, on the one hand, by the method UL94V (Underwriters Laboratories Inc. Standard of Safety, "Test for Flammability of Plastic Materials for Parts in Devices and Appliances", p. 14 to p. 18 Northbrook 1998).
  • the glow wire resistance was determined according to the GWFI (Glow Wire Flammability Index) according to DIN EN 60695-2-12.
  • GWFI Low Wire Flammability Index
  • the maximum temperature was determined on 3 test specimens (for example on 60 x 60 x 1, 0 mm or circular disc plates) with the aid of a glowing wire at temperatures between 550 and 960 ° C, in 3 consecutive tests even during the contact time of the filament did not lead to ignition.
  • the specimen was pressed against a heated filament with a force of 1 Newton for 30 seconds.
  • the penetration depth of the glow wire was limited to 7 mm. The test is considered to be passed if the specimen burns after removal of the filament for less than 30 seconds and if a tissue paper lying under the specimen does not ignite.
  • compositions according to the invention show very good values both in terms of flame retardance and filament resistance (UL94 V-2 and GWFI 960 ° C. at 1.0 mm) and with respect to mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft thermoplastische Formmassen, enthaltend A) 30 bis 97 Gew.-% mindestens eines Polyamids, B) 1 bis 20 Gew.-% einer Melaminverbindung, C) 1 bis 50 Gew.-% eines mineralischen Füllstoffes aufgebaut aus einer Mischung aus im we sentlichen (krypto)kristalliner (C1 ) und amorpher Kieselsäure (C2) und kalziniertem Kaolin (C3), D) 0 bis 20 Gew.-% eines faserförmigen Füllstoffes, E) 0 bis 25 Gew.-% Talkum, F) 0 bis 15 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente von A) bis F) 100 % beträgt.

Description

Flammgeschützte Polyamide
Beschreibung Die Erfindung betrifft thermoplastische Formmassen, enthaltend
A) 30 bis 97 Gew.-% mindestens eines Polyamids,
B) 1 bis 20 Gew.-% einer Melaminverbindung
C) 1 bis 50 Gew.-% eines mineralischen Füllstoffes aufgebaut aus einer Mischung aus im wesentlichen oder vollständig (krypto)kristalliner (C1 ) und amorpher Kieselsäure (C2) und kalziniertem Kaolin (C3),
D) 0 bis 20 Gew.-% eines faserförmigen Füllstoffes,
E) 0 bis 25 Gew.-% Talkum,
F) 0 bis 15 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente von A) bis F) 100 % beträgt.
Weiterhin betrifft die Erfindung die Verwendung zur Herstellung von Formkörpern jeglicher Art und Formkörper, die aus den erfindungsgemäßen Formmassen erhalten wurden.
Die Verwendung von Melamin-Derivaten (Melamincyanurat) als Flammschutzmittel für Polyami- de ist seit vielen Jahren bekannt (siehe US 3660344).
Brandwidrig ausgerüstete Polyamide gewinnen in jüngster Zeit zunehmend an Bedeutung. Da- bei besteht ein besonderes Interesse an Produkten in hellen Farbeinstellungen für den Elektro- sektor. Von den bekannten Brandschutzsystemen sind jedoch roter Phosphor und Halogenver- bindungen in Kombination mit Synergisten für diesen Anwendungsbereich nicht geeignet. Halo- genverbindungen setzen die elektrischen Eigenschaften wie Kriechstromfestigkeit und Durch- schlagfestigkeit herab. Roter Phosphor kommt wegen seiner Eigenfarbe für helle Farbeinstel- lungen nicht in Betracht. Zur Herstellung farbheller, unverstärkter und flammwidrig eingestellter Polyamide wird in der DE-A 1694254 der Zusatz von Melamin empfohlen. Bei glasfaserver- stärkten Polyamiden ist Melamin und Melaminsalze wie z. B. Melamincyanurat weniger wirk- sam, die Glühdrahtfestigkeit dieser Produkte ist - speziell in dünnen Wandstärken - sehr nied- rig.
Unverstärkte Formmassen, die generell eine höhere Glühdrahtbeständigkeit aufweisen, haben hingegen den Nachteil, daß die mechanischen Eigenschaften wie Steifigkeit und Festigkeit nicht ausreichend sind. Der Zusatz von Glasfasern zu Polyamid-Mischungen mit Melamincyanurat verbessert zwar die mechanischen Eigenschaften, jedoch werden die Flammschutzeigenschaf- ten nachteilig beeinflußt, da Glasfasern durch den sogenannten Dochteffekt den Flammschutz drastisch verschlechtern. Entsprechend ist aus den EP-A 241 702, EP-A 848 729 bekannt, daß PA-Mischungen aus Glasfasern mit Melamincyanurat in ihrem Flammschutzverhalten verbes- sert werden können, indem Kurzglasfasern in der Mischung verwendet werden. Durch die Ein- stellung bestimmter Teilchengrößen des eingesetzten Melamincyanurates kann die Flammwid- rigkeit ebenso verbessert werden (siehe EP-A 1423 460).
Die Wirksamkeit von Flammschutzadditivmischungen wird im Wesentlichen durch Brandprüfun- gen nach UL94-V beschrieben. Für bestimmte Anwendungen von flammgeschützten Polymeren in der Gebäudeinstallation sowie im Niederspannungs-Schaltgeraten ist jedoch vornehmlich der Glühdrahttest nach IEC 60695-2-12 von Bedeutung, wobei zusätzlich eine hohe Flammwidrig- keit wünschenswert ist. Bei den genannten Patenten können Glasfasern, soweit verwendet, als konventionelle Endlos- fasern (Rovings) oder Schnittfasern (4-6 mm lange Faserbündel) eingesetzt werden. Durch Scherung im Extruder ergibt sich dann eine Glasfaserlängenverteilung im Produkt, die bei übli- cher Verarbeitung bei ca. 250-300 μm liegt (bezogen auf ein Produkt mit 25 % Glasfasergehalt). Dabei ist zu berücksichtigen, daß die mittlere Faserlänge im Allgemeinen mit zunehmendem Faseranteil sinkt, da es zu erhöhten Faser-Wechselwirkungen in der Einarbeitungszone und damit zu vermehrtem Faserbruch kommt (F. Raumsteiner, R. Theysohn, Comp. Sei. Techn. 23 (1985) 231 ).
Aufgabe der vorliegenden Erfindung war es daher, flammgeschützte thermoplastische Form- massen zur Verfügung zu stellen, welche gute mechanische Eigenschaften und einen guten Flammschutz aufweisen. Insbesondere sollte der Zusatz von mineralischen Füllstoffen einen Flammschutz ermöglichen, aus dem möglichst geringe Nachbrennzeiten bei der Glühdrahtprü- fung resultieren. Überraschenderweise besonders geeignet ist ein natürlich vorkommender mineralischer Füll- stoff, welcher aus einen Gemisch korpuskularer, (krypto)kristalliner und amorpher Kieselsäure und kalziniertem lamellarem Kaolin besteht (Neuburger Kieselerde). Das Mineralgemisch stellt ein loses, kristallines Haufwerk dar, das durch physikalische Methoden nicht zu trennen ist. Der Kieselsäureanteil weist eine runde Kornform auf und besteht aus ca. 200 nm großen, ag- gregierten kryptokristallinen Primärpartikeln, die mit amorpher Kieselsäure opalartig überzogen sind. Durch diese Struktur ergeben sich die relativ hohe spezifische Oberfläche und Ölzahl.
Demgemäß wurden die eingangs definierten Formmassen gefunden. Bevorzugte Ausführungs- formen sind den Unteransprüchen zu entnehmen.
Die einzelnen Komponenten der erfindungsgemäßen thermoplastischen Formmassen werden im Folgenden beschrieben. Komponente (A)
Als Komponente A) enthalten die erfindungsgemäßen Formmassen 30 bis 97, vorzugsweise 40 bis 92 und insbesondere 40 bis 80 Gew.-% mindestens eines Polyamides, wobei teilkristalline Polyamide bevorzugt sind.
Die Polyamide der erfindungsgemäßen Formmassen weisen im allgemeinen eine Viskositäts- zahl von 79,9 bis 350, vorzugsweise 1 10 bis 240 ml/g auf, bestimmt in einer 0,5 gew.-%igen Lösung in 96 gew.-%iger Schwefelsäure bei 25°C gemäß ISO 307.
Halbkristalline oder amorphe Harze mit einem Molekulargewicht (Gewichtsmittelwert) von min- destens 5.000, wie sie z.B. in den amerikanischen Patentschriften 2 071 250, 2 071 251 , 2 130 523, 2 130 948, 2 241 322, 2 312 966, 2 512 606 und 3 393 210 beschrieben werden, sind bevorzugt.
Beispiele hierfür sind Polyamide, die sich von Lactamen mit 7 bis 13 Ringgliedern ableiten, wie Polycaprolactam, Polycapryllactam und Polylaurinlactam sowie Polyamide, die durch Umset- zung von Dicarbonsäuren mit Diaminen erhalten werden. Als Dicarbonsäuren sind Alkandicarbonsäuren mit 6 bis 12, insbesondere 6 bis 10 Kohlenstoff- atomen und aromatische Dicarbonsäuren einsetzbar. Hier seien nur Adipinsäure, Azelainsäure, Sebacinsäure, Dodecandisäure und Terephthal- und/oder Isophthalsäure als Säuren genannt.
Als Diamine eignen sich besonders Alkandiamine mit 6 bis 12, insbesondere 6 bis 8 Kohlen- stoffatomen sowie m-Xylylendiamin (z.B. Ultramid® X17 der BASF SE, ein 1 :1 molares Verhält- nis von MXDA mit Adipinsäure), Di-(4-aminophenyl)methan, Di-(4-amino-cyclohexyl)-methan, 2,2-Di- (4-aminophenyl)-propan, 2,2-Di-(4-aminocyclohexyl)-propan oder 1 ,5-Diamino-2-methyl- pentan. Bevorzugte Polyamide sind Polyhexamethylenadipinsäureamid, Polyhexamethylen- sebacinsäureamid und Polycaprolactam sowie Copolyamide 6/66, insbesondere mit einem An- teil von 5 bis 95 Gew.-% an Caprolactam-Einheiten (z.B. Ultramid® C31 der BASF SE).
Weiterhin geeignete Polyamide sind erhältlich aus ω-Aminoalkylnitrilen wie beispielsweise Ami- nocapronitril (PA 6) und Adipodinitril mit Hexamethylendiamin (PA 66) durch sog. Direktpoly- merisation in Anwesenheit von Wasser, wie beispielsweise in der DE-A 10313681 , EP- A 1 198491 und EP 922065 beschrieben.
Außerdem seien auch noch Polyamide erwähnt, die z.B. durch Kondensation von 1 ,4- Diaminobutan mit Adipinsäure unter erhöhter Temperatur erhältlich sind (Polyamid 4,6). Her- stellungsverfahren für Polyamide dieser Struktur sind z.B. in den EP-A 38 094, EP-A 38 582 und EP-A 39 524 beschrieben.
Weiterhin sind Polyamide, die durch Copolymerisation zweier oder mehrerer der vorgenannten Monomeren erhältlich sind, oder Mischungen mehrerer Polyamide geeignet, wobei das Mi- schungsverhältnis beliebig ist. Besonders bevorzugt sind Mischungen von Polyamid 66 mit an- deren Polyamiden, insbesondere Copolyamide 6/66.
Weiterhin haben sich solche teilaromatischen Copolyamide wie PA 6/6T und PA 66/6T als be- sonders vorteilhaft erwiesen, deren Triamingehalt weniger als 0,5, vorzugsweise weniger als 0,3 Gew.-% beträgt (siehe EP-A 299 444). Weitere hochtemperaturbeständige Polyamide sind aus der EP-A 19 94 075 bekannt (PA 6T/6I/MXD6). Derartige Polyamide werden insbesondere in Mengen bis zu 20, vorzugsweise bis zu 10 Gew %, bezogen auf 100 % A), mit teilkristallinen Polyamiden eingesetzt.
Die Herstellung der bevorzugten teilaromatischen Copolyamide mit niedrigem Triamingehalt kann nach den in den EP-A 129 195 und 129 196 beschriebenen Verfahren erfolgen.
Die nachfolgende nicht abschließende Aufstellung enthält die genannten, sowie weitere Poly- amide A) im Sinne der Erfindung und die enthaltenen Monomeren.
AB-Polymere:
PA 4 Pyrrolidon
PA 6 ε-Caprolactam
PA 7 Ethanolactam
PA 8 Capryllactam
PA 9 9-Aminopelargonsäure
PA 1 1 1 1 -Aminoundecansäure
PA 12 Laurinlactam
AA/BB-Polymere
PA 46 Tetramethylendiamin, Adipinsäure
PA 66 Hexamethylendiamin, Adipinsäure
PA 69 Hexamethylendiamin, Azelainsäure
PA 610 Hexamethylendiamin, Sebacinsäure
PA 612 Hexamethylendiamin, Decandicarbonsäure
PA 613 Hexamethylendiamin, Undecandicarbonsäure
PA 1212 1 ,12-Dodecandiamin, Decandicarbonsäure
PA 1313 1 ,13-Diaminotridecan, Undecandicarbonsäure
PA 6T Hexamethylendiamin, Terephthalsäure
PA 9T 1 ,9-nonanediamin, Terephthalsäure
PA MXD6 m-Xylylendiamin, Adipinsäure
PA 6I Hexamethylendiamin, Isophthalsäure
PA 6-3-T Trimethylhexamethylendiamin, Terephthalsäure
PA 6/6T (siehe PA 6 und PA 6T)
PA 6/66 (siehe PA 6 und PA 66) PA 6/12 (siehe PA 6 und PA 12)
PA 66/6/610 (siehe PA 66, PA 6 und PA 610)
PA 6I/6T (siehe PA 61 und PA 6T)
PA PACM 12 Diaminodicyclohexylmethan, Laurinlactam
PA 6I/6T/PACM wie PA 6I/6T + Diaminodicyclohexylmethan
PA 12/MACMI Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Isophthalsäure PA 12/MACMT Laurinlactam, Dimethyl-diaminodicyclohexylmethan, Terephthalsäure PA PDA-T Phenylendiamin, Terephthalsäure
Selbstverständlich können auch Mischungen dieser Polyamide eingesetzt werden, wobei das Mischungsverhältnis beliebig ist.
Als Komponente B) enthalten die erfindungsgemäßen Formmassen 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 2 bis 13 Gew.-% einer Melaminverbindung.
Das gemäß der Erfindung (Komponente B) bevorzugt geeignete Melamincyanurat ist ein Reak- tionsprodukt aus vorzugsweise äquimolaren Mengen von Melamin (Formel I) und Cyanursäure bzw. Isocyanursäure (Formeln la und Ib)
Figure imgf000006_0001
Man erhält es z.B. durch Umsetzung von wässrigen Lösungen der Ausgangsverbindungen bei 90 bis 100°C. Das im Handel erhältliche Produkt ist ein weißes Pulver mit einer mittleren Korn- größe döo von 1 ,5 - 7 μm und einem dg9 Wert kleiner 50μπι.
Weitere geeignete Verbindungen (oft auch als Salze oder Addukte bezeichnet) sind Melamin- sulfat, Melamin, Melaminborat, -oxalat, -phosphat prim., -phosphat sec. und -pyrophosphat sec, Neopentylglycolborsäuremelamin sowie polymeres Melaminphosphat (CAS-Nr 56386-64- 2 bzw. 218768-84-4).
Ganz besonders bevorzugt wird erfindungsgemäß Melamincyanurat eingesetzt, dessen Teil- chengrößenverteilung beträgt: dge < 25 μm, bevorzugt < 20 μm
döo < 4,5 μm, bevorzugt < 3 μm. Unter einem döo
-Wert versteht der Fachmann in der Regel den Teilchengrößenwert, bei welchem 50 % der Teilchen eine kleinere Teilchengröße aufweisen und 50 % eine größere Teilchengröße aufwei- sen. Die Teilchengrößenverteilung wird üblicherweise durch Laserbeugung bestimmt (analog ISO 13320).
Als Komponente C) enthalten die erfindungsgemäßen Formmassen 1 bis 50, vorzugsweise 5 bis 45 und insbesondere 10 bis 40 Gew.-% eines mineralischen Füllstoffes aufgebaut aus einer Mischung aus im wesentlichen (krypto)kristalliner (C1 ) und amorpher Kieselsäure (C2) und kal- ziniertem Kaolin (C3).
Überraschenderweise besonders geeignet ist ein natürlich vorkommender mineralischer Füll- stoff, welcher aus einen Gemisch korpuskularer, (krypto)kristalliner und amorpher Kieselsäure und lamellarem Kaolin besteht (Neuburger Kieselerde). Das Mineralgemisch stellt ein loses, kristallines Haufwerk dar, das durch physikalische Methoden nicht zu trennen ist, jedoch mittels Röntgenbeugungsanalytik bestimmbar ist.
Der Kieselsäureanteil weist eine runde Kornform auf und besteht aus ca. 200 nm großen, ag- gregierten kryptokristallinen Primärpartikeln, die mit amorpher Kieselsäure opalartig überzogen sind. Durch eine nachgeschaltete thermische Behandlung wird der Kaolinanteil in diesem mine- ralischen Füllstoff calciniert und ist als derartige Mischung im Handel erhältlich.
Ein bevorzugter mineralischer Füllstoff C) enthält eine Mischung aus 45 bis 70, vorzugsweise 53 bis 65 Gew.-% C1 mit 5 bis 15, vorzugsweise 7 bis 12 Gew.-% C2 und 20 bis 40, vorzugs- weise 25 bis 35 Gew.-% C3, bezogen auf 100% C.
Bevorzugt (im Gegensatz zu den meisten Kaolinen) weist die Komponente C) einen AI Gehalt von kleiner 15 % vorzugsweise 2 bis 10 und insbesondere 3 bis 8 Gew.-%, bezogen auf 100 % C) auf.
Insbesondere weist die Komponente C) einen Si Gehalt größer 30, vorzugsweise 35 bis 50 und insbesondere 38 bis 45 Gew.-%, bezogen auf 100 % C) auf. Sowohl der Si als auch der AI Gehalt können mittels RFA (Rontgenfluoreszenzanalyse) gemäß DIN 51001 ermittelt werden. Bevorzugte Komponenten C) weisen eine spezifische BET Oberfläche gemäß DIN ISO 9277 von 5 bis 15, vorzugsweise 6 bis 10 m2/g auf.
Bevorzugte Komponenten C) weisen eine Ölzahl gemäß DIN ISO 787 Teil 5 von 50 bis 60, vor- zugsweise von 52 bis 58 g/100g auf.
Zur besseren Verträglichkeit mit der Polymermatrix kann der mineralische Füllstoff C) oberfläch- lich vorbehandelt sein. Für detaillierte Ausführungen sei auf Komponente D) verwiesen.
Als faserförmige Füllstoffe D) seien Kohlenstofffasern, Glasfasern, Glaskugeln, amorphe Kie- seisäure, Calciumsilicat, Calciummetasilicat, Magnesiumcarbonat, Kaolin, Kreide, gepulverter Quarz, Glimmer, Bariumsulfat und Feldspat genannt, die in Mengen von 0 bis 20 , vorzugswei- se von 0,5 bis 20, insbesondere von 5 bis 20 Gew.-% eingesetzt werden.
Als bevorzugte faserförmige Füllstoffe seien Kohlenstofffasern, Aramid-Fasern und Kaliumtita- nat-Fasern genannt, wobei Glasfasern als E-Glas besonders bevorzugt sind. Diese können als Rovings oder Schnittglas in den handelsüblichen Formen eingesetzt werden.
Die faserförmigen Füllstoffe können zur besseren Verträglichkeit mit den Thermoplasten mit einer Silanverbindung oberflächlich vorbehandelt sein.
Geeignete Silanverbindungen sind solche der allgemeinen Formel
(X-(C H 2) n) k-S i-(0-Cm H 2m+ 1 )4-k in der die Substituenten folgende Bedeutung haben:
Figure imgf000008_0001
eine ganze Zahl von 2 bis 10, bevorzugt 3 bis 4
eine ganze Zahl von 1 bis 5, bevorzugt 1 bis 2
eine ganze Zahl von 1 bis 3, bevorzugt 1
Bevorzugte Silanverbindungen sind Aminopropyltrimethoxysilan, Aminobutyltrimeth-oxysilan, Aminopropyltriethoxysilan, Aminobutyltriethoxysilan sowie die entsprechenden Silane, welche als Substituent X eine Glycidylgruppe enthalten. Die Silanverbindungen werden im Allgemeinen in Mengen von 0,01 bis 2, vorzugsweise 0,025 bis 1 ,0 und insbesondere 0,05 bis 0,5 Gew.-% (bezogen auf D) zur Oberflächenbeschichtung eingesetzt. Geeignet sind auch nadeiförmige mineralische Füllstoffe.
Unter nadeiförmigen mineralischen Füllstoffen wird im Sinne der Erfindung ein mineralischer Füllstoff mit stark ausgeprägtem nadeiförmigen Charakter verstanden. Als Beispiel sei nadei- förmiger Wollastonit genannt. Vorzugsweise weist das Mineral ein L/D-(Länge Durchmesser)- Verhältnis von 8 : 1 bis 35 : 1 , bevorzugt von 8 : 1 bis 1 1 : 1 auf. Der mineralische Füllstoff kann gegebenenfalls mit den vorstehend genannten Silanverbindungen vorbehandelt sein; die Vor- behandlung ist jedoch nicht unbedingt erforderlich.
Als Komponente D) können die erfindungsgemäßen Polyamidformmassen einen faserformigen Füllstoff mit einer mittleren arithmetischen Faserlänge von 70 bis 200 μm, bevorzugt 80 bis 180 μm und insbesondere 100 bis 150 μm enthalten. Der mittlere Durchmesser beträgt im All- gemeinen von 3 bis 30 μm oder mm, bevorzugt von 8 bis 20 μm oder mm und insbesondere 10 bis 14 μm oder mm. Die gewünschte Faserlänge kann z.B. durch Mahlen in einer Kugelmühle eingestellt werden, wobei eine Faserlängenverteilung entsteht.
Die Reduzierung der Faserlänge führt, wenn die mittlere Faserlänge <200 μm ist, zu einem rieselfähigen Schüttgut, das wie ein Pulver in das Polymer eingemischt werden kann. Aufgrund der geringen Faserlänge tritt beim Einarbeiten nur noch eine geringe weitere Verkürzung der Faserlänge ein.
Der Fasergehalt wird üblicherweise nach Veraschen des Polymeren bestimmt. Zur Bestimmung der Faserlängenverteilung wird im Allgemeinen der Ascherückstand in Silikonöl aufgenommen und bei 20-facher Vergrößerung des Mikroskops fotografiert. Auf den Bildern können bei min- destens 500 Fasern die Länge ausgemessen und der (arithmetische) Mittelwert (d50) daraus berechnet werden.
Bevorzugt beträgt der d50-Wert kleiner gleich 180, vorzugsweise kleiner gleich 160 und insbe- sondere kleiner gleich 150 μm. Gleichzeitig mit der Bestimmung des d50 Wertes können auch die d10- und d90-Werte der Glasfaserlängenverteilung bestimmt werden. Derd10 -Wert bedeutet hierbei, daß 10 % der Glasfasern der Probe eine Länge x aufweisen. Für die vorliegenden er- findungsgemäßen Formmassen haben sich d10 -Werte kleiner gleich 60 μm, vorzugsweise klei- ner gleich 55 μm und d90 Werte kleiner gleich 350 μm, vorzugsweise kleiner gleich 290 μm als vorteilhaft erwiesen. Als Komponente E) enthalten die erfindungsgemäßen Formmassen 0 bis 25 Gew- % Talkum. Dieser wird - falls mit eingesetzt- vorzugsweise in Mengen von 5 bis 20 Gew- %, insbesondere von 10 bis 20 Gew- % eingesetzt. Talkum ist ein hydratisiertes Magnesiumsilikat der Zusammensetzung Mg3[(OH)2 Si40io] oder 3 MgOx4Si02xH20. Diese sogenannten Dreischicht-Phyllosilikate weisen einen triklinen, mono- klinen oder rhombischen Kristallaufbau auf mit blättchenförmigem Erscheinungsbild. Anweiteren Spurenelementen Können Mn, Ti, Cr, Ni, Na, und K anwesend sein, wobei die OH-Gruppe durch Fluorid ersetzt sein kann.
Besonders bevorzugt wird Talkum eingesetzt, dessen Teilchengrößen zu 100% kleiner 20 μm beträgt. Die Teilchengrößenverteilung wird üblicherweise durch Sedimentationsanalyse be- stimmt und beträgt vorzugsweise < 20 μm : 100 Gew.-%, < 10 μm: 99 Gew.-%, < 5μm: 85 Gew.-%, <3 μm:60 Gew.-%, < 2 μm: 43 Gew.-%. Derartige Produkte sind als Micro-Tale I.T. extra im Handel erhältlich.
Komponente (F)
Als Komponente F) können die erfindungsgemäßen thermoplastischen Formmassen 0 bis 2, bevorzugt 0,01 bis 2 Gew.-%, bevorzugt 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 ,5 Gew.-% mindestens eines Wärmestabilisators enthalten.
In einer bevorzugten Ausführungsform sind die Wärmestabilisatoren ausgewählt aus der Grup- pe bestehend aus
Verbindungen des ein- oder zweiwertigen Kupfers, z.B. Salze des ein- oder zweiwertigen Kupfers mit anorganischen oder organischen Säuren oder ein- oder zweiwertigen Pheno- len, die Oxide des ein- oder zweiwertigen Kupfers, oder die Komplexverbindungen von Kupfersalzen mit Ammoniak, Aminen, Amiden, Lactamen, Cyaniden oder Phosphinen, bevorzugt Cu(l)- oder Cu(ll)-Salze der Halogenwasserstoffsäuren, der Cyanwasserstoff- säuren oder die Kupfersalze der aliphatischen Carbonsäuren. Besonders bevorzugt sind die einwertigen Kupferverbindungen CuCI, CuBr, Cul, CuCN und CU2O, sowie die zwei- wertigen Kupferverbindungen CuC , CuSC , CuO, Kupfer(ll)acetat oder Kupfer(ll)stearat. Sofern eine Kupferverbindung verwendet wird, beträgt vorzugsweise die Menge an Kup- fer 0,005 bis 0,5, insbesondere 0,005 bis 0,3 und besonders bevorzugt 0,01 bis 0,2 Gew.-
%, bezogen auf die Summe der Komponenten A) bis F).
Die Kupferverbindungen sind handelsüblich bzw. ihre Herstellung ist dem Fachmann be- kannt. Die Kupferverbindung kann als solche oder in Form von Konzentraten eingesetzt werden. Unter Konzentrat ist dabei ein Polymer, vorzugsweise gleicher chemischer Natur wie Komponente (A), zu verstehen, welches das Kupfersalz in hoher Konzentration ent- hält. Der Einsatz von Konzentraten ist ein übliches Verfahren und wird besonders häufig dann angewandt, wenn sehr geringe Mengen eines Einsatzstoffes zu dosieren sind. Vor- teilhafterweise werden die Kupferverbindungen in Kombination mit weiteren Metallhalo- geniden, insbesondere Alkalihalogenide wie Nal, Kl, NaBr, KBr eingesetzt, wobei das mo- lare Verhältnis von Metallhalogenid zu Kupfer 0,5 bis 20, bevorzugt 1 bis 10 und beson- ders bevorzugt 2 bis 5 beträgt,
Stabilisatoren auf Basis sekundärer aromatischer Amine, wobei diese Stabilisatoren vor- zugsweise in einer Menge von 0,2 bis 2, bevorzugt 0,5 bis 1 ,5 Gew.-% vorliegen,
Stabilisatoren auf Basis sterisch gehinderter Phenole, wobei diese Stabilisatoren vor- zugsweise in einer Menge von 0,05 bis 1 ,5, bevorzugt 0,1 bis 1 Gew.-% vorliegen, und
Mischungen der vorstehend genannten Stabilisatoren.
Besonders bevorzugte Beispiele für erfindungsgemäß einsetzbare Stabilisatoren auf Basis se- kundärer aromatischer Amine sind Addukte aus Phenylendiamin mit Aceton (Naugard A),
Addukte aus Phenylendiamin mit Linolen, Naugard 445 (II), N,N'-Dinaphthyl-p-phenylendiamin (III), N-Phenyl-N'-cyclohexyl-p-phenylendiamin (IV) oder Mischungen von zwei oder mehreren davon
Figure imgf000011_0001
Figure imgf000011_0002
Bevorzugte Beispiele für erfindungsgemäß einsetzbare Stabilisatoren auf Basis sterisch gehin- derter Phenole sind N,N'-Hexamethylen-bis-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionamid (V), Bis-(3,3-bis-(4'-hydroxy-3,-tert-butylphenyl)-butansäure)-glykolester (VI), 2,1 '-Thioethylbis- (3-(3,5-di.tert-butyl-4-hydroxyphenyl)-propionat (VII), 4-4'-Butyliden-bis-(3-methyl-6-tert.- butylphenol) (VIII), Triethylenglykol-3-(3-tert-butyl-4-hydroxy-5-methylphenyl)-propionat (IX) o- der Mischungen von zwei oder mehr davon
Figure imgf000012_0001
 Die erfindungsgemäßen thermoplastischen Formmassen können 0 bis 1 ,5 Gew.-%, bevorzugt 0,05 bis 1 ,5 Gew.-%, besonders bevorzugt 0,1 bis 1 Gew.-% eines Entformungshilfsmittel ent- halten.
Entformungshilfsmittel werden der Formmasse zugegeben, um das Entformen des hergestell- ten Produkts, d.h. das Ablösen des Formteils aus der Form, zu erleichtern.
In einer bevorzugten Ausführungsform sind die Entformungsmittel ausgewählt aus der Gruppe bestehend aus Fettsäuren und deren Alkali- oder Erdalkali- oder Zinksalzen, Diamiden aus Al- kylendiamin und Fettsäuren. Besonders bevorzugt werden Entformungsmittel eingesetzt, aus- gewählt aus der Gruppe bestehend aus Calciummontanat, Stearinsäure, Behensäure, Stea- rylalkohol, Stearinsäurealkylestern und -amiden sowie Estern des Pentaerythrits mit langketti- gen Fettsäuren wie Stearin, Ca- oder Zn-stearat.
Die erfindungsgemäßen thermoplastischen Formmassen können 0 bis 40 Gew.-%, bevorzugt 0 bis 30 Gew.-% weitere Zusatzstoffe F) (auch Additive genannt) enthalten.
Als Additive können alle dem Fachmann bekannten Additive für thermoplastische Formmassen enthaltend Polyamide oder Copolyamide eingesetzt werden. Diese sind bevorzugt ausgewählt aus der Gruppe bestehend aus Pigmenten, Schlagzähmodifier, Nukleierungsmittel und Mi- schungen davon.
Die Pigmente zur Einfärbung von Thermoplasten sind allgemein bekannt, siehe z.B. R. Gächter und H. Müller, Taschenbuch der Kunststoffadditive, Carl Hanser-Verlag, 1983, Seite 494 bis 510.
Als erste bevorzugte Gruppe von Pigmenten sind Weißpigmente zu nennen wie Zinkoxid, Blei- weiß (2 PbCC"3 Pb(OH)2), Lithopone, Antimonweiß und Titandioxid. Von den beiden gebräuch- lichsten Kristallmodifikationen (Rutil- und Anatas-Typ) des Titandioxids wird insbesondere die Rutilform zur Weißfärbung der erfindungsgemäßen Formmassen verwendet.
Schwarze Farbpigmente, die erfindungsgemäß eingesetzt werden können, sind Eisen- oxidschwarz (Fe304), Spinellschwarz (Cu(Cr,Fe)204), Manganschwarz (Mischung aus Mangan- dioxid, Siliciumdioxid und Eisenoxid), Kobaltschwarz und Antimonschwarz sowie besonders bevorzugt Russ, der meist in Form von Furnace- oder Gasruß eingesetzt wird.
Selbstverständlich können zur Einstellung bestimmter Farbtöne anorganische Buntpigmente wie Chromoxidgrün oder organische Buntpigmente wie Azopigmente und Phthalocyanine erfin- dungsgemäß eingesetzt werden. Derartige Pigmente sind allgemein im Handel üblich.
Weiterhin kann es von Vorteil sein, die genannten Pigmente beziehungsweise Farbstoffe in Mi- schungen einzusetzen, zum Beispiel Russ mit Kupferphthalocyaninen, da allgemein die Farbdispergierung im Thermoplasten erleichtert wird. Zur Schwarzfärbung kann außer Pigmenten auch Nigrosin eingesetzt werden.
Die erfindungsgemäßen thermoplastischen Formmassen können nach bekannten Verfahren hergestellt werden, indem man die Ausgangskomponenten A) bis C) sowie gegebenenfalls D) bis F) in üblichen Mischvorrichtungen mischt und anschließend extrudiert. Geeignete Verarbei- tungsmaschinen sind in Handbuch der Kunststoffextrusion, Vol. 1 Grundlagen, Editors F. Hen- sen, W. Knappe, H. Potente, 1989, pp. 3-7, ISBN:3-446-14339-4 (Vol. 2 Extrusionsanlagen 1986, ISBN 3-446-14329-7) beschrieben. Nach der Extrusion kann das Extrudat abgekühlt und zerkleinert werden. Es können auch einzelne Komponenten vorgemischt werden und dann die restlichen Ausgangsstoffe einzeln und/oder ebenfalls gemischt - auch als Konzentrat in einem Trägerpolymer (Masterbatch) - hinzugegeben werden. Die Mischtemperaturen liegen in der Re- gel bei 230 bis 320°C.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich durch eine gute Me- chanik sowie HDT und eine gute Flammschutzbewertung gemäß UL 94 aus, welche im hohen Maße reproduzierbar ist sowie eine sehr gute Glühdrahtbeständigkeit (geringe Nachbrennzei- ten).
Diese eignen sich zur Herstellung von Fasern, Folien und Formkörpern jeglicher Art. Nachfol- gend sind einige Beispiele genannt: Steckverbinder, Stecker, Steckerteile, Kabelbaumkompo- nenten, Schaltungsträger, Schaltungsträgerkomponenten, dreidimensional spritzgegossene Schaltungsträger, elektrische Verbindungselemente und mechatronische Komponenten.
Die erfindungsgemäß aus den thermoplastischen Formmassen herzustellenden Formteile oder Halbzeuge können beispielsweise in der Kraftfahrzeug-, Elektro-, Elektronik-, Telekommunikati- ons-, Informationstechnologie, Unterhaltungs-, Computerindustrie, in Fahrzeugen und anderen Fortbewegungsmitteln, in Schiffen, Raumschiffen, im Haushalt, in Büroausstattungen, Sport, in der Medizin sowie allgemein in Gegenständen und Gebäudeteilen, die einen erhöhten Brand- schutz erfordern, angewandt werden.
Für den Küchen- und Haushaltsbereich ist der Einsatz fließverbesserter Polyamide zur Herstel- lung von Komponenten für Küchengerate, wie z.B. Friteusen, Bügeleisen, Knöpfe, sowie An- wendungen im Garten- und Freizeitbereich möglich.
Beispiele
Es wurden folgende Komponenten eingesetzt: Komponente A:
Polyamid 6 mit einer Viskositätszahl VZ von 125 ml/g, gemessen als 0,5 gew.-%ige Lösung in 96 gew.-%iger Schwefelsäure bei 25°C nach ISO 307 (Es wurde Ultramid ® B24 der BASF SE verwendet). Komponente B:
Melamincyanurat mit einer mittleren Teilchengröße d50 von -2.6 pm (Melapur ® MC 25 der BASF SE).
Komponente C/1 a:
kalzinierter mineralischer Füllstoff, welcher aus einem Gemisch amorpher (10 Gew.-%) und kristalliner Kieselsäure (60 Gew.-%) und kalziniertem lamellarem Kaolin (30 Gew.-%) besteht gemäß Rontgenbeugungsanalyse mit Rietveld-Auswertung. (SILFIT ® Z91 der Hoffmann Mine- ral)
Spezifikation und Messmethoden:
Spezifische BET -Oberfläche :8 m2/g (DIN ISO 9277),
Ölzahl: 55 g/100g (DIN ISO 787 Teil 5),
Si Gehalt: 42 %
AI Gehalt: 4.8 %
Komponente C/1 b:
kalzinierter mineralischer Füllstoff, welcher aus einem Gemisch amorpher (10 Gew.-%) und kristalliner Kieselsäure (60 Gew.-%) und kalziniertem lamellarem Kaolin (30 Gew.-%) besteht gemäß Rontgenbeugungsanalyse mit Rietveld-Auswertung.
Oberflächenschlichte: Aminosilan (AKTIFIT ® AM der Hoffmann Mineral)
Spezifikation und Messmethoden:
Spezifische BET -Oberfläche :7 m2/g (DIN ISO 9277),
Ölzahl: 55 g/100g (DIN ISO 787 Teil 5),
Si Gehalt: 41 %
AI Gehalt: 5.6 %
Komponente C/1 c:
Handelsübliches Talkum (Grade HP 325 der Firma Pechel GmbH) mit einem Gehalt von 60-62 Gew.-% Siliciumdioxid, 30-32 Gew.-% Magnesiumoxid und einer mittleren Teilchengröße d50 von 10 - 14 pm
Komponente D/1 :
Standard Schnittglasfaser für Polyamide, L = 4.0 mm, D = 10 pm
Komponente D/2:
Kurzglasfaser, mittlere Länge (d50) - 210 pm, D = 10 pm
Komponenten F: als weitere Zusatzstoffe wurde in allen Formulierungen 0.3 Gew.-% 3,3'- Bis(3,5-di-tert-butyl-4-hydroxyphenyl)-N,N'-hexamethylenedipropionamide (CAS-No. 23128-74- 7), 0.3 Gew.-% Aluminiumstearat (CAS-No. 300-92-5), und 2.5 Gew.-% Titandioxid (CAS-No. 13463-67-7) eingesetzt.
Herstellung der Formmassen Zum Nachweis der erfindungsgemäß beschriebenen Verbesserungen für Glühdrahtbeständig- keit wurden durch Compoundierung entsprechende Polyamid-Formmassen angefertigt. Die einzelnen Komponenten wurden hierzu in einem Zweiwellenextruder ZSK 26 (Fa. Berstorff) bei einem Durchsatz von 20 kg/h und ca. 250 - 270°C bei flachem Temperaturprofil gemischt, als Strang ausgetragen, bis zur Granulierfähigkeit abgekühlt und granuliert.
Messungen Die Prüfkörper für die in Tabelle 1 aufgeführten Untersuchungen wurden auf einer Spritzgieß- maschine des Typs Arburg 420C bei einer Massetemperatur von ca. 250 - 290°C und einer Werkzeugtemperatur von ca. 80°C verspritzt.
Die Flammwidrigkeit der Formmassen wurde zum einen nach der Methode UL94V (Underwri- ters Laboratories Inc. Standard of Safety, "Test for Flammability of Plastic Materials for Parts in Devices and Appliances", S. 14 bis S. 18 Northbrook 1998) bestimmt.
Die Glühdrahtbeständigkeit wurde gemäß der Glühdrahtentzündlichkeitsprüfung GWFI (Glow- Wire-Flammability-Index) nach DIN EN 60695-2-12 bestimmt. Bei der GWFI-Prüfung wurde an 3 Prüfkörpern (beispielsweise an Platten der Geometrie 60 x 60 x 1 ,0 mm oder Rundscheibe) mit Hilfe eines glühenden Drahtes bei Temperaturen zwischen 550 und 960°C die maximale Temperatur ermittelt, die in 3 aufeinander folgenden Tests auch während der Einwirkzeit des Glühdrahtes nicht zur Entzündung führte. Der Probekörper wurde 30 Sekunden lang mit einer Kraft von 1 Newton gegen einen aufgeheizten Glühdraht gepresst. Die Eindringtiefe des Glüh- drahts war auf 7 mm begrenzt. Der Test gilt als bestanden wenn der Probekörper nach Entfer- nen des Glühdrahtes weniger als 30 Sekunden nachbrennt und wenn sich ein unter dem Pro- bekörper liegendes Seidenpapier nicht entzündet.
Die Summe der Anteile der Komponenten A) bis F) in Tabelle 1 ergänzen sich zu 100 Gew.-%. Die Zusammensetzungen der Formmassen und die Ergebnisse der Messungen sind der Tabel- le 1 zu entnehmen.
Tabelle 1
Figure imgf000017_0001
Figure imgf000018_0001
Anhand der Daten von Tabelle 1 geht hervor, daß die erfindungsgemäßen Zusammensetzun- gen sowohl hinsichtlich Flammwidrigkeit und Glühdrahtbeständigkeit (UL94 V-2 und GWFI 960° C bei 1.0mm) als auch bezüglich mechanischer Eigenschaften sehr gute Werte zeigen.

Claims

Patentansprüche
1 . Thermoplastische Formmassen, enthaltend
A) 30 bis 97 Gew.-% mindestens eines Polyamids,
B) 1 bis 20 Gew.-% einer Melaminverbindung,
C) 1 bis 50 Gew.-% eines mineralischen Füllstoffes aufgebaut aus einer Mischung aus im wesentlichen (krypto)kristalliner (C1 ) und amorpher Kieselsäure (C2) und kalziniertem Kaolin (C3),
D) 0 bis 20 Gew.-% eines faserförmigen Füllstoffes,
E) 0 bis 25 Gew.-% Talkum,
F) 0 bis 15 Gew.-% weiterer Zusatzstoffe, wobei die Summe der Gewichtsprozente von A) bis F) 100 % beträgt.
2. Thermoplastische Formmassen nach Anspruch 1 , in denen die Komponente B) aus Mela- mincyanurat aufgebaut ist.
3. Thermoplastische Formmassen nach den Ansprüchen 1 oder 2, enthaltend
A) 30 bis 97 Gew.-%
B) 1 bis 20 Gew.-%
C) 1 bis 50 Gew.-%
D) 0,5 bis 20 Gew.-%
E) 0 bis 25 Gew.-%
F) 0 bis 15 Gew.-%
4. Thermoplastische Formmassen nach den Ansprüchen 1 bis 3, enthaltend als mineralischer Füllstoff C) eine Mischung aus 45 bis 70 Gew.-% C1 mit 5 bis 15 Gew.-% C2 und 20 bis 40 Gew.-% C3, bezogen auf 100% C.
5. Thermoplastische Formmassen nach den Ansprüchen 1 bis 4, in denen die Komponente C) einen AI Gehalt von kleiner 15 Gew.-%, bezogen auf 100 % C) aufweist.
6. Thermoplastische Formmassen nach den Ansprüchen 1 bis 5, in denen die Komponente C) einen Si Gehalt größer 30 Gew.-%, bezogen auf 100 % C aufweist.
7. Thermoplastische Formmassen nach den Ansprüchen 1 bis 6, wobei die Komponente C) eine spezifische BET Oberfläche gemäß DIN ISO 9277 von 5 bis 15 m2/g aufweist.
8. Thermoplastische Formmassen nach Anspruch 7, wobei die Komponente C) eine Ölzahl gemäß DIN ISO 787 Teil 5 von 50 bis 60 g/100g aufweist.
9. Formmassen nach einem der Ansprüche 1 bis 8, in denen der Wärmestabilisator F) aus- gewählt ist aus der Gruppe, bestehend aus Verbindungen des ein- und zweiwertigen Kup- fers, Stabilisatoren auf Basis sekundärer aromatischer Aminen, Stabilisatoren auf Basis sterisch gehinderter Phenole oder deren Mischungen.
10. Verwendung der thermoplastischen Formmassen nach einem der Ansprüche 1 bis 9 zur Herstellung von Fasern, Folien, Formkörpern.
1 1 . Formkörper jeglicher Art, erhältlich aus den thermoplastischen Formmassen gemäß den Ansprüchen 1 bis 9.
PCT/EP2017/074636 2016-10-13 2017-09-28 Flammgeschützte polyamide WO2018069055A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019520112A JP7026680B2 (ja) 2016-10-13 2017-09-28 難燃性ポリアミド
BR112019006385-4A BR112019006385B1 (pt) 2016-10-13 2017-09-28 Composição de modelagem termoplástica, uso da dita composição e modelagem de qualquer tipo
EP17777036.9A EP3526283B1 (de) 2016-10-13 2017-09-28 Flammgeschützte polyamide
US16/339,738 US11787920B2 (en) 2016-10-13 2017-09-28 Flame-retardant polyamides
KR1020197013740A KR102491411B1 (ko) 2016-10-13 2017-09-28 난연성 폴리아미드
CN201780063447.5A CN109844001B (zh) 2016-10-13 2017-09-28 阻燃性聚酰胺

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16193701.6 2016-10-13
EP16193701 2016-10-13

Publications (1)

Publication Number Publication Date
WO2018069055A1 true WO2018069055A1 (de) 2018-04-19

Family

ID=57136727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/074636 WO2018069055A1 (de) 2016-10-13 2017-09-28 Flammgeschützte polyamide

Country Status (7)

Country Link
US (1) US11787920B2 (de)
EP (1) EP3526283B1 (de)
JP (1) JP7026680B2 (de)
KR (1) KR102491411B1 (de)
CN (1) CN109844001B (de)
BR (1) BR112019006385B1 (de)
WO (1) WO2018069055A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4105252A1 (de) 2021-06-17 2022-12-21 Covestro Deutschland AG Thermoplastische formmasse mit hoher flammwidrigkeit
US11685832B2 (en) 2017-03-01 2023-06-27 Basf Se Fire-retardant polyamides comprising PVP
US11859068B2 (en) 2017-06-22 2024-01-02 Basf Se Polyamides with phosphorous and al-phosphonates

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11613074B2 (en) 2017-10-04 2023-03-28 Basf Se Sinter powder containing a mineral flame retardant for producing moulded bodies
FR3116282B1 (fr) * 2020-11-16 2023-07-28 Arkema France Compositions transparentes avec bonne resistance a l’alcool et tenue a la fatigue
CN112646365B (zh) * 2020-12-19 2022-03-29 杭州本松新材料技术股份有限公司 一种低压电器用导热、阻燃聚酰胺组合物及其应用
CN114517012B (zh) * 2022-03-14 2023-06-06 金旸(厦门)新材料科技有限公司 一种高外观抗菌无卤阻燃聚酰胺复合材料及其制备方法

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
DE1694254A1 (de) 1968-03-16 1971-06-16 Bayer Ag Selbstverloeschende Polyamid-Formmassen
EP0038094A2 (de) 1980-03-26 1981-10-21 Stamicarbon B.V. Herstellung von hochmolekularem Polytetramethylenadipamid
EP0038582A2 (de) 1980-03-26 1981-10-28 Stamicarbon B.V. Herstellung von auf Polyamiden basierten Gegenständen
EP0039524A1 (de) 1980-03-26 1981-11-11 Stamicarbon B.V. Herstellung von Polytetramethylenadipamid
EP0129195A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0129196A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0241702A1 (de) 1986-03-20 1987-10-21 Bayer Ag Flammfeste, glasfaserverstärkte Polyamidformmassen
EP0299444A2 (de) 1987-07-17 1989-01-18 BASF Aktiengesellschaft Teilaromatische Copolyamide mit verringertem Triamingehalt
EP0848729A1 (de) 1995-09-05 1998-06-24 Basf Aktiengesellschaft Flammgeschützte pa-formmassen, enthaltend melamincyanurat und vorbehandelte, faserförmige füllstoffe
EP0922065A2 (de) 1996-08-30 1999-06-16 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus aminonitrilen
EP1198491A1 (de) 1999-07-30 2002-04-24 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus dinitrilen und diaminen
DE69912241T2 (de) * 1998-02-11 2004-04-22 Rhodia Engineering Plastics S.R.L. Flammgehemmte polyamid-zusammensetzung
EP1423460A1 (de) 2001-08-07 2004-06-02 BASF Aktiengesellschaft Halogenfreie flammgeschützte polyester
DE10313681A1 (de) 2003-03-26 2004-10-07 Basf Ag Verfahren zur Herstellung von Polyamiden
EP1762592A1 (de) * 2005-09-03 2007-03-14 Clariant Produkte (Deutschland) GmbH Polymere Formmassen aus Basis von thermoplastischen Polyamiden
EP1994075A2 (de) 2006-03-08 2008-11-26 Basf Se Teilaromatische copolyamide mit hoher kristallinität
DE102015209451A1 (de) * 2014-06-03 2015-12-03 Basf Se Flammgeschützte Polyamide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4307682A1 (de) * 1993-03-11 1994-09-15 Basf Ag Halogenfreie flammgeschützte thermoplastische Polyamidformmassen
FR2843593B1 (fr) 2002-08-13 2007-04-13 Rhodia Eng Plastics Srl Composition polyamide branche ignifugee
US7482420B2 (en) 2004-03-24 2009-01-27 Construction Research & Technology Gmbh Silane-terminated polyurethanes with high strength and high elongation
JP6172943B2 (ja) * 2010-03-09 2017-08-02 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 耐熱老化性ポリアミド
KR20140020280A (ko) * 2011-03-11 2014-02-18 바스프 에스이 멜라민 및 페닐포스폰산의 축합 생성물 및 난연제로서의 이의 용도
CN103013110B (zh) 2011-09-27 2014-12-17 台光电子材料股份有限公司 无卤素树脂组成物及应用其的铜箔基板及印刷电路板
CN103214825B (zh) * 2013-04-01 2015-09-23 金发科技股份有限公司 阻燃性聚酰胺树脂组合物、制备方法及由其制得的制品
DE202014008607U1 (de) 2014-10-31 2014-11-24 Lanxess Deutschland Gmbh Polyamidzusammensetzungen

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071251A (en) 1931-07-03 1937-02-16 Du Pont Fiber and method of producing it
US2071250A (en) 1931-07-03 1937-02-16 Du Pont Linear condensation polymers
US2130523A (en) 1935-01-02 1938-09-20 Du Pont Linear polyamides and their production
US2130948A (en) 1937-04-09 1938-09-20 Du Pont Synthetic fiber
US2241322A (en) 1938-09-30 1941-05-06 Du Pont Process for preparing polyamides from cyclic amides
US2312966A (en) 1940-04-01 1943-03-02 Du Pont Polymeric material
US2512606A (en) 1945-09-12 1950-06-27 Du Pont Polyamides and method for obtaining same
US3393210A (en) 1964-08-24 1968-07-16 Du Pont Polycarbonamides of bis (para-aminocyclohexyl)methane and dodecanedioic acid
DE1694254A1 (de) 1968-03-16 1971-06-16 Bayer Ag Selbstverloeschende Polyamid-Formmassen
US3660344A (en) 1968-03-16 1972-05-02 Bayer Ag Self-extinguishing polyamide moulding compositions
EP0039524A1 (de) 1980-03-26 1981-11-11 Stamicarbon B.V. Herstellung von Polytetramethylenadipamid
EP0038582A2 (de) 1980-03-26 1981-10-28 Stamicarbon B.V. Herstellung von auf Polyamiden basierten Gegenständen
EP0038094A2 (de) 1980-03-26 1981-10-21 Stamicarbon B.V. Herstellung von hochmolekularem Polytetramethylenadipamid
EP0129195A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0129196A2 (de) 1983-06-15 1984-12-27 BASF Aktiengesellschaft Verfahren zur kontinuierlichen Herstellung von Polyamiden
EP0241702A1 (de) 1986-03-20 1987-10-21 Bayer Ag Flammfeste, glasfaserverstärkte Polyamidformmassen
EP0299444A2 (de) 1987-07-17 1989-01-18 BASF Aktiengesellschaft Teilaromatische Copolyamide mit verringertem Triamingehalt
EP0848729A1 (de) 1995-09-05 1998-06-24 Basf Aktiengesellschaft Flammgeschützte pa-formmassen, enthaltend melamincyanurat und vorbehandelte, faserförmige füllstoffe
EP0922065A2 (de) 1996-08-30 1999-06-16 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus aminonitrilen
DE69912241T2 (de) * 1998-02-11 2004-04-22 Rhodia Engineering Plastics S.R.L. Flammgehemmte polyamid-zusammensetzung
EP1198491A1 (de) 1999-07-30 2002-04-24 Basf Aktiengesellschaft Verfahren zur herstellung von polyamiden aus dinitrilen und diaminen
EP1423460A1 (de) 2001-08-07 2004-06-02 BASF Aktiengesellschaft Halogenfreie flammgeschützte polyester
DE10313681A1 (de) 2003-03-26 2004-10-07 Basf Ag Verfahren zur Herstellung von Polyamiden
EP1762592A1 (de) * 2005-09-03 2007-03-14 Clariant Produkte (Deutschland) GmbH Polymere Formmassen aus Basis von thermoplastischen Polyamiden
EP1994075A2 (de) 2006-03-08 2008-11-26 Basf Se Teilaromatische copolyamide mit hoher kristallinität
DE102015209451A1 (de) * 2014-06-03 2015-12-03 Basf Se Flammgeschützte Polyamide

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Standard of Safety", 1998, UNDERWRITERS LABORATORIES INC., article "Test for Flammability of Plastic Materials for Parts in Devices and Appliances", pages: 14 - 18
F. HENSEN, W. KNAPPE, H. POTENTE: "Handbuch der Kunststoffextrusion, Vol. 1 Grundlagen", vol. 1, 1989, ISBN: 3-446-14339-4, pages: 3 - 7
F. HENSEN, W. KNAPPE, H. POTENTE: "Handbuch der Kunststoffextrusion, Vol. 2 Extrusionsanlagen", vol. 2, 1986, ISBN: 3-446-14329-7
F. RAUMSTEINER; R. THEYSOHN, COMP. SCI. TECHN., vol. 23, 1985, pages 231
R. GÄCHTER; H. MÜLLER: "Taschenbuch der Kunststoffadditive", 1983, CARL HANSER-VERLAG, pages: 494 - 510

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685832B2 (en) 2017-03-01 2023-06-27 Basf Se Fire-retardant polyamides comprising PVP
US11859068B2 (en) 2017-06-22 2024-01-02 Basf Se Polyamides with phosphorous and al-phosphonates
EP4105252A1 (de) 2021-06-17 2022-12-21 Covestro Deutschland AG Thermoplastische formmasse mit hoher flammwidrigkeit
WO2022263305A1 (de) 2021-06-17 2022-12-22 Covestro Deutschland Ag Thermoplastische formmasse mit hoher flammwidrigkeit

Also Published As

Publication number Publication date
KR20190069487A (ko) 2019-06-19
KR102491411B1 (ko) 2023-01-20
JP2019532155A (ja) 2019-11-07
CN109844001B (zh) 2022-03-11
JP7026680B2 (ja) 2022-02-28
BR112019006385B1 (pt) 2023-03-28
BR112019006385A2 (pt) 2019-06-25
US11787920B2 (en) 2023-10-17
CN109844001A (zh) 2019-06-04
EP3526283B1 (de) 2020-12-02
US20200048434A1 (en) 2020-02-13
EP3526283A1 (de) 2019-08-21

Similar Documents

Publication Publication Date Title
EP3526283B1 (de) Flammgeschützte polyamide
EP2986673B1 (de) Glühdrahtbeständige polyamide
DE102005049297A1 (de) Flammgeschützte Formmassen
DE10316873A1 (de) Flammgeschützte Polyamidformmassen
EP3589696B1 (de) Flammgeschuetzte polyamide mit pvp
EP3652254A1 (de) Flammhemmende schwarze polyamidzusammensetzungen und deren verwendung
WO2019011789A1 (de) Flammhemmende graue polyamidzusammensetzungen und deren verwendung
EP3601424A1 (de) Flammhemmende polyamid-formmassen
EP3642265A1 (de) Polyamide mit phosphor und al-phosphonaten
EP3652242B1 (de) Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung
EP3420017A1 (de) Polyamidmischungen mit pyrrolidon enthaltenden polyamiden
DE102015209451A1 (de) Flammgeschützte Polyamide
EP2828336B1 (de) Hellgefärbte flammgeschützte polyamide
EP3679092A1 (de) Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung
EP3234068A1 (de) Mit metalloxid beschichteter glimmer als flammschutzmittel
EP3665221A1 (de) Flammhemmende polyamidzusammensetzungen mit hoher wärmeformbeständigkeit und deren verwendung
EP2415827A1 (de) Flammgeschützte Polyamide mit Schichtsilikaten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17777036

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019006385

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019520112

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197013740

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017777036

Country of ref document: EP

Effective date: 20190513

ENP Entry into the national phase

Ref document number: 112019006385

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190329