WO2018036246A1 - 数据发送方法、数据接收方法、设备及*** - Google Patents

数据发送方法、数据接收方法、设备及*** Download PDF

Info

Publication number
WO2018036246A1
WO2018036246A1 PCT/CN2017/089024 CN2017089024W WO2018036246A1 WO 2018036246 A1 WO2018036246 A1 WO 2018036246A1 CN 2017089024 W CN2017089024 W CN 2017089024W WO 2018036246 A1 WO2018036246 A1 WO 2018036246A1
Authority
WO
WIPO (PCT)
Prior art keywords
end device
spatial
spatial streams
streams
precoding
Prior art date
Application number
PCT/CN2017/089024
Other languages
English (en)
French (fr)
Inventor
吴晔
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17842671.4A priority Critical patent/EP3499736B1/en
Publication of WO2018036246A1 publication Critical patent/WO2018036246A1/zh
Priority to US16/282,451 priority patent/US20190190571A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a data sending method, a data receiving method, a device, and a system.
  • the transmitting end device may be a base station
  • the receiving end device may be a user equipment (English: User equipment; abbreviated as: UE), and the base station may schedule multiple UEs for data transmission.
  • UE User equipment
  • multiple UEs scheduled at the same time must use the same transmission scheme for data transmission.
  • multiple UEs scheduled at the same time use a closed-loop spatial multiplexing (CLSM) transmission scheme for data transmission.
  • CLSM closed-loop spatial multiplexing
  • the inventors have found that the related art has at least the following problem: since multiple UEs scheduled at the same time must use the same transmission scheme for data transmission, scheduling flexibility is low.
  • the embodiment of the present invention provides a data sending method, a data receiving method, a device, and a system.
  • the technical solution is as follows:
  • the data transmission system includes a transmitting end device and a receiving end device, and the transmitting end device establishes a communication connection with the receiving end device.
  • the transmitting end device may be a base station or a UE, and the receiving end device may also be a base station or a UE.
  • the transmitting end device is a base station
  • the receiving end device is a UE.
  • the transmitting end device is a UE
  • the receiving end device is a base station
  • the receiving end device is a base station.
  • the embodiment of the invention is described by taking a transmitting end device as a base station and a receiving end device as a UE as an example.
  • a data sending method is provided, where the data sending method is performed by a transmitting device, and the method includes:
  • Precoding multiple spatial streams to obtain a plurality of pre-coded data streams the plurality of spatial streams including at least two first pre-processed spatial streams, the at least two first pre-processed spatial streams being for the first original spatial stream Pretreated
  • the at least two first pre-processed spatial streams are directed to the first receiving end device.
  • the plurality of spatial streams further includes at least one original spatial stream.
  • At least one of the at least one original spatial stream points to the second receiving end device.
  • the plurality of spatial streams further includes: at least two second pre-processed spatial streams, the at least two second pre-processing The spatial stream is obtained by pre-processing the second original spatial stream, and the second original spatial stream is directed to the third receiving end device.
  • different spatial streams may be directed to different receiving devices, and different spatial streams may correspond to different transmission schemes. Therefore, multiple receiving devices may use different transmission schemes for data. Transmission solves the problem of low scheduling flexibility; it achieves the effect of improving scheduling flexibility.
  • the pre-processing is a transmit diversity process.
  • the transmit diversity process is space-time transmit diversity processing, space-frequency transmit diversity processing, or space-time-frequency transmit diversity processing.
  • the transmit diversity process is a cyclic delay diversity process.
  • the pre-processing is a spatial diversity multiplexing process based on transmit diversity.
  • each transmit diversity process or space diversity multiplexing process based on transmit diversity may also correspond to one.
  • the transmission scheme can, therefore, enable multiple receiving end devices to adopt different transmission schemes for data transmission, thereby solving the problem of low scheduling flexibility; and achieving the effect of improving scheduling flexibility.
  • different spatial streams of the plurality of spatial streams correspond to different precoding vectors, and each precoding vector corresponds to one demodulation reference signal DMRS port, and different precoding vectors correspond to different DMRS ports, and the method further includes :
  • the data transmission method provided by the embodiment of the present invention obtains a plurality of precoding demodulation reference signals by precoding a demodulation reference signal of multiple spatial streams, and transmits the plurality of precoding demodulation reference signals, which can facilitate the receiving end.
  • the device restores the original spatial stream.
  • a second aspect provides a data receiving method, where the data receiving method is performed by a receiving device, where the method includes:
  • the plurality of spatial streams including at least two first preprocessed spatial streams, the at least two first pre- Processing the spatial stream is obtained by pre-processing the first original spatial stream;
  • the at least two first pre-processed spatial streams are directed to the first receiving end device.
  • the at least two first pre-processing spatial streams are directed to the first receiving end device, and the other spatial streams may be directed to other receiving end devices except the first receiving end device, therefore, Different spatial streams point to different receiving devices, and different spatial streams can also correspond to different transmission schemes. Therefore, multiple receiving devices can use different transmission schemes for data transmission, which solves the problem of low scheduling flexibility. The problem; the effect of increasing the flexibility of scheduling.
  • the pre-processing is a transmit diversity process.
  • the transmit diversity process is space-time transmit diversity processing, space-frequency transmit diversity processing, or space-time-frequency transmit diversity processing.
  • the transmit diversity process is a cyclic delay diversity process.
  • the pre-processing is a spatial diversity multiplexing process based on transmit diversity.
  • each transmit diversity process or space diversity multiplexing process based on transmit diversity may also correspond to one.
  • the transmission scheme can, therefore, enable multiple receiving end devices to adopt different transmission schemes for data transmission, thereby solving the problem of low scheduling flexibility; and achieving the effect of improving scheduling flexibility.
  • different spatial streams of the plurality of spatial streams correspond to different precoding vectors, and each precoding vector corresponds to one demodulation reference signal DMRS port, and different precoding vectors correspond to different DMRS ports, and the method further includes :
  • each spatial stream of the plurality of spatial streams corresponds to one Demodulating the reference signal
  • Recovering the at least two first pre-processed spatial streams from the plurality of pre-coded data streams including:
  • the data receiving method provided by the embodiment of the present invention can facilitate recovery of the first original spatial stream by the receiving end device by receiving a plurality of precoding demodulation reference signals.
  • a transmitter device in a third aspect, includes: a processor, a network interface, a memory, and a bus, wherein the memory and the network interface are respectively connected to the processor through a bus; the processor is configured to execute the instruction stored in the memory
  • the processor implements the data transmission method provided by the above first aspect or any of the optional aspects of the first aspect by executing an instruction.
  • a fourth aspect provides a receiving end device, the receiving end device comprising: a processor, a network interface, a memory, and a bus, wherein the memory and the network interface are respectively connected to the processor through a bus; the processor is configured to execute the instruction stored in the memory
  • the processor implements the data receiving method provided by any of the above second aspect or the second aspect by executing an instruction.
  • the fifth aspect provides a transmitting end device, where the transmitting end device includes at least one module, and the at least one module is configured to implement a data sending method provided by implementing the foregoing first aspect or any of the foregoing aspects.
  • the sixth aspect provides a receiving end device, where the receiving end device includes at least one module, and the at least one module is configured to implement a data receiving method provided by implementing the second aspect or the second aspect.
  • a data transmission system comprising:
  • the receiving end device provided by the fourth aspect or the sixth aspect.
  • the transmitting end device pre-codes the plurality of spatial streams to obtain a plurality of pre-coded data streams and transmits a plurality of pre-coded data streams, where the plurality of spatial streams includes at least two first pre-processed spatial streams, and at least two first pre-
  • the processing spatial stream is obtained by pre-processing the first original spatial stream, and the receiving end device recovers at least two first pre-processed spatial streams from the plurality of pre-encoded data streams, and recovers according to the at least two first pre-processed spatial streams.
  • the first original spatial stream is out. Since at least two of the plurality of spatial streams are preprocessed for the first original spatial stream, other spatial streams may be unpreconditioned, and different spatial streams may also correspond to different ones.
  • the transmission scheme solves the problem of low scheduling flexibility; the effect of improving scheduling flexibility is achieved.
  • FIG. 1 is a schematic diagram of an implementation environment according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a network device involved in the environment implemented in FIG. 1;
  • FIG. 3 is a schematic diagram of an application unit in the network device shown in FIG. 2;
  • FIG. 4 is a schematic diagram of another application unit in the network device shown in FIG. 2;
  • FIG. 5 is a flowchart of a method for data transmission according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for another data transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a data transmission method according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a transmitting end device according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of a receiving end device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a data transmission system according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an implementation environment according to an embodiment of the present invention.
  • the implementation environment provides a data transmission system, which may be a wireless communication system, and may be a MIMO system. 1.
  • the implementation environment may include: a base station 01 and a plurality of UEs.
  • the implementation environment is described by taking multiple UEs including UE-02, UE-03, UE-04, and UE-05 as an example.
  • each of the base station 01 and the multiple UEs may be a transmitting end device or a receiving end device.
  • the base station 01 is a transmitting end device
  • multiple UEs are receiving end devices.
  • the base station 01 is the receiving end device
  • the implementation environment and the following embodiments all use the base station 01 as the transmitting end device, and the plurality of UEs are the receiving end devices as an example. Be explained.
  • the transmitting end device may pre-code multiple spatial streams to obtain multiple pre-coded data streams and transmit the multiple pre-coded data streams, where the multiple spatial streams include at least two first pre-processing a spatial stream, the at least two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream, and the receiving end device may recover the at least two first pre-processing spaces from the plurality of pre-coded data streams Streaming, and then recovering the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the transmitting end device can improve scheduling flexibility by pre-processing the first original spatial stream to obtain at least two first pre-processed spatial streams.
  • the network device 20 may be a transmitting end device or a receiving end device, and the transmitting end device may be the base station 01 or any UE (for example, UE-02) in the implementation environment shown in FIG. Any one of the UEs in the implementation environment (for example, UE-02) or the base station 01, specifically, when the transmitting device is the base station 01, the receiving device is the UE, and when the transmitting device is the UE, the receiving device is For base station 01.
  • the network device 20 includes a processor 22 and a network interface 24.
  • Processor 22 includes one or more processing cores.
  • the processor 22 executes various functional applications and data processing by running software programs and units.
  • network device 20 also includes components such as memory 26, bus 28, and the like. Among them, the memory 26 and the network interface 24 is coupled to processor 22 via bus 28.
  • Memory 26 can be used to store software programs as well as units. Specifically, the memory 26 may store an application unit 262 and an operating system (not shown in FIG. 2) required for at least one function, and the operating system may be a real-time operating system (English: Real Time eXecutive; RTX), LINUX, Operating systems such as UNIX, WINDOWS, or OSX.
  • an operating system (not shown in FIG. 2) required for at least one function
  • the operating system may be a real-time operating system (English: Real Time eXecutive; RTX), LINUX, Operating systems such as UNIX, WINDOWS, or OSX.
  • FIG. 3 is a schematic structural diagram of an application unit 262 provided by the embodiment shown in FIG. 2 .
  • the application unit 262 may be a first pre-coding unit 262a, a first transmitting unit 262b, and a second pre-coding unit. 262c and second transmitting unit 262d.
  • the first pre-encoding unit 262a pre-codes the plurality of spatial streams to obtain a plurality of pre-encoded data streams, where the plurality of spatial streams includes at least two first pre-processed spatial streams, and the at least two first pre-processed spatial streams are Pre-processing the first original spatial stream.
  • the first transmitting unit 262b transmits the plurality of precoded data streams.
  • Different spatial streams in the plurality of spatial streams correspond to different precoding vectors, and each precoding vector corresponds to one demodulation reference signal DMRS port, and different precoding vectors correspond to different DMRS ports.
  • the second pre-encoding unit 262c pre-codes the demodulation reference signals of the plurality of spatial streams to obtain a plurality of pre-coded demodulation reference signals, each of the plurality of spatial streams corresponding to one demodulation reference signal.
  • the second transmitting unit 262d transmits the plurality of precoded demodulation reference signals.
  • the at least two first pre-processed spatial streams are directed to the first receiving end device.
  • the plurality of spatial streams further includes at least one original spatial stream.
  • At least one of the at least one original spatial stream points to the second receiving end device.
  • the plurality of spatial streams further includes: at least two second pre-processed spatial streams obtained by pre-processing the second original spatial stream, the second original space The stream points to the third receiving device.
  • the pre-processing is a transmit diversity process.
  • the transmit diversity process is space-time transmit diversity processing, space-frequency transmit diversity processing, or space-time-frequency transmit diversity processing.
  • the transmit diversity process is a cyclic delay diversity process.
  • the pre-processing is a spatial diversity multiplexing process based on transmit diversity.
  • FIG. 4 is a schematic structural diagram of another application unit 262 provided by the embodiment shown in FIG. 2 .
  • the application unit 262 may be a first receiving unit 262e, a first restoring unit 262f, and a second restoring unit. 262g and second receiving unit 262h.
  • the first receiving unit 262e receives a plurality of precoded data streams, where the plurality of spatially encoded streams are precoded, and the plurality of spatial streams includes at least two first preprocessed spatial streams, the at least two The two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream.
  • the first recovery unit 262f recovers the at least two first pre-processed spatial streams from the plurality of pre-coded data streams.
  • the second restoration unit 262g recovers the first original spatial stream according to the at least two first pre-processed spatial streams.
  • Different spatial streams in the plurality of spatial streams correspond to different precoding vectors, and each precoding vector corresponds to one demodulation reference signal DMRS port, and different precoding vectors correspond to different DMRS ports.
  • the second receiving unit 262h receives a plurality of precoding demodulation reference signals obtained by precoding the demodulation reference signals of the plurality of spatial streams, each of the plurality of spatial streams Each spatial stream corresponds to a demodulation reference signal;
  • the first restoring unit 262f recovers the at least two first pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-encoded demodulation reference signals of the at least two first pre-processed spatial streams.
  • the at least two first pre-processed spatial streams are directed to the first receiving end device.
  • FIG. 5 is a flowchart of a method for transmitting data according to an embodiment of the present invention.
  • the data transmission method is applied to the implementation environment shown in FIG. 1 for example.
  • the data transmission method may include:
  • Step 501 The transmitting device pre-codes the plurality of spatial streams to obtain a plurality of pre-coded data streams, where the plurality of spatial streams includes at least two first pre-processed spatial streams, and the at least two first pre-processed spatial streams are A raw spatial stream is preprocessed.
  • the plurality of spatial streams may further include at least one original spatial stream and/or at least two second pre-processed spatial streams, and the like, at least two first pre-processed spatial streams may be directed to the first receiving end device, and at least one original spatial stream At least one of the second original spatial streams may be directed to the third receiving end device, and the at least two second preconditioned spatial streams are preprocessed for the second original spatial stream.
  • the pre-processing may be a transmit diversity process or a space diversity multiplexing process based on transmit diversity
  • the transmit diversity process may be space-time transmit diversity processing, space-frequency transmit diversity processing, or space-time-frequency transmit diversity processing, or
  • the transmit diversity process may also be a cyclic delay diversity process
  • the transmit diversity based spatial division multiplexing process may be a large scale delayed cyclic delay diversity process.
  • the step 501 can be implemented by the first pre-encoding unit 262a in the embodiment shown in FIG.
  • Step 502 The transmitting end device transmits multiple precoded data streams to the receiving end device.
  • the multiple precoded data streams may be transmitted to the receiving device.
  • the step 502 can be implemented by the first sending unit 262b in the embodiment shown in FIG. 3, and the specific implementation process can refer to related technologies, and details are not described herein again.
  • different spatial streams in multiple spatial streams may correspond to different precoding vectors, and each precoding vector may correspond to a demodulation reference signal (English: Demodulation reference signal; DMRS) port, different DMRS ports corresponding to different precoding vectors are different, and each spatial stream of multiple spatial streams corresponds to one demodulation reference signal, and the transmitting end device can also predefine demodulation reference signals of multiple spatial streams Encoding, obtaining a plurality of precoded demodulation reference signals, and then transmitting a plurality of precoding demodulation reference signals to the receiving end device.
  • DMRS Demodulation reference signal
  • Step 503 The receiving end device receives multiple precoded data streams transmitted by the transmitting end device.
  • the receiving end device may receive the precoded data stream transmitted by the transmitting end device.
  • the step 503 can be implemented by the first receiving unit 262 e in the embodiment shown in FIG. 4 , and the specific implementation process can refer to related technologies, and details are not described herein again.
  • Step 504 The receiving end device recovers at least two first pre-processed spatial streams from the plurality of pre-coded data streams.
  • the receiving end device may recover at least two first pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-coded demodulation reference signals of the at least two first pre-processed spatial streams.
  • each precoding vector may correspond to one DMRS port, and different DMRS ports corresponding to different precoding vectors are different, the number of DMRSs is usually equal to the number of spatial streams, and DMRS can be used for channel demodulation, because The precoding vector used for precoding each spatial stream is the same as the precoding vector used for precoding the DMRS corresponding to the spatial stream, but the DMRS does not need to be preprocessed.
  • the receiving end device may demodulate the received precoded data stream according to a code demodulation reference signal corresponding to the DMRS port to obtain a spatial stream. Specifically, the receiving end device may estimate the precoding vector by means of the precoding demodulation reference signal, and further recover at least two first preconditioned spatial streams according to the precoding vector.
  • the step 504 can be implemented by the first recovery unit 262f in the embodiment shown in FIG. 4, and the specific implementation process can refer to related technologies, and details are not described herein again.
  • a plurality of precoded data streams sent by the transmitting device may include precoded data streams directed to other receiving devices, in which case, for the current receiving device, these are directed to other receiving devices.
  • the encoded data stream should be considered as interference, which can be eliminated using various existing interference cancellation techniques or receiver techniques.
  • the transmitting device knows the complete channel information of each receiving device
  • the other receiving devices correspond to each other.
  • the precoding matrix is designed to be orthogonal to the channel of the current receiving device, such that the precoded data stream destined for other receiving devices has been eliminated when it arrives at the current receiving device.
  • the transmitting device cannot know the complete channel information of each receiving device, and only the coarse channel information of each receiving device can be known.
  • the precoding matrix corresponding to the other receiving end devices cannot be completely orthogonal to the channel of the current receiving end device, so the precoded data stream sent to the current receiving end device still has other receiving when it reaches the current receiving end device. The residual of the precoded data stream of the end device.
  • Step 505 The receiving end device recovers the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the receiving end device may perform preprocessing on the first original spatial stream by the transmitting end device to generate a preprocessing method dependent on the at least two first preconditioned spatial streams to recover the first original from the at least two first preconditioned spatial streams. Spatial flow.
  • the receiving device can use various methods to learn the foregoing preprocessing method, such as a pre-defined manner in the standard (fixed manner), or a manner indicated by the transmitting device (flexible and variable manner), for example, the transmitting device can The pre-processing method employed is indicated to the receiving device. This indication can be either an implicit indication or an explicit indication. The above indications can be sent using various signaling.
  • the foregoing signaling may be, for example, a radio resource control (Radio Resource Control; RRC for short) similar to that used in the LTE standard.
  • the downlink control information (English: Downlink Control Information; DCI) sent by the physical downlink control channel (English: Physical Downlink Control Channel; PDCCH for short).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the pre-processing method used by the UE may be previously indicated by the base station to the UE, in this case, the signaling adopted by the base station in the indication process.
  • the pre-processing method used by the UE may be indicated by the UE to the base station.
  • the signaling may be through the physical uplink control channel.
  • PUCCH Physical Uplink Control Channel
  • UCI Uplink Control Information
  • the step 505 can be implemented by the second recovery unit 262g in the embodiment shown in FIG. 4.
  • the specific implementation process can refer to the embodiment shown in FIG. 6 below, and details are not described herein again.
  • the transmitting end device obtains a plurality of pre-encoded data streams by pre-coding a plurality of spatial streams, and transmits a plurality of pre-coded data streams, where the plurality of spatial streams includes at least two a first pre-processed spatial stream, at least two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream, and the receiving end device recovers the at least two first ones from the plurality of pre-coded data streams
  • the spatial stream is preprocessed, and the first original spatial stream is recovered according to at least two first preconditioned spatial streams.
  • the transmission scheme solves the problem of low scheduling flexibility; the effect of improving scheduling flexibility is achieved.
  • FIG. 6 is a flowchart of another method for data transmission according to an embodiment of the present invention.
  • the data transmission method is applied to the implementation environment shown in FIG. 1 for example. 6, the data transmission method can include:
  • Step 601 The transmitting device pre-codes the plurality of spatial streams to obtain a plurality of pre-coded data streams, where the plurality of spatial streams includes at least two first pre-processed spatial streams, and the at least two first pre-processed spatial streams are A raw spatial stream is preprocessed.
  • the transmitting end device is the base station 01 in the implementation environment shown in FIG. 1
  • the first receiving end device is the UE-02 in the implementation environment shown in FIG. 1
  • the second receiving end device is the implementation environment shown in FIG.
  • the third receiving end device is an example of the UE-04 in the implementation environment shown in FIG. 1.
  • the transmitting end device may also be a UE, and the receiving end device may also be a base station.
  • the original spatial stream may be a spatial stream obtained after layer mapping.
  • the processing of the physical channel may generally include: scrambling, modulation mapping, layer mapping, precoding, resource granular mapping, and orthogonal frequency division multiplexing (OFDM: OFDM) signals.
  • the processing object of the physical channel is usually a codeword, and the codeword may be a bit stream subjected to an encoding process (including at least channel coding processing), the bit stream is scrambled to obtain a scrambled bit stream, and the scrambled bit stream is subjected to modulation mapping.
  • a modulation symbol stream can be obtained.
  • the modulation symbol stream can be obtained by layer mapping to obtain a plurality of symbol layers (the symbol layer is also referred to as a spatial stream and a spatial layer).
  • the symbol layer is precoded to obtain a plurality of precoded symbol streams, and the precoded symbol stream passes through
  • the resource element (English: Resource Element; abbreviation: RE) map is mapped to a plurality of resource granules, which are then subjected to an OFDM signal generation stage to obtain an OFDM symbol stream, and the OFDM symbol stream is transmitted through the antenna port.
  • the OFDM signal generation stage may be an OFDM symbol stream by using an Inverse Fast Fourier Transform (IFFT).
  • IFFT Inverse Fast Fourier Transform
  • the original spatial stream in the embodiment of the present invention may be a spatial stream obtained through layer mapping.
  • the original spatial stream mentioned in the embodiment of the present invention is described above by using the spatial stream obtained by layer mapping in the existing LTE standard.
  • the spatial stream mentioned in the embodiment of the present invention can also generally refer to any modulation symbol stream obtained after being processed by modulation or the like, in addition to the spatial stream obtained after layer mapping in the LTE standard.
  • the transmitting end device may perform precoding on the plurality of spatial streams to obtain a plurality of precoded data streams
  • the multiple spatial streams may include: at least two first preconditioned spatial streams, at least two second Preprocess spatial flow and at least An original spatial stream, the at least two first pre-processed spatial streams may be obtained by pre-processing the first original spatial stream, and the at least two first pre-processed spatial streams may be directed to the first receiving end device, where the A receiving end device may be UE-02 in the implementation environment shown in FIG.
  • the at least two second pre-processing spatial streams may be obtained by pre-processing the second original spatial stream, and the at least two second pre- The processing space stream may be directed to the third receiving end device, where the third receiving end device may be the UE-04 in the implementation environment shown in FIG. 1 , and the at least one original spatial stream may be a spatial stream directly after the layer mapping, where the at least one At least one of the original spatial streams may point to the second receiving device.
  • a part of the pre-coded data streams in the plurality of pre-coded data streams are obtained by pre-processing and pre-coding, and the partially pre-coded data streams may be pre-coded without pre-processing, wherein the pre-processing may be performed. It is a transmit diversity process or a space division multiplexing process based on transmit diversity.
  • the transmitting end device may precode multiple spatial streams by using a precoding technique, and the precoding technology processes the spatial stream by using a precoding matrix matched with channel attributes, so that the processed spatial stream is processed.
  • the precoding matrix may include a plurality of precoding vectors, and the number of precoding vectors is the same as the number of spatial streams of the receiving end device corresponding to the precoding matrix, and each of the plurality of spatial streams is adapted to the channel.
  • the spatial stream may correspond to one precoding vector, and different spatial streams in the plurality of spatial streams correspond to different precoding vectors, and the transmitting device may precode multiple spatial streams by using multiple precoding vectors.
  • precoding the spatial stream can optimize the data transmission process, and the received signal quality (such as the signal to interference and noise ratio SINR) is improved.
  • Transmit diversity processing improves transmission reliability by redundantly transmitting raw spatial streams (e.g., symbols) over time, frequency, space (e.g., antennas), or various combinations of the three dimensions described above.
  • the number of redundant transmissions may be set according to a channel model or a channel quality
  • the redundantly transmitted object may be the original spatial stream itself or a processed original spatial stream
  • the processing may include but not It is limited to delay, negation, conjugate, rotation, etc., and the processing obtained by deriving, evolving, and combining the various processes described above.
  • the commonly used transmit diversity may include, but is not limited to, Space-Time Transmit Diversity (STTD), Space-Frequency Transmit Diversity (SFTD), time-switched transmit diversity.
  • STTD Space-Time Transmit Diversity
  • SFTD Space-Frequency Transmit Diversity
  • the LTE standard adopts a transmit diversity method such as Space Time Block Coding (STBC), Space Frequency Block Coding (SFBC), and CDD.
  • STBC Space Time Block Coding
  • SFBC Space Frequency Block Coding
  • the transmit diversity process may be space-time transmit diversity processing, space-frequency transmit diversity processing, space-time-frequency transmit diversity processing, or cyclic delay diversity processing, and various forms of diversity processing described above, based on transmit diversity.
  • the sub-multiplexing process can be a pre-coding process for large-scale delayed CDD.
  • the transmission scheme of simultaneously pre-processing and pre-coding the spatial stream may be referred to as beamforming transmit diversity (English: Beamformed) Transmit Diversity; abbreviated as: BTD) transmission scheme; when the transmit diversity processing is cyclic delay diversity processing, the transmission scheme of simultaneously preprocessing and precoding the spatial stream may be referred to as open-loop spatial multiplexing (English: open-loop spatial Multiplexing; abbreviation: OLSM) transmission scheme; a transmission scheme that only precodes a spatial stream may be referred to as a closed-loop spatial multiplexing (referred to as CLSM) transmission scheme.
  • the above description of the transmit diversity is generally described by way of example, and those skilled in the art should understand that, in addition to the above examples, the transmit diversity includes other multiple implementation manners, therefore, the above description should not be understood.
  • the technical solution of the present application should be understood as a solution applicable to various possible transmit diversity; in addition, the pre-processing described in the present application is merely exemplary. In practical applications, the pre-processing includes but not Limited to the above-described transmit diversity processing and space diversity multiplexing processing based on transmit diversity, therefore, those skilled in the art should understand that, in addition to the above examples, the transmit diversity processing and the transmit diversity based spatial division multiplexing processing described in the present application are It cannot be used to limit the pretreatment described in this application.
  • a plurality of spatial streams include: a first pre-processed spatial stream 11, a first pre-processed spatial stream 12, a second pre-processed spatial stream 21, a second pre-processed spatial stream 22, a second pre-processed spatial stream 23, and
  • the original spatial stream 3 the first pre-processed spatial stream 11 and the first pre-processed spatial stream 12 are obtained by performing space-time transmit diversity processing on the first original spatial stream 1, the second pre-processed spatial stream 21, and the second pre-processed stream
  • the processing spatial stream 22 and the second pre-processing spatial stream 23 are obtained by performing cyclic delay diversity processing on the second original spatial stream 2, and it is assumed that the transmitting end device pre-codes the first pre-processed spatial stream 11 to obtain a pre-encoded data stream 110.
  • the first pre-processed spatial stream 12 is precoded to obtain a precoded data stream 120
  • the second preprocessed spatial stream 21 is precoded to obtain a precoded data stream 210
  • the second preprocessed spatial stream 22 is precoded to obtain a precoded
  • the data stream 220 pre-codes the second pre-processed spatial stream 23 to obtain a pre-encoded data stream 230
  • the first pre-processed spatial stream 11 and the first pre-processing space 12 points to the first receiving end device (eg, UE-02)
  • the second pre-processed spatial stream 21, the second pre-processed spatial stream 22, and the second pre-processed spatial stream 23 are directed to the third receiving end device (eg, UE-04)
  • the original spatial device 3 may be directed to the second receiving device (for example, UE-03), and the first receiving device may be a device that uses a B
  • the third receiving device may be a device for data transmission using an OLSM transmission scheme.
  • the base station may indicate the transmission scheme to the UE by using downlink signaling, so that the UE can use the corresponding transmission scheme for data transmission.
  • the base station 01 indicates that the UE-02 uses the BTD transmission scheme for data transmission
  • the downlink signaling indicates that the UE-03 uses the CLSM transmission scheme for data transmission
  • the downlink signaling indicates that the UE-04 uses the OLSM transmission scheme. data transmission.
  • the base station may use the format of the downlink signaling to indicate the transmission scheme, and may also use the content of the downlink signaling to indicate the transmission scheme, which is not limited in this embodiment of the present invention.
  • the transmission scheme is generally described above by way of example, and those skilled in the art should understand that, in addition to the above examples, the transmission scheme includes other multiple transmission schemes, and therefore, the above description should not be understood. To limit the technical solution of the present application.
  • the precoded data stream obtained after precoding often includes multiple data streams, and the specific number of data streams is related to the number of physical antennas or the number of antenna ports. This part is clearly described in the related art. The embodiments of the present invention are not described herein again.
  • the data transmission method provided by the embodiment of the present invention may be applied to a MIMO system, and the MIMO system generally uses a precoding technology to implement space division multiplexing, so that multiple spaces are simultaneously transmitted between the transmitting end device and the receiving end device.
  • Streaming increasing system throughput.
  • a MIMO system usually includes a single-user MIMO (Single-user MIMO; SU-MIMO) scenario and a multi-user MIMO (Multi-user MIMO; MU-MIMO) scenario.
  • the spatial streams of the spatial multiplexing multiplex are directed to the same receiving device.
  • MU-MIMO scenario multiple spatial streams that are spatially multiplexed are directed to at least two receiving devices.
  • precoding technology has been adopted by various wireless communication standards, such as but not limited to the LTE standard.
  • precoding generally refers to processing a transmitted signal based on a specific matrix, so precoding in the LTE standard includes not only Precoding for space division multiplexing also includes precoding for transmit diversity and the like.
  • the precoding involved in the technical solution provided by the embodiment of the present invention only refers to precoding of a spatial stream by a precoding matrix based on space division multiplexing, and is not included for Precoding of transmit diversity.
  • the precoding involved in the technical solution provided by the embodiment of the present invention may be precoding not based on channel state information, which is also called open loop precoding, which is similar to, for example but not limited to, the LTE standard.
  • Precoding of uncombined CDD and precoding of CDD for large-scale delay in addition, the precoding involved in the technical solution provided by the embodiment of the present invention may be precoding based on state information, and the precoding is further This is called closed loop precoding, which is similar to, for example but not limited to, closed loop space division multiplexing in the LTE standard.
  • the embodiment of the present invention does not limit the specific form and the type of the precoding.
  • the original spatial stream is precoded to obtain a precoded data stream, where Y represents a precoded data stream, F2 represents a transmit diversity process, F1 represents precoding, and S represents a raw spatial stream.
  • step 601 is specifically implemented by the first pre-encoding unit 262a in the embodiment shown in FIG. 3, and the transmitting end device performs transmit diversity on the original spatial stream and pre-encodes the plurality of spatial streams.
  • the implementation process is clearly described in the related art, and the embodiments of the present invention are not described herein again.
  • Step 602 The transmitting device sends a plurality of precoded data streams to the receiving device.
  • the transmitting device may send the multiple pre-coded data streams to the receiving device, where the receiving device may include the first receiving device, the second receiving device, and the third receiving device.
  • the transmitting end device transmits, to the first receiving end device, a precoded data stream obtained by precoding at least two first preprocessed spatial streams, and transmitting, by the second receiving end device, the pair of second receiving end devices
  • the at least one original spatial stream is precoded to obtain a precoded data stream
  • the preamble data stream obtained by precoding the at least two second preconditioned spatial streams is transmitted to the third receiving end device.
  • the first receiving end device is UE-02
  • the second receiving end device is UE-03
  • the third receiving end device is UE-04
  • the transmitting end device pre-codes at least two first pre-processed spatial streams.
  • the precoded data stream 110 and the precoded data stream 120 precode the at least one original spatial stream directed to the second receiving end device to obtain a precoded data stream 30, and precode the at least two second preprocessed spatial streams to obtain a precoding
  • the encoded data stream 210, the precoded data stream 220, and the precoded data stream 230 therefore, the transmitting device transmits the precoded data stream 110 and the precoded data stream 120 to the UE-02, and transmits the precoded data stream 30 to the UE-03
  • the precoded data stream 210, the precoded data stream 220, and the precoded data stream 230 are transmitted to the UE-04.
  • each of the pre-coded data streams is multiplexed and transmitted, and each multiplexed pre-coded data stream is directed to other receiving devices when it reaches any one of the receiving devices.
  • the encoded data stream should be considered as interference, except that the interference is greatly reduced by the combination of precoding and the channel of the above-mentioned receiving device. The content of this section is explained above, so I won't go into details here.
  • step 602 may be implemented by the first sending unit 262b in the embodiment shown in FIG. 3, and the specific implementation process of the transmitting end device transmitting multiple precoded data streams to the receiving end device is in the related art. Clearly described The embodiments of the present invention are not described herein again.
  • Step 603 The transmitting end device performs precoding on the demodulation reference signals of the plurality of spatial streams to obtain a plurality of precoding demodulation reference signals, where each of the plurality of spatial streams corresponds to one demodulation reference signal.
  • each of the plurality of spatial streams corresponds to one demodulation reference signal
  • the transmitting device can pre-code the demodulation reference signals of the plurality of spatial streams to obtain a plurality of precoding demodulation reference signals.
  • the transmitting end device may precode the corresponding demodulation reference signal by using the same precoding vector as the precoding of the spatial stream, so that the receiving end device can use the demodulation reference signal of the spatial stream to correspond to the corresponding The spatial stream is demodulated.
  • each precoding vector may correspond to one DMRS port, and different DMRS ports corresponding to different precoding vectors are different, and DMRS may be used for channel demodulation, because precoding is performed for each spatial stream.
  • the precoding vector is the same as the precoding vector used for precoding the DMRS corresponding to the spatial stream, but the DMRS does not need to be preprocessed.
  • the pre-processed spatial stream is preprocessed to obtain at least two pre-processed spatial streams
  • the pre-processed spatial streams are associated with respective DMRSs, and the DMRSs may be different.
  • the receiving end device may demodulate the received precoded data stream according to the DMRS corresponding to the DMRS port to obtain a spatial stream.
  • At least two pre-processed spatial streams may be obtained by pre-processing the original spatial stream, and the receiving end device needs to be configured according to the transmitting end device after demodulating and obtaining the spatial stream.
  • the preprocessing mode recovers the original spatial stream according to the at least two preconditioned spatial streams.
  • the demodulation reference signal corresponding to the first pre-processed spatial stream 11 is S11
  • the demodulation reference signal corresponding to the first pre-processed spatial stream 12 is S12
  • the demodulation reference signal corresponding to the second pre-processed spatial stream 21 is S21
  • the demodulation reference signal corresponding to the second pre-processed spatial stream 22 is S22
  • the demodulation reference signal corresponding to the second pre-processed spatial stream 23 is S23
  • the demodulation reference signal corresponding to the original spatial stream 3 is S3, and the transmitting end is
  • the device performs precoding on the demodulation reference signal S11 to obtain a precoding demodulation reference signal S110
  • precoding the demodulation reference signal S12 to obtain a precoding demodulation reference signal S120
  • precoding the demodulation reference signal S21 to obtain a precoding.
  • Demodulating the reference signal S210, precoding the demodulation reference signal S22 to obtain a precoding demodulation reference signal S220, precoding the demodulation reference signal S23 to obtain a precoding demodulation reference signal S230, and precoding the demodulation reference signal S3 The encoding results in a precoded demodulation reference signal S30.
  • Z denotes a precoding demodulation reference signal
  • X denotes a demodulation reference signal
  • steps 601 and 604 in the embodiment of the present invention may be regarded as being performed simultaneously, and precoding the demodulation reference signals of the plurality of spatial streams and demodulating the reference according to the precoding.
  • the specific implementation process of the signal to estimate the pre-coded channel and recover the spatial stream from the pre-coded data stream based on the estimation result is clearly described in the related art, and details are not described herein again.
  • Step 604 The transmitting end device transmits multiple precoding demodulation reference signals to the receiving end device.
  • the transmitting end device After the transmitting end device obtains multiple precoding demodulation reference signals, it may send multiple precoding demodulation reference signals to the receiving end device. Since each spatial stream corresponds to one demodulation reference signal, the transmitting end device can transmit a corresponding precoding demodulation reference signal to the receiving end device to which the corresponding spatial stream is directed.
  • the transmitting end device transmits a precoding demodulation reference signal S110 and a precoding demodulation reference signal to the UE-02. S120.
  • the precoding demodulation reference signal S30 is transmitted to the UE-03, and the precoding demodulation reference signal S210, the precoding demodulation reference signal S220, and the precoding demodulation reference signal S230 are transmitted to the UE-04.
  • step 604 may be specifically implemented by the second transmitting unit 262d in the embodiment shown in FIG. 3, and the specific implementation process of the transmitting end device transmitting multiple precoding demodulation reference signals to the receiving end device in the related art.
  • the description of the embodiments of the present invention is omitted here.
  • the receiving end device since the plurality of spatial streams include the preprocessed pre-processed spatial stream, the receiving end device not only needs to know the DMRS port number when demodulating the corresponding data.
  • the pre-processing method for pre-processing the corresponding spatial stream by the transmitting device is also needed.
  • the first receiving device needs to know the pre-processing method for the pre-processing of the at least two first pre-processed spatial streams by the transmitting device.
  • the three receiving end devices need to know the preprocessing manner in which the transmitting end device preprocesses at least two second preconditioned spatial streams.
  • the pre-processing may be a transmit diversity process or a transmit diversity-based space division multiplexing process
  • the transmit diversity process includes but is not limited to: space-time transmit diversity processing, space-frequency transmit diversity processing, space-time-frequency transmit diversity processing, or cyclic delay.
  • the space division multiplexing processing based on the transmit diversity may be a precoding process for the large-scale delay CDD. Therefore, the transmitting end device also needs to transmit a corresponding preprocessing manner corresponding to the spatial stream to the receiving end device.
  • the transmitting end device is the base station and the receiving end device is the UE.
  • the transmitting end device is the UE and the receiving end device is the base station, the following description can be referred to.
  • the base station may send the DMRS port information (such as a port identifier) corresponding to each spatial stream and/or the information of the pre-processing manner used for pre-processing the spatial stream to the UE by using downlink signaling, where the UE may The DMRS port information corresponding to the spatial stream and/or the pre-processing manner used for pre-processing the spatial stream performs data demodulation, wherein the base station may send the DMRS port information and/or the space corresponding to the spatial stream to the UE in the following manners.
  • Manner 1 The base station sends, by using downlink signaling, the port identifier of the DMRS corresponding to each spatial stream and the information of the preprocessing mode corresponding to each spatial stream to the UE.
  • the information about the pre-processing manner corresponding to each spatial stream is information that the base station preprocesses the original spatial stream to obtain a pre-processing manner of the corresponding pre-processed spatial stream.
  • the port identifier may be a port number.
  • the base station indicates, by using downlink signaling, that the UE-02 base station sends the port identifier of the DMRS to x+1 and x+2, and indicates that the preprocessing mode adopted by the UE-02 base station is empty. Transmit diversity processing; for example, the base station indicates, by using downlink signaling, that the UE-02 base station sends the port identifier of the DMRS to x, x+1, x+2, and x+3, and indicates that the preprocessing mode adopted by the UE-02 base station is null. Frequency transmit diversity processing.
  • the device can allocate a fixed number of bits (Chinese: bits) to specify the pre-processing mode.
  • the 2-bit indication pre-processing mode can be used to indicate four pre-processing modes. For example, 00 indicates space-time transmit diversity processing, and 01 indicates space-frequency transmit diversity processing.
  • the base station may also indicate the pre-processing manner in other manners.
  • Manner 2 The base station sends the port identifier of the DMRS corresponding to each spatial stream to the UE by using the downlink signaling, and the port identifier or the number of the port of the DMRS corresponding to each spatial stream uniquely corresponds to a preprocessing mode.
  • the number of port identifiers or ports of the DMRS corresponding to the spatial stream may indicate a pre-processing manner, a mapping between the port identifier or the number of ports and the pre-processing mode, and the port identifier or port of the DMRS corresponding to each spatial stream.
  • the number uniquely corresponds to a pre-processing mode, and the UE can determine the pre-processing mode according to the port identifier or the number of ports of the DMRS and the mapping relationship.
  • the mapping relationship is that ports using port IDs x+1 and x+2 must use space-time transmit diversity processing, or two ports must use space-time transmit diversity processing.
  • the UE may determine, according to the mapping relationship, that the pre-processing mode used by the base station is null-time transmit diversity processing.
  • Manner 3 The base station sends the information of the pre-processing mode corresponding to each spatial stream to the UE by using downlink signaling, and the pre-processing mode corresponding to each spatial stream uniquely corresponds to a port identifier of a group of DMRSs.
  • the information of the pre-processing mode may be an identifier of the pre-processing mode, and the base station may indicate the pre-processing mode by using one or more bits.
  • the pre-processing mode corresponding to the spatial stream may indicate the port identifier of the DMRS, and the mapping between the pre-processing mode and the port identifier is used.
  • the pre-processing mode used by each spatial stream may uniquely correspond to a port identifier of a group of DMRSs.
  • the UE may determine the port identifier of the DMRS according to the pre-processing manner and the mapping relationship, and further determine the port of the DMRS according to the port identifier of the DMRS.
  • the base station indicates, by using the downlink signaling, that the preprocessing mode adopted by the UE-02 base station is space-time transmit diversity processing, and the mapping relationship is: using the space-time transmit diversity processing for pre-processing, the port identifiers must be used as x+1 and x+2.
  • the UE-02 can know that the port identifiers of the DMRS are x+1 and x+2.
  • Manner 4 The number of ports of the DMRS corresponding to each spatial stream of the UE is sent by the base station through the downlink signaling, and the number of DMRS ports corresponding to each spatial stream uniquely corresponds to a pre-processing mode and a port identifier of a group of DMRSs.
  • the number of ports of the DMRS corresponding to the spatial stream indicates the pre-processing mode used by the spatial stream and the port identifier of the DMRS, and the mapping between the pre-processing mode, the number of DMRS ports, and the port identifier of the DMRS, each having a mapping relationship.
  • the number of ports of the DMRS corresponding to the spatial stream uniquely corresponds to a pre-processing mode and a port identifier of a group of DMRSs.
  • the UE may determine the transmit pre-processing mode and the port identifier of the DMRS according to the number of DMRS ports and the mapping relationship, and further determine the port identifier according to the DMRS. Determine the port of the DMRS.
  • the base station indicates, by using the downlink signaling, that the number of ports of the DMRS corresponding to the UE-02 spatial stream is two, and the mapping relationship is that the two ports must use the space-time transmit diversity processing for pre-processing and the DMRS corresponding to the spatial stream must use the port. Ports identified as x+1 and x+2.
  • the UE-02 may determine, according to the number of ports of the DMRS corresponding to the spatial stream indicated by the base station, and the mapping relationship, that the preprocessing mode used by the spatial stream is space-time transmit diversity processing, and the port identifier of the DMRS corresponding to the spatial stream is x+1 and x+2.
  • Manner 5 The base station sends, by using the downlink signaling, the number of ports of the DMRS corresponding to each spatial stream and the information of the preprocessing mode corresponding to each spatial stream, and the number of ports of the DMRS corresponding to each spatial stream corresponds to each spatial stream.
  • the preprocessing method uniquely corresponds to the port identifier of a group of DMRSs.
  • the number of ports of the DMRS corresponding to the spatial stream and the pre-processing manner corresponding to the spatial stream indicate the port identifier of the DMRS corresponding to the spatial stream
  • the pre-processing mode, the number of ports of the DMRS, and the port identifier of the DMRS are The mapping relationship, the number of ports of the DMRS corresponding to each spatial stream and the preprocessing mode corresponding to each spatial stream uniquely correspond to a port identifier of a group of DMRSs.
  • the UE may determine the port identifier of the DMRS according to the number of ports of the DMRS indicated by the base station and the pre-processing manner corresponding to the spatial stream and the mapping relationship.
  • the base station indicates, by using the downlink signaling, that the preprocessing mode corresponding to the UE-02 spatial stream is the space-time transmit diversity process and the number of the DMRS ports is two, and the mapping relationship is: the pre-processing mode is null-time transmit diversity processing and the number of DMRS ports A space stream of 2 must use ports with port IDs x+1 and x+2.
  • Step 605 The receiving end device receives multiple precoded data streams transmitted by the transmitting end device.
  • the plurality of precoded data streams are obtained by precoding the plurality of spatial streams by the transmitting end device.
  • the receiving end device may receive multiple precoded data streams transmitted by the transmitting end device, and the receiving end device may be the first receiving end device and the second receiving end device. Or a third receiving device.
  • the receiving end device receives the precoded data stream that is sent by the transmitting end device and precodes the at least two first preprocessed spatial streams;
  • the second receiving device receives the precoded data obtained by precoding the at least one original spatial stream transmitted by the transmitting device.
  • the receiving end device When the receiving end device is the third receiving end device, the receiving end device receives the pre-encoded data stream that is transmitted by the transmitting end device and pre-codes the at least two second pre-processed spatial streams.
  • each of the pre-coded data streams is multiplexed and transmitted, and each multiplexed pre-coded data stream is directed to other receiving devices when it reaches any one of the receiving devices.
  • the encoded data stream should be considered as interference, except that the interference is greatly reduced by the combination of precoding and the channel of the above-mentioned receiving device. The content of this section is explained above, so I won't go into details here.
  • the first receiving end device is UE-02
  • the second receiving end device is UE-03
  • the third receiving end device is UE-04
  • the receiving end device is the first receiving end device
  • UE-02 receives the transmitting.
  • the precoding data stream 110 and the precoding data stream 120 transmitted by the end device when the receiving end device is the second receiving end device, the UE-03 receives the precoded data stream 30 transmitted by the transmitting end device, and when the receiving end device is the third device
  • UE-04 receives the precoded data stream 210, the precoded data stream 220, and the precoded data stream 230 transmitted by the transmitting device.
  • the pre-encoded data stream received by each receiving end device is not the pre-encoded data sent by the transmitting end device.
  • Stream but a precoded data stream sent by the transmitting device and propagated through the channel.
  • the precoded data stream is affected by the channel during the propagation process, and the precoded data stream received by the receiving end device is different from the precoded data stream sent by the transmitting end device.
  • the same name and number are used to indicate the precoded data stream sent by the transmitting device and the precoded data stream received by the receiving device.
  • step 605 is specifically implemented by the first receiving unit 262 e in the embodiment shown in FIG. 4 , and the specific implementation process of the receiving end device receiving the multiple pre-coded data streams transmitted by the transmitting device is in the related art. The description of the embodiments of the present invention is not described herein.
  • Step 606 The receiving end device receives multiple precoding demodulation reference signals transmitted by the transmitting end device.
  • the plurality of precoding demodulation reference signals are obtained by precoding the demodulation reference signals of the plurality of spatial streams, and each of the plurality of spatial streams corresponds to one demodulation reference signal, and each spatial stream is performed.
  • the precoding vector used for precoding is the same as the precoding vector used for precoding the demodulation reference signal of each spatial stream.
  • the UE-02 when referring to step 604 and step 605, when the receiving end device is the first receiving end device, and the first receiving end device is UE-02, the UE-02 receives the precoding demodulation reference signal transmitted by the transmitting end device. S110 and the precoding demodulation reference signal S120, when the receiving end device is the second receiving end device, and the second receiving end device is the UE-03, the UE-03 receives the precoding demodulation reference signal S30 transmitted by the transmitting end device, When the receiving end device is the third receiving end device, and the third receiving end device is the UE-04, the UE-04 receives the precoding demodulation reference signal S210, the precoding demodulation reference signal S220, and the precoding that are transmitted by the transmitting end device.
  • the reference signal S230 is demodulated.
  • step 606 may be specifically implemented by the second receiving unit 262h in the embodiment shown in FIG. 4, and the specific implementation process of the receiving end device receiving multiple precoding demodulation reference signals is clear in the related art. The description of the embodiments of the present invention is not described herein again.
  • Step 607 The receiving end device recovers at least two first pre-processed spatial streams from the plurality of pre-coded data streams.
  • the receiving end device in step 607 is the first receiving end device.
  • the first receiving end device may recover at least two first preconditioned spatial streams from the plurality of precoded data streams.
  • the first receiving end device may recover at least two first pre-processed spatial streams from the plurality of pre-coded data streams according to the pre-encoded demodulation reference signals of the at least two first pre-processed spatial streams.
  • each precoding vector may correspond to one DMRS port, and different DMRS ports corresponding to different precoding vectors are different, and DMRS may be used for channel demodulation, because precoding is performed for each spatial stream.
  • the precoding vector is the same as the precoding vector used for precoding the DMRS corresponding to the spatial stream, but the DMRS does not need to be preprocessed.
  • the spatial streams are associated with respective DMRSs, and the DMRSs are different from each other.
  • the receiving end device may demodulate the received precoded data stream according to the DMRS corresponding to the DMRS port to obtain a spatial stream.
  • the first receiving end device needs to recover the at least two first pre-processed spatial streams from the plurality of pre-coded data streams, and obtain the pre-encoded demodulation reference signals of the at least two first pre-processed spatial streams.
  • the precoding vector used for precoding each of the first preconditioned spatial streams is the same as the precoding vector used for precoding the DMRS corresponding to each first preconditioned spatial stream, therefore, according to the at least two The precoding demodulation reference signal of the preconditioned spatial stream and the port identifier of the DMRS demodulate the at least two first preconditioned spatial streams.
  • the first receiving end device recovers the first pre-processed spatial stream 11 and the first pre-processed spatial stream 12 according to the pre-coded demodulation reference signal S110 and the pre-coded demodulation reference signal S120.
  • step 607 can be implemented by the first recovery unit 262f in the embodiment shown in FIG. 4, and the first receiving end device performs precoding from the precoding demodulation reference signals of the at least two first preprocessed spatial streams.
  • the process of recovering at least two first pre-processed spatial streams in the data stream is clearly described in the related art, and details are not described herein again.
  • the receiving end device recovers at least two first pre-processed spatial streams as an example.
  • the second receiving end device is configured according to the second receiving end device.
  • the precoding demodulation reference signal of the at least one original spatial stream recovers at least one original spatial stream from the plurality of precoded data streams
  • the third receiving end device is configured according to at least two
  • the pre-demodulation reference signal of the pre-processed spatial stream recovers at least two second pre-processed spatial streams from the plurality of pre-coded data streams, and details are not described herein again.
  • Step 608 The receiving end device recovers the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the receiving end device in step 607 is the first receiving end device.
  • the first original spatial stream may be recovered according to the at least two first pre-processed spatial streams.
  • the first receiving end device may determine, according to the related description in step 604, a pre-processing manner corresponding to the at least two first pre-processed spatial streams, and further recover according to the at least two first pre-processed spatial streams and corresponding pre-processing manners.
  • the first original spatial stream is out.
  • the first receiving end device may determine a pre-processing manner of the first pre-processed spatial stream 11 and the first pre-processed spatial stream 12 according to the related description in step 604, the first pre-processed spatial stream 11 and the first pre-processing
  • the pre-processing manner of the spatial stream 12 may be a space-time transmit diversity process, after which the first receiving end device recovers the first original according to the first pre-processed spatial stream 11, the first pre-processed spatial stream 12, and the space-time transmit diversity processing.
  • Spatial stream 1 Spatial stream 1.
  • the step 608 can be implemented by the second recovery unit 262g in the embodiment shown in FIG.
  • the embodiment of the present invention is described by taking the example that the receiving end device recovers the first original spatial stream according to the at least two first pre-processed spatial streams.
  • the receiving end device is the third receiving end device, the third receiving end device is configured according to the third receiving end device. At least two second pre-processing spaces The flow recovers the second original spatial stream.
  • the second receiving device does not need to perform the step 608.
  • the transmitting end device performs precoding on multiple spatial streams to obtain multiple precoded data streams and transmit multiple precoded data streams, where multiple spatial streams include at least Two first pre-processed spatial streams, at least two first pre-processed spatial streams are obtained by pre-processing the first original spatial stream, and the receiving device recovers the at least two of the plurality of pre-coded data streams
  • a pre-processed spatial stream recovers the first original spatial stream according to at least two first pre-processed spatial streams. Since at least two of the plurality of spatial streams are preprocessed for the first original spatial stream, other spatial streams may be unpreconditioned, and different spatial streams may also correspond to different ones.
  • the transmission scheme solves the problem of low scheduling flexibility; the effect of improving scheduling flexibility is achieved.
  • the number of antennas on the data transmitting end continues to grow rapidly, and the increase in the number of antennas can provide a higher degree of spatial freedom, which provides a possibility for a downlink diversity transmission scheme, which is provided by the embodiment of the present invention.
  • the data transmission method is based on the downlink diversity transmission scheme, so that different UEs use different transmission schemes for data transmission, thereby improving scheduling flexibility.
  • FIG. 7 is a schematic diagram of a data transmission method according to an embodiment of the present invention. The difference between the data transmission method provided by the embodiment of the present invention and the data transmission method in the related art is described below with reference to FIG. 1 and FIG. 7 . Brief description.
  • the base station 01 has a beam b1, a beam b2, a beam b3, a beam b4, a beam b5, a beam b6, and a beam b7, and the base station 01 may further have ports with port numbers x, x+1, ..., y ( Typically, the port number in the standard is continuous.
  • the base station 01 can schedule UE-02, UE-03, UE-04, and UE-05 to use the transmission scheme for data transmission.
  • the base station 01 may indicate that the UE-02, the UE-03, the UE-04, and the UE-05 use the corresponding transmission scheme for data transmission, and the base station 01 may allocate a port for each UE, where
  • the base station 01 may indicate the transmission scheme by using the format of the downlink signaling, or may indicate the transmission scheme by using the content of the downlink signaling.
  • the base station 01 indicates, by using the downlink signaling, that the UE-02 uses the BTD transmission scheme for data transmission, and allocates ports with port numbers x+1 and x+2 to the UE-02, and the base station 01 indicates that the UE-03 is adopted by the downlink signaling.
  • the CLSM transmission scheme performs data transmission and allocates a port with the port number x to the UE-03.
  • the base station 01 instructs the UE-04 to use the OLSM transmission scheme for data transmission by using downlink signaling, and the port number is x+3,...,y-
  • the port of 2 is allocated to UE-04, and the base station 01 indicates that the UE-05 uses the CLSM transmission scheme for data transmission and the port with the port number of y-1 and y is allocated to the UE-05 through the downlink signaling, and the UE can adopt the corresponding transmission.
  • the program carries out data transmission.
  • the base station 01 and the UE-02 use the BTD transmission scheme for data transmission to occupy the beam b1 and the beam b2 of the base station 01
  • the base station 01 and the UE-03 use the CLSM transmission scheme for data transmission to occupy the beam b3 of the base station 01.
  • the data transmission between the base station 01 and the UE-04 is performed by using the OLSM transmission scheme to occupy the beam b4 and the beam b5 of the base station 01.
  • the base station 01 and the UE-05 use the CLSM transmission scheme for data transmission to occupy the beam b6 and the beam b7 of the base station 01.
  • Adopted by UE-02, UE-03, UE-04 and UE-05 Different transmission schemes perform data transmission. Therefore, base station 01 has higher scheduling flexibility, and when the channel environment is diversified, optimal scheduling results can be achieved, and spectrum efficiency is improved.
  • the base station when the BTD transmission scheme and the OLSM transmission scheme are used for data transmission, the base station performs pre-processing on the original spatial stream, so that the UE-02 and the UE-04 can be recovered.
  • the base station 01 also needs to indicate the corresponding pre-processing manner to the UE-02 and the UE-04 through downlink signaling.
  • the base station indicates the SFBC to the UE-02 through downlink signaling, and indicates the CDD to the UE-04.
  • the base station 01 schedules UE-02, UE-03, UE-04, and UE-05 to perform data transmission using the same transmission scheme, and allocates ports for each UE.
  • the base station 01 schedules UE-02, UE-03, UE-04, and UE-05 to use the CLSM transmission scheme for data transmission and assign ports with port numbers x+1 and x+2 to UE-02, and the port is The port numbered x is assigned to UE-03, the port with port number x+3,...,y-2 is assigned to UE-04, and the port with port number y-1 and y is assigned to UE-05, base station After scheduling the UEs and allocating ports for each UE, each UE uses the same transmission scheme for data transmission.
  • the base station 01 and the UE-02, the UE-03, the UE-04, and the UE-05 all use the CLSM transmission scheme for data transmission
  • the UE-02 occupies the beam b1 and the beam b2 of the base station 01
  • the UE-03 occupies the base station 01.
  • Beam b3, UE-04 occupies beam b4 and beam b5 of base station 01
  • UE-05 occupies beam b6 and beam b7 of base station 01.
  • space division multiplexing of time-frequency resources can be implemented to improve the spectrum efficiency of the system.
  • the scheduling UE-02, UE-03, UE-04, and UE-05 use the same transmission scheme for data transmission. Therefore, the scheduling flexibility of the base station 01 is low, and when the channel environment is diversified, the optimal scheduling result cannot be achieved. , affecting spectrum efficiency.
  • FIG. 8 is a block diagram of a transmitting end device 800 according to an embodiment of the present invention.
  • the transmitting device 800 can be implemented as part or all of the base station 01 in the implementation environment shown in FIG. 1 by software, hardware or a combination of the two, and the transmitting device 800 performs the portions provided by the embodiments shown in FIG. 5 and FIG. method.
  • the transmitting end device 800 may include: a first pre-encoding module 810, a first transmitting module 820, a second pre-encoding module 830, and a second transmitting module 840.
  • the first pre-encoding module 810 has the same or similar function as the first pre-encoding unit 262a shown in FIG.
  • the first transmitting module 820 has the same or similar function as the first transmitting unit 262b shown in FIG.
  • the second pre-encoding module 830 has the same or similar function as the second pre-encoding unit 262c shown in FIG.
  • the second transmitting module 840 has the same or similar function as the second transmitting unit 262d shown in FIG.
  • the description of the at least two first pre-processing spatial streams, the other spatial streams included in the plurality of spatial streams, and the pre-processing thereof are not described herein.
  • FIG. 9 a block diagram of a receiving end device 900 according to an embodiment of the present invention is shown.
  • the receiving end device 900 can be implemented as part or all of the UE-02 in the implementation environment shown in FIG. 1 by software, hardware or a combination of the two.
  • the receiving end device 900 performs the embodiments provided in the embodiments shown in FIG. 5 and FIG. Part of the method.
  • the receiving end device 900 may include: a first receiving module 910 , a first recovery module 920 , a second recovery module 930 , and a second receiving module 940 .
  • the first receiving module 910 has the same or similar function as the first receiving unit 262e shown in FIG.
  • the first restoration module 920 has the same or similar function as the first restoration unit 262f shown in FIG.
  • the second restoration module 930 has the same or similar function as the second restoration unit 262g shown in FIG.
  • the second receiving module 940 has the same or similar function as the second receiving unit 262h shown in FIG.
  • FIG. 10 is a schematic structural diagram of a data transmission system 1000 according to an embodiment of the present invention.
  • the data transmission system 1000 may include a transmitting device 1010 and a receiving device 1020.
  • the transmitting device 1010 includes the application unit 262 shown in FIG. 3; the receiving device 1020 includes the application unit 262 shown in FIG. 4;
  • the transmitting end device 1010 is the transmitting end device 800 shown in FIG. 8; the receiving end device 1020 is the receiving end device 900 shown in FIG.
  • the term “and/or” is merely an association relationship describing an associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A and B, there are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开一种数据发送方法、数据接收方法、设备及***,属于通信技术领域。该数据发送方法包括:对多个空间流进行预编码,得到多个预编码数据流,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;发射多个预编码数据流。本申请解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。本申请用于数据传输。

Description

数据发送方法、数据接收方法、设备及***
本申请要求于2016年8月23日提交中国专利局、申请号为201610710376.0、发明名称为“数据发送方法、数据接收方法、设备及***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种数据发送方法、数据接收方法、设备及***。
背景技术
长期演进(英文:Long Term Evolution;简称:LTE)或先进长期演进(英文:Long term evolution-advanced;简称:LTE-A)***采用多输入多输出(英文:Multiple Input Multiple Output;简称:MIMO)技术,MIMO技术通过在发射端设备和接收端设备上部署多根天线来提高LTE或LTE-A***的性能。示例地,发射端设备可以为基站,接收端设备可以为用户设备(英文:User equipment;简称:UE),基站可以调度多个UE进行数据传输。
相关技术中,同时调度的多个UE必须采用相同的传输方案进行数据传输。示例地,同时调度的多个UE采用闭环空分复用(英文:Closed-loop spatial multiplexing;简称:CLSM)传输方案进行数据传输。
在实现本申请的过程中,发明人发现相关技术至少存在以下问题:由于同时调度的多个UE必须采用相同的传输方案进行数据传输,因此调度的灵活性较低。
发明内容
为了解决调度的灵活性较低的问题,本发明实施例提供一种数据发送方法、数据接收方法、设备及***。所述技术方案如下:
数据传输***包括发射端设备和接收端设备,发射端设备与接收端设备建立有通信连接。该发射端设备可以为基站或UE,该接收端设备也可以为基站或UE,当发射端设备为基站时,接收端设备为UE,当发射端设备为UE时,接收端设备为基站,本发明实施例以发射端设备为基站,接收端设备为UE为例进行说明。
第一方面,提供一种数据发送方法,该数据发送方法由发射端设备执行,该方法包括:
对多个空间流进行预编码,得到多个预编码数据流,该多个空间流包括至少两个第一预处理空间流,该至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
发射该多个预编码数据流。
本发明实施例提供的数据发送方法,由于多个空间流中的至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,其他空间流可以是未经过预处理的,因此,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,该至少两个第一预处理空间流指向第一接收端设备。
可选地,该多个空间流还包括至少一个原始空间流。
可选地,该至少一个原始空间流中的至少一个指向第二接收端设备。
可选地,该多个空间流还包括:至少两个第二预处理空间流,该至少两个第二预处理 空间流是对第二原始空间流进行预处理得到的,该第二原始空间流指向第三接收端设备。
本发明实施例提供的数据发送方法,由于不同的空间流指向不同的接收端设备,且不同的空间流可以对应不同的传输方案,因此,可以使多个接收端设备采用不同的传输方案进行数据传输,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,该预处理为发射分集处理。
可选地,该发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理。
可选地,该发射分集处理为循环延迟分集处理。
可选地,该预处理为基于发射分集的空分复用处理。
本发明实施例提供的数据发送方法,由于预处理包括不同的发射分集处理或基于发射分集的空分复用处理,每种发射分集处理或基于发射分集的空分复用处理也可以对应一种传输方案,因此,可以使多个接收端设备采用不同的传输方案进行数据传输,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,该多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,该方法还包括:
对该多个空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,该多个空间流中的每个空间流对应一个解调参考信号;
发射该多个预编码解调参考信号。
本发明实施例提供的数据发送方法,通过对多个空间流的解调参考信号进行预编码得到多个预编码解调参考信号,并发射该多个预编码解调参考信号,可以便于接收端设备对原始空间流的恢复。
第二方面,提供一种数据接收方法,该数据接收方法由接收端设备执行,该方法包括:
接收多个预编码数据流,该多个预编码数据流是对多个空间流进行预编码得到的,该多个空间流包括至少两个第一预处理空间流,该至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
从该多个预编码数据流中恢复出该至少两个第一预处理空间流;
根据该至少两个第一预处理空间流恢复出该第一原始空间流。
本发明实施例提供的数据接收方法,由于多个空间流中的至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,其他空间流可以是未经过预处理的,因此,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,该至少两个第一预处理空间流指向第一接收端设备。
本发明实施例提供的数据接收送方法,该至少两个第一预处理空间流指向第一接收端设备,其他空间流可以指向除该第一接收端设备之外的其他接收端设备,因此,不同的空间流指向不同的接收端设备,且不同的空间流也可以对应不同的传输方案,所以,可以使多个接收端设备采用不同的传输方案进行数据传输,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,该预处理为发射分集处理。
可选地,该发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理。
可选地,该发射分集处理为循环延迟分集处理。
可选地,该预处理为基于发射分集的空分复用处理。
本发明实施例提供的数据接收方法,由于预处理包括不同的发射分集处理或基于发射分集的空分复用处理,每种发射分集处理或基于发射分集的空分复用处理也可以对应一种传输方案,因此,可以使多个接收端设备采用不同的传输方案进行数据传输,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
可选地,该多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,该方法还包括:
接收多个预编码解调参考信号,该多个预编码解调参考信号是对该多个空间流的解调参考信号进行预编码得到的,该多个空间流中的每个空间流对应一个解调参考信号;
从多个预编码数据流中恢复出该至少两个第一预处理空间流,包括:
根据该至少两个第一预处理空间流的预编码解调参考信号从该多个预编码数据流中恢复出该至少两个第一预处理空间流。
本发明实施例提供的数据接收方法,通过接收多个预编码解调参考信号,可以便于接收端设备对第一原始空间流的恢复。
第三方面,提供一种发射端设备,该发射端设备包括:处理器、网络接口、存储器以及总线,存储器与网络接口分别通过总线和处理器相连;处理器被配置为执行存储器中存储的指令;处理器通过执行指令来实现上述第一方面或第一方面的任一可选方式所提供的数据发送方法。
第四方面,提供一种接收端设备,该接收端设备包括:处理器、网络接口、存储器以及总线,存储器与网络接口分别通过总线和处理器相连;处理器被配置为执行存储器中存储的指令;处理器通过执行指令来实现上述第二方面或第二方面的任一可选方式所提供的数据接收方法。
第五方面,提供一种发射端设备,该发射收端设备包括至少一个模块,该至少一个模块用于实现实现上述第一方面或第一方面的任一可选方式所提供的数据发送方法。
第六方面,提供一种接收端设备,该接收端设备包括至少一个模块,该至少一个模块用于实现实现上述第二方面或第二方面的任一可选方式所提供的数据接收方法。
第七方面,提供一种数据传输***,该数据传输***包括:
第三方面或第五方面所提供的发射端设备;和,
第四方面或第六方面所提供的接收端设备。
本发明实施例提供的技术方案带来的有益效果是:
发射端设备通过对多个空间流进行预编码,得到多个预编码数据流并发射多个预编码数据流,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,接收端设备从多个预编码数据流中恢复出至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出第一原始空间流。由于多个空间流中的至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,其他空间流可以是未经过预处理的,且不同的空间流也可以对应不同的传输方案,因此,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
附图说明
图1是本发明实施例所涉及的一种实施环境的示意图;
图2是图1所实施环境所涉及的一种网络设备的结构示意图;
图3是图2所示的网络设备中的一种应用程序单元的示意图;
图4是图2所示的网络设备中的另一种应用程序单元的示意图;
图5是本发明实施例提供的一种数据传输方法的方法流程图;
图6是本发明实施例提供的另一种数据传输方法的方法流程图;
图7是本发明实施例提供的一种数据传输方法的示意图;
图8是本发明实施例提供的一种发射端设备的框图;
图9是本发明实施例提供的一种接收端设备的框图;
图10是本发明实施例提供的一种数据传输***的结构示意图。
具体实施方式
请参考图1,其示出了本发明实施例所涉及一种实施环境的示意图,该实施环境提供一种数据传输***,该数据传输***可以为无线通信***,具体可以为MIMO***,参见图1,该实施环境可以包括:基站01和多个UE。示例地,如图1所示,本实施环境以多个UE包括UE-02、UE-03、UE-04和UE-05为例进行说明。
在本实施环境中,基站01和多个UE中的每个UE都可以为发射端设备,也可以为接收端设备,示例地,当基站01为发射端设备时,多个UE为接收端设备,当多个UE中的任一UE为发射端设备时,基站01为接收端设备,本实施环境以及下述实施例均以基站01为发射端设备,多个UE都为接收端设备为例进行说明。
在本发明实施例中,发射端设备可以对多个空间流进行预编码,得到多个预编码数据流并发射该多个预编码数据流,该多个空间流包括至少两个第一预处理空间流,该至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,接收端设备可以从该多个预编码数据流中恢复出该至少两个第一预处理空间流,然后根据该至少两个第一预处理空间流恢复出该第一原始空间流。发射端设备通过对第一原始空间流进行预处理得到至少两个第一预处理空间流,可以提高调度的灵活性。
请参考图2,其示出了本发明实施例提供的一种网络设备20的结构示意图。该网络设备20可以是发射端设备或者接收端设备,且该发射端设备可以为图1所示实施环境中的基站01或任一UE(例如,UE-02),该接收端设备可以为图1所示实施环境中的任一UE(例如,UE-02)或基站01,具体地,当发射端设备为基站01时,接收端设备为UE,当发射端设备为UE时,接收端设备为基站01。参见图2,该网络设备20包括:处理器22和网络接口24。
处理器22包括一个或者一个以上处理核心。处理器22通过运行软件程序以及单元,从而执行各种功能应用以及数据处理。
网络接口24可以为多个,该网络接口24用于该网络设备20与其它存储设备或者网络设备进行通信。
可选地,网络设备20还包括存储器26、总线28等部件。其中,存储器26和网络接口 24分别通过总线28与处理器22相连。
存储器26可用于存储软件程序以及单元。具体地,存储器26可以存储至少一个功能所需的应用程序单元262和操作***(图2中未示出),操作***可以是实时操作***(英文:Real Time eXecutive;简称:RTX)、LINUX、UNIX、WINDOWS或OSX之类的操作***。
请参考图3,其示出了图2所示实施例提供的一种应用程序单元262的结构示意图。参见图3,当网络设备20是发射端设备,且该发射端设备是基站01或UE时,该应用程序单元262可以是第一预编码单元262a、第一发射单元262b、第二预编码单元262c和第二发射单元262d。
第一预编码单元262a对多个空间流进行预编码,得到多个预编码数据流,该多个空间流包括至少两个第一预处理空间流,该至少两个第一预处理空间流是对第一原始空间流进行预处理得到的。
第一发射单元262b发射该多个预编码数据流。
该多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同。
第二预编码单元262c对该多个空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,该多个空间流中的每个空间流对应一个解调参考信号。
第二发射单元262d发射该多个预编码解调参考信号。
可选地,该至少两个第一预处理空间流指向第一接收端设备。
可选地,该多个空间流还包括至少一个原始空间流。
可选地,该至少一个原始空间流中的至少一个指向第二接收端设备。
可选地,该多个空间流还包括:至少两个第二预处理空间流,该至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,该第二原始空间流指向第三接收端设备。
可选地,该预处理为发射分集处理。
可选地,该发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理。
可选地,该发射分集处理为循环延迟分集处理。
可选地,该预处理为基于发射分集的空分复用处理。
请参考图4,其示出了图2所示实施例提供的另一种应用程序单元262的结构示意图。参见图4,当网络设备20是接收端设备,且该接收端设备是UE-02或基站01时,该应用程序单元262可以是第一接收单元262e、第一恢复单元262f、第二恢复单元262g和第二接收单元262h。
第一接收单元262e接收多个预编码数据流,该多个预编码数据流是对多个空间流进行预编码得到的,该多个空间流包括至少两个第一预处理空间流,该至少两个第一预处理空间流是对第一原始空间流进行预处理得到的。
第一恢复单元262f从该多个预编码数据流中恢复出该至少两个第一预处理空间流。
第二恢复单元262g根据该至少两个第一预处理空间流恢复出该第一原始空间流。
该多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,
第二接收单元262h接收多个预编码解调参考信号,该多个预编码解调参考信号是对该多个空间流的解调参考信号进行预编码得到的,该多个空间流中的每个空间流对应一个解调参考信号;
第一恢复单元262f根据该至少两个第一预处理空间流的预编码解调参考信号从该多个预编码数据流中恢复出该至少两个第一预处理空间流。
可选地,该至少两个第一预处理空间流指向第一接收端设备。
其中,预处理可以参考图3所示实施例,本实施例在此不再赘述。
请参考图5,其示出了本发明实施例提供的一种数据传输方法的方法流程图,本实施例以该数据传输方法应用于图1所示实施环境中来进行举例说明,参见图5,该数据传输方法可以包括:
步骤501、发射端设备对多个空间流进行预编码,得到多个预编码数据流,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的。
其中,多个空间流还可以包括至少一个原始空间流和/或至少两个第二预处理空间流等,至少两个第一预处理空间流可以指向第一接收端设备,至少一个原始空间流中的至少一个可以指向第二接收端设备,第二原始空间流可以指向第三接收端设备,该至少两个第二预处理空间流是对第二原始空间流进行预处理得到的。在本发明实施例中,预处理可以为发射分集处理或基于发射分集的空分复用处理,发射分集处理可以为空时发射分集处理、空频发射分集处理或空时频发射分集处理,或者,发射分集处理还可以为循环延迟分集处理,基于发射分集的空分复用处理可以为大尺度延迟循环延迟分集处理。
需要说明的是,本申请中的预处理仅是示例性的,实际应用中,预处理多种多样,本发明实施例不对预处理做限定。其中,该步骤501可以由图3所示实施例中的第一预编码单元262a来实现。
步骤502、发射端设备向接收端设备发射多个预编码数据流。
发射端设备得到多个预编码数据流后,可以向接收端设备发射该多个预编码数据流。其中,该步骤502可以由图3所示实施例中的第一发射单元262b来实现,具体实现过程可以参考相关技术,本发明实施例在此不再赘述。
需要说明的是,在本发明实施例中,多个空间流中不同的空间流可以对应不同的预编码向量,每个预编码向量可以对应一个解调参考信号(英文:Demodulation reference signal;简称:DMRS)端口,不同的预编码向量对应的DMRS端口不同,且多个空间流中的每个空间流对应一个解调参考信号,发射端设备还可以对多个空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,然后向接收端设备发射多个预编码解调参考信号。
步骤503、接收端设备接收发射端设备发射的多个预编码数据流。
发射端设备向接收端设备发射预编码数据流时,接收端设备可以接收发射端设备发射的预编码数据流。其中,该步骤503可以由图4所示实施例中的第一接收单元262e来实现,具体实现过程可以参考相关技术,本发明实施例在此不再赘述。
步骤504、接收端设备从多个预编码数据流中恢复出至少两个第一预处理空间流。
可选地,接收端设备可以根据至少两个第一预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第一预处理空间流。在本发明实施例中,每个预编码向量可以对应一个DMRS端口,不同的预编码向量对应的DMRS端口不同,DMRS的数量通常等于空间流的数量,DMRS可以用于信道解调,这是因为对每个空间流进行预编码使用的预编码向量和对该空间流对应的DMRS进行预编码使用的预编码向量相同,但是DMRS不需要进行预处理。换句话说,原始空间流在经过预处理得到至少两个空间流后,这些空间流与各自的DMRS相关联,这些DMRS彼此不同。接收端设备可以根据DMRS端口对应的码解调参考信号对接收到的预编码数据流进行解调得到空间流。具体地,接收端设备可以借助预编码解调参考信号估计预编码向量,进而根据预编码向量恢复出至少两个第一预处理空间流。
该步骤504可以由图4所示实施例中的第一恢复单元262f来实现,具体实现过程可以参考相关技术,本发明实施例在此不再赘述。
应注意,发射端设备发送的多个预编码数据流中可能包含指向其他接收端设备的预编码数据流,在这种情况下,对于当前接收端设备而言,这些指向其他接收端设备的预编码数据流应视为干扰,这种干扰可以采用各种现有的干扰消除技术或者接收机技术进行消除。事实上,在多用户MIMO(英文:Multi-user MIMO;简称:MU-MIMO)场景下,在理想环境下(例如发射端设备知道每一接收端设备的完整信道信息),其他接收端设备对应的预编码矩阵被设计成与当前接收端设备的信道正交,如此一来,发往其他接收端设备的预编码数据流在到达当前接收端设备时已经被消除。然而,在现实应用中,发射端设备无法获知每一接收端设备的完整信道信息,只能获知每一接收端设备的粗略信道信息。在这种情况下,其他接收端设备对应的预编码矩阵无法与当前接收端设备的信道完全正交,因此发往当前接收端设备的预编码数据流在到达当前接收端设备时仍有其他接收端设备的预编码数据流的残留。
步骤505、接收端设备根据至少两个第一预处理空间流恢复出第一原始空间流。
接收端设备可以由发射端设备对第一原始空间流进行预处理生成至少两个第一预处理空间流过程中依赖的预处理方法,来从至少两个第一预处理空间流恢复第一原始空间流。接收端设备可以采用各种方法来获知上述预处理方法,例如标准中预先规定的方式(固定不变的方式),或者发射端设备指示的方式(灵活可变的方式),例如发射端设备可以向接收端设备指示采用的预处理方法。这种指示可以是隐式指示,也可以是显式指示。上述指示可以采用各种信令来发送。例如,在下行方向,即当发射端设备为基站,接收端设备为UE时,上述信令可以是,例如类似LTE标准中使用的无线资源控制(英文:Radio Resource Control;简称:RRC)信令或者通过物理下行控制信道(英文:Physical Downlink Control Channel;简称:PDCCH)发送的下行控制信息(英文:Downlink Control Information;简称:DCI)等。在上行方向,即当发射端设备为UE,接收端设备为基站时,UE使用的预处理方法可以是由基站预先指示给UE的,在这种情况下,基站在指示过程中采用的信令可以与上述下行方向采用的信令相同。在上行方向,即当发射端设备为UE,接收端设备为基站时,UE使用的预处理方法可以是由UE指示给基站的,在这种情况下,上述信令可以是通过物理上行控制信道(Physical Uplink Control Channel;简称:PUCCH)发送的上行控制信 息(英文:Uplink Control Information;简称:UCI)。
该步骤505可以由图4所示实施例中的第二恢复单元262g来实现,具体实现过程可以参考下述图6所示实施例,本实施例在此不再赘述。
综上所述,本发明实施例提供的数据传输方法,发射端设备通过对多个空间流进行预编码得到多个预编码数据流并发射多个预编码数据流,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,接收端设备从该多个预编码数据流中恢复出该至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出该第一原始空间流。由于多个空间流中的至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,其他空间流可以是未经过预处理的,且不同的空间流也可以对应不同的传输方案,因此,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
请参考图6,其示出了本发明实施例提供的另一种数据传输方法的方法流程图,本实施例以该数据传输方法应用于图1所示实施环境中来进行举例说明,参见图6,该数据传输方法可以包括:
步骤601、发射端设备对多个空间流进行预编码,得到多个预编码数据流,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的。
本发明实施例以发射端设备为图1所示实施环境中的基站01,第一接收端设备为图1所示实施环境中的UE-02,第二接收端设备为图1所示实施环境中的UE-03,第三接收端设备为图1所示实施环境中的UE-04为例进行说明,当然,发射端设备还可以为UE,接收端设备也可以为基站。
其中,原始空间流可以是经过层映射后得到的空间流。以LTE***为例,物理信道的处理过程通常可以包括:加扰、调制映射、层映射、预编码、资源粒映射、正交频分复用(英文:Orthogonal Frequency Division Multiplexing;简称:OFDM)信号生成,物理信道的处理对象通常为码字,码字可以是经过编码处理(至少包括信道编码处理)的比特流,该比特流经过加扰可以得到加扰比特流,加扰比特流经过调制映射可以得到调制符号流,调制符号流经过层映射可以得到多个符号层(符号层也称为空间流,空间层),符号层经过预编码可以得到多个预编码符号流,预编码符号流经过资源粒(英文:Resource Element;简称:RE)映射,被映射到多个资源粒上,这些资源粒随后经过OFDM信号生成阶段得到OFDM符号流,OFDM符号流通过天线端口进行发射。其中,OFDM信号生成阶段可以采用快速傅里叶逆变换(英文:Inverse Fast Fourier Transform;简称:IFFT)得到OFDM符号流,本发明实施例中的原始空间流可以是经过层映射得到的空间流。
需要注意的是,为了更加清晰的描述本发明实施例提供的技术方案,上文借助现有LTE标准中层映射后获得的空间流来描述本发明实施例中提及的原始空间流。然而,本领域技术人员应当明白,除LTE标准中层映射后获得的空间流之外,本发明实施例提及的空间流还可以泛指任何经过调制等处理后获得的调制符号流。
在本发明实施例中,发射端设备可以对多个空间流进行预编码得到多个预编码数据流,该多个空间流可以包括:至少两个第一预处理空间流、至少两个第二预处理空间流和至少 一个原始空间流,该至少两个第一预处理空间流可以是对第一原始空间流进行预处理得到的,且该至少两个第一预处理空间流可以指向第一接收端设备,该第一接收端设备可以为图1所示实施环境中的UE-02,该至少两个第二预处理空间流可以是对第二原始空间流进行预处理得到的,且该至少两个第二预处理空间流可以指向第三接收端设备,该第三接收端设备可以为图1所示实施环境中的UE-04,该至少一个原始空间流可以是直接经过层映射后的空间流,该至少一个原始空间流中的至少一个可以指向第二接收端设备。根据以上可知,多个预编码数据流中的部分预编码数据流是经过预处理和预编码得到的,部分预编码数据流可以是未经过预处理但经过预编码得到的,其中,预处理可以是发射分集处理或基于发射分集的空分复用处理。
在本发明实施例中,发射端设备可以采用预编码技术对多个空间流进行预编码,预编码技术借助与信道属性相匹配的预编码矩阵来对空间流进行处理,使得经过处理的空间流与信道相适配,预编码矩阵中可以包括多个预编码向量,预编码向量的个数与指向预编码矩阵所对应的接收端设备的空间流的数量相同,多个空间流中的每个空间流可以对应一个预编码向量,且多个空间流中不同的空间流对应不同的预编码向量,发射端设备可以采用多个预编码向量对多个空间流进行预编码。其中,对空间流进行预编码可以使数据传输过程得到优化,接收信号质量(例如信干噪比SINR)得以提升。
发射分集处理通过在时间、频率、空间(例如天线)或者上述三个维度的各种组合上对原始空间流(例如符号)进行冗余传输来提高传输可靠性。在具体实现过程中,冗余传输的数量可以根据信道模型或者信道质量进行设置,冗余传输的对象可以是原始空间流本身,也可以是经过处理的原始空间流,这种处理可以包括但不限于延迟、取反、共轭、旋转等,以及上述各种处理经过衍生、演进以及组合后获得的处理。目前常用的发射分集可以包括但不限于空时发射分集(英文:Space-Time Transmit Diversity;简称:STTD)、空频发射分集(英文:Space-Frequency Transmit Diversity;简称:SFTD)、时间切换发射分集(英文:Time Switched Transmit Diversity;简称:TSTD)、频率切换发射分集(英文:Frequency Switch Transmit Diversity;简称:FSTD)、正交发射分集(英文:Orthogonal Transmit Diversity;简称:OTD)、循环延迟分集(英文:Cyclic delay diversity;简称:CDD)、以及上述各种分集方式经过衍生、演进以及组合后获得的分集方式。例如,LTE标准采用了空时块编码(英文:Space Time Block Coding;简称:STBC)、空频块编码(英文:Space Frequency Block Coding;简称:SFBC)和CDD等发射分集方式。在本发明实施例中,发射分集处理可以为空时发射分集处理、空频发射分集处理、空时频发射分集处理或循环延迟分集处理,以及上述各种形式的分集处理,基于发射分集的空分复用处理可以为大尺度延迟CDD的预编码处理。当发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理时,对空间流同时进行预处理和预编码的传输方案可以称为波束赋形发射分集(英文:Beamformed Transmit Diversity;简称:BTD)传输方案;当发射分集处理为循环延迟分集处理时,对空间流同时进行预处理和预编码的传输方案可以称为开环空分复用(英文:open-loop spatial multiplexing;简称:OLSM)传输方案;只对空间流进行预编码的传输方案可以称为闭环空分复用(英文:Closed-loop spatial multiplexing;简称:CLSM)传输方案。需要说明的是,上文以举例的方式对发射分集进行了概括性的描述,本领域技术人员应当明白,除上述实例外,发射分集还包括其他多种实现方式,因此,上述介绍不应理解为对 本申请技术方案的限制,本申请技术方案应理解为适用于各种可能的发射分集的方案;此外,本申请中所述的预处理仅是示例性的,实际应用中,预处理包括但不限于上述发射分集处理以及基于发射分集的空分复用处理,因此,本领域技术人员应当明白,除上述实例外,本申请中所述的发射分集处理和基于发射分集的空分复用处理并不能用以限制本申请中所述的预处理。
示例地,假设多个空间流包括:第一预处理空间流11、第一预处理空间流12、第二预处理空间流21、第二预处理空间流22、第二预处理空间流23和原始空间流3,该第一预处理空间流11和第一预处理空间流12是对第一原始空间流1进行空时发射分集处理得到的,该第二预处理空间流21、第二预处理空间流22和第二预处理空间流23是对第二原始空间流2进行循环延迟分集处理得到的,假设发射端设备对第一预处理空间流11进行预编码得到预编码数据流110,对第一预处理空间流12进行预编码得到预编码数据流120,对第二预处理空间流21进行预编码得到预编码数据流210,对第二预处理空间流22进行预编码得到预编码数据流220,对第二预处理空间流23进行预编码得到预编码数据流230,对原始空间流3进行预编码得到预编码数据流30,且第一预处理空间流11和第一预处理空间流12指向第一接收端设备(例如,UE-02),第二预处理空间流21、第二预处理空间流22和第二预处理空间流23指向第三接收端设备(例如,UE-04),原始空间流3指向第二接收端设备(例如,UE-03),则第一接收端设备可以是采用BTD传输方案进行数据传输的设备,第二接收端设备可以是采用CLSM传输方案进行数据传输的设备,第三接收端设备可以是采用OLSM传输方案进行数据传输的设备。本发明实施例中,基站可以通过下行信令向UE指示传输方案,以使得UE能够采用相应的传输方案进行数据传输。示例地,基站01通过下行信令指示UE-02采用BTD传输方案进行数据传输,通过下行信令指示UE-03采用CLSM传输方案进行数据传输,通过下行信令指示UE-04采用OLSM传输方案进行数据传输。在本发明实施例中,基站可以采用下行信令的格式来对传输方案进行指示,也可以采用下行信令的内容来对传输方案进行指示,本发明实施例对此不作限定。需要说明的是,上文以举例的方式对传输方案进行了概括性的描述,本领域技术人员应当明白,除上述实例外,传输方案还包括其他多种传输方案,因此,上述介绍不应理解为对本申请技术方案的限制。
应注意,在具体实现过程中,预编码后得到的预编码数据流往往包含多个数据流,数据流的具体数量与物理天线数量或者天线端口数量有关,此部分内容在相关技术中已清楚描述,本发明实施例在此不再赘述。
需要说明的是,本发明实施例提供的数据传输方法可以适用于MIMO***,MIMO***通常使用预编码技术来实现空分复用,以便在发射端设备和接收端设备之间同时传输多个空间流,提高***吞吐量。MIMO***通常包括单用户MIMO(英文:Single-user MIMO;简称:SU-MIMO)场景和多用户MIMO(英文:Multi-user MIMO;简称:MU-MIMO)场景,在SU-MIMO场景下,进行空分复用的多个空间流指向同一接收端设备,在MU-MIMO场景下,进行空分复用的多个空间流指向至少两个接收端设备。目前,预编码技术已经被多种无线通信标准所采纳,例如但不限于LTE标准,在LTE标准中,预编码泛指基于特定矩阵对发射信号进行处理,因此LTE标准中的预编码不仅包括用于空分复用的预编码,还包括用于发射分集的预编码等。然而,如无特别说明,本发明实施例提供的技术方案中涉及的预编码仅指代基于空分复用目的、通过预编码矩阵对空间流进行的预编码,而不包括用于 发射分集的预编码。此外,本发明实施例提供的技术方案中涉及的预编码既可以是不基于信道状态信息的预编码,这种预编码又称为开环预编码,其类似于,例如但不限于,LTE标准中的未结合CDD的预编码和用于大尺度延迟的CDD的预编码,此外,本发明实施例提供的技术方案中涉及的预编码又可以是基于状态信息的预编码,这种预编码又称为闭环预编码,其类似于,例如但不限于,LTE标准中的闭环空分复用。对于预编码的具体形式和种类,本发明实施例对此不作限定。
应理解,尽管越来越多的通信***在发射端设备和接收端设备上部署了多根天线,但是本领域的技术人员应当明白,除MIMO外,这样的通信***也可以用于实现单入单出(英文:Single Input Single Output;简称:SISO)、单入多出(英文:Single Input Multiple output;简称:SIMO)和多入单出(英文:Multiple Input Single Output;简称:MISO),因此本文描述的MIMO应理解为包含多天线技术的各种应用形式,包括例如但不限于上文所述的SISO、SIMO、MISO和MIMO。
还需要说明的是,在本发明实施例中,可以采用Y=F1(S)对原始空间流进行预编码得到预编码数据流,其中,Y表示预编码数据流,F1表示预编码,S表示原始空间流。如果把对原始空间流进行发射分集处理也视为一种预编码,则本实施例相当于对原始空间流进行了两级预编码,此时,可以采用Y=F1(F2(S))对原始空间流进行预编码得到预编码数据流,其中,Y表示预编码数据流,F2表示发射分集处理,F1表示预编码,S表示原始空间流。还需要说明的是,该步骤601具体可以由图3所示实施例中的第一预编码单元262a来实现,发射端设备对原始空间流进行发射分集以及对多个空间流进行预编码的具体实现过程在相关技术中均已清楚描述,本发明实施例在此不再赘述。
步骤602、发射端设备向接收端设备发射多个预编码数据流。
发射端设备得到多个预编码数据流后,可以向接收端设备发送该多个预编码数据流,该接收端设备可以包括第一接收端设备、第二接收端设备和第三接收端设备。可选地,发射端设备向第一接收端设备发射通过对至少两个第一预处理空间流进行预编码得到的预编码数据流,向第二接收端设备发射通过对指向第二接收端设备的至少一个原始空间流进行预编码得到的预编码数据流,向第三接收端设备发射通过对至少两个第二预处理空间流进行预编码得到的预编码数据流。
示例地,第一接收端设备为UE-02,第二接收端设备为UE-03,第三接收端设备为UE-04,发射端设备对至少两个第一预处理空间流进行预编码得到预编码数据流110和预编码数据流120,对指向第二接收端设备的至少一个原始空间流进行预编码得到预编码数据流30,对至少两个第二预处理空间流进行预编码得到预编码数据流210、预编码数据流220和预编码数据流230,因此,发射端设备向UE-02发射预编码数据流110和预编码数据流120,向UE-03发射预编码数据流30,向UE-04发射预编码数据流210、预编码数据流220和预编码数据流230。本领域的技术人员应当明白,实际上,上述各预编码数据流是复用在一起进行发射的,复用的各预编码数据流在到达任意一个接收端设备时,指向其他接收端设备的预编码数据流均应视为干扰,只不过在预编码以及上述接收端设备的信道的共同作用下,上述干扰被大大降低。有关此部分的内容在上文进行解释,因此此处不再赘述。
需要说明的是,该步骤602具体可以由图3所示实施例中的第一发射单元262b来实现,发射端设备向接收端设备发射多个预编码数据流的具体实现过程在相关技术中均已清楚描 述,本发明实施例在此不再赘述。
步骤603、发射端设备对多个空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,多个空间流中的每个空间流对应一个解调参考信号。
在本发明实施例中,多个空间流中的每个空间流对应一个解调参考信号,
发射端设备可以对多个空间流的解调参考信号进行预编码,得到多个预编码解调参考信号。可选地,发射端设备可以使用与对空间流进行预编码相同的预编码向量来对相应的解调参考信号进行预编码,以使得接收端设备可以借助空间流的解调参考信号对相应的空间流进行解调。
在本发明实施例中,每个预编码向量可以对应一个DMRS端口,不同的预编码向量对应的DMRS端口不同,DMRS可以用于信道解调,这是因为对每个空间流进行预编码使用的预编码向量和对该空间流对应的DMRS进行预编码使用的预编码向量相同,但是DMRS不需要进行预处理。换句话说,原始空间流在经过预处理得到至少两个预处理空间流后,这些预处理空间流与各自DMRS相关联,这些DMRS可以不同。接收端设备可以根据DMRS端口对应的DMRS对接收到的预编码数据流进行解调得到空间流。
需要说明的是,在本发明实施例中,至少两个预处理空间流可以是对原始空间流进行预处理得到的,则接收端设备在解调获得上述空间流后,还需要根据发射端设备的预处理方式,根据上述至少两个预处理空间流恢复出原始空间流。
示例地,假设第一预处理空间流11对应的解调参考信号为S11,第一预处理空间流12对应的解调参考信号为S12,第二预处理空间流21对应的解调参考信号为S21,第二预处理空间流22对应的解调参考信号为S22,第二预处理空间流23对应的解调参考信号为S23,原始空间流3对应的解调参考信号为S3,则发射端设设备对解调参考信号S11进行预编码得到预编码解调参考信号S110,对解调参考信号S12进行预编码得到预编码解调参考信号S120,对解调参考信号S21进行预编码得到预编码解调参考信号S210,对解调参考信号S22进行预编码得到预编码解调参考信号S220,对解调参考信号S23进行预编码得到预编码解调参考信号S230,对解调参考信号S3进行预编码得到预编码解调参考信号S30。
需要说明的是,该步骤603具体可以由图3所示实施例中的第二预编码单元262c来实现,发射端设备可以采用Z=F1(X)对多个空间流对应的解调参考信号进行预编码得到预编码解调参考信号,其中,Z表示预编码解调参考信号F1表示预编码,X表示解调参考信号,具体的预编码过程在相关技术中均已清楚描述,本发明实施例在此不再赘述。
还需要说明的是,实际应用中,本发明实施例中的步骤601和步骤604可以看做是同时进行的,且对多个空间流的解调参考信号进行预编码以及根据预编码解调参考信号对预编码后的信道进行估计并基于估计结果从预编码数据流中恢复出空间流的具体实现过程在相关技术中已经清楚描述,本发明实施例在此不再赘述。
步骤604、发射端设备向接收端设备发射多个预编码解调参考信号。
发射端设备得到多个预编码解调参考信号后,可以向接收端设备发送多个预编码解调参考信号。由于每个空间流对应一个解调参考信号,因此,发射端设备可以向相应的空间流指向的接收端设备发射相应的预编码解调参考信号。
示例地,发射端设备向UE-02发射预编码解调参考信号S110和预编码解调参考信号 S120,向UE-03发射预编码解调参考信号S30,向UE-04发射预编码解调参考信号S210、预编码解调参考信号S220和预编码解调参考信号S230。
需要说明的是,该步骤604具体可以由图3所示实施例中的第二发射单元262d来实现,发射端设备向接收端设备发射多个预编码解调参考信号的具体实现过程在相关技术中均已清楚描述,本发明实施例在此不再赘述。
还需要说明的是,在本发明实施例中,由于多个空间流中包括经过预处理的预处理空间流,因此,接收端设备在对相应的数据进行解调时,不仅需要获知DMRS端口号,还需要获知发射端设备对相应空间流进行预处理的预处理方式,比如,第一接收端设备需要获知发射端设备对至少两个第一预处理空间流进行预处理的预处理方式,第三接收端设备需要获知发射端设备对至少两个第二预处理空间流进行预处理的预处理方式。其中,预处理可以为发射分集处理或基于发射分集的空分复用处理,且发射分集处理包括但不限于:空时发射分集处理、空频发射分集处理、空时频发射分集处理或循环延迟分集处理,基于发射分集的空分复用处理可以为大尺度延迟CDD的预编码处理,因此,发射端设备还需要向接收端设备发射相应的空间流对应的预处理方式。以下以发射端设备为基站,接收端设备为UE为例进行说明,当发射端设备为UE,接收端设备为基站时可以参考下述描述。
具体地,基站可以将每个空间流对应的DMRS端口信息(比如端口标识)和/或对空间流进行预处理使用的预处理方式的信息一起通过下行信令发送给UE,UE可以根据每个空间流对应的DMRS端口信息和/或对空间流进行预处理使用的预处理方式进行数据解调,其中,基站可以通过以下几种方式向UE发送空间流对应的DMRS端口信息和/或对空间流进行预处理使用的预处理方式的信息:
方式一、基站通过下行信令向UE发送每个空间流对应的DMRS的端口标识和每个空间流对应的预处理方式的信息。其中,每个空间流对应的预处理方式的信息也即是基站在对原始空间流进行预处理得到相应的预处理空间流的预处理方式的信息。
其中,端口标识具体可以为端口号,例如,基站通过下行信令指示UE-02基站发送DMRS的端口标识为x+1和x+2,同时指示UE-02基站采用的预处理方式为空时发射分集处理;又例如,基站通过下行信令指示UE-02基站发送DMRS的端口标识为x,x+1,x+2和x+3,同时指示UE-02基站采用的预处理方式为空频发射分集处理。基站通过下行信令指示UE预处理方式时,可以固定分配几个bit(中文:比特)来指定预处理方式,例如,采用2bit指示预处理方式,2bit共可以指示4种预处理方式,例如,00表示空时发射分集处理,01表示空频发射分集处理,当然,基站也可以采用其他方式指示预处理方式。
方式二、基站通过下行信令向UE发送每个空间流对应的DMRS的端口标识,每个空间流对应的DMRS的端口标识或端口数量唯一对应一种预处理方式。
在该方式二中,空间流对应的DMRS的端口标识或端口数量可以指示预处理方式,端口标识或端口数量与预处理方式之间具有映射关系,每个空间流对应的DMRS的端口标识或端口数量唯一对应一种预处理方式,UE可以根据DMRS的端口标识或端口数量和该映射关系确定预处理方式。例如,该映射关系为:使用端口标识为x+1和x+2的端口必须使用空时发射分集处理,或者,使用两个端口必须使用空时发射分集处理。那么当UE通过下行信令获取到空间流对应的DMRS的端口标识为x+1与x+2时,UE根据该映射关系可以确定基站使用的预处理方式为空时发射分集处理。
方式三、基站通过下行信令向UE发送每个空间流对应的预处理方式的信息,每个空间流对应的预处理方式唯一对应一组DMRS的端口标识。
其中,预处理方式的信息可以为预处理方式的标识,基站可以通过一个或多个bit来指示预处理方式。在该方式三中,空间流对应的预处理方式可以指示DMRS的端口标识,预处理方式和端口标识之间具有映射关系,每个空间流使用的预处理方式可以唯一对应一组DMRS的端口标识,UE可以根据预处理方式和该映射关系确定DMRS的端口标识,进而根据DMRS的端口标识确定DMRS的端口。例如,基站通过下行信令指示UE-02基站采用的预处理方式为空时发射分集处理,该映射关系为:使用空时发射分集处理进行预处理必须使用端口标识为x+1和x+2的端口,那么根据基站指示的预处理方式和该映射关系,UE-02可以获知DMRS的端口标识为x+1和x+2。
方式四、基站通过下行信令发送向UE每个空间流对应的DMRS的端口数量,每个空间流对应的DMRS端口数量唯一对应一种预处理方式和一组DMRS的端口标识。
在该方式四中,基站通过空间流对应的DMRS的端口数量指示空间流使用的预处理方式和DMRS的端口标识,预处理方式、DMRS端口数量和DMRS的端口标识之间具有映射关系,每个空间流对应的DMRS的端口数量唯一对应一种预处理方式和一组DMRS的端口标识,UE可以根据DMRS端口数量和该映射关系确定发射预处理方式和DMRS的端口标识,进而根据DMRS的端口标识确定DMRS的端口。例如,基站通过下行信令指示UE-02空间流对应的DMRS的端口数量为2,该映射关系为:使用2个端口必须使用空时发射分集处理进行预处理以及空间流对应的DMRS必须使用端口标识为x+1和x+2的端口。UE-02可以根据基站指示的空间流对应的DMRS的端口数量和该映射关系,确定空间流使用的预处理方式为空时发射分集处理,且空间流对应的DMRS的端口标识为x+1和x+2。
方式五、基站通过下行信令向UE发送每个空间流对应的DMRS的端口数量和每个空间流对应的预处理方式的信息,每个空间流对应的DMRS的端口数量和每个空间流对应的预处理方式唯一对应一组DMRS的端口标识。
在该方式五中,基站通过空间流对应的DMRS的端口数量和空间流对应的预处理方式指示空间流对应的DMRS的端口标识,预处理方式、DMRS的端口数量和DMRS的端口标识之间具有映射关系,每个空间流对应的DMRS的端口数量和每个空间流对应的预处理方式唯一对应一组DMRS的端口标识。UE可以根据基站指示的DMRS的端口数量和空间流对应的预处理方式以及该映射关系,确定DMRS的端口标识。例如,基站通过下行信令指示UE-02空间流对应的预处理方式为空时发射分集处理且DMRS的端口数量为2,该映射关系为:预处理方式为空时发射分集处理且DMRS端口数量为2的空间流必须使用端口标识为x+1和x+2的端口。
步骤605、接收端设备接收发射端设备发射的多个预编码数据流。
其中,多个预编码数据流是发射端设备对多个空间流进行预编码得到的。发射端设备向接收端设备发射多个预编码数据流时,接收端设备可以接收发射端设备发射的多个预编码数据流,该接收端设备可以为第一接收端设备、第二接收端设备或者第三接收端设备。可选地,当接收端设备为第一接收端设备时,接收端设备接收发射端设备发射的对至少两个第一预处理空间流进行预编码得到的预编码数据流;当接收端设备为第二接收端设备时,接收端设备接收发射端设备发射的对至少一个原始空间流进行预编码得到的预编码数据 流;当接收端设备为第三接收端设备时,接收端设备接收发射端设备发射的对至少两个第二预处理空间流进行预编码得到的预编码数据流。本领域的技术人员应当明白,实际上,上述各预编码数据流是复用在一起进行发射的,复用的各预编码数据流在到达任意一个接收端设备时,指向其他接收端设备的预编码数据流均应视为干扰,只不过在预编码以及上述接收端设备的信道的共同作用下,上述干扰被大大降低。有关此部分的内容在上文进行解释,因此此处不再赘述。
示例地,第一接收端设备为UE-02,第二接收端设备为UE-03,第三接收端设备为UE-04,当接收端设备为第一接收端设备时,UE-02接收发射端设备发射的预编码数据流110和预编码数据流120,当接收端设备为第二接收端设备时,UE-03接收发射端设备发射的预编码数据流30,当接收端设备为第三接收端设备时,UE-04接收发射端设备发射的预编码数据流210、预编码数据流220和预编码数据流230。应注意,本领域的技术人员应当明白,实际上,上述预编码数据流在经过传播到达各接收端设备时,各接收端设备接收到的预编码数据流已并非发射端设备发出的预编码数据流,而是发射端设备发出且经过信道传播后的预编码数据流。预编码数据流在传播过程中,受到了信道的影响,导致接收端设备收到的预编码数据流不同于发射端设备发出的预编码数据流。然而,为简化描述,本文在对本申请进行描述的过程中,使用相同的名称和编号来表示发射端设备发出的预编码数据流和接收端设备接收到的预编码数据流。
需要说明的是,该步骤605具体可以由图4所示实施例中的第一接收单元262e来实现,接收端设备接收发射端设备发射的多个预编码数据流的具体实现过程在相关技术中均已清楚描述,本发明实施例在此不再赘述。
步骤606、接收端设备接收发射端设备发射的多个预编码解调参考信号。
其中,多个预编码解调参考信号是对多个空间流的解调参考信号进行预编码得到的,多个空间流中的每个空间流对应一个解调参考信,对每个空间流进行预编码使用的预编码向量与对每个空间流的解调参考信号进行预编码使用的预编码向量相同。发射端设备向接收端设备发射多个预编码解调参考信号时,接收端设备可以接收发射端设备发射的多个预编码解调参考信号,该接收端设备可以为第一接收端设备、第二接收端设备或者第三接收端设备。
示例地,请同时参考步骤604和步骤605,当接收端设备为第一接收端设备,且第一接收端设备为UE-02时,UE-02接收发射端设备发射的预编码解调参考信号S110和预编码解调参考信号S120,当接收端设备为第二接收端设备,且第二接收端设备为UE-03时,UE-03接收发射端设备发射的预编码解调参考信号S30,当接收端设备为第三接收端设备,且第三接收端设备为UE-04时,UE-04接收发射端设备发射的预编码解调参考信号S210、预编码解调参考信号S220和预编码解调参考信号S230。
需要说明的是,该步骤606具体可以由图4所示实施例中的第二接收单元262h来实现,接收端设备接收多个预编码解调参考信号的具体实现过程在相关技术中均已清楚描述,本发明实施例在此不再赘述。
步骤607、接收端设备从多个预编码数据流中恢复出至少两个第一预处理空间流。
根据以上描述可知,该步骤607中的接收端设备为第一接收端设备。第一接收端设备接收多个预编码数据流后,可以从多个预编码数据流中恢复出至少两个第一预处理空间流, 可选地,第一接收端设备可以根据至少两个第一预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第一预处理空间流。
在本发明实施例中,每个预编码向量可以对应一个DMRS端口,不同的预编码向量对应的DMRS端口不同,DMRS可以用于信道解调,这是因为对每个空间流进行预编码使用的预编码向量和对该空间流对应的DMRS进行预编码使用的预编码向量相同,但是DMRS不需要进行预处理。换句话说,原始空间流在经过预处理得到至少两个空间流后,这些空间流与各自的DMRS相关联,这些DMRS彼此不同。接收端设备可以根据DMRS端口对应的DMRS对接收到的预编码数据流进行解调得到空间流。
由以上可知,第一接收端设备要从多个预编码数据流中恢复出该至少两个第一预处理空间流,需要获取该至少两个第一预处理空间流的预编码解调参考信号和该至少两个第一预处理空间流对应的DMRS的端口标识。因此,第一接收端设备还可以接收多个预编码解调参考信号,该多个预编码解调参考信号是对该至少两个第一预处理空间流的解调参考信号进行预编码得到的。由于对每个第一预处理空间流进行预编码使用的预编码向量与对每个第一预处理空间流对应的DMRS进行预编码使用的预编码向量相同,因此,可以根据该至少两个第一预处理空间流的预编码解调参考信号和DMRS的端口标识解调出该至少两个第一预处理空间流。示例地,第一接收端设备根据预编码解调参考信号S110和预编码解调参考信号S120恢复出第一预处理空间流11和第一预处理空间流12。
需要说明的是,该步骤607可以由图4所示实施例中的第一恢复单元262f实现,第一接收端设备根据至少两个第一预处理空间流的预编码解调参考信号从预编码数据流中恢复出至少两个第一预处理空间流的过程在相关技术中已有清楚描述,本发明实施例在此不再赘述。
还需要说明的是,本发明实施例是以接收端设备恢复出至少两个第一预处理空间流为例进行说明的,当接收端设备为第二接收端设备时,第二接收端设备根据至少一个原始空间流的预编码解调参考信号从多个预编码数据流中恢复出至少一个原始空间流,当接收端设备为第三接收端设备时,第三接收端设备根据至少两个第二预处理空间流的预编码解调参考信号从多个预编码数据流中恢复出至少两个第二预处理空间流,本发明实施例在此不再赘述。
步骤608、接收端设备根据至少两个第一预处理空间流恢复出第一原始空间流。
根据以上描述可知,该步骤607中的接收端设备为第一接收端设备。第一接收端设备恢复出至少两个第一预处理空间流后,可以根据该至少两个第一预处理空间流恢复出第一原始空间流。具体地,第一接收端设备可以根据步骤604中相关的描述确定至少两个第一预处理空间流对应的预处理方式,进而根据至少两个第一预处理空间流和相应的预处理方式恢复出第一原始空间流。
示例地,第一接收端设备可以根据步骤604中相关的描述确定第一预处理空间流11和第一预处理空间流12的预处理方式,该第一预处理空间流11和第一预处理空间流12的预处理方式可以为空时发射分集处理,之后,第一接收端设备根据第一预处理空间流11、第一预处理空间流12和空时发射分集处理,恢复出第一原始空间流1。
需要说明的是,该步骤608可以由图4所示实施例中的第二恢复单元262g实现。本发明实施例是以接收端设备根据至少两个第一预处理空间流恢复出第一原始空间流为例进行说明的,当接收端设备为第三接收端设备时,第三接收端设备根据至少两个第二预处理空间 流恢复出第二原始空间流,当接收端设备为第二接收端设备时,第二接收端设备无需执行该步骤608。
需要补充说明的是,本发明实施例提供的数据传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本发明实施例提供的数据传输方法,发射端设备通过对多个空间流进行预编码,得到多个预编码数据流并发射多个预编码数据流,多个空间流包括至少两个第一预处理空间流,至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,接收端设备从该多个预编码数据流中恢复出该至少两个第一预处理空间流,根据至少两个第一预处理空间流恢复出该第一原始空间流。由于多个空间流中的至少两个第一预处理空间流是对第一原始空间流进行预处理得到的,其他空间流可以是未经过预处理的,且不同的空间流也可以对应不同的传输方案,因此,解决了调度的灵活性较低的问题;达到了提高调度的灵活性的效果。
在LTE或者LTE-A中,数据发射端的天线数量在继续快速增长中,天线数量的增长可以提供更高的空间自由度,这为下行的多样性传输方案提供了可能性,本发明实施例提供的数据传输方法,基于下行的多样性传输方案,使不同UE采用不同的传输方案进行数据传输,提高了调度的灵活性。
请参考图7,其示出了本发明实施例提供的一种数据传输方法的示意图,以下结合图1和图7对本发明实施例提供的数据传输方法与相关技术中的数据传输方法的区别进行简单说明。
参见图7,基站01具有波束b1、波束b2、波束b3、波束b4、波束b5、波束b6和波束b7,且基站01还可以具有端口号分别为x,x+1,…,y的端口(典型的,标准中的端口号为连续的),基站01可以调度UE-02、UE-03、UE-04和UE-05采用传输方案进行数据传输。
在本发明实施例中,基站01可以通过下行信令指示UE-02、UE-03、UE-04和UE-05采用相应的传输方案进行数据传输,且基站01可以为各个UE分配端口,其中,基站01可以采用下行信令的格式指示传输方案,也可以采用下行信令的内容指示传输方案。例如,基站01通过下行信令指示UE-02采用BTD传输方案进行数据传输并将端口号为x+1和x+2的端口分配给UE-02,基站01通过下行信令指示UE-03采用CLSM传输方案进行数据传输并将端口号为x的端口分配给UE-03,基站01通过下行信令指示UE-04采用OLSM传输方案进行数据传输并将端口号为x+3,…,y-2的端口分配给UE-04,基站01通过下行信令指示UE-05采用CLSM传输方案进行数据传输并将端口号为y-1和y的端口分配给UE-05,UE可以采用相应的传输方案进行数据传输。示例地,基站01与UE-02之间采用BTD传输方案进行数据传输占用基站01的波束b1和波束b2,基站01与UE-03之间采用CLSM传输方案进行数据传输占用基站01的波束b3,基站01与UE-04之间采用OLSM传输方案进行数据传输占用基站01的波束b4和波束b5,基站01与UE-05之间采用CLSM传输方案进行数据传输占用基站01的波束b6和波束b7。由于UE-02、UE-03、UE-04和UE-05采用 不同的传输方案进行数据传输,因此,基站01调度的灵活性较高,且当信道环境多样化时,可以达到最佳调度结果,提高频谱效率。
需要说明的是,在本发明实施例中,采用BTD传输方案和OLSM传输方案进行数据传输时,基站都对原始空间流进行了预处理,因此,为了便于UE-02和UE-04能够恢复出原始空间流,基站01还需要通过下行信令向UE-02和UE-04指示相应的预处理方式,示例地,基站通过下行信令向UE-02指示SFBC,向UE-04指示CDD。
相关技术中,基站01调度UE-02、UE-03、UE-04和UE-05采用相同的传输方案进行数据传输,并为各个UE分配端口。例如,基站01调度UE-02、UE-03、UE-04和UE-05都采用CLSM传输方案进行数据传输并将端口号为x+1和x+2的端口分配给UE-02,将端口号为x的端口分配给UE-03,将端口号为x+3,…,y-2的端口分配给UE-04,将端口号为y-1和y的端口分配给UE-05,基站01调度UE并为各个UE分配端口后,各个UE采用相同的传输方案进行数据传输。示例地,基站01与UE-02、UE-03、UE-04和UE-05都采用CLSM传输方案进行数据传输,且UE-02占用基站01的波束b1和波束b2,UE-03占用基站01的波束b3,UE-04占用基站01的波束b4和波束b5,UE-05占用基站01的波束b6和波束b7。基站01调度UE-02、UE-03、UE-04和UE-05都采用CLSM传输方案进行数据传输时,可以实现时频资源的空分复用,提高***的频谱效率,但是,由于基站01调度UE-02、UE-03、UE-04和UE-05采用相同的传输方案进行数据传输,因此,基站01调度的灵活性较低,且当信道环境多样化时,无法达到最佳调度结果,影响频谱效率。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图8,其示出了本发明实施例提供的一种发射端设备800的框图。该发射端设备800可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的基站01的部分或者全部,该发射端设备800执行图5和图6所示实施例提供的部分方法。参见图8,该发射端设备800可以包括:第一预编码模块810、第一发射模块820、第二预编码模块830和第二发射模块840。
第一预编码模块810具有与图3所示的第一预编码单元262a相同或相似的功能。
第一发射模块820具有与图3所示的第一发射单元262b相同或相似的功能。
第二预编码模块830具有与图3所示的第二预编码单元262c相同或相似的功能。
第二发射模块840具有与图3所示的第二发射单元262d相同或相似的功能。
其中,至少两个第一预处理空间流的指向、多个空间流中包括的其他空间流及其指向,以及预处理均可以参考图3所示实施例,本实施例在此不再赘述。
请参考图9,其示出了本发明实施例提供的一种接收端设备900的框图。该接收端设备900可以通过软件、硬件或者两者的结合实现成为图1所示实施环境中的UE-02的部分或者全部,该接收端设备900执行图5和图6所示实施例提供的部分方法。参见图9,该接收端设备900可以包括:第一接收模块910、第一恢复模块920、第二恢复模块930和第二接收模块940。
第一接收模块910具有与图4所示的第一接收单元262e相同或相似的功能。
第一恢复模块920具有与图4所示的第一恢复单元262f相同或相似的功能。
第二恢复模块930具有与图4所示的第二恢复单元262g相同或相似的功能。
第二接收模块940具有与图4所示的第二接收单元262h相同或相似的功能。
其中,至少两个第一预处理空间流的指向以及预处理均可以参考图4所示实施例,本实施例在此不再赘述。
请参考图10,其示出了本发明实施例提供的一种数据传输***1000结构示意图。参见图10,该数据传输***1000可以包括:发射端设备1010和接收端设备1020。
在一种可能的实现方式中,发射端设备1010包括图3所示的应用程序单元262;接收端设备1020包括图4所示的应用程序单元262;
在另一种可能的实现方式中,发射端设备1010为8所示的发射端设备800;接收端设备1020为图9所示的接收端设备900。
应当理解的是,在本文中使用的,除非上下文清楚地支持例外情况,单数形式“一个”(“a”、“an”、“the”)旨在也包括复数形式。还应当理解的是,在本文中使用的“和/或”是指包括一个或者一个以上相关联地列出的项目的任意和所有可能组合。
本发明实施例中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (37)

  1. 一种数据发送方法,其特征在于,所述方法包括:
    对多个空间流进行预编码,得到多个预编码数据流,所述多个空间流包括至少两个第一预处理空间流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    发射所述多个预编码数据流。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个第一预处理空间流指向第一接收端设备。
  3. 根据权利要求1所述的方法,其特征在于,所述多个空间流还包括至少一个原始空间流。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个原始空间流中的至少一个指向第二接收端设备。
  5. 根据权利要求4所述的方法,其特征在于,所述多个空间流还包括:至少两个第二预处理空间流,所述至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,所述第二原始空间流指向第三接收端设备。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述预处理为发射分集处理。
  7. 根据权利要求6所述的方法,其特征在于,所述发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理。
  8. 根据权利要求6所述的方法,其特征在于,所述发射分集处理为循环延迟分集处理。
  9. 根据权利要求1至5任一所述的方法,其特征在于,所述预处理为基于发射分集的空分复用处理。
  10. 根据权利要求1至9任一所述的方法,其特征在于,所述多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,所述方法还包括:
    对所述多个空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,所述多个空间流中的每个空间流对应一个所述解调参考信号;
    发射所述多个预编码解调参考信号。
  11. 一种数据接收方法,其特征在于,所述方法包括:
    接收多个预编码数据流,所述多个预编码数据流是对多个空间流进行预编码得到的,所述多个空间流包括至少两个第一预处理空间流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流;
    根据所述至少两个第一预处理空间流恢复出所述第一原始空间流。
  12. 根据权利要求11所述的方法,其特征在于,所述至少两个第一预处理空间流指向第一接收端设备。
  13. 根据权利要求11或12所述的方法,其特征在于,所述预处理为发射分集处理。
  14. 根据权利要求13所述的方法,其特征在于,所述发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理。
  15. 根据权利要求13所述的方法,其特征在于,所述发射分集处理为循环延迟分集处理。
  16. 根据权利要求11或12所述的方法,其特征在于,所述预处理为基于发射分集的空分复用处理。
  17. 根据权利要求11至16任一所述的方法,其特征在于,所述多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,所述方法还包括:
    接收多个预编码解调参考信号,所述多个预编码解调参考信号是对所述多个空间流的解调参考信号进行预编码得到的,所述多个空间流中的每个空间流对应一个所述解调参考信号;
    所述从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流,包括:
    根据所述至少两个第一预处理空间流的预编码解调参考信号从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流。
  18. 一种发射端设备,其特征在于,所述发射端设备包括:
    第一预编码模块,用于对多个空间流进行预编码,得到多个预编码数据流,所述多个空间流包括至少两个第一预处理空间流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    第一发射模块,用于发射所述多个预编码数据流。
  19. 根据权利要求18所述的发射端设备,其特征在于,所述至少两个第一预处理空间流指向第一接收端设备。
  20. 根据权利要求18所述的发射端设备,其特征在于,所述多个空间流还包括至少一个原始空间流。
  21. 根据权利要求20所述的发射端设备,其特征在于,所述至少一个原始空间流中的至少一个指向第二接收端设备。
  22. 根据权利要求21所述的发射端设备,其特征在于,所述多个空间流还包括:至少两个第二预处理空间流,所述至少两个第二预处理空间流是对第二原始空间流进行预处理得到的,所述第二原始空间流指向第三接收端设备。
  23. 根据权利要求18至22任一所述的发射端设备,其特征在于,所述预处理为发射分集处理。
  24. 根据权利要求23所述的发射端设备,其特征在于,所述发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理。
  25. 根据权利要求23所述的发射端设备,其特征在于,所述发射分集处理为循环延迟分集处理。
  26. 根据权利要求18至22任一所述的发射端设备,其特征在于,所述预处理为基于发射分集的空分复用处理。
  27. 根据权利要求18至26任一所述的发射端设备,其特征在于,所述多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,所述发射端设备还包括:
    第二预编码模块,用于对所述多个空间流的解调参考信号进行预编码,得到多个预编码解调参考信号,所述多个空间流中的每个空间流对应一个所述解调参考信号;
    第二发射模块,用于发射所述多个预编码解调参考信号。
  28. 一种接收端设备,其特征在于,所述接收端设备包括:
    第一接收模块,用于接收多个预编码数据流,所述多个预编码数据流是对多个空间流进行预编码得到的,所述多个空间流包括至少两个第一预处理空间流,所述至少两个第一预处理空间流是对第一原始空间流进行预处理得到的;
    第一恢复模块,用于从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流;
    第二恢复模块,用于根据所述至少两个第一预处理空间流恢复出所述第一原始空间流。
  29. 根据权利要求28所述的接收端设备,其特征在于,所述至少两个第一预处理空间流指向第一接收端设备。
  30. 根据权利要求28或29所述的接收端设备,其特征在于,所述预处理为发射分集处理。
  31. 根据权利要求30所述的接收端设备,其特征在于,所述发射分集处理为空时发射分集处理、空频发射分集处理或空时频发射分集处理。
  32. 根据权利要求30所述的接收端设备,其特征在于,所述发射分集处理为循环延迟分集处理。
  33. 根据权利要求28或29所述的接收端设备,其特征在于,所述预处理为基于发射分集的空分复用处理。
  34. 根据权利要求28至33任一所述的接收端设备,其特征在于,所述多个空间流中不同的空间流对应不同的预编码向量,每个预编码向量对应一个解调参考信号DMRS端口,不同的预编码向量对应的DMRS端口不同,所述接收端设备还包括:
    第二接收模块,用于接收多个预编码解调参考信号,所述多个预编码解调参考信号是对所述多个空间流的解调参考信号进行预编码得到的,所述多个空间流中的每个空间流对应一个所述解调参考信号;
    所述第一恢复模块,用于根据所述至少两个第一预处理空间流的预编码解调参考信号从所述多个预编码数据流中恢复出所述至少两个第一预处理空间流。
  35. 一种发射端设备,其特征在于,所述发射端设备包括:处理器、网络接口、存储器以及总线,所述存储器与所述网络接口分别通过所述总线和所述处理器相连,所述处理器被配置为执行所述存储器中存储的指令,所述处理器通过执行指令来实现权利要求1至10任一所述的数据发送方法。
  36. 一种接收端设备,其特征在于,所述接收端设备包括:处理器、网络接口、存储器以及总线,所述存储器与所述网络接口分别通过所述总线和所述处理器相连,所述处理器被配置为执行所述存储器中存储的指令,所述处理器通过执行指令来实现权利要求11至17任一所述的数据接收方法。
  37. 一种数据传输***,其特征在于,所述数据传输***包括:权利要求18至27任一所述的发射端设备,和,权利要求28至34任一所述的接收端设备;或者,权利要求35所述的发射端设备,和,权利要求36所述的接收端设备。
PCT/CN2017/089024 2016-08-23 2017-06-19 数据发送方法、数据接收方法、设备及*** WO2018036246A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17842671.4A EP3499736B1 (en) 2016-08-23 2017-06-19 Data transmission method, and data reception method, device and system
US16/282,451 US20190190571A1 (en) 2016-08-23 2019-02-22 Data Sending Method, Data Receiving Method, Device, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610710376.0A CN107769827B (zh) 2016-08-23 2016-08-23 数据发送方法、数据接收方法、设备及***
CN201610710376.0 2016-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/282,451 Continuation US20190190571A1 (en) 2016-08-23 2019-02-22 Data Sending Method, Data Receiving Method, Device, and System

Publications (1)

Publication Number Publication Date
WO2018036246A1 true WO2018036246A1 (zh) 2018-03-01

Family

ID=61246376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089024 WO2018036246A1 (zh) 2016-08-23 2017-06-19 数据发送方法、数据接收方法、设备及***

Country Status (4)

Country Link
US (1) US20190190571A1 (zh)
EP (1) EP3499736B1 (zh)
CN (1) CN107769827B (zh)
WO (1) WO2018036246A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080137762A1 (en) * 2006-12-11 2008-06-12 Texas Instruments Incorporated Dynamic resource allocation to improve mimo detection performance
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法
CN104079384A (zh) * 2013-03-27 2014-10-01 华为技术有限公司 多天线***的数据传输方法和设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7627051B2 (en) * 2004-11-08 2009-12-01 Samsung Electronics Co., Ltd. Method of maximizing MIMO system performance by joint optimization of diversity and spatial multiplexing
AR067232A1 (es) * 2007-03-19 2009-10-07 Interdigital Tech Corp Un conmutador vectorial y conmutador de frecuencia transmisor de diversidad combinado precodificador para una sincronizacion de canal secundario en utra evolucionado
TWI580208B (zh) * 2011-04-29 2017-04-21 內數位專利控股公司 開迴路空間處理
CN102857458B (zh) * 2011-06-30 2018-01-02 中兴通讯股份有限公司 导频符号确定方法及装置
US9084238B2 (en) * 2011-09-12 2015-07-14 Blackberry Limited Searching space and operation for enhanced PDCCH in LTE systems
EP3188393B1 (en) * 2014-09-19 2019-04-17 Huawei Technologies Co., Ltd. Multiplexing method for multiple users, base station, and user terminal
CN107733492B (zh) * 2016-08-10 2020-09-04 华为技术有限公司 数据发送、接收方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080137762A1 (en) * 2006-12-11 2008-06-12 Texas Instruments Incorporated Dynamic resource allocation to improve mimo detection performance
CN102412885A (zh) * 2011-11-25 2012-04-11 西安电子科技大学 Lte中的三维波束赋形方法
CN104079384A (zh) * 2013-03-27 2014-10-01 华为技术有限公司 多天线***的数据传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT SHANGHAI BELL ET AL.: "Considerations on CSI Feedback Enhancements for High-priority Antenna Configurations", 3GPP TSG-RAN WG1 #66 RL-112420, 26 August 2011 (2011-08-26), XP050537814 *

Also Published As

Publication number Publication date
CN107769827B (zh) 2021-01-12
EP3499736B1 (en) 2020-09-16
CN107769827A (zh) 2018-03-06
EP3499736A1 (en) 2019-06-19
US20190190571A1 (en) 2019-06-20
EP3499736A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
KR101328961B1 (ko) 개루프 공간 다중화 모드에서 신호 송수신 방법
KR101582685B1 (ko) 다중안테나를 이용한 데이터 전송장치 및 방법
US10735080B2 (en) Transmission scheme indication method, and data transmission method, apparatus, and system
WO2011043497A1 (en) Precoding and feedback channel information in wireless communication system
CN107733492B (zh) 数据发送、接收方法和装置
KR20080087369A (ko) 다중 입력 다중 출력 방식을 사용하는 무선 통신시스템에서 사전 부호화 장치 및 방법
CN106374985B (zh) 一种多用户数据的发送接收方法及装置
JP5478780B2 (ja) データ送受信用の複数のサービス・アンテナを有するmimoシステムおよびその方法
WO2013007146A1 (zh) 一种上行多天线***开环空间复用的发射方法和装置
WO2018196589A1 (zh) 数据发送方法、数据接收方法、网络设备和终端设备
WO2018054188A1 (zh) 数据发送方法、数据接收方法、设备及***、存储介质
WO2018036246A1 (zh) 数据发送方法、数据接收方法、设备及***
Benjebbour et al. Experimental trials on non-orthogonal multiple access
Kapinas et al. A universal MIMO approach for 3GPP wireless standards
WO2018171622A1 (zh) 数据发送方法和装置以及数据接收方法和装置
Bai et al. On the receiver performance in MU-MIMO transmission in LTE
KR20090076322A (ko) 다중 입출력 시스템에서, 신호를 송수신하는 방법
WO2011072553A1 (zh) 一种多用户复用方法及发射装置
Wang et al. Adaptive stream mapping in MIMO-OFDM with linear precoding
Taya et al. A virtual successive detection for cooperative MU-MIMO systems with reduced CSI
WO2009098532A1 (en) Apparatus, methods, and computer program products providing improved spatial multiplexing for mimo communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017842671

Country of ref document: EP

Effective date: 20190313