WO2018015600A1 - Sistema de recuperación de calor en procesos térmicos mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes - Google Patents

Sistema de recuperación de calor en procesos térmicos mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes Download PDF

Info

Publication number
WO2018015600A1
WO2018015600A1 PCT/ES2017/070519 ES2017070519W WO2018015600A1 WO 2018015600 A1 WO2018015600 A1 WO 2018015600A1 ES 2017070519 W ES2017070519 W ES 2017070519W WO 2018015600 A1 WO2018015600 A1 WO 2018015600A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
steam
liquid
residual heat
generator
Prior art date
Application number
PCT/ES2017/070519
Other languages
English (en)
French (fr)
Inventor
Jose Ignacio Ajona Maeztu
Original Assignee
Seenso Renoval S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201630950U external-priority patent/ES1163858Y/es
Priority claimed from ES201631265U external-priority patent/ES1172383Y/es
Application filed by Seenso Renoval S.L. filed Critical Seenso Renoval S.L.
Priority to EP17830540.5A priority Critical patent/EP3488922A4/en
Publication of WO2018015600A1 publication Critical patent/WO2018015600A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/10Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material
    • F28C3/12Other direct-contact heat-exchange apparatus one heat-exchange medium at least being a fluent solid, e.g. a particulate material the heat-exchange medium being a particulate material and a gas, vapour, or liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/022Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure with provisions for changing the drying gas flow pattern, e.g. by reversing gas flow, by moving the materials or objects through subsequent compartments, at least two of which have a different direction of gas flow
    • F26B21/028Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure with provisions for changing the drying gas flow pattern, e.g. by reversing gas flow, by moving the materials or objects through subsequent compartments, at least two of which have a different direction of gas flow by air valves, movable baffles or nozzle arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/08Humidity
    • F26B21/086Humidity by condensing the moisture in the drying medium, which may be recycled, e.g. using a heat pump cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/001Heating arrangements using waste heat
    • F26B23/002Heating arrangements using waste heat recovered from dryer exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/005Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • TECHNICAL SECTOR Energy efficiency of thermal processes Desalination, drying, distillation, water treatment, air conditioning by absorption and generation of mechanical energy.
  • the system of the invention aims to contribute to the solution of these problems EXPLANATION OF THE INVENTION
  • a packed bed is a multiphase reactor in which various materials are present in two or three phases (solid, liquid or gas). Inside there may be chemical reactions or, as in the case of the system of the invention in question, phenomena of heat and mass transfer between the solid (typically called bed filling) and a heat transfer fluid (eg moist air, water liquid, ...) that circulates inside and that serves to give or take away energy to the solid filling of the bed, depending on the mode of operation.
  • a heat transfer fluid eg moist air, water liquid,
  • the system of the invention uses for sequential and alternative heat recovery in thermal processes, a set of beds packed with non-adsorbent materials (or in which adsorption does not represent a dominant effect) by applying, in a new system,
  • the thermal evolution of the filling experienced two distinct stages.
  • the filling reaches a temperature close to the humid temperature of the inlet air and condensation of water occurs on the filling and, subsequently, drainage or evaporation of the deposited water.
  • the second phase begins in which the bed evolves from the temperature close to that of the humid air of the inlet air, until the dry temperature of the feed air is reached.
  • the thermal wave travels inside the bed at a speed, depending on the operating conditions, significantly faster than in the second and the faster the higher the wet temperature.
  • the system of the invention can be used in numerous applications, different from each other but sharing the same principle: the heat applied or generated in a device, (which could also be a packed bed) is captured and recovered by beds packed with non-material adsorbents that sequentially exchange their roles: while one of the beds captures the residual heat of the first device, the second preheats the fluid it delivers to the first device (or another process) using the residual heat that it had previously captured; that is, when the sensor bed reaches the maximum set level, using a synchronized valve system, it exchanges its paper with the preheater bed, and vice versa.
  • the applications of the system of the invention are characterized by a capacity to recover the residual heat produced, in most cases, at 80%.
  • beds packed with a solid material, not significantly adsorbent, with physical properties such as the product of its heat value are used specific, its density and the fraction of the space occupied by the solid in the bed is greater than 200 kilojoules per degree centigrade and cubic meter (kJ / C / m3), being able to exceed 3000 kJ / C / m 3 .
  • Fluid inlet to the process e.g. dryer (1) (in operating mode 1 and 2)
  • valves or gates actuated in conjunction with (a '), (b'), (c ') and (d') are required.
  • valves or gates e), (f) and (g) are required.
  • Condensate extraction in the beds (2) or (3) requires a pump (B)
  • the system of the invention can operate in three different modes of operation.
  • the product that is processed in (1) eg product to be dried
  • an external source (6) e.g., solar installation, Certainly or internal (chemical reaction) and produces residual heat (eg hot and dry air enters the process (1) that evaporates the water of the product to be dried and produces hot and humid air) that is transferred by the heat transfer fluid to the residual heat sensor (2) and the preheater (3).
  • residual heat eg hot and dry air enters the process (1) that evaporates the water of the product to be dried and produces hot and humid air
  • the process fluid (1) enters (4) into the preheater (2) where it is preheated before entering the heater (6) by conduction (5) and being introduced into the process (1) by the conduit (7), producing a fluid with residual heat at its outlet (in the case of drying steam is produced, causing the air to reach an initially quasi-saturated state at a temperature close to that set in the heater and subsequently with a content of humidity that will decrease as the product dries until it approaches the humidity of the inlet air).
  • the fluid with high enthalpic content from the process (1) through the conduit (8) will transfer its enthalpy in contact with the filling material of the residual heat sensor (2)
  • the heat transfer will be only by sensible heat between the heat transfer fluid and the solid.
  • mode of operation 2 will be entered exclusively when you want to recover the sensible heat of the material inside the process (1); for example, in the case of drying a product when it is already dry to the established levels and at a temperature close to that set as a setpoint in the heater (6).
  • the heater (6) is turned off, keeping the fluid circulator (S) connected to recover the sensible heat of the product and transfer it to the upper part of the preheater (3).
  • the fluid cooled to the outlet of the preheater (3) enters the process (1) by conduction (7). If the preheater outlet temperature is not cold enough to cool the product, cold fluid will be taken from the outside, for example, by properly positioning (b) and (c), and it will be ejected by (e) once opened.
  • the third mode of operation (mode of operation 3) will be entered exclusively when you want to use the residual heat generated in the process (1), recovering it for use in a different process than the one that generated it (process (1)); for example, in the case of an exothermic process (or with internal sources of heat generation) that does not need the incoming fluid to provide it with energy and that in many cases is used to cool it.
  • the heater (6) will normally be turned off (since the process (1) generates heat), keeping the fluid circulator (S) connected to move the fluid and recover the residual heat from the process (1) in the same way as in operating mode 1:
  • the fluid with high enthalpy content from the process (1) through the conduit (8), will transfer its enthalpy in contact with the material of the residual heat sensor filling (2) ), performing the same paper change with the preheater (3) with the same criteria described in the following paragraph.
  • the fluid in the operating mode 3, will enter the system through conduction (1 1) to direct it towards the process (1) and through conduction (4) to direct it through from the conduit (12) towards the external use of the enthalpy from the preheater (3), instead of directing it towards the process (1), the fluid entering through the conduit (1 1) may be the same or different from the one entering by driving (4).
  • the gate (f) it is it is necessary for the gate (f) to divert the fluid towards the external process, preventing it from going towards the process (1) from the conduit (5) and that the gate (g) is open to allow the fluid to enter through (1 1) .
  • the process to which the heat recovered from the process is sent (1) will have all the necessary elements for the circulation of the fluid through it.
  • the fact that the preheater (3) can perform the function of preheating the fluid is due to the fact that residual heat collector (2) and the preheater (3) exchange their roles when the temperature evolution in The low part of the residual heat sensor (2) is such that it rises above the temperature of the fluid inlet by (4) the amount established as the operating criteria.
  • This change is carried out by means of a set of 3-way gate valves (or equivalent) whereby connections (a), (b), (c) and (d) of the residual heat sensor (2) change their function with the (a '), (b'), (c ') and (d') of the preheater (3) and vice versa while the process exit gate (e) remains closed.
  • the movement of the fluids is carried out, mainly, by the hydraulic group of condensate extraction pumps B, and by the circulator (blower for drying) S, in the duct (5) (it is also possible to place it in the duct (8)) to circulate the fluid between the preheater (3), the dryer (1) and the residual heat sensor (2).
  • the new preheater is in the conditions that the residual heat collector was, with a temperature in the high part close to that set in the heater (6) and a temperature in the low part close to the inlet of the fluid by (4) so that it can preheat, yielding its heat, to the incoming fluid.
  • the new residual heat collector is in the conditions that the preheater was, which has been thermally discharged after being cooled by the passage of the feed fluid to the system, with a temperature in its lower part close to the of fluid input through (4) so that, in modes of operation 1 and 3, you can efficiently recover the residual heat from the process (1) as well as recover the sensitive heat of the processed product, in the second mode of operation .
  • This change of roles is one of the most remarkable elements of the system of the invention.
  • the bed of the residual heat sensor (2) and the preheater (3) when using materials such that the product of the value of its specific heat, its density and the fraction of the space occupied by the solid in the bed is greater of 200 kilojoules per degree centigrade and cubic meter (kJ / C / m 3 ), being able to exceed 3000 kJ / C / m 3 , as well as as residual heat collector (2) or preheater (3), it works as a system of Energy storage of heat sources (intermittent or not), efficient and, potentially, low cost.
  • thermodynamic balancing of the fluid flows and the filling of the beds is achieved, thanks to the coupling caused between the thermal behavior of the fluid and the filling, both in the residual heat sensor (2 ), as in the preheater (3), due to the good heat transfer achieved and the great thermal stratification between the upper part of the bed and the lower part of the bed, increased if filling materials with high thermal inertia are used and Low thermal conductivity
  • Evaporator Residual heat generator both in the form of phase change heat and sensible heat.
  • a device other than a packed bed can also be used as an evaporator.
  • the hot air (or other gas) with high vapor content from the evaporator (1) will lose steam and temperature in contact with the material of the condenser filling (2) in the same way as in the one described above in the aforementioned Thesis and along a path, represented in the psychrometric diagram, (or in the pressure-temperature diagram corresponding to the vapor to condense) on the saturation curve between a temperature close to that set in the heater (8) and that of the brine, or liquid to be treated, introduced by (6).
  • the liquid condensed on the filling and that arrives by gravity at the bottom of the condenser (2) is extracted from the system by (13).
  • the cooled and concentrated brine (or solution) leaving the evaporator (1) will be conducted by (1 1), (12) or (13) depending on the desired mode of operation to, respectively, reheat, re-concentrate or expel the system.
  • recuperator (3) can perform the function of preheating the brine (or dissolution) is due to which condenser (2) and the recuperator (3) exchange their roles when the temperature evolution in the lower part of the condenser is such that rises above the temperature of the brine inlet (or dissolution) by (6) the amount established as the operating criteria.
  • This change is made through a set of 3-way valves and gate (or equivalent) whereby connections (a), (b), (c), (d) and (e) of the condenser (2) change their function with the (a '), (b'), (c '), (d') and (e ') of the recuperator (3).
  • the movement of the liquid is mainly carried out by means of the hydraulic groups of pumps B1 for feeding the auxiliary tank (5), B2 for feeding the recuperator (3) and B3 for condensate extraction, and for the blower S, in the duct ( 14) to circulate the air (or other gas) with steam between the condenser (2) and the evaporator (1)
  • the new recuperator is in the conditions that the condenser was, with a temperature in the high part close to that set in the heater (8) and a temperature in the low part close to the inlet of the liquid by (6) so you can preheat, giving up its heat, to the incoming liquid.
  • the new condenser is in the conditions that the recuperator was, which has been thermally discharged when it has cooled down by the passage of the feed liquid to the system, with a temperature in its lower part close to that of the liquid inlet by (6) so you can efficiently condense the steam from the evaporator (1).
  • the efficiency of the device of the invention will depend mainly on
  • the system of the invention can use this type of filled beds in the evaporator (1), but using non-adsorbent materials, with a high value of the specific heat density product, fractions of holes in the bed in the environment of 33% and low cost , the bed, in addition to as an evaporator, works as an efficient and low-cost accumulation system, which is especially interesting if you want to provide the solar energy (alone or as a main contributor) the energy needed for the process (you have to keep in mind that you can always hybridize the solar system with another system of heat production with renewables or with conventional fuels to maintain a constant regime in the production of the process).
  • the system of the invention used for desalination can be considered an improvement over desalination HDH systems.
  • the basic criteria found in the literature is the thermodynamic equilibrium of air (or gas) flows with steam and liquid.
  • this balancing is achieved in a natural way without the need for extractions / injections of steam or liquid between the evaporator and the condenser as proposed in numerous HDH systems, thanks to the coupling caused by the direct exchange between the thermal behavior of the solid and the fluids, both in the evaporator (1) and in the condenser (2), and by the great thermal stratification between the upper part of the bed and the lower part of the bed, increased if filling materials are used with high thermal inertia and low thermal conductivity.
  • An application in which the system of the invention is used in a manner similar to that described for its application in desalination, is that of the production of cold by absorption and, in general, for any application in which a solution undergoes a process during which it increases its concentration of the dissolved salt by applying heat (desorbing the solvent) and decreases its concentration by contacting the solution with the solvent vapors (absorbing the solvent).
  • a diluted and cold solution of, for example, lithium bromide is heated by applying heat, in the so-called Generator at a reduced pressure, desorbing steam and thus concentrating the solution .
  • the steam generated in the Generator is transferred to a Condenser at the same pressure, where heat is dissipated to the outside, (condensing the steam and producing liquid water).
  • the liquid water produced in the Condenser expands into a low pressure zone, the so-called Evaporator, cooling down to typically 4 ° C and producing low pressure steam by taking heat from the cold demand.
  • This low pressure steam is transferred to the Absorber where it contacts the concentrated solution produced in the Generator, after expanding it to the low pressure zone, which absorbs the steam, thereby diluting the solution and generating a heat that is It is necessary to dissipate outwards.
  • This diluted solution at low pressure is sent from the Absorber to the Generator by a pump, which increases its pressure, to start the absorption / desorption cycle again.
  • a heat exchanger is usually used between the diluted and cold brine from the Absorber and goes to the Generator with the concentrated hot solution from the Generator and goes to the Absorber.
  • Figure 10 we represent the system of the invention applied to the production of cold (or similar application) using moist air (or gas) and concentrated and diluted solutions of, for example, lithium bromide.
  • three (or two) beds packed with non-adsorbent materials are used to perform the functions of Generator, Condenser and Heat Recovery Condenser connected to an Evaporator and an Absorber to low pressure similar to those used in a conventional absorption machine.
  • Generator, Condenser and Heat Recovery Condenser connected to an Evaporator and an Absorber to low pressure similar to those used in a conventional absorption machine.
  • a diluted and cooled solution of, for example, lithium bromide is heated by applying heat in (8) entering the Generator (1) countercurrently with a flow of moist air (or gas) circulating between the Generator (1) and the Condenser (2).
  • the solution is distributed over the filling, producing steam and causing the air (or other gas) to reach a state in equilibrium with the concentration and temperature of the solution in each area of the bed, desorbing steam from the solution , so that through the bed the solution is concentrated and cooled and increasing the humidity of the humid air (or gas) that crosses it.
  • the moist air (or gas) is transferred to a Condenser by means of the blower (S), where the air vapor (or gas) condenses and liquid water is produced.
  • the hot air (or other gas) with high steam content from the generator (1) will lose steam and temperature in contact with the material of the condenser filling (2) in the same way as in the previously described in the Thesis mentioned above .
  • the liquid condensed on the filling and that arrives by gravity at the bottom of the condenser (2) is extracted from the system by (11) and is introduced, after expanding in (17), in the evaporator (5) where it evaporates taking the heat of the cold demand (19) (cooling down to typically 4 ° C), passing the formed steam to the absorber (4).
  • the cooled and concentrated solution that exits the Generator (1) will be conducted through (10), to expand in (16) and enter the absorber (4) where the heat generated in the absorption of the steam that arrives from the evaporator (5) ) is dissipated in (18).
  • the resulting diluted solution at low pressure is sent, by a pump B3, which increases its pressure, through (6) to the recuperator (3) where it is preheated before entering the heater (8) and being introduced in the upper part of the evaporator (1), starting again the absorption / desorption cycle.
  • recuperator (3) can perform the function of preheating the solution is due to the fact that condenser (2) and the recuperator (3) exchange their roles when the temperature evolution in the lower part of the condenser is such that it rises above the temperature of the solution inlet by (6) the amount established as the operating criteria.
  • This change is executed through a set of 3-way valves and gate (or equivalent) whereby connections (a), (b), (c), (d) and (e) of the capacitor (2) change their function with (a '), (b'), ( c '), (d') and (e ') of the recuperator (3).
  • the movement of the liquid is carried out mainly by means of the hydraulic groups of pumps B1 feeding the auxiliary tank (5), B2 filling the recuperator (3) and B3 feeding the recuperator (3), and the blower S, in the conduit (13) to circulate the air (or other gas) with steam between the condenser (2) and the generator (1)
  • the new recuperator is in the conditions that the condenser was, with a temperature in the upper part close to that set in the heater (8) and a temperature in the lower part close to that of the liquid inlet by (6) so that it can preheat, yielding its heat, to the incoming liquid.
  • the new condenser is in the conditions that the recuperator was, which has been thermally discharged when it has cooled down by the passage of the feed liquid to the system, with a temperature in its lower part close to that of the liquid inlet by (6) so you can efficiently condense the steam from the generator (1).
  • This change of roles is one of the most remarkable elements of the system of the invention.
  • the substantial difference between the system of the invention and a conventional absorption machine is that in the system of the invention the heat generated in the condenser (2) is not dissipated outwardly but is recovered for the preheating of the Solution before entering the Generator (1) so that the attainable COP can exceed the value of 3.
  • the Rankine cycle with overheating It is a cycle used in steam turbines.
  • Rankine cycle with regeneration It is also a cycle used in steam turbines.
  • the water entering the Hot Focus is preheated with one or more bleeds or steam extractions from the turbine at pressures such that its saturation temperature is intermediate between the condensation in the Cold Focus and the saturation at the Focus pressure Hot.
  • the extraction temperatures it is normal for the extraction temperatures to be staggered with equidistant jumps.
  • the typical yield for the production of mechanical energy with this cycle usually exceeds 40%.
  • the combined cycle The exhaust gases of a gas turbine, or a combustion engine, are used to thermally feed a recovery boiler of a steam cycle. Using this cycle for the generation of mechanical energy, the yield of 60% can be exceeded
  • the Stirling cycle is a closed regenerative cycle with a gaseous fluid permanent, where the closed cycle is defined as a thermodynamic system in which the fluid is permanently contained in the system, and regenerative describes the use of a specific type of heat exchange and thermal storage, known as the regenerator.
  • the regenerator is an internal heat exchanger that has the function of absorbing and yielding heat in the constant volume evolution of the cycle.
  • the regenerator consists of a porous medium with negligible thermal conductivity, which contains a fluid.
  • the regenerator divides the motor into two zones: a hot zone and a cold zone. The fluid moves from the hot to the cold zone during the various work cycles, going through the regenerator.
  • Stirling engines have a high efficiency, it is the only one capable of approaching the maximum theoretical performance of Carnot
  • Cogeneration Thermal utilization of the residual heat of a power cycle either of the heat given in the condenser, of the exhaust gases of an engine or turbine or of the cooling of the lubrication of an engine. With the cogeneration for the generation of mechanical and thermal energy, the overall performance (ratio of useful, thermal and mechanical energy, between the energy consumed in the hot spot) can be exceeded by 85%.
  • auxiliary fluid is used, the same or different from that to which we want to increase the pressure, in liquid phase (which we will simply call liquid) and in the form of steam (whenever the word steam is used in this text refers to the auxiliary fluid vapor), a gas (eg air) that carries the steam and some packed beds.
  • Residual heat collector Packed bed acting as Condenser of the steam produced in the Generator (1).
  • V1 Steam passage connection / cut-off valve between the generator (1) and the steam chamber (4)
  • V4 Connection / cut-off valve for the passage of liquid from the bottom of the residual heat sensor (2) to the steam chamber (4)
  • V5 Working fluid ejection valve from the chamber (5)
  • V7 Steam chamber bypass valve (4) from the Generator (1) to the Residual Heat Collector (2)
  • ⁇ S Air recirculation blower (or gas) with steam between the Generator (1) and the Residual Heat Recovery (2) passing (or not, if V7 is open and V1 and V2 closed) through the steam chamber ( 4)
  • the area that will always be under high pressure uses as auxiliary fluids air (or a gas) with steam (eg water) and a liquid (eg water) and two or three beds packed with non-adsorbent materials (similar to the cases of the desalination and absorption described above), to perform the functions of Generator (1), Condenser (2) and Recovery (3) of condensation heat.
  • the area with variable pressure is formed by the steam expansion / compression chamber (4) and the working liquid expansion / compression chamber (5) that balance its pressures through the piston (6).
  • the increase in pressure in the steam chambers (4) and working liquid (5) is produced by closing valve V6 and opening valves V1, V2, V3 and V5 (keeping V4 closed and V7) with which the steam chamber communicates with the high pressure zone, whereby the air (or gas) with the steam generated in the Generator (1) is transferred through the pipe (15) to the chamber of steam (4), heating it and increasing its pressure, thus displacing the separator (6) between the steam chambers (4) and the liquid chambers (5) and increasing the pressure of the working liquid in the liquid chamber (5) , expelling the high pressure working liquid through the pipe (19) and the valve (V5) and sending it to the process in which its energy is used.
  • the auxiliary liquid is heated by applying heat to the Heater (8) and introducing it into the Generator (1) against the current with a flow of air (or gas) with steam circulating between the Generator ( 1) and the Waste Heat Recovery (2) passing through the steam chamber (4) in the steam expansion phase.
  • the liquid is distributed over the filling, producing steam at the high pressure of the Generator (1) and causing the air (or other gas) to reach an equilibrium state of its vapor content in each area of the bed , so that when the bed passes through the liquid is cooling down on its way to the lower part of the Generator (1) and the air (or gas) increases its temperature and the amount of steam it carries on its way to the upper part of the Generator (1).
  • the liquid that reaches the lower part of the Generator (1) without evaporating is conducted by (10) to the lower part of the Retriever (3) where it will be preheated when passing through it before entering the heater (8) through the pipe (7) to later be introduced in the upper part of the Generator (1) and start the cycle again.
  • the hot air (or other gas) with high steam content from the generator (1) and the steam chamber (4) will lose steam and temperature in contact with the material of the recuperator filling of residual heat (condenser) (2) by heating it in the same way as described in the thesis mentioned above.
  • the condensed liquid on the condenser filling (2) which arrives cold and by gravity at the bottom of the condenser (2), is removed from the system by (1 1) when the steam chamber (4) is to be cooled.
  • the liquid that comes out from the lower part of the Generator (1) is preheated in the Recover (3).
  • the fact that the recuperator (3) can perform the function of preheating the liquid is due to the fact that the condenser (2) and the recuperator (3) exchange their roles when the temperature evolution in the lower part of the condenser is such that it rises by above the set temperature as operating criteria.
  • This change is executed by a set of 3-way valves and gate (or equivalent) by which the connections (a), (b), (c), (d), (e) and (f) of the condenser (2) change their function with the (a '), (b'), (c '), (d'), (e ') and (f) of the recuperator (3).
  • the movement of the liquid is mainly carried out by means of the hydraulic groups of pumps B1 feeding the auxiliary tank (13), B2 feeding the recuperator (3) from the generator (1) and B3 circulating the condensate produced in the Condenser ( 2), and by the blower S, located in the duct (14), (15) or (16) as appropriate, to circulate the air (or other gas) with steam between the condenser (2), the generator (1) and the steam chamber (4)
  • the new recuperator is in the conditions that the condenser was, with a temperature in the high part close to that set in the heater (8) and a temperature in the low part close to the inlet of the liquid by (6) so you can preheat, giving up its heat, to the incoming liquid.
  • the new condenser is in the conditions that the recuperator was, which has been thermally discharged when it has cooled down by the passage of the feed liquid to the system, with a temperature in its lower part close to that of the liquid inlet by (10) so you can efficiently condense the steam from the generator (1).
  • This change of roles is one of the most remarkable elements of the system of the invention.
  • the substantial difference between the system of the invention and a conventional one is that in the system of the invention the heat delivered to the condenser (2) is not dissipated outwardly but is recovered for the preheating of the liquid before entering the Generator (1) so that the achievable performance can exceed that of conventional systems.
  • the system of the invention does not work in a quasi-stationary regime, as is the case in conventional systems for generating mechanical energy from heat, due to the thermal inertia of the bed filling material.
  • Figure 1 we show a schematic view of the system of the invention, for the application of drying, with the main constituent elements, working in the operating mode 1.
  • Figure 2 we show a schematic view of the system of the invention, for the application of drying, with the main constituent elements, working in the operating mode 2.
  • Figure 3 we show a schematic view of the system of the invention, for the application of drying, with the main constituent elements, working in the mode of operation 3.
  • Figure 8 we show a schematic view of the system of the invention, for the desalination application, with the main constituent elements.
  • Figure 9 we show a detailed plan view of a possible preferred embodiment of the object of the invention, for the desalination application, with its various components in which the system of the invention is shown including the devices for the change of papers between the condenser (2) and the recuperator (3).
  • the elements designated by lowercase letters refer to those in Figure 8, as are those designated by numbers.
  • Figure 10 we show a schematic view of the system of the invention, for the application of cold and other processes by absorption, with the main constituent elements.
  • Figure 1 1 we show a schematic view of the system of the invention, for the application of mechanical power generation, with the main constituent elements. PREFERRED EMBODIMENT OF THE INVENTION
  • the system object of the invention can be realized in multiple ways, with different sizes and materials and in numerous applications. Below we show two preferred embodiments of the system of the invention, one for use in a drying application and another for use in a desalination application.
  • the heater (6) receives the air through the pipe (5) and sends it hotter, at the designated temperature, through the pipe (7) to the dryer (1) whenever the blower S is running.
  • Blower S is stopped and the residual heat collector (2) of water is emptied with pump B.
  • the C gate is repositioned. When the gate is repositioned
  • blower S is started and the new normal operating mode is entered
  • the operating mode 1 is maintained until the desired humidity level is reached at the exit of the dryer (1); when it is reached, it goes into operating mode 2. In operation in operating mode 2,
  • Blower S works while the product is to be cooled in the dryer.
  • the heater (6) is off
  • the dryer (1) receives the cold air from the preheater (3) or from the outside through the pipe (7) whenever the blower S is running.
  • the beds packed with non-adsorbent materials of the preferred embodiment shown in Figure 4, 5, 6 and 7, can be constructed with solid (eg rocks) of a homogeneous size and with a diameter, preferably, about 20 times smaller than the diameter container equivalent.
  • the container will be thermally insulated, it can be made of a material capable of withstanding the pressure (or be contained in another container that the support such as the ground itself if it is buried), and the working temperature (eg polypropylene, steel,. .), and in addition to the filling, you may have a lower and upper plenum / diffuser, or other equivalent devices, for proper air distribution.
  • the size of the packed beds will depend on the demand for dry product to be processed and on the desired modes of operation and can vary from a few liters to many thousands of m 3 .
  • the equipment for the movement and control of the fluids will be selected to withstand the working conditions (eg temperature, pressure, pressure drop, ..)
  • FIG 9 we show a possible preferred embodiment of the invention for desalination of seawater and with the same elements of Figure 8 and a layout of the pipes and conduits in the that the pumps B1, B2 and B3, the blower S, the gate C and the 3-way valves V1, V2, V3, the 4-way valve V4 and the 2 gates C, used for the operation of the system are observed.
  • Pump B1 is connected to maintain the desired level in the auxiliary tank (5), while water is to be produced.
  • Valves V1, V2 and V3 direct the water through the pipes (6), (7) and (13).
  • the heater (8) receives the water through the pipe (7) and sends it hotter, to the designated temperature, through the pipe (9) to the generator (1) whenever the B2 is running.
  • valve V4 directs the concentrated brine output of the generator (1) to the pipes (10), (1 1) or (12).
  • o Basic mode the concentrated brine is recirculated through the pipe (10) through the auxiliary tank (5), by the heat recuperator (3), the heater (8) and the generator (1). This mode of operation will be maintained as long as the salt concentration of the brine does not reach the maximum level set and the thermal level of the generator (1) is sufficient, or Preparation mode: The brine is recirculated directly through the pipe (1 1) and the heater (8) towards the generator (1). This mode of operation will be used at system startups or when the thermal level of the generator (1) is not sufficient,
  • o Purged mode the concentrated brine is expelled outside through the pipe (12). This mode of operation will be maintained as long as the salt concentration of the brine is greater than the maximum level set for the change of roles between the condenser (2) and the recuperator (3) to be performed when the temperature in the lower part of the condenser (2) raise the set amount above the feed to the recuperator (3):
  • recuperator (3) is emptied by gravity since the pump B2 in standstill allows the water to descend to the auxiliary tank (5), properly sized.
  • the beds packed with non-adsorbent materials of the preferred embodiment shown in Figure 2 can be constructed with rocks of a homogeneous size and with a diameter about 20 times smaller than the equivalent diameter of the container, the container will be thermally insulated, can be manufactured of a plastic material capable of withstanding the pressure (or being contained in another container that the support such as the ground itself if it is buried), and the working temperature (eg polypropylene), and in addition to the filling, it will have a plenum / lower and upper diffuser for proper distribution of liquid and / or air.
  • the size of the beds packed with non-adsorbent materials will depend on the demand for water to be provided and on the modes of operation that are desired and may vary from a few m 3 to many thousands of m 3 .
  • the equipment for the movement and control of the fluids will be selected to withstand the working conditions (eg temperature, salinity, pressure, loss of load, ..) It is noteworthy that, changing the working fluids (air for any gas and water salted by any solution of a solid or a liquid in another less volatile liquid), and maintaining the general concept, the number of applications in which the system of the invention can be applied is enormous and a large number of embodiments could be shown essentially identical to the preferred embodiment described in this section.
  • the working conditions eg temperature, salinity, pressure, loss of load, ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Es un sistema de recuperación de calor en procesos térmicos mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes (o en los que la adsorción no representa un efecto dominante). Se puede utilizar en numerosas aplicaciones(secado, desalación, frío por absorción, generación de energía mecánica,..), diferentes entre sí pero compartiendo el mismo principio: el calor aplicado o generado en un dispositivo(1), (que pude ser también un lecho empaquetado) es captado y recuperado por lechos empaquetados que intercambian secuencialmente sus papeles: mientras un lecho(2)capta el calor residual del primer dispositivo(1), el segundo (3) precalienta el fluido que entrega al primer dispositivo(o a otro proceso) utilizando calor residual que había captado anteriormente; y cuando el lecho captador(2)alcanza el nivel máximo fijado, utilizando válvulasa copladas, intercambia su papel con el lecho precalentador (3), y viceversa.

Description

D E S C R I P C I Ó N
SISTEMA DE RECUPERACIÓN DE CALOR EN PROCESOS TÉRMICOS MEDIANTE LA ACTUACIÓN SECUENCIAL Y ALTERNATIVA DE UN CONJUNTO DE LECHOS EMPAQUETADOS CON MATERIALES NO ADSORBENTES.
SECTOR DE LA TÉCNICA Eficiencia energética de procesos térmicos: Desalación, secado, destilación, tratamiento de aguas, climatización por absorción y generación de energía mecánica.
ANTECEDENTES DE LA INVENCIÓN El alcanzar el desarrollo sostenible en nuestro planeta es probablemente uno de los objetivos más importantes que tenemos como especie. Uno de los retos que plantea ese objetivo es el desarrollo de tecnologías sostenibles, energéticamente eficientes y con bajo impacto económico y medioambiental.
En los diversos procesos de transformación de los recursos naturales con energía térmica para obtener energía eléctrica, agua potable, alimentos, climatizar edificios,., etc., los sistemas de recuperación del calor utilizado para su posterior uso se están aplicando con gran profusión para aumentar su eficiencia energética. En la actualidad existen un gran número de procedimientos para hacerlo. Los sistemas más eficientes no solo recuperan una buena parte de la energía aportada, sino que adicionalmente no degradan en exceso el nivel térmico de la energía utilizada lo que permite que la energía recuperada sea utilizable para el mismo proceso o para otro. Esta necesidad de que la energía recuperada sea utilizable suele llevar asociado el que el nivel térmico de partida tenga una temperatura tan elevada como permita el proceso (p.e. por temperatura máxima de los materiales) y los costes asociados. Ejemplos de esto son
· El ciclo combinado para la producción de electricidad
• La desalación de agua con tecnologías térmicas
• El secado de productos
• Las máquinas de absorción de doble efecto
La descripción de los diversos métodos de aumentar la eficiencia energética del proceso utilizando sistemas de recuperación de calor se puede encontrar en numerosísimos documentos. Como ejemplo podemos citar
• En producción de electricidad por procedimientos térmicos: "Combined Heating, Cooling & Power Handbook: Technologies & Applications", Neil Petchers,2005, The Fairmont Press, ISBN 0-88173-349-0; "A thermodynamic analysis of different options to break 60% electric efficiency in combined cycle power plants"
P Chiesa, 2002, ASME Turbo Expo 2002, ISBN: 0-7918-3606-1 y, sobre la combinación con sistemas solares térmicos como fuente de calor, "Trough integration into power plants— a study on the performance and economy of integrated solar combined cycle systems, J Dersch, et al.;2004 - Energy Magazine Volume 29, Issues 5-6,, Elsevier
• En desalación térmica "Status of humidification dehumidification desalination technology", G. Prakash Narayan et al, 201 1. Proceedings International Desalination Association World Congress 2011 IDA WC/PER11-266 y "Advances in Membrane Distillation for Water Desalination and Purification Applications", 2015. Lucy Mar Camacho et al, Water 2013, 5, 94-196; doi: 10.3390/w5010094 y, sobre la combinación de los sistemas térmicos de desalación con sistemas de aprovechamiento térmico de la energía solar como fuente de calor, "Solar- Powered Desalination", Emrah Deniz, 2015. Chapter 5 "Desalination Updates", book edited by Robert Y. Ning, ISBN 978-953-51-2189-3;
· En el secado de productos "Drying handbook. Fourth edition", (Arun S.
Mujumdar, 2014, CRC Press; ("Energy Efficient Multistage Zeolite Drying for heat Sensitive Products", Mohamed Djaeni , 2008, Tésis Doctoral Universidad de Wageningen (Holanda); "Eficiencia energética en calderas, generadores de vapor, hornos y secaderos", Guillermo Escobar et al, capítulo 5 del wikilibro en Eficiencia energética, Escuela de Organización Industrial, http ://www. eoi . es/wi ki/) y, sobre la combinación con sistemas de aprovechamiento térmico de la energía solar como fuente de calor, "Solar Drying", W. Weiss & J. Buchinger, 2015. Training course within the project "Establisment of a Production, Sales and Consulting Infrastructure for Solar Thermal Plants in Zimbabwe", AEE INTEC -Austria).
• En la refrigeración por absorción: "Investigation of the potential of application of single effect and múltiple effect absorption cooling systems", Gomri 2010; Energy Conversión and Management, Volume 51 , Issue 8; Elsevier y, combinadolo con solar térmica, "Absorption cooling in Spain: Perspectives and outcomes from the simulation of recent installations, García Casáis 2006 - Renewable energy Volume 31 , Issue 9, July 2006 Elsevier
Entre los principales problemas pendientes en la recuperación de calor podemos señalar
• El aumento de la eficiencia energética de los procesos
• El mantenimiento del nivel térmico de la energía de partida en la energía recuperada a un coste competitivo
• El acoplamiento en sistemas de generación de calor residual o con renovables intermitentes y demandas desacopladas, a un coste competitivo
El sistema de la invención pretende contribuir a la solución de estos problemas EXPLICACIÓN DE LA INVENCIÓN
Un lecho empaquetado es un reactor multifásico en cuyo interior se hallan presentes diversos materiales en dos o tres fases (sólido, líquido o gas). En sus interior se pueden producir reacciones químicas o, como en el caso del sistema de la invención que nos ocupa, fenómenos de transferencia de calor y masa entre el sólido (denominado típicamente relleno del lecho) y un fluido caloportador (p.e. aire húmedo, agua líquida,... ) que circula en su interior y que sirve para cederle o quitarle energía al relleno sólido del lecho, en función del modo de operación.
El sistema de la invención utiliza para la recuperación de calor en procesos térmicos, la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes (o en los que la adsorción no representa un efecto dominante) aplicando, en un nuevo sistema, los resultados teóricos y experimentales de la Tesis doctoral del autor del sistema de la invención: "Estudio de los intercambios de calor entre un invernadero considerado como colector solar de aire húmedo y un lecho de rocas como sistema de control ambiental" (José Ignacio Ajona Maeztu, Facultad de Físicas- Universidad Complutense de Madrid, 1990). En aquella Tesis Doctoral, se modelizó y se comprobó experimentalmente una serie de resultados utilizables para entender cómo funciona el sistema de la invención. Cuando se introduce aire caliente y húmedo por la parte alta de un lecho empaquetado (en aquél caso cantos rodados) más frío, con un salto escalón en las condiciones de temperatura y humedad del aire de entrada, el aire cede su calor al relleno en forma de calor sensible y de cambio de fase, produciéndose la condensación de parte del agua contenida en el aire sobre el relleno y observándose:
• Incluso con caudales y velocidades del aire reducidas, la transferencia de calor entre el aire y el relleno es excelente y por tanto la temperatura del aire y del relleno son muy semejantes en los puntos del interior del lecho.
• Si la humedad relativa del aire de entrada es menor del 100% con una temperatura húmeda superior a la temperatura inicial del relleno, la evolución térmica del relleno experimentaba dos etapas claramente diferenciadas. En la primera etapa, el relleno alcanza una temperatura próxima a la temperatura húmeda del aire de entrada y se produce condensación de agua sobre el relleno y, posteriormente, drenaje o evaporación del agua depositada. Cuando el agua sobre el relleno se agota, bien por la evaporación o por el movimiento del agua líquida hacia el fondo por efecto de la gravedad, se inicia la segunda fase en la que el lecho evoluciona desde la temperatura próxima a la del aire húmedo del aire de entrada, hasta alcanzar la temperatura seca del aire de alimentación.
• En la primera etapa, la onda térmica se desplaza en el interior del lecho a una velocidad, en función de las condiciones de operación, significativamente más rápida que en la segunda y tanto más rápida cuanto mayor es la temperatura húmeda.
• El agua líquida depositada sobre el relleno y que desciende hasta el fondo del lecho impulsada por la gravedad, representaba una proporción muy significativa del agua líquida introducida.
• Durante la primera etapa, la evolución del aire húmedo, representada sobre el diagrama psicrométrico, recorre la curva de saturación hasta aproximarse a la temperatura húmeda del aire de entrada
El sistema de la invención se puede utilizar en numerosas aplicaciones, diferentes entre sí pero compartiendo el mismo principio: el calor aplicado o generado en un dispositivo, (que pude ser también un lecho empaquetado) es captado y recuperado por unos lechos empaquetados con materiales no adsorbentes que intercambian secuencialmente sus papeles: mientras uno de los lechos capta el calor residual del primer dispositivo, el segundo precalienta el fluido que entrega al primer dispositivo (o a otro proceso) utilizando el calor residual que había captado anteriormente; es decir, cuando el lecho captador alcanza el nivel máximo fijado, utilizando un sistema de válvulas sincronizadas, intercambia su papel con el lecho precalentador, y viceversa. Las aplicaciones del sistema de la invención se caracterizan por una capacidad de recuperación del calor residual producido superior, en la mayor parte de los casos, al 80%. Como elemento característico común para todas las aplicaciones, en el sistema de la invención se utilizan lechos empaquetados con un material sólido, no significativamente adsorbente, de relleno con unas propiedades físicas tales que el producto del valor de su calor específico, de su densidad y de la fracción del espacio ocupado por el sólido en el lecho es mayor de 200 kilojulios por grado centígrado y metro cúbico (kJ/C/m3), pudiendo superar los 3000 kJ/C/m3.
Para entender mejor el sistema de la invención vamos a explicarlo en relación con alguna de sus aplicaciones o usos posibles
APLICACIÓN: SECADO DE PRODUCTOS
Para esta aplicación, el autor de la invención tiene publicado el modelo de utilidad ES1 172383U. En las figuras 1 , 2 y 3 representamos al sistema de la invención aplicado al secado de producto (o a una aplicación semejante). El significado de los números en las Figuras 1 , 2 y 3 es
1. Proceso que genera calor residual tanto en forma de calor de cambio de fase como de calor sensible (p.e.: Secadero en el que se produce vapor de agua)
2. Lecho empaquetado con materiales no adsorbentes que capta el calor residual y lo transmite al material de relleno (p. e. condensando el vapor extraído de un secadero)
3. Lecho empaquetado con materiales no adsorbentes que aprovecha la entalpia del calor residual captado por (2) para precalentar el fluido con el que alimento a (1) o a otro equipo
4. Entrada del fluido al precalentador (3), (en el modo de operación 1 , descrito a continuación)
5. Salida del fluido precalentado del precalentador (3) (en el modo de operación 1 y en el 3, descrito a continuación)
6. Calentador del fluido precalentado, (en el modo de operación 1).
7. Entrada del fluido al proceso (p.e. secadero) (1) (en el modo de operación 1 y 2)
8. Salida del fluido del proceso (1) hacia el captador de calor residual (2) en el modo de operación 1 y 3 o al precalentador (3) en el modo de operación 2, descrito a continuación
9. Salida del fluido al exterior, en el modo de operación 1 y 3, desde el captador de calor residual (2).
10. Salida del destilado del captador de calor residual (2) en el caso de que se produzca.
1 1. Entrada del fluido desde el exterior al proceso (1), (en el modo de operación 3)
12. Salida del fluido al exterior, en el modo de operación 3, hacia el proceso externo de aprovechamiento del calor residual. El fluido utilizado como fluido caloportador en los lechos (2) y (3) (p.e. aire húmedo) que ha aumentado su nivel entálpico al atravesar previamente el proceso (1), cederá buena parte de la entalpia ganada en (1) al circular a través de los lechos (2) y (3), según los modos de operación descritos a continuación, y recuperando por tanto la energía aportada (o generada) en el proceso (1), para el propio proceso (1) o para otros usos. Para la circulación del fluido caloportador entre el proceso (1) y los lechos (2) y (3) se precisa el soplante (S) y si es preciso calentarlo antes de que entre en el proceso (1), hace falta un calentador (6). Para que el flujo del fluido caloportador se dirija desde el proceso (1) al lecho (2) o al lecho (3) y para el que el flujo del fluido caloportador entre al proceso (1) desde el lecho (3) o del (2), se precisan válvulas o compuertas (a), (b), (c) y (d) accionadas en conjunción con las (a'), (b'), (c') y (d'). Para permitir la entrada y salida de fluido desde el exterior del sistema, son precisas las válvulas o compuertas (e), (f) y (g). La extracción de condensados en los lechos (2) o (3) precisa de una bomba (B)
El sistema de la invención puede funcionar en tres modos de operación diferenciados. En el primero (modo de operación 1), el producto que se procesa en (1) (p.e. producto a secar) se calienta con una fuente externa (6) (caldera, instalación solar, ... ) o interna (reacción química) y produce calor residual (p.e. entra aire caliente y seco al proceso (1) que evapora el agua del producto a secar y produce aire caliente y húmedo) que es transferido por el fluido caloportador hacia el captador de calor residual (2) y el precalentador (3). El fluido del proceso (1), a baja temperatura, entra por (4) al precalentador (2) donde se precalienta antes de entrar en el calentador (6) por la conducción (5) y ser introducido en el proceso (1) mediante la conducción (7), produciéndose un fluido con calor residual a su salida (en el caso del secado se produce vapor, haciendo que el aire alcance un estado inicialmente cuasi saturado a una temperatura próxima a la fijada en el calentador y posteriormente con un contenido de humedad que irá disminuyendo según el producto vaya secándose hasta aproximarse a la humedad del aire de entrada). El fluido con alto contenido entálpico procedente del proceso (1) a través de la conducción (8), transferirá su entalpia en contacto con el material del relleno del captador de calor residual (2)
• Para el caso del secado la transmisión de calor se realizará de la misma forma que en la descrita anteriormente en la Tesis citada y recorriendo inicialmente una trayectoria, representada en el diagrama psicrométrico, o en el diagrama de presión-temperatura correspondiente al vapor a condensar, sobre la curva de saturación, entre una temperatura próxima a la fijada en el calentador (6) y la del aire de entrada, o gas de tratamiento, introducido por (4). El líquido condensado sobre el relleno y que llega por gravedad al fondo del captador de calor residual (2) es extraído del sistema por (10). El fluido enfriado que sale del captador de calor residual (2) se expulsa del sistema por (9).
· Para el caso de otros procesos sin cambio de fase del fluido, la transferencia de calor será únicamente por calor sensible entre el fluido caloportador y el sólido. En el segundo modo de operación (modo de operación 2) se entrará exclusivamente cuando se quiera recuperar el calor sensible del material en el interior del proceso (1); por ejemplo, en el caso del secado de un producto cuando éste ya está seco hasta los niveles establecidos y a una temperatura próxima a la fijada como consigna en el calentador (6). En este modo de operación 2 se procede a apagar el calentador (6), manteniendo el circulador del fluido (S) conectado para recuperar el calor sensible del producto y transferirlo hacia la parte alta del precalentador (3). El fluido enfriado a la salida del precalentador (3) entra al proceso (1) por la conducción (7). Si la temperatura de salida del precalentador no es lo suficientemente fría para refrigerar el producto, se tomará fluido frío del exterior, por ejemplo, posicionando adecuadamente (b) y (c), y se expulsará por (e) una vez abierta.
En el tercer modo de operación (modo de operación 3) se entrará exclusivamente cuando se quiera utilizar el calor residual generado en el proceso (1), recuperándolo para su uso en otro proceso diferente al que lo ha generado (proceso (1)); por ejemplo, en el caso de un proceso exotérmico (o con fuentes internas de generación de calor) que no necesita que el fluido entrante le proporcione energía y que en muchos casos se utiliza para refrigerarlo. En este modo de operación 3, el calentador (6) normalmente estará apagado (ya que el proceso (1) genera calor), manteniendo el circulador del fluido (S) conectado para mover el fluido y recuperar el calor residual del proceso (1) de la misma forma que en el modo de operación 1 : El fluido con alto contenido entálpico procedente del proceso (1) a través de la conducción (8), transferirá su entalpia en contacto con el material del relleno del captador de calor residual (2), realizando el mismo cambio de papeles con el precalentador (3) con los mismos criterios descrito en el siguiente párrafo. La diferencia con el modo de operación 1 estriba en que, en el modo de operación 3, el fluido entrará al sistema por la conducción (1 1) para dirigirlo hacia el proceso (1) y por la conducción (4) para dirigirlo a través de la conducción (12) hacia el aprovechamiento externo de la entalpia procedente del precalentador (3), en vez de dirigirla hacia el proceso (1), el fluido que entre por la conducción (1 1) puede ser igual o distinto del que entra por la conducción (4). Para este modo de funcionamiento 3, es necesario que la compuerta (f) desvíe el fluido hacia el proceso externo, evitando que vaya hacia el proceso (1) desde la conducción (5) y que este abierta la compuerta (g) para permitir la entrada del fluido por (1 1). El proceso al que se envía el calor recuperado del proceso (1) contará con todos los elementos necesarios para la circulación del fluido a su través.
En los modos de operación 1 y 3, el que el precalentador (3) pueda hacer la función de precalentar el fluido se debe a que captador de calor residual (2) y el precalentador (3) intercambian sus papeles cuando la evolución de temperatura en la parte baja del captador de calor residual (2) es tal que sube por encima de la temperatura de la entrada del fluido por (4) la cantidad establecida como criterio de operación. Este cambio se ejecuta mediante un juego de válvulas de compuerta de 3 vías (o equivalente) por el que las conexiones (a), (b), (c) y (d) del captador de calor residual (2) cambian su función con las (a'), (b'), (c') y (d') del precalentador (3) y viceversa mientras la compuerta (e) de salida del proceso permanece cerrada. El movimiento de los fluidos se realiza, principalmente, mediante el grupo hidráulico de bombas B de extracción del condensado, y por el circulador (soplante para el caso del secado) S, en el conducto (5) (también es posible ubicarlo en el conducto (8)) para circular el fluido entre el precalentador (3), el secadero (1) y el captador de calor residual (2). Al producirse el cambio, el nuevo precalentador se encuentra en las condiciones que estaba el captador de calor residual, con una temperatura en la parte alta próxima a la fijada en el calentador (6) y una temperatura en la parte baja próxima a la de entrada del fluido por (4) por lo que podrá precalentar, cediendo su calor, al fluido entrante. De la misma manera, el nuevo captador de calor residual se encuentra en las condiciones que estaba el precalentador, que se ha ido descargando térmicamente al haberse enfriado por el paso del fluido de alimentación al sistema, con una temperatura en su parte inferior próxima a la de entrada del fluido por (4) por lo que, en los modos de operación 1 y 3, podrá recuperar eficientemente el calor residual proveniente del proceso (1) al igual que recuperar el calor sensible del producto procesado, en el segundo modo de operación. Este cambio de papeles es uno de elementos más destacables del sistema de la invención. Es importante destacar que el cambio de papeles entre el captador de calor residual (2) y el precalentador (3) se realizará, durante los modos de operación 1 y 3, el número necesario de veces para recuperar el calor del proceso según lo establecido como consigna y que el modo de operación 2 se utilizará únicamente si se desea extraer el calor sensible del producto una vez procesado para poder utilizarlo en el procesado de nuevo producto. La eficiencia del sistema de la invención, entendida como el cociente entre la energía residual del proceso (1) recuperada, mediante la utilización del captador de calor residual (2) y del precalentador (3), y el calor residual generado en (1) va a depender principalmente de
« La temperatura fijada como consigna en el calentador (6), o producida por el propio proceso, y la presión de trabajo: cuanto más altas, mayor eficiencia.
• Durante los modos de operación 1 y 3, lo próximas que se encuentren las temperaturas de la parte alta del captador de calor residual (2) y del precalentador (3) a la fijada en el calentador (6) (o a la producida por el proceso) y las temperaturas de la parte baja del captador de calor residual (2) y del precalentador (3) a la entrada de fluido por (4): Cuanto más próximas, mayor eficiencia.
• La entalpia a la salida del proceso (1): En los modos de operación 1 y 3 cuanto más altas, mayor eficiencia y en el modo de operación 2, cuanto más baja la temperatura, mayor eficiencia
• La temperatura del destilado producido (si se produce): Cuanto más baja, mayor eficiencia
• La temperatura del producto a procesar, una vez procesado: Cuanto más baja, mayor eficiencia.
· El nivel de aislamiento térmico del captador de calor residual (2) y del precalentador (3): Cuanto mejor sea el aislamiento, mejor eficacia del sistema Aplicando estas pautas de control de las condiciones de trabajo que favorecen la eficiencia energética del sistema, los valores de eficiencia alcanzables en la mayor parte de los casos será superior al 60%, pudiéndose alcanzar niveles por encima del 95% en muchos casos, siempre que el nivel de aislamiento térmico sea el suficiente.
El criterio de diseño de los lechos para un funcionamiento eficiente, teniendo en cuenta la cantidad de calor residual producida en el proceso (1) y los correspondientes caudales de fluido, es por tanto el
• dimensionar el captador de calor residual (2) y el precalentador (3) con la capacidad térmica suficiente para que el cambio de papeles de captador de calor residual (2) a precalentador (3), y viceversa, (a realizar cuando la onda térmica provocada por la entrada del calor residual en la parte alta del captador de calor residual (2) empiece a llegar a la parte baja del captador de calor residual (2)), se tenga que realizar con una frecuencia razonable (p.e. cada 2-3 hr) y se garantice una recuperación de la casi totalidad de la energía residual del proceso (1).
• dimensionar los lechos para garantizar una transferencia de calor y masa adecuados, lo que depende, entre otras cosas, de la velocidad del fluido en el interior del lecho.
Si bien el sistema de la invención para este tipo de uso/aplicación puede trabajar con numerosos materiales de relleno no adsorbentes (o en los que la adsorción no representa un efecto dominante), es recomendable el utilizar materiales con un elevado valor del producto densidad y calor específico, fracción de huecos pequeña, bajo coste, disponibilidad local y resistencia a la temperatura y la corrosión. Por lo tanto, la utilización de rocas (cantos rodados, granito,... .) disponibles localmente, es una excelente (no única) elección: Permite trabajar a temperaturas y presiones elevadas con un coste muy reducido por lo que se puede dimensionar con amplitud para poder trabajar con saltos térmicos importantes entre la parte superior e inferior de los rellenos del captador de calor residual (2) y del precalentador (3)
El lecho del captador de calor residual (2) y del precalentador (3) cuando utiliza como relleno materiales tales que el producto del valor de su calor específico, de su densidad y de la fracción del espacio ocupado por el sólido en el lecho sea mayor de 200 kilojulios por grado centígrado y metro cúbico (kJ/C/m3), pudiendo superar los 3000 kJ/C/m3, además de como captador de calor residual (2) o precalentador (3), funciona como un sistema de almacenamiento energético de fuentes de calor (intermitentes o no), eficiente y, potencialmente, de bajo coste. Esto es especialmente interesante si se quiere aportar con calor solar, u otras fuentes de calor renovable o de recuperación, (en solitario o como contribuyente principal) la energía necesaria para el proceso (hay que tener en cuenta que siempre se podrá hibridar el sistema solar con otro sistema de producción de calor con renovables o con combustibles convencionales para mantener un régimen constante en la producción del proceso si así se desea).
Es importante señalar que en el dispositivo de la invención se consigue el equilibrado termodinámico de los flujos de fluido y del relleno de los lechos, gracias al acoplamiento causado entre el comportamiento térmico del fluido y del relleno, tanto en el captador de calor residual (2), como en el precalentador (3), por la buena transferencia de calor que se consigue y la gran estratificación térmica entre la parte alta del lecho y la parte baja del lecho, incrementada si se utilizan materiales de relleno con una elevada inercia térmica y baja conductividad térmica.
APLICACIÓN: DESALACION DE AGUA DE MAR O CONCENTRACIÓN DE EFLUENTES
Para esta aplicación, el autor de la invención tiene publicado el modelo de utilidad ES1 163858Y. En la figura 8 representamos al sistema de la invención aplicado a la desalación de agua de mar (o a una aplicación o uso semejante). En esta aplicación se utilizan tres (o dos) lechos empaquetados con materiales no adsorbentes para hacer las funciones de evaporador, condensador y recuperador del calor de condensación tal como muestra la Figura 4, donde los números se refieren a los distintos equipos:
1. Evaporador. Generador de calor residual tanto en forma de calor de cambio de fase como de calor sensible. Como evaporador también se puede utilizar otro dispositivo distinto de un lecho empaquetado.
2. Condensador, lecho empaquetado captador de calor residual
3. Recuperador del calor residual captado (p.e. en el condensador), lecho empaquetado para su utilización como precalentador del evaporador o contenedor. Aprovecha la entalpia del calor residual captado por (2) para precalentar el fluido con el que alimento a (1) o a otro equipo
4. Entrada del agua salada o del líquido a tratar
5. Tanque auxiliar
6. Entrada de la salmuera, o de la disolución, al recuperador (3)
7. Salida de la salmuera , o de la disolución, precalentada del recuperador (3) 8. Calentador de la salmuera, o de la disolución.
9. Entrada de la salmuera, o de la disolución, caliente al evaporador (1)
10. Salmuera, o disolución, concentrada en el evaporador (1) y enviada al tanque auxiliar (4) para reiniciar el ciclo atravesando el recuperador (3) y el calentador (8)
1 1. Salmuera, o disolución, concentrada en el evaporador (1) y enviada al calentador (8) para recalentarse
12. Salmuera, o disolución, concentrada en el evaporador (1) y rechazada hacia el exterior
13. Salida del destilado del condensador (2)
14. Conducción del aire (o del gas) con bajo contenido de vapor y fresco, desde el condensador (2) hacia el evaporador (1)
15. Conducción del aire (o del gas) con alto contenido de vapor y caliente, desde el evaporador (1) hacia el condensador (2)
El agua salada, o líquido a tratar, y a baja temperatura que entra por (4) al tanque auxiliar (5), entra por (6) en el recuperador (2) donde se precalienta antes de entrar en el calentador (8) y ser introducido en la parte alta del evaporador (1) repartiéndose sobre el relleno, produciéndose vapor y haciendo que el aire (u otro gas) alcance un estado cuasi saturado a una temperatura próxima a la fijada en el calentador. El aire (u otro gas) caliente y con alto contenido de vapor procedente del evaporador (1) perderá vapor y temperatura en contacto con el material del relleno del condensador (2) de la misma forma que en la descrita anteriormente en la Tesis citada y recorriendo una trayectoria, representada en el diagrama psicrométrico, (o en el diagrama de presión-temperatura correspondiente al vapor a condensar) sobre la curva de saturación entre una temperatura próxima a la fijada en el calentador (8) y la de la salmuera, o líquido a tratar, introducida por (6). El líquido condensado sobre el relleno y que llega por gravedad al fondo del condensador (2) es extraída del sistema por (13). La salmuera (o disolución) enfriada y concentrada que sale del evaporador (1) se conducirá por (1 1), (12) o (13) según sea el modo de operación deseado para, respectivamente, recalentarse, reconcentrase o expulsarse del sistema.
El que el recuperador (3) pueda hacer la función de precalentar la salmuera (o disolución) se debe a que condensador (2) y el recuperador (3) intercambian sus papeles cuando la evolución de temperatura en la parte baja del condensador es tal que sube por encima de la temperatura de la entrada de la salmuera (o disolución) por (6) la cantidad establecida como criterio de operación. Este cambio se ejecuta mediante un juego de válvulas de 3 vías y de compuerta (o equivalente) por el que las conexiones (a), (b), (c), (d) y (e) del condensador (2) cambian su función con las (a'), (b'), (c'), (d') y (e') del recuperador (3). El movimiento del líquido se realiza, principalmente, mediante los grupos hidráulicos de bombas B1 de alimentación al tanque auxiliar (5), B2 de alimentación al recuperador (3) y B3 de extracción del condensado, y por el soplante S, en el conducto (14) para circular el aire (u otro gas) con vapor entre el condensador (2) y el evaporador (1)
Al producirse el cambio, el nuevo recuperador se encuentra en las condiciones que estaba el condensador, con una temperatura en la parte alta próxima a la fijada en el calentador (8) y una temperatura en la parte baja próxima a la de entrada del líquido por (6) por lo que podrá precalentar, cediendo su calor, al líquido entrante. De la misma manera el nuevo condensador se encuentra en las condiciones que estaba el recuperador, que se ha ido descargando térmicamente al haberse enfriado por el paso del líquido de alimentación al sistema, con una temperatura en su parte inferior próxima a la de entrada del líquido por (6) por lo que podrá condensar eficientemente el vapor proveniente del evaporador (1). Este cambio de papeles es uno de elementos más destacables del dispositivo de la invención
La eficiencia del dispositivo de la invención va a depender principalmente de
• La temperatura fijada como consigna en el calentador (8) y la presión de trabajo: cuanto más alta, mayor eficiencia y, si se trabaja con salmueras, más depósitos salinos en el relleno del evaporador (1)
• lo próximas que se encuentren las temperaturas de la parte alta del condensador (2) y del recuperador (3) a la fijada en el calentador (8) y las temperaturas de la parte baja del condensador (2) y del recuperador (3) a la entrada de la salmuera por (6): Cuanto más próximas, mayor eficiencia.
« La temperatura y caudal del líquido a la salida del evaporador (1): Cuanto más bajos, mayor eficiencia
• La temperatura del destilado producido: Cuanto más baja, mayor eficiencia
El criterio de diseño de los lechos para un funcionamiento eficiente, teniendo en cuenta los caudales de líquido a tratar y los correspondientes caudales de aire (o de otro gas), es por tanto el
• dimensionar el evaporador (1) con la capacidad térmica suficiente para que la onda térmica ocasionada por el líquido caliente en la entrada, no alcance el final del evaporador (1) y la temperatura en la parte baja del evaporador (1) se mantenga baja con las variaciones esperadas de los caudales del líquido caliente que desciende y se va enfriando la ceder su calor al relleno y al aire (o a otro gas), al aumentar su temperatura y aumentar la cantidad de vapor que contiene.
• dimensionar el condensador (2) y el recuperador (3) con la capacidad térmica suficiente para que el cambio de papeles de condensador (2) a recuperador (3), y viceversa, (a realizar cuando la onda térmica provocada por la entrada del vapor caliente en la parte alta del condensador (2) empiece a llegar a la parte baja del condensador (2)), se tenga que realizar con una frecuencia razonable (p.e. cada 2-3 hr) y se garantice una recuperación de la casi totalidad del liquido condensado
• dimensionar los tres lechos para garantizar una transferencia de calor y masa adecuados, lo que depende, entre otras cosas, de las velocidades del aire (o del gas) y del líquido en el interior del lecho.
Si bien el sistema de la invención puede trabajar con numerosos materiales de relleno con materiales no adsorbentes (o en los que la adsorción no representa un efecto dominante), es recomendable el utilizar materiales con un elevado valor del producto densidad y calor específico, fracción de huecos pequeña, bajo coste, disponibilidad local y resistencia a la temperatura y la corrosión salina o de otro tipo. Por lo tanto, la utilización de rocas (catos rodados, granito, ... .) disponibles localmente, es una excelente (no única) elección: Permite trabajar a temperaturas y presiones elevadas sin que las incrustaciones salinas (si se trabaja con salmueras) supongan un grave problema y dado que su coste es muy reducido se puede dimensionar con amplitud para poder trabajar con saltos térmicos importantes entre la parte superior e inferior de los rellenos del evaporador (1) del condensador (2) y del recuperador (3)
La utilización de lechos empaquetados como evaporadores/humidificadores es bastante común tanto en aplicaciones HDH (humidificación-deshumidificación) de desalación como en otras aplicaciones (p.e. torres de refrigeración en centrales térmicas), utilizándose normalmente rellenos de materiales plásticos y con una gran fracción de huecos para minimizar la pérdida de carga del aire (o del gas) a través del lecho y reducir el peso. El sistema de la invención puede utilizar ese tipo de lechos rellenos en el evaporador (1), pero utilizando materiales no adsorbentes, con elevado valor del producto densidad por calor específico, fracciones de huecos en el lecho en el entorno del 33% y bajo coste, el lecho, además de como evaporador, funciona como un sistema de acumulación eficiente y de bajo coste, lo cual es especialmente interesante si se quiere aportar con calor solar (en solitario o como contribuyente principal) la energía necesaria para el proceso (hay que tener en cuenta que siempre se podrá hibridar el sistema solar con otro sistema de producción de calor con renovables o con combustibles convencionales para mantener un régimen constante en la producción del proceso).
El sistema de la invención utilizado para desalación se puede considerar una mejora sobre los sistemas HDH de desalación. Para optimizar la eficiencia de cualquier sistema HDH de desalación, el criterio básico encontrado en la literatura es el equilibrado termodinámico de los flujos de aire (o de gas) con vapor y de líquido. En el sistema de la invención este equilibrado se consigue de una manera natural sin necesidad de realizar extracciones/inyecciones de vapor o de líquido entre el evaporador y el condensador como se propones en numerosos sistemas HDH, gracias al acoplamiento causado por el intercambio directo entre el comportamiento térmico del sólido y los fluido, tanto en el evaporador (1) como en el condensador (2), y por la gran estratificación térmica entre la parte alta del lecho y la parte baja del lecho, incrementada si se utilizan materiales de relleno con una elevada inercia térmica y baja conductividad térmica.
Utilizando como materiales de relleno materiales con una tendencia reducida a las incrustaciones salinas, incluso a temperaturas elevadas, permite utilizar el sistema de la invención para trabajar a concentraciones salinas muy elevadas reduciendo el rechazo salino y pudiendo conectarse para tratar los rechazos salinos de otros sistemas de desalación, como la osmosis inversa y para la obtención, y para conseguir soluciones muy concentradas como producto, por ejemplo, sales de litio.
APLICACIÓN: FRÍO Y OTROS PROCESOS POR ABSORCIÓN
Una aplicación en la que el sistema de la invención se utiliza de manera semejante a la descrita para su aplicación en la desalación, es la de la producción de frío por absorción y, en general, para cualquier aplicación en la que una solución experimenta un proceso durante el que aumenta su concentración de la sal disuelta al aplicarle calor (desorbiendo el disolvente) y disminuye su concentración al poner en contacto la solución con los vapores del disolvente (absorbiendo el disolvente).
En una máquina de absorción convencional de, por ejemplo, simple efecto, una solución diluida y fría de, por ejemplo, bromuro de litio, se calienta aplicándole calor, en el denominado Generador a una presión reducida, desorbiendo vapor y concentrando por tanto la disolución. El vapor generado en el Generador se transfiere a un Condensador a la misma presión, donde se disipa calor hacia el exterior, (condensándose el vapor y produciéndose agua líquida). El agua líquida producida en el Condensador se expande hacia una zona de baja presión, el denominado Evaporador, enfriándose hasta típicamente los 4°C y produciendo vapor a baja presión al tomar el calor de la demanda de frío. Este vapor a baja presión se transfiere hacia el Absorbedor donde se pone en contacto con la solución concentrada producida en el Generador, después de expandirla hacia la zona de baja presión, que absorbe el vapor, diluyendo por tanto la solución y generando un calor que es necesario disipar hacia el exterior. Esta solución diluida a baja presión es enviada desde el Absorbedor al Generador por una bomba, que aumenta su presión, para iniciar el ciclo de absorción/desorción de nuevo. Para mejorar la eficiencia del ciclo de absorción se suele utilizar un intercambiador de calor entre la salmuera diluida y fría proveniente del Absorbedor y que va al Generador con la solución concentrada y caliente proveniente del Generador y que va al Absorbedor. Resumiendo el funcionamiento de la máquina de absorción, introduciendo calor en el generador y disipando calor en el condensador y el absorbedor, conseguimos producir frío en el evaporador. Para medir la eficiencia térmica de este tipo de máquinas de producción de frío se utiliza el denominado COP (Coefficient of Performance, cociente entre el frío producido en el evaporador y el calor externo aplicado en el Generador) que en máquinas de simple efecto suele ser de alrededor de 0,7, muy inferior al límite termodinámico e igualmente muy inferior al alcanzado por las máquinas de producción de frío mediante compresión mecánica que pueden superar un COP de 3.
En la figura 10 representamos al sistema de la invención aplicado a la producción de frío (o a una aplicación semejante) utilizando aire (o un gas) húmedo y soluciones concentradas y diluidas de, por ejemplo, bromuro de litio. En esta aplicación se utilizan tres (o dos) lechos empaquetados con materiales no adsorbentes (de manera semejante al caso de la desalación descrita anteriormente, para hacer las funciones de Generador, Condensador y Recuperador del calor de condensación conectados a un Evaporador y a un Absorbedor a baja presión semejantes a los utilizados en una máquina de absorción convencional. Los números en la Figura 10, donde se refieren a los distintos equipos
1. Generador de vapor, concentrando y calentando la solución (p.e. de Bromuro de litio) y produciendo vapor. Puede no ser un lecho empaquetado
2. Condensador del vapor producido en el Generador: Lecho empaquetado captador de calor residual
3. Recuperador del calor residual captado (p.e. en el condensador) para su utilización como precalentador del generador (1). Lecho empaquetado que aprovecha la entalpia del calor residual captado por (2) para precalentar el fluido con el que alimento a (1).
4. Absorbedor a baja presión: Donde la solución concentrada se diluye al absorber el vapor generado en el evaporador a baja presión
5. Evaporador a baja presión: El condensado producido en (2) se evapora a baja presión, captando el calor de la demanda de frío 19
6. Entrada de la solución diluida al Recuperador (3)
7. Salida de la solución diluida del Recuperador (3) y enviada al calentador (8) para recalentarse
8. Calentador de la disolución diluida
9. Entrada de la solución diluida y caliente al Generador (1)
10. Salida de la solución concentrada del Generador (1)
1 1. Salida del destilado del Condensador (2)
12. Tanque auxiliar
13. Conducción del aire (o del gas) con bajo contenido de vapor y fresco, desde el condensador (2) hacia el generador (1)
14. Conducción del aire (o del gas) con alto contenido de vapor y caliente, desde el generador (1) hacia el condensador (2)
15. Válvula de trasiego de la solución entre el Condensador (2) y el Recuperador (3) en el momento del cambio de papeles entre ellos
16. Válvula de expansión de la solución concentrada
17. Válvula de expansión del destilado producido en (2)
18. Disipación del calor generado en el absorbedor
19. Demanda de frío
En el sistema de la invención una solución diluida y enfriada de, por ejemplo, bromuro de litio, se calienta aplicándole calor en (8) entrando en el Generador (1) a contracorriente con un flujo de aire (o gas) húmedo que circula entre el Generador (1) y el Condensador (2). En el Generador (1) la solución se reparte sobre el relleno, produciéndose vapor y haciendo que el aire (u otro gas) alcance un estado en equilibrio con la concentración y temperatura de la solución en cada zona del lecho, desorbiendo vapor de la solución, por lo que al atravesar el lecho se va concentrando y enfriando la disolución y aumentando la humedad del aire (o gas) húmedo que lo atraviesa. El aire (o gas) húmedo se transfiere a un Condensador mediante el soplante (S), donde el vapor del aire (o gas) se condensa y se produje agua líquida. El aire (u otro gas) caliente y con alto contenido de vapor procedente del generador (1) perderá vapor y temperatura en contacto con el material del relleno del condensador (2) de la misma forma que en la descrita anteriormente en la Tesis citada anteriormente. El líquido condensado sobre el relleno y que llega por gravedad al fondo del condensador (2) es extraída del sistema por (11) y se introduce, después de expandirse en (17), en el evaporador (5) donde se evapora tomando el calor de la demanda de frío (19) (enfriándose hasta típicamente los 4°C), pasando el vapor formado al absorbedor (4). La solución enfriada y concentrada que sale del Generador (1) se conducirá por (10), para expandirse en (16) y entrar en el absorbedor (4) donde el calor generado en la absorción del vapor que le llega desde el evaporador (5) es disipado en (18). La solución diluida a baja presión resultantes es enviada, por una bomba B3, que aumenta su presión, a través de (6) al recuperador (3) donde se precalienta antes de entrar en el calentador (8) y ser introducido en la parte alta del evaporador (1), iniciando de nuevo el ciclo de absorción/desorción.
El que el recuperador (3) pueda hacer la función de precalentar la disolución se debe a que condensador (2) y el recuperador (3) intercambian sus papeles cuando la evolución de temperatura en la parte baja del condensador es tal que sube por encima de la temperatura de la entrada de la disolución por (6) la cantidad establecida como criterio de operación. Este cambio se ejecuta mediante un juego de válvulas de 3 vías y de compuerta (o equivalente) por el que las conexiones (a), (b), (c), (d) y (e) del condensador (2) cambian su función con las (a'), (b'), (c'), (d') y (e') del recuperador (3). El movimiento del líquido se realiza, principalmente, mediante los grupos hidráulicos de bombas B1 de alimentación al tanque auxiliar (5), B2 de relleno del recuperador (3) y B3 de alimentación al recuperador (3), y por el soplante S, en el conducto (13) para circular el aire (u otro gas) con vapor entre el condensador (2) y el generador (1) Al producirse el cambio, el nuevo recuperador se encuentra en las condiciones que estaba el condensador, con una temperatura en la parte alta próxima a la fijada en el calentador (8) y una temperatura en la parte baja próxima a la de entrada del líquido por (6) por lo que podrá precalentar, cediendo su calor, al líquido entrante. De la misma manera el nuevo condensador se encuentra en las condiciones que estaba el recuperador, que se ha ido descargando térmicamente al haberse enfriado por el paso del líquido de alimentación al sistema, con una temperatura en su parte inferior próxima a la de entrada del líquido por (6) por lo que podrá condensar eficientemente el vapor proveniente del generador (1). Este cambio de papeles es uno de elementos más destacables del sistema de la invención. De hecho, la diferencia sustancial entre el sistema de la invención y una máquina de absorción convencional es que en el sistema de la invención no se disipa hacia el exterior el calor generado en el condensador (2) sino que se recupera para el precalentamiento de la solución antes de entra en el Generador (1) con lo que le COP alcanzable puede superar el valor de 3.
La eficiencia del sistema de la invención va a depender principalmente de
• La temperatura fijada como consigna en el calentador (8) y la presión de trabajo: cuanto más alta, mayor eficiencia
• lo próximas que se encuentren las temperaturas de la parte alta del condensador (2) y del recuperador (3) a la fijada en el calentador (8) y las temperaturas de la parte baja del condensador (2) y del recuperador (3) a la entrada de la salmuera por (6): Cuanto más próximas, mayor eficiencia.
• La temperatura y caudal del líquido a la salida del evaporador (1): Cuanto más bajos, mayor eficiencia
· La temperatura del destilado producido: Cuanto más baja, mayor eficiencia
El criterio de diseño de los lechos para un funcionamiento eficiente para esta aplicación, son semejantes a los aplicables para su uso en aplicaciones de desalación y descritos anteriormente.
APLICACIÓN: GENERACIÓN DE ENERGÍA MECÁNICA Una de las aplicaciones de mayor potencial del sistema de la invención es la generación de energía mecánica. La mayor parte de los sistemas que se utilizan para generar energía mecánica partiendo de fuentes de calor se basan en la utilización de ciclos termodinámicos trabajando en régimen cuasiestacionario entre dos focos a temperatura claramente diferentes, tomando calor del denominado Foco Caliente a alta presión, generando trabajo mecánico durante la expansión del fluido de trabajo (normalmente vapor de agua, gas o fluidos orgánicos) y cediendo calor residual al denominado Foco Frío a baja presión. Para mejorar los rendimientos de conversión de energía térmica a energía mecánica los métodos tradicionales son:
· Aumentar la presión y/o la temperatura del foco caliente
• Disminuir la temperatura del foco frío
• Recuperar parte del calor residual
Entre los numerosos sistemas para aumentar la eficiencia de los sistemas convencionales de generación de energía mecánica, aprovechando en lo posible el calor residual, destacamos como ejemplo:
• El ciclo Rankine con recalentamiento: Es un ciclo utilizado en turbinas de vapor.
Utiliza una escalera descendente de presiones y temperaturas. Tras expansionar el vapor a alta temperatura en una turbina de alta presión, se recalienta para volver a ser expansionarlo en una turbina a menor presión. El rendimiento (cociente entre la energía mecánica producida y la energía extraída del foco caliente) típico para la producción de energía mecánica con este ciclo está en el entorno del 40%.
• Ciclo Rankine con regeneración: También es un ciclo utilizado en turbinas de vapor. Se precalienta el agua que entra en el Foco Caliente con uno o varios sangrados o extracciones de vapor de la turbina a unas presiones tales que su temperatura de saturación sea intermedia entre la de condensación en el Foco Frío y la de saturación a la presión del Foco Caliente. Cuando hay varias extracciones, lo normal es que las temperaturas de extracción estén escalonadas con saltos equidistantes. El rendimiento típico para la producción de energía mecánica con este ciclo suele superar el 40%.
• El Ciclo combinado: Los gases de escape de una turbina de gas, o un motor de combustión, se emplean para alimentar térmicamente una caldera de recuperación de un ciclo de vapor. Utilizando este ciclo para la generación de energía mecánica se puede superar el rendimiento del 60%
· El ciclo Stirling es un ciclo cerrado regenerativo con un fluido gaseoso permanente, donde el ciclo cerrado es definido como un sistema termodinámico en el cual el fluido está permanentemente contenido en el sistema, y regenerativo describe el uso de un tipo específico de intercambio de calor y almacenamiento térmico, conocido como el regenerador. El regenerador es un intercambiador de calor interno que tiene la función de absorber y ceder calor en las evoluciones a volumen constante del ciclo. El regenerador consiste en un medio poroso con conductividad térmica despreciable, que contiene un fluido. El regenerador divide al motor en dos zonas: una zona caliente y otra zona fría. El fluido se desplaza de la zona caliente a la fría durante los diversos ciclos de trabajo, atravesando el regenerador. Los motores Stirling tienen una alta eficiencia, es el único capaz de aproximarse al rendimiento máximo teórico de Carnot
• Cogeneración: Aprovechamiento térmico del calor residual de un ciclo de potencia ya sea del calor cedido en el condensador, de los gases de escape de un motor o turbina o de la refrigeración de la lubricación de un motor. Con la cogeneración para la generación de energía mecánica y térmica se puede superar el rendimiento global (cociente de la energía útil, térmica y mecánica, entre la energía consumida en el foco caliente) del 85%.
En el sistema de la invención para esta aplicación de generación de energía mecánica mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no significativamente adsorbentes, se produce la generación de energía mecánica elevando la presión a un líquido, al que llamaremos líquido de trabajo, para su posterior expansión moviendo un embolo, haciendo girar una turbina, bombeando un fluido o cualquier otro medio de aprovechamiento mecánico. En el sistema de la invención se utiliza un fluido auxiliar, el mismo o diferente de aquel al que queremos aumentar la presión, en fase líquida (al que llamaremos simplemente líquido) y en forma de vapor (siempre que se utilice la palabra vapor en este texto nos referimos al vapor del fluido auxiliar), un gas (p.e. aire) que transporta el vapor y unos lechos empaquetados. En el sistema de la invención aplicado a la generación de energía mecánica se distinguen 2 zonas de presión (ver Figura 11) una que siempre se encuentra a alta presión y otra que, en función de la posición de las válvulas estará a alta o a baja presión. Los números y letras en la Figura 11 , se refieren a los distintos equipos
1. Generador de vapor. Puede no ser un lecho empaquetado
2. Captador de calor residual: Lecho empaquetado actuando como Condensador del vapor producido en el Generador (1).
3. Recuperador del calor residual captado (p.e. en el condensador) para su utilización como precalentador del generador (1). Lecho empaquetado para aprovechar la entalpia del calor residual captado por (2) para precalentar el fluido con el que alimento a (1).
4. Cámara de expansión/compresión del vapor producido en el Generador (1).
5. Cámara de expansión/compresión del líquido de trabajo
6. Pistón separador móvil que separa la Cámara de vapor (4) y la cámara de líquido de trabajo (5)
7. Salida del líquido auxiliar precalentado en el Recuperador (3) y enviada al calentador (8) para recalentarse
8. Calentador del líquido auxiliar
9. Entrada del líquido auxiliar calentado al Generador (1)
10. Salida del líquido no evaporado del Generador (1) y enviada al Recuperador (3)
1 1. Salida del condensado caliente de la cámara (4)
12. Salida del condensado frío del Condensador (2)
13. Tanque auxiliar
14. Conducción del aire (o del gas) con bajo contenido de vapor y fresco, desde el condensador (2) hacia el generador (1)
15. Conducción del aire (o del gas) con alto contenido de vapor y caliente, desde el generador (1) hacia la cámara de vapor (4)
16. Conducción del aire (o del gas) con alto contenido de vapor y caliente, desde la cámara de vapor (4) hacia el condensador (2)
17. Válvula de trasiego del líquido auxiliar entre el Condensador (2) y el Recuperador (3) en el momento del cambio de papeles entre ellos
18. Tubería y válvula de aspiración del líquido de trabajo hacia la cámara (5)
19. Tubería y válvula de expulsión del líquido de trabajo desde la cámara (5)
• V1 : Válvula de conexión/corte del paso de vapor entre el generador (1) y la cámara de vapor (4)
• V2: Válvula de conexión/corte del paso de vapor entre la cámara de vapor (4) y el captador de calor residual (2)
• V3: Válvula de conexión/corte del paso de líquido de la cámara de vapor (4) a la parte alta del captador de calor residual (2)
• V4: Válvula de conexión/corte del paso de líquido de la parte baja del captador de calor residual (2) a la cámara de vapor (4) • V5: Válvula de expulsión del líquido de trabajo desde la cámara (5)
• V6: Válvula de aspiración del líquido de trabajo hacia la cámara (5)
• V7: Válvula de bypass de la cámara de vapor (4) desde el Generador (1) al Captador de calor residual (2)
· S: Soplante de recirculación del aire (o gas) con vapor entre el Generador (1) y el Recuperador de calor Residual (2) pasando (o no, si V7 está abierta y V1 y V2 cerradas) por la cámara de vapor (4)
• B1 : Bomba de alimentación de líquido desde el depósito auxiliar (13) al Recuperador de Calor Residual (3)
· B2: Soplante de recirculación del líquido auxiliar entre el Generador (1), el recuperador de calor Residual (2) y el calentador (8)
• B3: Bomba de inyección del condensado formado en el Recuperador del calor residual (2) en la cámara de vapor ((4)
La zona de que siempre estará a alta presión utiliza como fluidos auxiliares aire (o un gas) con vapor (p.e de agua) y un líquido (p.e. agua) y dos o tres lechos empaquetados con materiales no adsorbentes (de manera semejante a los casos de la desalación y la absorción descritos anteriormente), para hacer las funciones de Generador (1), Condensador (2) y Recuperador (3) del calor de condensación. La zona con presión variable la forman la cámara de expansión/compresión del vapor (4) y la cámara (5) de expansión/compresión del líquido de trabajo (p.e. agua) que equilibran sus presiones a través del pistón (6).
Partiendo de la cámara de vapor (4) a baja presión, fría y con un volumen mínimo y con la cámara de líquido (5) a baja presión, fría y con un volumen máximo y las válvulas V1 , V2, V3, V4, V5 y V7 cerradas y la V6 abierta, el aumento de presión en las cámaras de vapor (4) y de líquido de trabajo (5) se produce cerrando la válvula V6 y abriendo las válvulas V1 , V2, V3 y V5 (manteniendo cerradas la V4 y la V7) con lo que se comunica la cámara de vapor con la zona de alta presión, con lo que el aire (o gas) con el vapor generado en el Generador (1) se transfiere por la tubería (15) a la cámara de vapor (4), calentándola y aumentando su presión, desplazando por tanto el separador (6) entre las cámaras de vapor (4) y de líquido (5) y aumentando la presión del líquido de trabajo en la cámara de líquido (5), expulsando el líquido de trabajo a alta presión a través de la tubería (19) y la válvula (V5) y enviándolo al proceso en el que se utiliza su energía mecánica, expulsándolo o no del sistema. Al entrar el vapor en la cámara de vapor (4), ésta se calentará al condensarse parte del vapor en la cámara inicialmente fría hasta que alcance la presión y temperatura próximas a las de salida del generador (1). El líquido condensado en (4) se enviará al condensador (2) a través de la válvula V3 y la tubería (12), unida con el pistón separador (6) mediante, por ejemplo, una conexión flexible o telescópica, hacia la parte alta del condensador (2). El vapor no condensado se transfiere desde la cámara de vapor (4) al Condensador (2) mediante el soplante (S) por la tubería (16), donde el vapor del aire (o gas) se condensa y se produje líquido (p.e. agua líquida).
Cuando el pistón (6) llega al límite de su recorrido, con la cámara de vapor (4) a alta presión, caliente y con un volumen máximo, con la cámara de líquido (5) a alta presión, caliente y con un volumen mínimo y las válvulas V1 , V2, V3 y V5 abiertas y las V4 y V6 cerradas, la disminución de la presión en las cámaras de vapor (4) y de líquido de trabajo
(5) , con la consiguiente recarga el sistema con el líquido de trabajo frío a la presión de partida, se produce cerrando las válvula V1 , V2, V3 y V5 y abriendo las válvulas V4 y V6 (V7 seguirá cerrada a no ser que se necesite hacer un bypass de la cámara de vapor) con lo que se introduce, con o sin ayuda de una bomba, liquido frío procedente de la parte baja del condensador en la cámara de vapor, enfriándola y disminuyendo la presión, (enfriándola y reduciéndole por tanto la presión hasta la presión en equilibrio con la temperatura del líquido proveniente del condensador (2), desplazando el pistón
(6) y disminuyendo la presión del líquido de trabajo en la cámara de líquido (5), captando líquido de trabajo frío y a baja presión a través de la válvula V6 empujado por la presión mínima disponible en el líquido de trabajo, por ejemplo para sistemas de bombeo, la presión atmosférica.
En la zona que siempre está a alta presión, se calienta el líquido auxiliar aplicándole calor en el Calentador (8) e introduciéndolo en el Generador (1) a contracorriente con un flujo de aire (o gas) con vapor que circula entre el Generador (1) y el Recuperador de calor residual (2) pasando por la cámara de vapor (4) en la fase de expansión del vapor. En el Generador (1) el líquido se reparte sobre el relleno, produciéndose vapor a la elevada presión del Generador (1) y haciendo que el aire (u otro gas) alcance un estado en equilibrio de su contenido de vapor en cada zona del lecho, por lo que al atravesar el lecho el líquido se va enfriando en su recorrido hacia la parte baja del Generador (1) y el aire (o gas) va aumentando su temperatura y la cantidad de vapor que transporta en su recorrido hacia la parte alta del Generador (1). El líquido que llega hasta la parte baja del Generador (1) sin evaporarse es conducido por (10) hasta la parte baja del Recuperador (3) donde se precalentará al atravesarlo antes de entrar en el calentador (8) por la tubería (7) para posteriormente ser introducido en la parte alta del Generador (1) e iniciar de nuevo el ciclo. Siguiendo en la zona de alta presión, el aire (u otro gas) caliente y con alto contenido de vapor procedente del generador (1) y de la cámara de vapor (4) perderá vapor y temperatura en contacto con el material del relleno del Recuperador de Calor residual (condensador) (2) calentándolo de la misma forma que en la descrita en la Tesis anteriormente citada. El líquido condensado sobre el relleno del Condensador (2), que llega frío y por gravedad al fondo del condensador (2), es extraído del sistema por (1 1) cuando se quiera enfriar la cámara de vapor (4). Como hemos indicado, el líquido que sale por la parte baja del Generador (1) se precalienta en el Recuperador (3). El que el recuperador (3) pueda hacer la función de precalentar el líquido se debe a que el condensador (2) y el recuperador (3) intercambian sus papeles cuando la evolución de la temperatura en la parte baja del condensador es tal que sube por encima de la temperatura establecida como criterio de operación. Este cambio, se ejecuta mediante un juego de válvulas de 3 vías y de compuerta (o equivalente) por el que las conexiones (a), (b), (c), (d), (e) y (f) del condensador (2) cambian su función con las (a'), (b'), (c'), (d'), (e') y (f) del recuperador (3). El movimiento del líquido se realiza, principalmente, mediante los grupos hidráulicos de bombas B1 de alimentación al tanque auxiliar (13), B2 de alimentación del recuperador (3) desde el generador (1) y B3 de circulación del condensado producido en el Condensador (2), y por el soplante S, ubicado en el conducto (14), (15) o (16) según convenga, para circular el aire (u otro gas) con vapor entre el condensador (2), el generador (1) y la cámara de vapor (4)
Al producirse el cambio, el nuevo recuperador se encuentra en las condiciones que estaba el condensador, con una temperatura en la parte alta próxima a la fijada en el calentador (8) y una temperatura en la parte baja próxima a la de entrada del líquido por (6) por lo que podrá precalentar, cediendo su calor, al líquido entrante. De la misma manera el nuevo condensador se encuentra en las condiciones que estaba el recuperador, que se ha ido descargando térmicamente al haberse enfriado por el paso del líquido de alimentación al sistema, con una temperatura en su parte inferior próxima a la de entrada del líquido por (10) por lo que podrá condensar eficientemente el vapor proveniente del generador (1). Este cambio de papeles es uno de elementos más destacables del sistema de la invención. De hecho, la diferencia sustancial entre el sistema de la invención y uno convencional es que en el sistema de la invención no se disipa hacia el exterior el calor entregado al condensador (2) sino que se recupera para el precalentamiento del líquido antes de entrar en el Generador (1) con lo que el rendimiento alcanzable puede superar al de los sistemas convencionales.
Para entender el cómo es posible que el rendimiento sea mayor, hay que tener en cuenta:
• El sistema de la invención no trabaja en régimen cuasiestacionario como es el caso en los sistemas convencionales de generación de energía mecánica a partir del calor, debido a la inercia térmica del material de relleno de los lechos.
« Se utiliza un gas intermedio (p.e. aire) como transportador del vapor entre los lechos
• El vapor se produce indirectamente sobre el relleno que se calienta a partir del líquido calentado y repartido sobre la parte superior del lecho generador de vapor y que es arrastrado por el gas que asciende por el lecho
« La recuperación del calor entregado al Condensador (2) (Foco Frío) puede ser mucho mayor
• La estratificación térmica en los lechos rellenos y el funcionamiento secuencial con el cambio de papeles entre el Condensador (2) y el Recuperador (3) provoca que el nivel térmico del calor recuperado pueda ser muy próximo al del foco caliente fijado en el calentador (8)
• El trabajo de compresión del aire (o gas) con vapor lo puede realizar la presión atmosférica o la presión mínima disponible en el líquido de trabajo
La eficiencia del sistema de la invención va a depender principalmente de
• La temperatura fijada como consigna en el calentador (8) y la presión de trabajo: cuanto más alta, mayor eficiencia
• lo próximas que se encuentren las temperaturas de la parte alta del condensador (2) y del recuperador (3) a la fijada en el calentador (8) y las temperaturas de la parte baja del condensador (2) y del recuperador (3) a la entrada del líquido por (10) : Cuanto más próximas, mayor eficiencia.
· La temperatura y caudal del líquido a la salida del evaporador (1): Cuanto más bajos, mayor eficiencia
• La temperatura del destilado producido: Cuanto más baja, mayor eficiencia
El criterio de diseño de los lechos para un funcionamiento eficiente para esta aplicación, son semejantes a los aplicables para su uso en las otras aplicaciones descritas anteriormente.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
En la Figura 1 mostramos una vista esquemática del sistema de la invención, para la aplicación de secado, con los principales elementos constituyentes, trabajando en el modo de operación 1.
En la Figura 2 mostramos una vista esquemática del sistema de la invención, para la aplicación de secado, con los principales elementos constituyentes, trabajando en el modo de operación 2.
En la Figura 3 mostramos una vista esquemática del sistema de la invención, para la aplicación de secado, con los principales elementos constituyentes, trabajando en el modo de operación 3.
En las Figura 4, y 5 mostramos una vista detallada, en planta desde arriba y desde abajo, para el modo de operación 1 de la aplicación de secado y en las Figuras 6 y 7 mostramos una vista detallada en planta desde arriba y desde abajo para el modo de operación 2 de la aplicación de secado, de una posible realización preferente del objeto de la invención para el caso de un proceso de secado, con sus diversos componentes en los que se muestra el sistema de la invención incluyendo los dispositivos para el cambio de papeles entre el captador de calor residual (2) y el precalentador (3) y la recuperación del calor sensible del proceso (1).
En las Figuras 4, 5, 6 y 7 los elementos designados por las letras minúsculas hacen referencia a los de la Figura 1 , 2 y 3 al igual que los designados por los números.
En la Figura 8 mostramos una vista esquemática del sistema de la invención, para la aplicación de desalación, con los principales elementos constituyentes.
En la Figura 9 mostramos una vista detallada, en planta, de una posible realización preferente del objeto de la invención, para la aplicación de desalación, con sus diversos componentes en los que se muestra el sistema de la invención incluyendo los dispositivos para el cambio de papeles entre el condensador (2) y el recuperador (3). En la Figura 9 los elementos designados por las letras minúsculas hacen referencia a los de la Figura 8, al igual que los designados por los números.
En la Figura 10 mostramos una vista esquemática del sistema de la invención, para la aplicación de frío y otros procesos por absorción, con los principales elementos constituyentes.
En la Figura 1 1 mostramos una vista esquemática del sistema de la invención, para la aplicación de generación de energía mecánica, con los principales elementos constituyentes. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
El sistema objeto de la invención se puede realizar de múltiples formas, con diferentes tamaños y materiales y en numerosas aplicaciones. A continuación mostramos dos realizaciones preferentes del sistema de la invención, una para su utilización en una aplicación de secado y otra para su utilización en una aplicación de desalación.
APLICACIÓN: SECADO
Para el caso de un proceso de secado, en las Figura 4, y 5 mostramos una vista detallada, en planta desde arriba y desde abajo, para el modo de operación 1 y en las Figuras 6 y 7 mostramos una vista detallada en planta desde arriba y desde abajo para el modo de operación 2, de una posible realización preferente del objeto de la invención con sus diversos componentes en los que se muestra el sistema de la invención incluyendo los dispositivos para el cambio de papeles entre el captador de calor residual (2) y el precalentador (3) y la recuperación del calor sensible del proceso-secadero (1). Estas figuras muestran una posible realización preferente de la invención para secaderos y con los mismos elementos de las Figuras 1 , 2 y 3 (salvo las compuertas f y g que no son necesarias para esta realización preferente) y un trazado de las tuberías y conductos en el que se observan las bombas B, el soplante S, las compuertas C, D1 , D2, D3 Y D4 y la válvula de 3 vías, V, utilizadas para la operación del sistema.
En funcionamiento en el modo de operación 1 ,
• El soplante S funciona mientras se quiera secar el producto en el secadero (1).
• La bomba B funciona mientras se quiera extraer el destilado producido.
• La posición de la compuerta C, dirige el aire desde el secadero (1) al captador de calor residual (2) y desde el precalentador (3) al calentador (6).
• Las compuertas D1 y D2 están abiertas y permiten la entrada del aire exterior al precalentador (3) y la salida del aire desde el captador de calor residual (2)
• La posición de las compuertas D3 y D4 permite que el aire de salida del precalentador (3) por la tubería (5) alcance al calentador (6) e impide que el aire circule por las aberturas (b) y (b').
• La compuerta D5 permanece cerrada
• El calentador (6) recibe el aire por la tubería (5) y lo manda más caliente, a la temperatura designada, por la tubería (7) al secadero (1) siempre que el soplante S esté en marcha.
Para el cambio de papeles entre el captador de calor residual (2) y el precalentador (3) a realizar cuando la temperatura en la parte baja del captador de calor residual (2) suba la cantidad fijada por encima de la del aire de alimentación al precalentador (3):
• Se para el soplante S y se vacía el captador de calor residual (2) de agua con la bomba B.
« Se cambia de posición la compuerta C. Al cambiar de posición la compuerta
(C- C), situada entre el conducto (5) y el (8), el precalentador (3) se transforma en el nuevo captador de calor residual (3- 2') y el aire se mueve entre el nuevo captador de calor residual (2') y el secadero (1)
• Cuando se ha cambiado de posición la compuerta C, se arranca el soplante S y se entra en el nuevo modo de funcionamiento normal
El modo de funcionamiento 1 se mantiene hasta alcanzar el nivel de humedad deseado a la salida del secadero (1); cuando se alcanza, se pasa al modo de funcionamiento 2. En funcionamiento en el modo de operación 2,
• El soplante S funciona mientras se quiera enfriar el producto en el secadero. · El calentador (6) está apagado
• La posición de la compuerta C, dirige el aire desde el secadero (1) al último que ha actuado como precalentador (3)
• Mientras la temperatura de salida del precalentador (3) sea lo suficientemente baja para enfriar el producto en el secadero (1),
o Las compuertas D1 y D2 están cerradas e impiden la entrada del aire exterior al precalentador (3) y la salida desde el captador de calor residual (2)
o La posición de las compuertas D3 y D4 evita que el aire de salida del precalentador (3) por la tubería (5) alcance al calentador (6), evita que el aire circule por la abertura (b) y permite que el aire circule por las aberturas (b').
• Si la temperatura de salida del precalentador (3) no es lo suficientemente baja para enfriar el producto en el secadero (1), se tomará aire del exterior (abriendo el paso, por ejemplo, a través de las compuertas D1 y D3) y después de circularlo por el secadero (1) se expulsará al exterior por una abertura al efecto después del secadero D5, en la tubería (8)
• El secadero (1 ) recibe el aire frío del precalentador (3) o del exterior por la tubería (7) siempre que el soplante S esté en marcha.
Tanto en el modo de operación 1 como en el 2, si se quiere realizar todo o parte del aporte de energía con una instalación solar, u otra de disponibilidad intermitente, se podrá, entre otras opciones, calentar el aire a la salida del secadero.
Los lechos empaquetados con materiales no adsorbentes de la realización preferente mostrada en la Figura 4, 5, 6 y 7, se pueden construir con sólido (p.e. rocas) de un tamaño homogéneo y con un diámetro, preferiblemente, unas 20 veces inferior al del diámetro equivalente del contenedor. El contenedor estará aislado térmicamente, se puede fabricar de un material capaz de aguantar la presión (o estar contenido en otro contenedor que la soporte como puede ser el propio suelo si está enterrado), y la temperatura de trabajo (p.e. polipropileno, acero, ..), y además del relleno, podrá contar con un plenum/difusor inferior y otro superior, u otros dispositivos equivalentes, para la adecuada distribución del aire. El dimensionado de los lechos empaquetados dependerá de la demanda de producto seco que se quiera procesar y de los modos de operación que se deseen y puede variar desde unos pocos litros hasta muchos miles de m3. Los equipos para el movimiento y control de los fluidos se seleccionarán para aguantar las condiciones de trabajo (p.e. temperatura, presión, pérdida de carga, ..)
Es de destacar que, cambiando los fluidos de trabajo (aire por cualquier gas y agua por cualquier líquido), y manteniendo el concepto general, el número de aplicaciones en las que se puede aplicar el sistema de la invención es enorme y se podrían mostrar un gran número de realizaciones esencialmente idénticas a la realización preferente descrita en esta sección.
APLICACIÓN: DESALACION DE AGUA DE MAR
Para el caso de un proceso de desalación de agua de mar, en la Figura 9 mostramos una posible realización preferente de la invención para desalación de agua de mar y con los mismos elementos de la Figura 8 y un trazado de las tuberías y conductos en el que se observan las bombas B1 , B2 y B3, el soplante S, la compuerta C y las válvulas de 3 vías V1 , V2, V3, la válvula de 4 vías V4 y las 2 compuertas C, utilizadas para la operación del sistema.
En funcionamiento normal,
• La bomba B1 se conecta para mantener el nivel deseado en el depósito auxiliar (5), mientras se quiera producir agua.
· La bomba B2 funciona mientras se quiera producir agua.
• La bomba B3 funciona mientras se quiera extraer el destilado producido.
• El soplante S funciona mientras se quiera producir agua.
• La posición de la compuerta C, dirige el aire hacia y desde el condensador.
• Las válvulas V1 , V2 y V3 dirigen el agua por las tuberías (6), (7) y (13).
· El calentador (8) recibe el agua por la tubería (7) y la manda más caliente, a la temperatura designada, por la tubería (9) al generador (1) siempre que la B2 esté en marcha.
• Dependiendo del modo de operación deseado la válvula V4 dirige la salida de salmuera concentrada del generador (1) a las tuberías (10), (1 1) o (12).
o Modo básico: la salmuera concentrada se recircula por la tubería (10) a través del depósito auxiliar (5), por el recuperador de calor (3), el calentador (8) y el generador (1). Este modo de operación se mantendrá mientras la concentración salina de la salmuera no alcance el nivel máximo fijado y el nivel térmico del generador (1) sea suficiente, o Modo preparación: La salmuera se recircula directamente por la tubería (1 1) y el calentador (8) hacia el generador (1). Este modo de operación se utilizará en los arranques del sistema o cuando el nivel térmico del generador (1) no sea suficiente,
o Modo purgado: la salmuera concentrada se expulsa al exterior por la tubería (12). Este modo de operación se mantendrá mientras la concentración salina de la salmuera sea mayor al nivel máximo fijado Para el cambio de papeles entre el condensador (2) y el recuperador (3) a realizar cuando la temperatura en la parte baja del condensador (2) suba la cantidad fijada por encima de la de alimentación al recuperador (3):
• Se paran la bomba B2 y el soplante S y se vacía el condensador (3) de agua.
• Se para la bomba B3 y se cambian de posición las válvulas V1 , V2 y V3 y la compuerta C.
o En el circuito de agua, al cambiar de posición las válvulas V1 , V2 y V3 el condensador (2) se transforma en el nuevo recuperador (2->3') y el recuperador en el nuevo condensador (3->2') ya que el papel de las tuberías (6), (7) y (13) lo realizan, respectivamente, las tuberías (6'), (7') y (13')
o En el circuito de aire, al cambiar de posición las compuertas (C->C), situada una en el conducto (14) y la otra en el conducto (15), el recuperador (3) se transforma en el nuevo condensador (3->2') y el aire se mueve entre el nuevo condensador (2') y el generador (1)
• Se vacía por gravedad el recuperador (3) ya que la bomba B2 en parado permite que el agua descienda al depósito auxiliar (5), dimensionado adecuadamente.
• Cuando se ha vaciado el recuperador (3), se arrancan las bombas B2 y B3 y el soplante S y se entra en el nuevo modo de funcionamiento normal Los lechos empaquetados con materiales no adsorbentes de la realización preferente mostrada en la Figura 2, se pueden construir con rocas de un tamaño homogéneo y con un diámetro unas 20 veces inferior al del diámetro equivalente del contenedor, el contenedor estará aislado térmicamente, se puede fabricar de un material plástico capaz de aguantar la presión (o estar contenido en otro contenedor que la soporte como puede ser el propio suelo si está enterrado), y la temperatura de trabajo (p.e. polipropileno), y además del relleno, contará con un plenum/difusor inferior y otro superior para la adecuada distribución del líquido y/o del aire. El dimensionado de los lechos empaquetado con materiales no adsorbentes dependerá de la demanda de agua que se quiera aportar y de los modos de operación que se deseen y puede variar desde unos pocos m3 hasta muchos miles de m3.
Los equipos para el movimiento y control de los fluidos se seleccionarán para aguantar las condiciones de trabajo (p.e. temperatura, salinidad, presión, pérdida de carga, ..) Es de destacar que, cambiando los fluidos de trabajo (aire por cualquier gas y agua salada por cualquier disolución de un sólido o un líquido en otro líquido menos volátil), y manteniendo el concepto general, el número de aplicaciones en las que se puede aplicar el sistema de la invención es enorme y se podrían mostrar un gran número de realizaciones esencialmente idénticas a la realización preferente descrita en esta sección.
Aplicación industrial
La aplicación industrial del sistema de la invención es inherente a naturaleza de la invención y se deduce de la explicación de la misma.

Claims

REIVINDICACIONES
1. Sistema de recuperación de calor en procesos térmicos mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes (o en los que la adsorción no representa un efecto dominante) que actúan alternativamente como captador del calor residual y como precalentador del generador de calor residual (u otro proceso externo), que puede ser también un lecho empaquetado.
2. Sistema según reivindicación 1 , para la recuperación del calor residual de procesos térmicos, (como puede ser el generado en el secado, la fabricación/producción de diversos productos o la ventilación/disipación del calor generado en los edificios), caracterizado porque la entalpia del calor residual producido en el proceso generador
(1) y extraída de (1) mediante un fluido caloportador se recupera, y caracterizado porque para ello utiliza un conjunto de soplantes (S) y/o bombas (B), un conjunto de conductos, válvulas y compuertas, un calentador (6) y dos lechos rellenos con materiales sólidos, el primero actuando como captador de calor residual (2) recibiendo el fluido caloportador proveniente del proceso generador (1) y el segundo actuando como recuperador y precalentador (3) del fluido caloportador antes de entrar al proceso (1) que generó el calor residual o a otro proceso externo. Los números y letras en esta reivindicación se refieren a los indicados en las Figuras 1 a 7.
3. Sistema según reivindicación 1 , para la desalación de aguas saladas - o la concentración de disoluciones líquidas, efluentes salinos o contaminados - caracterizado porque utiliza un proceso de evaporación del líquido en aire, o en otro gas, y posterior condensación, con recuperación de calor, del vapor contenido en el aire, o en el gas, y caracterizado porque utiliza un conjunto de soplantes (S) y/o bombas (B), un conjunto de conductos, válvulas y compuertas, un calentador (8) y tres lechos rellenos con materiales sólidos, que actúan como generador/evaporador (1) del líquido y enriquecedor en vapor del aire (o del gas), captador del calor residual/condensador
(2) del vapor y precalentador/recuperador (3) del calor de condensación para precalentar el líquido que entra en (1). Los números y letras en esta reivindicación se refieren a los indicados en las Figuras 8 y 9.
4. Sistema según reivindicación 1 , para la producción de frío por absorción, u otros procesos por absorción, caracterizado porque utiliza un conjunto de soplantes (S) y/o bombas (B), un conjunto de conductos, válvulas y compuertas, un calentador (8), un Generador (1) de vapor mediante un proceso con desorción en aire, o en otro gas, del vapor previamente absorbido por una solución, (p.e. solución acuosa de bromuro de litio), que puede ser un lecho empaquetado con materiales sólidos, y dos lechos empaquetados con materiales sólidos que alternativamente actúan como condensador/captador del calor residual (2) generado en (1), condensando el vapor desorbido, y como precalentador (3) de la solución con la que se alimenta al Generador
(1) recuperando el calor previamente captado cuando hacia la función de captador de calor residual (2). Los números y letras en esta reivindicación se refieren a los indicados en la Figuras 10.
5. Sistema según reivindicación 1 , para la generación de energía mecánica, caracterizado porque utiliza aire (o un gas) con vapor (p.e de agua), y un líquido (p.e. agua), un conjunto de soplantes (S) y/o bombas (B), un conjunto de conductos, válvulas y compuertas, un calentador (8), una cámara de vapor (4), una cámara de líquido de (5) y, un Pistón separador (6), un Generador (1) de vapor, que puede ser un lecho empaquetado con materiales sólidos, y dos lechos empaquetados con materiales sólidos, actuando secuencial y alternativamente, como Captador de calor residual/Condensador (2) del vapor generado en (1) y Precalentador y Recuperador (3) del calor de condensación previamente captado cuando hacia la función de Captador
(2) y caracterizado porque el vapor producido en el Generador (1) antes de pasar al Captador de calor residual (2) entra en la Cámara de expansión/compresión del vapor (4), actuando sobre el Pistón separador móvil (6) y elevando la presión a un líquido de trabajo en la Cámara de expansión/compresión del líquido de trabajo (5), produce la generación de energía mecánica en su posterior expansión, cuando se enfríe la cámara de vapor (4) después de aislarle del Generador (1) al introducirle liquido frío proveniente del Condensador (2), moviendo un embolo, haciendo girar una turbina, bombeando un fluido o cualquier otro medio de aprovechamiento mecánico. Los números y letras en esta reivindicación se refieren a los indicados en la Figuras 1 1.
6. Sistema según reivindicaciones 1 , 2, 3, 4 o 5 caracterizado porque el Captador de calor residual (2) y el Precalentador/Recuperador (3) intercambian sus papeles cuando el captador de calor residual (2) se ha cargado térmicamente, al recibir el fluido caloportador que arrastra el calor residual originado en el proceso (1) mediante el soplante (S), hasta el nivel térmico establecido. Este cambio se realiza de manera cíclica, cada vez que se alcance la condición de cambio descrita, mediante la utilización de un conjunto de válvulas y compuertas con actuaciones enclavadas entre ellas de tal forma que, una vez actuadas, el Captador de calor residual (2) empezará a actuar como nuevo Precalentador/Recuperador y el antiguo Precalentador/Recuperador (3) como nuevo Captador de calor residual. De esta forma y con estos ciclos de operación, la entalpia capturada por el captador de calor residual (2) podrá utilizarse para precalentar el fluido que alimenta al proceso (1), o a otro proceso externo, cuando actúe como Precalentador (3).
7. Sistema según reivindicaciones 1 , 2, 3, 4 o 5 caracterizado porque los materiales de relleno de los lechos (2) y (3) ( y (1) si se utiliza un lecho como Generador), no serán significativamente adsorbentes y tendrán, preferentemente, unas propiedades físicas tales que el producto del valor de su calor específico, de su densidad y de la fracción del espacio ocupado por el sólido en el lecho sea mayor de 200 kilojulios por grado centígrado y metro cúbico (kJ/C/m3), pudiendo superar los 3000 kJ/C/m3, lo que le permite que pueda actuar como almacenamiento energético de fuentes de calor, intermitentes o no, como son las instalaciones solares térmicas y otras fuentes de calor renovable o de recuperación.
8. Sistema según reivindicaciones 1 , 2, 3, 4 o 5 caracterizado por una capacidad de recuperación del calor residual producido en (1) superior, en la mayor parte de los casos, al 80%.
9. Sistema según reivindicación 3 caracterizado por ser capaz de trabajar con concentraciones salinas superiores al 80% de la concentración de saturación de la sal en el líquido.
PCT/ES2017/070519 2016-07-21 2017-07-18 Sistema de recuperación de calor en procesos térmicos mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes WO2018015600A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17830540.5A EP3488922A4 (en) 2016-07-21 2017-07-18 SYSTEM FOR THE RECOVERY OF HEAT IN THERMAL PROCESSES THROUGH THE SEQUENCING AND ALTERNATIVE OPERATION OF A SET OF FIXED BEDS WITH NON-ABSORBENT MATERIALS

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESU201630950 2016-07-21
ES201630950U ES1163858Y (es) 2016-07-21 2016-07-21 Dispositivo de desalacion por humidificacion y deshumidificacion utilizando lechos empaquetados como evaporadores, condensadores, recuperadores y sistemas de almacenamiento termico
ESU201631265 2016-10-23
ES201631265U ES1172383Y (es) 2016-10-23 2016-10-23 Dispositivo de recuperacion de la energia residual del proceso de secado, o de otros procesos termicos, utilizando lechos empaquetados como captadores, precalentadores y acumuladores

Publications (1)

Publication Number Publication Date
WO2018015600A1 true WO2018015600A1 (es) 2018-01-25

Family

ID=60991963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070519 WO2018015600A1 (es) 2016-07-21 2017-07-18 Sistema de recuperación de calor en procesos térmicos mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes

Country Status (2)

Country Link
EP (1) EP3488922A4 (es)
WO (1) WO2018015600A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111536785A (zh) * 2020-05-07 2020-08-14 东亚装饰股份有限公司 一种建筑设计用石膏烘干装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1429183A (en) * 1972-03-01 1976-03-24 Mass Transfer Ltd Gas-liquid contact apparatus
US4126430A (en) * 1977-02-24 1978-11-21 Union Carbide Corporation Packed bed temperature control
EP0431993A1 (fr) * 1989-11-03 1991-06-12 Sarl Taureau Installation de traitement complémentaire des eaux domestiques usées
US6185841B1 (en) * 1997-05-07 2001-02-13 Kfx Inc. Enhanced heat transfer system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2927847A (en) * 1956-03-02 1960-03-08 Gas Council Heating gases and vapours
BE630629A (es) * 1962-04-06 1900-01-01
US4501318A (en) * 1982-09-29 1985-02-26 Hebrank William H Heat recovery and air preheating apparatus
GB8325973D0 (en) * 1983-09-28 1983-11-02 Willmott A J Thermal regenerator system
US4909307A (en) * 1987-03-13 1990-03-20 Canadian Gas Research Institute Regenerative bed heat exchanger
US5003961A (en) * 1988-02-05 1991-04-02 Besik Ferdinand K Apparatus for ultra high energy efficient heating, cooling and dehumidifying of air
US5983986A (en) * 1996-09-04 1999-11-16 Macintyre; Kenneth Reid Regenerative bed heat exchanger and valve therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1429183A (en) * 1972-03-01 1976-03-24 Mass Transfer Ltd Gas-liquid contact apparatus
US4126430A (en) * 1977-02-24 1978-11-21 Union Carbide Corporation Packed bed temperature control
EP0431993A1 (fr) * 1989-11-03 1991-06-12 Sarl Taureau Installation de traitement complémentaire des eaux domestiques usées
US6185841B1 (en) * 1997-05-07 2001-02-13 Kfx Inc. Enhanced heat transfer system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3488922A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111536785A (zh) * 2020-05-07 2020-08-14 东亚装饰股份有限公司 一种建筑设计用石膏烘干装置

Also Published As

Publication number Publication date
EP3488922A1 (en) 2019-05-29
EP3488922A4 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
JP6005860B2 (ja) 複合型熱および物質交換装置の熱力学的平衡
ES2727343T3 (es) Sistema y método de captura y secuestro de dióxido de carbono
US7062913B2 (en) Heat engine
ES2651421T3 (es) Procedimiento y dispositivo para la conversión de energía
CN101921006B (zh) 一种太阳能聚光发电和海水淡化集成方法及***
ES2849436T3 (es) Motor térmico con descompresión de ciclo de Rankine orgánico mejorado
US11525246B2 (en) Liquid desiccant vapor separation system
US20110146939A1 (en) Energy absorption and release devices and systems
ES2769890T3 (es) Sistema y método de deshumidificación
US20170008776A1 (en) Facility and method for treating water pumped in a natural environment by evaporation/condensation
US20200340693A1 (en) Method for Production of Water From Air Based on Low-Temperature Heat, and Machine and System Thereof
ES2402815T3 (es) Destilación isotérmica de agua libre de gas
ES2843541T3 (es) Instalación de destilación a baja temperatura
WO2018015600A1 (es) Sistema de recuperación de calor en procesos térmicos mediante la actuación secuencial y alternativa de un conjunto de lechos empaquetados con materiales no adsorbentes
CN102679468A (zh) 一种湿空气除湿溶液再生***
US4722194A (en) Absorptive thermodynamic apparatus and method
ES2765893T3 (es) Instalación y procedimiento para el tratamiento y/o el procesamiento de plástico
TWM527042U (zh) 地熱濕蒸氣發電系統
CN104261500B (zh) 一种斯特林热泵多级蒸馏海水淡化装置
ES1172383U (es) Dispositivo de recuperacion de la energía residual del proceso de secado, o de otros procesos térmicos, utilizando lechos empaquetados como captadores, precalentadores y acumuladores
KR101390646B1 (ko) 제습용 히트펌프와 열회수용 히트파이프가 설치된 고효율 음식폐기물 건조장치
WO1995001507A1 (es) Central termodinamica de rendimiento unidad
ES1163858U (es) Dispositivo de desalacion por humidificación y deshumidificación utilizando lechos empaquetados como evaporadores, condensadores, recuperadores y sistemas de almacenamiento térmico
JP2017058063A (ja) 地中熱利用吸収ヒートポンプシステム
ES2541581B1 (es) Sistema de producción de energía eléctrica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830540

Country of ref document: EP

Effective date: 20190221