WO2018003752A1 - 呼吸異常検出装置及び呼吸異常検出方法 - Google Patents

呼吸異常検出装置及び呼吸異常検出方法 Download PDF

Info

Publication number
WO2018003752A1
WO2018003752A1 PCT/JP2017/023433 JP2017023433W WO2018003752A1 WO 2018003752 A1 WO2018003752 A1 WO 2018003752A1 JP 2017023433 W JP2017023433 W JP 2017023433W WO 2018003752 A1 WO2018003752 A1 WO 2018003752A1
Authority
WO
WIPO (PCT)
Prior art keywords
respiratory
unit
monitored person
waveform
breathing
Prior art date
Application number
PCT/JP2017/023433
Other languages
English (en)
French (fr)
Inventor
真和 岡田
将積 直樹
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to EP17820107.5A priority Critical patent/EP3466336A4/en
Priority to JP2018525158A priority patent/JPWO2018003752A1/ja
Publication of WO2018003752A1 publication Critical patent/WO2018003752A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4818Sleep apnoea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves

Definitions

  • the present invention relates to a technique for monitoring a respiratory abnormality of a monitored person, for example, a person who needs nursing or a person who needs care (hereinafter referred to as a nurse who needs nursing) as a monitored person.
  • Japan is an aging society due to the improvement of living standards accompanying the post-war high economic growth, the improvement of sanitation environment and the improvement of medical standards, and more specifically the ratio of the population over 65 years old to the total population It is a super-aging society with an aging rate exceeding 21%.
  • the elderly population is about 3.186 million, the aging rate is 25.0%, and 1 in 4 people are elderly.
  • the population of elderly people is estimated to be about 37.41 million, and one in three people will be elderly people (Statistics Bureau, Ministry of Internal Affairs and Communications, Japan).
  • an increase in the number of nurses requiring medical attention due to illness, injury, aging, etc. is expected, compared to a normal society that is not an aging society.
  • Such nurses are required to enter hospitals and other facilities such as welfare facilities for the elderly (such as short-term welfare facilities for the elderly, nursing homes for the elderly and special nursing homes for the elderly under Japanese law) and receive nursing care.
  • facilities such as hospitals and welfare facilities for the elderly, for example, those who need nursing care such as nurses or caregivers, etc. Nurses, etc.
  • Nurses, etc. confirm their safety by periodically patrols.
  • the number of nurses and the like is reduced in the quasi-night shift and night shift hours compared to the day shift hours, the work load per person increases, and therefore the work load must be reduced. For this reason, in recent years, a monitored person monitoring device that monitors (monitors) a patient who needs nursing is monitored and developed.
  • Examples of techniques related to monitoring of a monitored person include a device that detects a respiratory abnormality of the monitored person and a system that provides remote care for the monitored person.
  • Patent Document 1 generates movement amount waveform data by performing image processing on images (frames) continuously projected by projecting infrared rays onto a person to be monitored.
  • An apparatus for detecting respiratory abnormality of a monitored person using movement amount waveform data is disclosed.
  • Patent Document 2 remotely monitors each monitored person, and for each monitored person, room entry / exit information, toilet use information, bed fall information, heart rate, respiratory rate, and landing time
  • a remote care system that collects the time of getting out of bed, analyzes them, and determines the staff assignment based on the analysis results is disclosed.
  • the respiratory waveform pattern varies depending on the type of respiratory abnormality (sleep apnea syndrome, slow breathing, tachypnea, etc.). There is a technique for using this to determine the type of respiratory abnormality.
  • This technology prepares several types of respiratory waveform patterns indicating respiratory abnormalities (respiratory waveform patterns for sleep apnea syndrome, respiratory waveform patterns for slow breathing, respiratory waveform patterns for tachypnea, etc.) and uses pattern matching Then, it is determined whether or not the waveform of the breathing signal of the monitored person matches any of those respiratory waveform patterns prepared in advance, and if they match, it is determined that the type of respiratory abnormality indicated by the respiratory waveform pattern.
  • the misjudgment includes determining normal breathing but abnormal breathing, and wrongly determining the type of respiratory abnormality.
  • the former causes unnecessary rushing of the observer, and the latter causes delay in coping with respiratory abnormalities.
  • An object of the present invention is to provide a respiratory abnormality detection device and a respiratory abnormality detection method capable of improving the accuracy of determining whether or not there is a respiratory abnormality and the accuracy of determining the type of respiratory abnormality.
  • the respiratory abnormality detection device includes an acquisition unit, a generation unit, a selection unit, and a determination unit.
  • the acquisition unit acquires a biological signal of a monitored person to be monitored.
  • generation part produces
  • the selection unit uses a predetermined index serving as an index indicating the health condition of the monitored person, and selects one or more respiratory waveform patterns from a plurality of respiratory waveform patterns indicating each of a plurality of types of respiratory abnormalities. select.
  • the determination unit uses the waveform of the respiration signal generated by the generation unit and the waveform of the respiration signal generated by the generation unit using the one or more respiration waveform patterns selected by the selection unit. Is determined to correspond to one of the one or more respiratory waveform patterns selected by the selection unit.
  • the monitored person monitoring system is a system that monitors a monitored person to be monitored (in other words, a watching target person to be watched over) using a plurality of devices, and a terminal device And a monitored person monitoring device that is connected to the terminal device so as to be communicable, detects a predetermined event (event) related to the monitored person, and notifies the terminal device of the event.
  • the monitored person monitoring device may be integrally configured by a single device. However, in this specification, the monitored person monitoring device is connected to the sensor device and the sensor device and the terminal device so as to communicate with each other. By providing the management server device, the two types of devices are configured separately.
  • the sensor device detects the predetermined event related to the monitored person and notifies (reports or transmits) the management server device. Upon receiving the notification from the sensor device, the management server device manages the event that has received the notification, and re-notifies the event to a predetermined terminal device associated with the sensor device. Send.
  • the terminal device may be one type of device, in the present specification, the terminal device is two types of devices, a fixed terminal device and a mobile terminal device. The main difference between these fixed terminal devices and portable terminal devices is that the fixed terminal device is fixedly operated, and the portable terminal device is operated by being carried by a supervisor NS (user) such as a nurse or a caregiver. Is a point. Since the fixed terminal device and the mobile terminal device are substantially the same, the mobile terminal device will be mainly described below.
  • FIG. 1 is an explanatory diagram illustrating a configuration of a monitored person monitoring system MS according to the embodiment.
  • the monitored person monitoring system MS includes, for example, one or a plurality of sensor devices SU (SU-1 to SU-4), a management server device SV, a fixed terminal device SP, and one or a plurality of ones. It includes a portable terminal device TA (TA-1, TA-2) and a private branch exchange (PBX, Private Branch eXchange) CX, which are wired or wireless, such as a network (network, communication) such as a LAN (Local Area Network). Line) Connected to be communicable via NW.
  • the network NW may be provided with repeaters such as repeaters, bridges, and routers that relay communication signals.
  • the plurality of sensor devices SU-1 to SU-4, the management server device SV, the fixed terminal device SP, the plurality of portable terminal devices TA-1, TA-2, and the private branch exchange CX include an L2 switch.
  • a wired / wireless LAN for example, a LAN in accordance with the IEEE 802.11 standard
  • NW including the LS and the access point AP.
  • the plurality of sensor devices SU-1 to SU-4, the management server device SV, the fixed terminal device SP, and the private branch exchange CX are connected to the line concentrator LS, and the plurality of portable terminal devices TA-1, TA-2. Is connected to the line concentrator LS via the access point AP.
  • the network NW configures a so-called intranet by using Internet protocol groups such as TCP (Transmission Control Protocol) and IP (Internet Protocol).
  • the private branch exchange CX is connected to the telephone TL via the public telephone network PN.
  • the monitored person monitoring system MS is arranged at an appropriate place according to the monitored person Ob.
  • the monitored person Ob is, for example, a person who needs nursing due to illness or injury, a person who needs care due to a decrease in physical ability, or a single person living alone.
  • the monitored person Ob may be a person who needs the detection when a predetermined unfavorable event such as an abnormal state occurs in the person. preferable.
  • the monitored person monitoring system MS is suitably arranged in a building such as a hospital, a welfare facility for the elderly, and a dwelling unit according to the type of the monitored person Ob.
  • the monitored person monitoring system MS is disposed in a building of a care facility that includes a plurality of rooms RM in which a plurality of monitored persons Ob live and a plurality of rooms such as a nurse station.
  • the sensor device SU has a communication function that communicates with other devices SV, SP, TA via the network NW, detects a predetermined event related to the monitored person Ob, and sends the detected event to the management server device SV. To the terminal devices SP and TA, generate an image including a moving image, and distribute the moving image to the terminal devices SP and TA.
  • the predetermined event preferably includes an event that needs to be dealt with.
  • FIG. 1 shows four first to fourth sensor devices SU-1 to SU-4 as an example, and the first sensor device SU-1 is one of the monitored persons Ob.
  • the second sensor device SU-2 is arranged in a room RM-2 (not shown) of Mr. B Ob-2 who is one of the monitored persons Ob.
  • the third sensor device SU-3 is disposed in the room RM-3 (not shown) of Mr. C Ob-3, one of the monitored subjects Ob, and the fourth sensor device SU-4 It is arranged in the room RM-4 (not shown) of Mr. D Ob-4, one of the monitored persons Ob.
  • the management server device SV has a communication function that communicates with other devices SU, SP, TA via the network NW, and receives a notification of a predetermined event related to the monitored person Ob from the sensor device SU. It is a device that manages information related to monitoring Ob (monitoring information). When the management server device SV receives the first event notification communication signal from the sensor device SU as the event notification, the management server device SV relates to the monitoring of the monitored person Ob based on each information accommodated in the first event notification communication signal.
  • a predetermined terminal device that stores (records) monitoring information and associates a communication signal (second event notification communication signal) containing the monitoring information related to monitoring of the monitored person Ob in advance with the sensor device SU. Send to SP, TA.
  • the management server device SV indicates the notification destination (re-notification destination, re-notification destination, transmission destination) such as the first event notification communication signal transmitted from the sensor device SU and the notification of the sensor ID that is the transmission source.
  • a correspondence relationship (notification destination correspondence relationship) with a terminal (re-notification destination) terminal ID and a communication address thereof are stored.
  • the terminal ID (terminal device identifier) is an identifier for identifying and identifying the terminal devices SP and TA.
  • the management server device SV provides the client with data corresponding to the request of the client (in this embodiment, the fixed terminal device SP and the portable terminal device TA).
  • Such a management server device SV can be configured by, for example, a computer with a communication function.
  • the fixed terminal device SP is a device that functions as a user interface (UI) of the monitored person monitoring system MS.
  • the fixed terminal device SP transmits a communication function for communicating with other devices SU, SV, TA via the network NW, a display function for displaying predetermined information, and predetermined instructions and data.
  • An input function or the like is provided, and predetermined instructions and data to be given to the management server device SV and the portable terminal device TA are input, or monitoring information obtained by the sensor device SU is displayed.
  • a fixed terminal device SP can be configured by, for example, a computer with a communication function.
  • the supervisor NS is carrying the portable terminal device TA.
  • the mobile terminal device TA communicates with other devices SV, SP, SU via the network NW, a display function for displaying predetermined information, an input function for inputting predetermined instructions and data, and a voice call.
  • a monitoring function (including a moving image) obtained by the sensor device SU by inputting a predetermined instruction and data to be provided to the management server device SV and the sensor device SU or by notification from the management server device SV.
  • This is a device for displaying or making a nurse call response or calling by voice call with the sensor device SU.
  • the sensor device SU will be described in detail.
  • the sensor device SU detects the abnormal breathing of the monitored person Ob in addition to the functions described above (for example, the function of generating a moving image of the monitored person Ob, the function of performing a voice call with the terminal devices SP and TA). By doing so, it has a function of monitoring the living body of the monitored person Ob.
  • the sensor device SU will be described in detail from the viewpoint of this function.
  • FIG. 2 is a schematic diagram showing a living room RM in which the sensor device SU is arranged. In the living room RM, the bed 1 of the monitored person Ob is provided. The bed 1 is a futon 5 laid on the bed 3.
  • the bed 1 is not limited to this, and may be, for example, a futon 5 laid in a tatami mat or a futon 5 laid on the floor.
  • FIG. 2 shows a state in which the monitored person Ob is sleeping on the bed 1, and only the head of the monitored person Ob appears in the body of the monitored person Ob.
  • a sensor device SU is attached to the ceiling 7 of the living room RM.
  • FIG. 3 is a block diagram illustrating a configuration of the sensor device SU provided in the monitored person monitoring system MS according to the embodiment.
  • the sensor device SU biological monitoring device, respiratory abnormality detection device
  • the sensor device SU includes a Doppler sensor unit 10, a respiratory abnormality detection unit 11, an imaging unit 12, an imaging control unit 13, an image recording unit 14, and a sensor side control processing unit (SU control processing unit). ) 15 and a sensor-side communication interface unit (SU communication IF unit) 16.
  • SU communication IF unit sensor-side communication interface unit
  • the Doppler sensor unit 10 is a device that detects a biological signal of the monitored person Ob.
  • the Doppler sensor unit 10 functions as an acquisition unit and acquires a biological signal of the monitored person Ob.
  • the Doppler sensor unit 10 is a body motion sensor that transmits a transmission wave, receives a reflection wave of a transmission wave reflected by an object, and outputs a Doppler signal DS of a Doppler frequency component based on the transmission wave and the reflection wave.
  • the frequency of the reflected wave is shifted in proportion to the moving speed of the object due to the so-called Doppler effect, so that a difference (Doppler frequency component) occurs between the frequency of the transmitted wave and the frequency of the reflected wave.
  • the Doppler sensor unit 10 generates a Doppler frequency component signal as a Doppler signal DS.
  • the transmission wave may be an ultrasonic wave, a microwave, or the like, but is a microwave in the embodiment. Since the microwave can be transmitted through the clothing and reflected from the body surface of the monitored person Ob, the movement of the body surface can be detected even when the monitored person Ob is wearing clothes.
  • the Doppler sensor unit 10 is installed on the ceiling surface above the bed 3 used by the monitored person Ob.
  • the installation location of the Doppler sensor unit 10 is not limited to this, and the Doppler sensor unit 10 may be installed, for example, under the mat of the bed 3 used by the monitored person Ob, 3 may be installed at a position where a transmission wave is transmitted from the direction of the side 3 toward the monitored person Ob.
  • the respiratory abnormality detection unit 11 includes a waveform generation unit 111, a waveform pattern selection unit 112, and a coincidence determination unit 113.
  • the respiratory abnormality detection unit 11 functions as a detection unit.
  • the detection unit detects whether or not respiration of the monitored person Ob is abnormal based on the biological signal acquired by the acquisition unit (Doppler sensor unit 10).
  • the waveform generation unit 111 extracts a respiratory signal component from the Doppler signal DS output by the Doppler sensor unit 10 using wavelet analysis or the like.
  • the waveform generation unit 111 generates a respiration signal indicating the relationship between time and signal intensity using the respiration signal component.
  • the waveform of this breathing signal indicates the breathing state of the monitored person Ob.
  • the waveform generation unit 111 functions as a generation unit, and generates a respiratory signal indicating the respiratory state of the monitored person Ob using the biological signal acquired by the acquisition unit (Doppler sensor unit 10).
  • FIG. 4 is an explanatory diagram for explaining various respiratory waveform patterns P.
  • FIG. 4 shows a respiratory waveform pattern PA for normal breathing, a respiratory waveform pattern PB for stopping breathing, a respiratory waveform pattern PC for sleep apnea syndrome, a respiratory waveform pattern PD for slow breathing, and a tachypnea Respiratory waveform pattern PE, respiratory waveform pattern PF of hypopnea, respiratory waveform pattern PG of hyperpnea, respiratory waveform pattern PH of Chainstalk breath, respiratory waveform pattern PI of Kusmaul breath, and The respiratory waveform pattern PJ of ataxic breathing (Biot breathing) is shown.
  • the respiratory waveform pattern P is abnormal respiratory.
  • the respiration waveform pattern P of abnormal breathing has a different waveform pattern.
  • the respiratory waveform pattern PB of the respiratory stop the state where the respiratory waveform is flat continues.
  • the respiration abnormality detection unit 11 determines that respiration is stopped. Whether or not a respiratory abnormality other than respiratory arrest is determined is determined using pattern matching described later.
  • the misjudgment includes determining normal breathing but abnormal breathing, and wrongly determining the type of respiratory abnormality.
  • the former causes unnecessary rushing of the supervisor NS, and the latter causes a delay in coping with respiratory abnormalities. Therefore, in the embodiment, there is a possibility of erroneous determination in pattern matching by reducing the types of respiratory waveform patterns of respiratory abnormalities to be subjected to pattern matching based on the index indicating the health state of the monitored subject Ob. Lower.
  • the index indicating the health condition of the monitored person Ob and the type of respiratory abnormality are related.
  • the index indicating the health condition will be described taking weight as an example. It has been found that if there is a large amount of weight loss, one of slow breathing, chain stalk breathing, and ataxic breathing (Biot breathing) is likely, and the possibility of other types of respiratory abnormalities is low.
  • the present inventor created an example of a table showing the relationship between the index indicating the health condition of the monitored person Ob and the type of respiratory abnormality. This is shown in Table 1.
  • the index indicating the health state is exemplified by body temperature, weight, blood pressure, meal amount, and sleep time.
  • the respiratory waveform pattern P of the respiratory abnormality to be subjected to pattern matching is a respiratory waveform pattern PE (tachypnea).
  • the respiratory waveform pattern P of the respiratory abnormality to be subjected to pattern matching is a respiratory waveform pattern PE (tachypnea) and a respiratory waveform pattern.
  • PG hypoventilation
  • the body temperature during the day is a body temperature measured at a time when the monitored person Ob is waking up except during sleep. In general, the body temperature of the monitored person Ob is measured after breakfast, before bathing (around 15:00) and after dinner at a welfare facility for the elderly.
  • the respiratory waveform pattern P of the respiratory abnormality to be subjected to pattern matching is the respiratory waveform pattern PD.
  • the respiratory waveform pattern PH chain stalk breathing
  • respiratory waveform pattern PJ ataxic breathing (Biot breathing)
  • the respiratory waveform pattern P of the respiratory abnormality to be subjected to pattern matching is the respiratory waveform pattern PC.
  • Sleep Apnea Syndrome the respiratory waveform pattern PF (hypopnea)
  • respiratory waveform pattern PI Kusmaul breath.
  • the respiratory waveform pattern P of the respiratory abnormality to be subjected to pattern matching are respiratory waveform pattern PD (slow breathing), respiratory waveform pattern PE (tachypnea), respiratory waveform pattern PH (chain stalk breathing), and respiratory waveform pattern PJ (ataxic breathing (Biot Breathing)).
  • the respiratory waveform pattern P of the respiratory abnormality that is the target of pattern matching are a respiratory waveform pattern PC (sleep apnea syndrome), a respiratory waveform pattern PF (hypopnea), and a respiratory waveform pattern PI (Kusmaul breath).
  • the respiratory waveform pattern P of the respiratory abnormality to be subjected to pattern matching is the respiratory waveform pattern PD (slow Breathing), breathing waveform pattern PE (tachypnea), breathing waveform pattern PH (chain stalk breathing), and breathing waveform pattern PJ (ataxic breathing (Biot breathing)).
  • the respiratory waveform pattern P of the respiratory abnormality to be subjected to pattern matching is the respiratory waveform pattern P ⁇ .
  • C sep apnea syndrome
  • PF hypopnea
  • PG hypoventilation
  • the types of respiratory waveform patterns P to be subjected to pattern matching can be reduced based on the index indicating the health state of the monitored subject Ob.
  • waveform pattern selection unit 112 selects one of respiratory waveform pattern PC to respiratory waveform pattern PJ based on the result of determination by condition determination unit 32 (FIG. 6) described later. Then, one or more respiratory waveform patterns P to be subjected to pattern matching are selected.
  • Respiration waveform pattern PC to respiration waveform pattern PJ are specific examples of a plurality of waveform patterns indicating each of a plurality of types of respiratory abnormalities.
  • the waveform pattern selection unit 112 displays the respiratory waveform pattern PE (tachypnea) and the respiratory waveform pattern.
  • Select PG hypoventilation).
  • the waveform pattern selection unit 112 functions as a selection unit, and uses a predetermined index serving as an index indicating the health state of the monitored person Ob, and a plurality of respiratory waveforms indicating each of a plurality of types of respiratory abnormalities.
  • One or more respiratory waveform patterns P are selected from the patterns P.
  • the coincidence determination unit 113 pattern-matches the waveform of the respiratory signal generated by the waveform generation unit 111 with each of one or more respiratory waveform patterns P selected by the waveform pattern selection unit 112. Thereby, the coincidence determination unit 113 determines whether or not the waveform of the respiratory signal generated by the waveform generation unit 111 matches any one or more respiratory waveform patterns P selected by the waveform pattern selection unit 112.
  • the coincidence determination unit 113 functions as a determination unit, and the waveform of the respiratory signal generated by the generation unit (waveform generation unit 111) and one or more selected by the selection unit (waveform pattern selection unit 112).
  • the respiration waveform pattern P it is determined whether the waveform of the respiration signal generated by the generation unit corresponds to one or more respiration waveform patterns P selected by the selection unit.
  • the respiratory abnormality corresponding to the corresponding respiratory waveform pattern P is determined as the type of respiratory abnormality of the monitored subject Ob.
  • the determination of slow breathing (FIG. 4) further includes the condition that the respiratory rate per minute is 9 or less.
  • the condition that the respiratory rate per minute is 25 times or more is further added.
  • a condition is further added in which the state in which the amplitude of the respiratory waveform is reduced to 50% or less continues for 10 seconds or more as compared with the amplitude of the respiratory waveform during normal times.
  • the respiratory abnormality detection unit 11 measures the respiratory rate per minute based on the respiratory signal in addition to the pattern matching, and measures the value of the amplitude of the respiratory waveform indicated by the respiratory signal. The respiratory abnormality detection unit 11 uses these to detect whether there is respiratory abnormality and to detect the type of respiratory abnormality.
  • the respiratory abnormality detection unit 11 includes, for example, CPU (Central Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), HDD (Hard Disk Drive), and the like, and the respiratory abnormality detection unit 11. This is realized by a program and data for executing the function. As for the function of the respiratory abnormality detection unit 11, some or all of the functions may be realized by processing by a DSP (Digital Signal Processor) instead of or by processing by the CPU. Similarly, part or all of the functions of the respiratory abnormality detection unit 11 may be realized by processing by a dedicated hardware circuit instead of or by processing with software. What has been described above is that the imaging control unit 13 (FIGS. 3, 8, and 10), the image recording unit 14 (FIGS.
  • the imaging unit 12 is an apparatus that captures an imaging target and generates an image of the imaging target.
  • the image includes a still image and a moving image.
  • the imaging unit 12 is arranged so as to be able to monitor a space where the monitored person Ob is scheduled (location space, in the example shown in FIG. 1, the room RM of the installation location), and the location space is taken as an imaging target from above. An image is taken and an image overlooking the imaging target is generated.
  • the imaging unit 12 is expected to be located at the head of the monitored person Ob in the bedding on which the monitored person Ob is lying (for example, a bed).
  • the imaging target can be imaged from directly above the preset planned head position (usually the position where the pillow is disposed).
  • the sensor device SU uses the imaging unit 12 to acquire an image of the monitored person Ob taken from above the monitored person Ob, preferably an image taken from directly above the planned head position.
  • Such an imaging unit 12 may be a device that generates an image of visible light, but in the embodiment, it is a device that generates an infrared image so that the monitored person Ob can be monitored even in a relatively dark place.
  • Such an imaging unit 12 is, for example, in the embodiment, an imaging optical system that forms an infrared optical image of an imaging target on a predetermined imaging surface, and a light receiving surface that is aligned with the imaging surface.
  • An image sensor that converts an infrared optical image in the imaging target into an electrical signal, and image data that is data representing an infrared image in the imaging target by performing image processing on the output of the image sensor
  • a digital infrared camera including an image processing unit to be generated.
  • the imaging optical system of the imaging unit 12 is preferably a wide-angle optical system (a so-called wide-angle lens (including a fisheye lens)) having an angle of view capable of imaging the entire living room RM in which the imaging unit 12 is disposed.
  • a wide-angle optical system a so-called wide-angle lens (including a fisheye lens)
  • the imaging control unit 13 controls the imaging unit 12 to cause the imaging unit 12 to capture a moving image to be imaged. Instead of moving images, a plurality of still images (slide images) arranged in time series may be used. Thus, the imaging control unit 13 functions as a control unit and has a function of causing the imaging unit 12 to continuously image the monitored person Ob.
  • the image recording unit 14 records an image of the monitored person Ob.
  • the image recording unit 14 includes a nonvolatile storage unit 141, a ring buffer 142, and a storage processing unit 143.
  • the non-volatile storage unit 141 (storage unit) has a function (that is, non-volatile) that retains stored information (data) even when the sensor device SU is turned off. Done by realization.
  • the ring buffer 142 can store a predetermined amount of information (data). When storing new information (data), the ring buffer 142 stores the predetermined amount of information (data) endlessly by discarding the old information (data) in order. It has the function to do.
  • the storage processing unit 143 stores the moving image captured by the imaging unit 12 in the ring buffer 142.
  • the ring buffer 142 stores a moving image constituted by a frame a predetermined time before the latest frame in an endless manner.
  • the storage processing unit 143 reads a frame captured at a predetermined timing before the detection of the respiratory abnormality from the ring buffer 142, and stores the nonvolatile storage unit 141 (storage unit).
  • This frame shows an image of the monitored person Ob before the time when respiratory abnormality is detected. From this frame, before the respiratory abnormality is detected, the posture of the observer Ob and the orientation of the face and the like can be known. Therefore, this frame serves as information for investigating the cause of respiratory abnormalities.
  • the frame imaged at a predetermined timing is, for example, a frame imaged several seconds to several tens of seconds before the reference when a respiratory abnormality is detected (for example, imaged five seconds before) Frame).
  • the still image (one frame) of the monitored person Ob immediately before the detection of the respiratory abnormality is stored in the nonvolatile storage unit 141. Not only a still image but also a moving image may be used.
  • the storage processing unit 143 may generate a silhouette image in which the image of the monitored person Ob included in the frame (image) read from the ring buffer 142 is a silhouette, and store the silhouette image in the nonvolatile storage unit 141.
  • a silhouette is an image in which the outline is filled with a single color.
  • the face of the monitored person Ob is not known from the silhouette of the monitored person Ob. Therefore, even if the situation where the image memorize
  • the storage processing unit 143 functions as a processing unit.
  • the processing unit detects a subject imaged by the imaging unit 12 during a time period including when a respiratory abnormality is detected when the respiratory abnormality of the monitored person Ob is detected by the detection unit (the respiratory abnormality detection unit 11). An image of the observer Ob is acquired, and the acquired image is stored in the nonvolatile storage unit 141.
  • the SU communication IF unit 16 is a communication circuit that is connected to the SU control processing unit 15 and performs communication according to the control of the SU control processing unit 15.
  • the SU communication IF unit 16 generates a communication signal containing data to be transferred input from the SU control processing unit 15 in accordance with a communication protocol used in the network NW of the monitored person monitoring system MS, and the generated communication The signal is transmitted to other devices SV, SP, and TA via the network NW.
  • the SU communication IF unit 16 receives communication signals from other devices SV, SP, and TA via the network NW, extracts data from the received communication signals, and the SU control processing unit 15 can process the extracted data.
  • the data is converted into data in a proper format and output to the SU control processing unit 15.
  • the SU communication IF unit 16 includes, for example, a communication interface circuit that complies with the IEEE 802.11 standard or the like.
  • the SU control processing unit 15 uses each unit of the sensor device SU (Doppler sensor unit 10, respiratory abnormality detection unit 11, imaging unit 12, imaging control unit 13, image recording unit 14, SU communication IF unit 16) as a function of each unit.
  • a predetermined event relating to the monitored person Ob is detected, the detected event is notified to the management server SV, a voice call is performed between the terminal devices SP and TA, and a moving image Is a device for delivering a moving image to the terminal devices SP and TA.
  • the sensor device SU functions as a biological monitoring device by including the respiratory abnormality detection unit 11 and the image recording unit 14. From this point of view, the monitored person monitoring system MS is a living body monitoring system.
  • the sensor device SU functions as a respiratory abnormality detection device by including the respiratory abnormality detection unit 11. From this point of view, the monitored person monitoring system MS is a respiratory abnormality detection system. In this case, the sensor device SU may not include the imaging unit 12, the imaging control unit 13, and the image recording unit 14.
  • FIG. 5 is a block diagram illustrating a configuration of the mobile terminal device TA provided in the monitored person monitoring system MS according to the embodiment.
  • the portable terminal device TA includes a display unit 21, a display control unit 22, an operation unit 23, a terminal side control processing unit (TA control processing unit) 24, and a terminal side communication interface unit (TA communication IF unit) 25.
  • TA control processing unit terminal side control processing unit
  • TA communication IF unit terminal side communication interface unit
  • the display unit 21 is realized by a liquid crystal display or the like.
  • the display control unit 22 performs control to display an image (for example, a moving image) on the display unit 21.
  • the operation unit 23 is a device for inputting a command or the like for operating the mobile terminal device TA.
  • the operation unit 23 is realized by a touch panel or the like.
  • the TA communication IF unit 25 is a communication circuit that is connected to the TA control processing unit 24 and performs communication according to the control of the TA control processing unit 24.
  • the TA communication IF unit 25 generates a communication signal containing the data to be transferred input from the TA control processing unit 24 in accordance with the communication protocol used in the network NW of the monitored person monitoring system MS, and the generated communication The signal is transmitted to other devices SU, SV, SP via the network NW.
  • the TA communication IF unit 25 receives communication signals from other devices SU, SV, and SP via the network NW, extracts data from the received communication signals, and the TA control processing unit 24 can process the extracted data.
  • the data is converted into data of a proper format and output to the TA control processing unit 24.
  • the TA communication IF unit 25 includes, for example, a communication interface circuit that complies with the IEEE 802.11 standard or the like.
  • the TA control processing unit 24 controls each unit (display unit 21, display control unit 22, operation unit 23, TA communication IF unit 25) of the mobile terminal device TA according to the function of each unit, and controls the monitored person Ob. It is a device for receiving and displaying monitoring information, accepting input of implementation intention information, and answering or calling a nurse call.
  • the supervisor NS operates the operation unit 23 of the portable terminal device TA and inputs information serving as a care record of the monitored person Ob every day.
  • the information includes vital data (for example, body temperature, weight, systolic blood pressure, diastolic blood pressure, etc.), daily meal amount, and daily sleep time.
  • the TA control processing unit 24 instructs the TA communication IF unit 25 to transmit the information to the management server device SV.
  • the TA communication IF unit 25 transmits the information to the management server SV.
  • the information is recorded as a care record in a care recording unit 31 (FIG. 6) described later.
  • FIG. 6 is a block diagram illustrating a configuration of the management server device SV provided in the monitored person monitoring system MS according to the embodiment.
  • the management server device SV includes a care recording unit 31, a condition determination unit 32, a management server side control processing unit (SV control processing unit) 33, and a management server side communication interface unit (SV communication IF unit) 34.
  • SV control processing unit management server side control processing unit
  • SV communication IF unit management server side communication interface unit
  • the care record unit 31 creates and stores a care record for each monitored person Ob.
  • the care record is created on a daily basis and includes vital data (for example, body temperature, weight, systolic blood pressure, diastolic blood pressure, etc.), daily meal amount, and daily sleep time.
  • the condition determination unit 32 refers to the care record of the monitored person Ob at a predetermined timing, and the health condition of the monitored person Ob is determined from the eight conditions C (condition C-1 to condition C- It is determined for each monitored person Ob whether or not any of 8) applies.
  • body temperature information indicating the body temperature measured after dinner (the body temperature measured at the end of the day) is sent from the portable terminal device TA to the care recording unit 31, and the care recording unit 31 The timing when the body temperature indicated by the body temperature information is recorded in the care record.
  • the SV communication IF unit 34 is a communication circuit that is connected to the SV control processing unit 33 and performs communication in accordance with the control of the SV control processing unit 33.
  • the SV communication IF unit 34 is a communication circuit similar to the SU communication IF unit 16 and includes, for example, a communication interface circuit according to the IEEE 802.11 standard or the like.
  • the SV control processing unit 33 controls each unit (the care recording unit 31, the condition determination unit 32, and the SV communication IF unit 34) of the management server device SV according to the function of each unit, and the predetermined event is transmitted from the sensor device SU.
  • the notification is received, the monitoring information related to the monitoring of the monitored person Ob is managed, the predetermined event is notified (transmitted) to the client (here, the predetermined terminal device SP, TA), and the client's request is met. It is an apparatus for providing data to the client and managing the monitored person monitoring system MS as a whole.
  • FIG. 7 is a flowchart explaining this.
  • whether condition determination unit 32 meets one of eight conditions C shown in Table 1 using the care record of monitored person Ob-1 recorded in care record unit 31. Determine whether or not. There may be cases where none of the eight conditions C is met, there are cases where any one of the conditions is met, and there are cases where two or more conditions are met.
  • condition C-4 when the weight has increased by 10% or more compared to one month ago
  • the SV control processing unit 33 instructs the SV communication IF unit 34 to transmit the condition information indicating the condition C-4 to the sensor device SU-1.
  • the SV communication IF unit 34 transmits the condition information to the sensor device SU-1.
  • the SU communication IF unit 16 of the sensor device SU-1 receives the condition information, and the SU control processing unit 15 stores the condition information in the waveform pattern selection unit 112.
  • the waveform pattern selection unit 112 is a target of pattern matching based on the conditions indicated by the condition information from the respiratory waveform patterns PC to PJ (FIG. 4) stored in advance.
  • a respiratory waveform pattern P is selected (step S1).
  • the respiratory waveform pattern PC sep apnea syndrome
  • the respiratory waveform pattern PF hypopnea
  • the respiratory waveform pattern PI Kusmaul breath
  • the imaging unit 12 captures a moving image with respect to the imaging target including the monitored person Ob-1, and the storage processing unit 143 stores the captured moving image in the ring buffer 142 (Step S1). S2).
  • the waveform generation unit 111 extracts a respiratory signal component from the Doppler signal DS output by the Doppler sensor unit 10.
  • the waveform generation unit 111 generates a respiration signal indicating the relationship between time and signal intensity using the respiration signal component (step S2).
  • the waveform of the respiration signal indicates the respiration state of the monitored person Ob-1.
  • the respiratory abnormality detection unit 11 determines whether or not breathing has stopped using the respiratory signal generated in step S2 (step S3). Specifically, the respiratory abnormality detection unit 11 determines that breathing has stopped when a state where the respiratory waveform is flat continues for a predetermined period.
  • the coincidence determination unit 113 determines that the waveform of the respiratory signal generated in step S2 is a respiratory waveform pattern PC (sleep apnea). It is determined by using pattern matching whether it corresponds to any one of syndrome, respiratory waveform pattern PF (hypopnea), and respiratory waveform pattern PI (Cuzmaul breath) (step S4). If none of the eight conditions C shown in Table 1 is applicable, the process of step S4 is not performed.
  • the coincidence determination unit 113 determines that the waveform of the respiratory signal generated in step S2 is a respiratory waveform pattern PC (sleep apnea syndrome), a respiratory waveform pattern PF (hypopnea), and a respiratory waveform pattern P-.
  • PC respiratory waveform pattern
  • PF hypopnea
  • P- respiratory waveform pattern
  • the coincidence determination unit 113 determines that the respiratory signal generated in step S2 is the respiratory waveform pattern PC (sleep apnea syndrome), respiratory waveform pattern PF (hypopnea), and respiratory waveform pattern PI (When it is determined that it corresponds to any one of (Cousmaul breathing) (Yes in step S4), the SU control processing unit 15 instructs the SU communication IF unit 16 to transmit abnormality occurrence information to the management server device SV.
  • the abnormality occurrence information includes the occurrence of respiratory abnormality, information for identifying the monitored person Ob-1 in which the respiratory abnormality has occurred (for example, the name of the monitored person Ob-1 and the number of the room RM), and the type of respiratory abnormality. Including.
  • the abnormality occurrence information further includes an image of the monitored person Ob-1 stored in the nonvolatile storage unit 141 in step S7 described later.
  • the SU communication IF unit 16 transmits abnormality occurrence information to the management server device SV (step S6).
  • the management server device SV receives the abnormality occurrence information and transfers it to each mobile terminal device TA.
  • each portable terminal device TA notifies the monitor NS of the occurrence of abnormality.
  • the mobile terminal device TA sounds an alarm sound and causes the display unit 21 to display an image indicating the occurrence of an abnormality.
  • This image includes the image of the monitored person Ob-1 stored in the nonvolatile storage unit 141 in step S7.
  • the storage processing unit 143 shown in FIG. 3 performs processing for converting the image of the monitored person Ob-1 into a silhouette image (an image in which the image of the monitored person Ob-1 is made into a silhouette), and converts the silhouette image into a silhouette image.
  • the image of the monitored person Ob-1 included in the abnormality occurrence information is not a silhouette image, but an image of the monitored person Ob-1 before silhouette processing (the monitored person Ob-1). Can be recognized).
  • the display control unit 22 deletes the data of the image. Thereby, since the image of the monitored person Ob-1 before the silhouette process is not stored in the memory of the portable terminal device TA, the privacy of the monitored person Ob-1 can be protected.
  • the storage processing unit 143 captures a frame (for example, a frame captured at a predetermined timing before the respiratory abnormality is detected by the respiratory abnormality detection unit 11). Frame taken 5 seconds before) is read from the ring buffer 142 and stored in the nonvolatile storage unit 141. As a result, an image of the monitored person Ob-1 before the respiratory abnormality is detected is recorded (step S7).
  • step S6 When the respiratory abnormality detection unit 11 determines that the breathing of the monitored person Ob-1 is stopped (Yes in step S3), the respiratory abnormality detection unit 11 performs the processes of step S6 and step S7.
  • the abnormality occurrence information in step S6 includes occurrence of respiratory stop and information for identifying the monitored person Ob-1 in which the respiratory stop has occurred (for example, the name of the monitored person Ob-1 and the number of the room RM). It is.
  • the storage processing unit 143 reads, from the ring buffer 142, a frame imaged at a predetermined timing (for example, a frame imaged 5 seconds before) when the respiratory abnormality is determined by the respiratory abnormality detection unit 11, The data is stored in the nonvolatile storage unit 141. Thereby, an image of the monitored person Ob-1 before it is determined that breathing has stopped is recorded (step S7).
  • a frame imaged at a predetermined timing before the detection of the respiratory abnormality of the monitored person Ob (for example, a frame imaged several seconds to several tens of seconds before the detection of the respiratory abnormality)
  • the posture of the monitored person Ob and the orientation of the face, etc., immediately before the monitoring person Ob's respiratory abnormality is detected are shown. These are important information for investigating the cause of respiratory abnormalities.
  • the moving image MI of the monitored person Ob is captured by the imaging unit 12 and the moving image MI is stored in the ring buffer 142.
  • the non-volatile storage unit 141 can store a frame imaged at a predetermined timing prior to when the respiratory abnormality of the monitored person Ob is detected without providing a large-capacity storage device ( Step S7).
  • the embodiment uses a predetermined index serving as an index indicating the health state of the monitored person Ob, and includes a plurality of respiratory waveform patterns indicating each of a plurality of types of respiratory abnormalities. Then, one or more respiratory waveform patterns are selected (step S1). Thereby, since the types of respiratory waveform patterns of respiratory abnormalities can be reduced (because it can be narrowed down), in determining whether the waveform of the respiratory signal of the monitored subject Ob corresponds to the respiratory waveform pattern of respiratory abnormalities ( Step S4), erroneous determination can be reduced. Therefore, according to the present embodiment, it is possible to improve the accuracy of determining whether or not there is a respiratory abnormality and the accuracy of determining the type of respiratory abnormality.
  • the coincidence determination unit 113 (FIG. 3) should determine that the waveform of the respiratory signal of the monitored person Ob matches the respiratory waveform pattern PC. It may be determined that the respiratory waveform pattern PD matches. Conversely, when the monitored subject Ob is slow breathing, the coincidence determination unit 113 should determine that the waveform of the respiratory signal of the monitored subject Ob matches the respiratory waveform pattern PD. It may be determined that it matches PC. The same applies to the combination of the respiratory waveform pattern PD and the respiratory waveform pattern PI.
  • the waveform pattern selection unit 112 selects the respiratory waveform pattern P using the condition C shown in Table 1 (step S1), the respiratory waveform pattern PC and the respiratory waveform pattern PD are simultaneously selected. May not be selected.
  • the respiratory waveform pattern PC is selected, but the respiratory waveform pattern PD is not selected.
  • the coincidence determination unit 113 should determine that the waveform of the respiratory signal of the monitored person Ob matches the respiration waveform pattern PC, but determines that it matches the respiration waveform pattern PD. Does not occur. The same applies to the combination of the respiratory waveform pattern PD and the respiratory waveform pattern PI.
  • the non-volatile storage unit 141 stores an image of the monitored person Ob before a respiratory abnormality is detected.
  • the non-volatile storage unit 141 stores an image of the monitored person Ob when a respiratory abnormality is detected.
  • FIG. 8 is a block diagram showing a configuration of the sensor device SU provided in the first modification. Differences from the sensor device SU provided in the embodiment shown in FIG. 3 will be described.
  • the configuration of the image recording unit 14 is different between the first modification and the embodiment.
  • the imaging control unit 13 causes the imaging unit 12 to capture an image of the imaging target including the monitored person Ob-1.
  • the storage processing unit 143 stores the image in the nonvolatile storage unit 141. According to the first modification, the ring buffer 142 is not necessary.
  • FIG. 9 is a flowchart for explaining this. Differences from the flowchart shown in FIG. 7 are as follows.
  • Modification 1 executes step S2a instead of step S2.
  • step S2a the respiratory abnormality detection unit 11 generates a respiratory signal of the monitored person Ob-1. This process is the same as the generation of the respiratory signal in step S2.
  • Modification 1 executes step S6a instead of step S6.
  • step S6a the SU communication IF unit 16 transmits the abnormality occurrence information to the management server device SV. This process is the same as step S6. Further, in step S6a, when the respiratory abnormality detection unit 11 determines that the monitored person Ob-1 has stopped breathing (Yes in step S3), or the respiratory signal generated in step S2a is the respiratory waveform pattern P ⁇ .
  • imaging control The unit 13 causes the imaging unit 12 to capture an image (still image or moving image) of the imaging target including the monitored person Ob-1.
  • Modification 1 executes step S7a instead of step S7.
  • step S7a the storage processing unit 143 stores the image captured in step S6a in the nonvolatile storage unit 141. Thereby, an image of the monitored person Ob-1 when the respiratory abnormality is detected is recorded.
  • the management server device SV has a function of a biological monitoring device (respiratory abnormality detection device).
  • FIG. 10 is a block diagram illustrating a configuration of the sensor device SU provided in the second modification.
  • FIG. 11 is a block diagram illustrating a configuration of the management server device SV provided in the second modification. Differences between the sensor device SU and the server device SV provided in the embodiment shown in FIGS. 3 and 6 will be described.
  • the respiratory abnormality detection unit 11 and the image recording unit 14 are provided in the sensor device SU.
  • these are provided in the management server device SV.
  • the SU control processing unit 15 instructs the SU communication IF unit 16 to transmit the Doppler signal DS and the moving image MI to the management server device SV.
  • the SU communication IF unit 16 changes the Doppler signal DS and the moving image MI to communication signals communicable with the SV communication IF unit 34, and transmits the communication signal to the management server device SV.
  • the Doppler sensor unit 10 functions as an acquisition unit that acquires a biological signal of the monitored person Ob.
  • the SV communication IF unit 34 has the function of an acquisition unit.
  • the storage processing unit 143 detects the respiratory abnormality of the monitored person Ob
  • the SV communication IF unit 34 has the function.
  • the respiratory abnormality detection apparatus uses the acquisition unit that acquires a biological signal of a monitored person to be monitored and the biological signal acquired by the acquisition unit.
  • a plurality of respiratory waveform patterns indicating each of a plurality of types of respiratory abnormalities using a generation unit that generates a respiratory signal indicating a respiratory state of the person and a predetermined index that is an index indicating the health state of the monitored person From among the selection unit that selects one or more respiratory waveform patterns, the waveform of the respiratory signal generated by the generation unit, and the one or more respiratory waveform patterns selected by the selection unit, A determination unit that determines whether a waveform of the respiratory signal generated by the generation unit corresponds to any one of the one or more respiratory waveform patterns selected by the selection unit.
  • the respiratory abnormality detection device uses a predetermined index serving as an index indicating the health condition of the monitored person, and includes a plurality of respiratory waveform patterns indicating each of a plurality of types of respiratory abnormalities. One or more respiratory waveform patterns are selected from among them.
  • the respiratory abnormality detection device According to the respiratory abnormality detection device according to the first aspect of the present embodiment, it is possible to improve the determination accuracy of whether or not there is a respiratory abnormality and the determination accuracy of the type of respiratory abnormality.
  • the predetermined index is at least one of vital data, intake amount of meal, and sleep time of the monitored person.
  • the vital data is at least one of body temperature data, weight data, and blood pressure data.
  • the respiratory abnormality detection method includes an acquisition step of acquiring a biological signal of a monitored person to be monitored, and the monitored signal using the biological signal acquired by the acquisition step.
  • a plurality of respiratory waveform patterns indicating each of a plurality of types of respiratory abnormalities using a generation step for generating a respiratory signal indicating a person's respiratory state and a predetermined index serving as an index indicating the health state of the monitored person Using the selection step of selecting one or more respiratory waveform patterns from among them, the waveform of the respiratory signal generated by the generation step, and the one or more respiratory waveform patterns selected by the selection step, The waveform of the respiratory signal generated by the generating step corresponds to one of the one or more respiratory waveform patterns selected by the selecting step. And a determination step of determining whether or not Luke.
  • the respiratory abnormality detection method defines the respiratory abnormality detection device according to the first aspect of the present embodiment from the viewpoint of the method, and relates to the first aspect of the present embodiment. It has the same effect as the respiratory abnormality detection device.
  • a respiratory abnormality detection device and a respiratory abnormality detection method can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Alarm Systems (AREA)

Abstract

取得部は、監視対象となる被監視者の生体信号を取得する。生成部は、取得部によって取得された生体信号を用いて、被監視者の呼吸状態を示す呼吸信号を生成する。選択部は、被監視者の健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する。判定部は、生成部によって生成された呼吸信号の波形と、選択部によって選択された1以上の呼吸波形パターンとを用いて、生成部によって生成された呼吸信号の波形が、選択部によって選択された1以上の呼吸波形パターンのいずれかに該当するか否かを判定する。

Description

呼吸異常検出装置及び呼吸異常検出方法
 本発明は、例えば、看護を必要とする者や介護を必要とする者(以下、要看護者等)を被監視者とし、被監視者の呼吸異常を監視する技術に関する。
 我が国(日本)は、戦後の高度経済成長に伴う生活水準の向上、衛生環境の改善及び医療水準の向上等によって、高齢化社会、より詳しくは、総人口に対する65歳以上の人口の割合である高齢化率が21%を超える超高齢化社会になっている。2013年9月の統計では、高齢者人口は、約3186万人であり、その高齢化率は、25.0%であり、4人に1人が高齢者になっている。そして、2035年には、高齢者人口が約3741万人となり、3人に1人が高齢者になるという予測がある(日本国総務省統計局)。このような高齢化社会では、高齢化社会ではない通常の社会よりも、病気や怪我や高齢等による要看護者等の数の増加が見込まれる。
 このような要看護者等は、病院や、老人福祉施設(日本の法令では老人短期入所施設、養護老人ホーム及び特別養護老人ホーム等)等の施設に入所し、その看護や介護を受ける。このような病院や老人福祉施設等の施設では、要看護者等が快適で安心して過ごせるように、例えば、看護師や介護士のような要看護者等の看護や介護をする者(以下、看護師等)は、定期的に巡視することによってその安否を確認している。しかしながら、日勤の時間帯に較べ、準夜勤や夜勤の時間帯では、看護師等の人数が減るため、一人当たりの業務負荷が増大するので、業務負荷の軽減が要請される。このため、近年では、要看護者等を、被監視者として監視(モニタ)する被監視者監視装置が研究、開発されている。
 被監視者監視に関する技術として、例えば、被監視者の呼吸異常を検出する装置、被監視者を遠隔介護するシステムがある。前者として、例えば、特許文献1は、寝ている被監視者に赤外線を投光して連続的に撮像された画像(フレーム)に画像処理をすることにより、移動量波形データを生成し、この移動量波形データを用いて、被監視者の呼吸異常を検出する装置を開示している。後者として、例えば、特許文献2は、各被監視者を遠隔介護監視すると共に、各被監視者について、部屋の入退出情報、トイレ利用情報、ベッド転落情報、心拍数、呼吸数、着床時刻、離床時刻等を収集し、これらを解析し、解析結果を基にして、スタッフ配置を決める遠隔介護システムを開示している。
 呼吸異常の種類(睡眠時無呼吸症候群、徐呼吸、頻呼吸等)に応じて、呼吸波形パターンが異なる。これを利用して、呼吸異常の種類を判定する技術がある。この技術は、呼吸異常を示す呼吸波形パターンを予め複数の種類用意し(睡眠時無呼吸症候群の呼吸波形パターン、徐呼吸の呼吸波形パターン、頻呼吸の呼吸波形パターン等)、パターンマッチングを用いて、被監視者の呼吸信号の波形が、予め用意したそれらの呼吸波形パターンのいずれかと一致するか否かを判定し、一致する場合、その呼吸波形パターンが示す種類の呼吸異常と判定する。しかし、本発明者は、呼吸異常を示す呼吸波形パターンの種類が多くなると、パターンマッチングにおいて、誤判定する可能性が高くなることを見出した。誤判定には、正常呼吸であるのに呼吸異常と判定すること、呼吸異常の種類を間違って判定することがある。前者は、監視者の不要な駆け付けの原因となり、後者は、呼吸異常への対処に遅れが生じる原因となる。
特開2002-175582号公報 特開2001-258859号公報
 本発明の目的は、呼吸異常か否かの判定精度、及び、呼吸異常の種類の判定精度を向上させることができる呼吸異常検出装置、及び、呼吸異常検出方法を提供することである。
 本発明の第1の態様に係る呼吸異常検出装置は、取得部と、生成部と、選択部と、判定部と、を備える。前記取得部は、監視対象となる被監視者の生体信号を取得する。前記生成部は、前記取得部によって取得された前記生体信号を用いて、前記被監視者の呼吸状態を示す呼吸信号を生成する。前記選択部は、前記被監視者の健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する。前記判定部は、前記生成部によって生成された前記呼吸信号の波形と、前記選択部によって選択された前記1以上の呼吸波形パターンとを用いて、前記生成部によって生成された前記呼吸信号の波形が、前記選択部によって選択された前記1以上の呼吸波形パターンのいずれかに該当するか否かを判定する。
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
実施形態に係る被監視者監視システムの構成を説明する説明図である。 センサ装置が配置された居室を示す模式図である。 実施形態に係る被監視者監視システムに備えられるセンサ装置の構成を示すブロック図である。 各種の呼吸波形パターンを説明する説明図である。 実施形態に係る被監視者監視システムに備えられる携帯端末装置の構成を示すブロック図である。 実施形態に係る被監視者監視システムに備えられる管理サーバ装置の構成を示すブロック図である。 実施形態に係る被監視者監視システムによって実行される呼吸異常検出及び画像記録について説明するフローチャートである。 変形例1に備えられるセンサ装置の構成を示すブロック図である。 変形例1に係る被監視者監視システムによって実行される呼吸異常検出及び画像記録について説明するフローチャートである。 変形例2に備えられるセンサ装置の構成を示すブロック図である。 変形例2に備えられる管理サーバ装置の構成を示すブロック図である。
 以下、図面に基づいて本発明の実施形態を詳細に説明する。各図において、同一符号を付した構成は、同一の構成であることを示し、その構成について、既に説明している内容については、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。
 実施形態に係る被監視者監視システムは、監視すべき監視対象である被監視者(言い換えれば、見守るべき見守り対象である見守り対象者)を複数の装置を用いて監視するシステムであり、端末装置と、前記端末装置と通信可能に接続され、被監視者に関わる所定のイベント(事象)を検知して前記イベントを前記端末装置へ通知する被監視者監視装置と、を備える。前記被監視者監視装置は、1個の装置で一体に構成されて良いが、本明細書では、被監視者監視装置は、センサ装置と、前記センサ装置及び前記端末装置それぞれと通信可能に接続される管理サーバ装置とを備えることで、2種類の各装置で別体に構成される。前記センサ装置は、被監視者に関わる前記所定のイベントを検知して前記管理サーバ装置へ通知(報知、送信)する。前記管理サーバ装置は、前記センサ装置から前記通知を受けると、前記通知を受けた前記イベントを管理するとともに前記イベントを前記センサ装置に対応付けられた所定の端末装置へ再通知(再報知、再送信)する。前記端末装置は、1種類の装置であって良いが、本明細書では、前記端末装置は、固定端末装置と携帯端末装置との2種類の装置である。これら固定端末装置と携帯端末装置との主な相違は、固定端末装置が固定的に運用され、携帯端末装置が例えば看護師や介護士等の監視者NS(ユーザ)に携行されて運用される点である。これら固定端末装置と携帯端末装置とは、略同様であるので、以下では、携帯端末装置を主に説明する。
 図1は、実施形態に係る被監視者監視システムMSの構成を説明する説明図である。被監視者監視システムMSは、より具体的には、例えば、1または複数のセンサ装置SU(SU-1~SU-4)と、管理サーバ装置SVと、固定端末装置SPと、1または複数の携帯端末装置TA(TA-1、TA-2)と、構内交換機(PBX、Private Branch eXchange)CXとを備え、これらは、有線や無線で、LAN(Local Area Network)等の網(ネットワーク、通信回線)NWを介して通信可能に接続される。ネットワークNWには、通信信号を中継する例えばリピーター、ブリッジ及びルーター等の中継機が備えられても良い。図1に示す例では、これら複数のセンサ装置SU-1~SU-4、管理サーバ装置SV、固定端末装置SP、複数の携帯端末装置TA-1、TA-2及び構内交換機CXは、L2スイッチの集線装置(ハブ、HUB)LS及びアクセスポイントAPを含む有線及び無線の混在したLAN(例えばIEEE802.11規格に従ったLAN等)NWによって互いに通信可能に接続されている。より詳しくは、複数のセンサ装置SU-1~SU-4、管理サーバ装置SV、固定端末装置SP及び構内交換機CXは、集線装置LSに接続され、複数の携帯端末装置TA-1、TA-2は、アクセスポイントAPを介して集線装置LSに接続されている。そして、ネットワークNWは、TCP(Transimission Control Protocol)及びIP(Internet Protocol)等のインターネットプロトコル群が用いられることによっていわゆるイントラネットを構成する。構内交換機CXは、公衆電話網PNによって電話TLと接続されている。
 被監視者監視システムMSは、被監視者Obに応じて適宜な場所に配設される。被監視者Obは、例えば、病気や怪我等によって看護を必要とする者や、身体能力の低下等によって介護を必要とする者や、一人暮らしの独居者等である。特に、早期発見と早期対処とを可能にする観点から、被監視者Obは、例えば異常状態等の所定の不都合なイベントがその者に生じた場合にその発見を必要としている者であることが好ましい。このため、被監視者監視システムMSは、被監視者Obの種類に応じて、病院、老人福祉施設及び住戸等の建物に好適に配設される。図1に示す例では、被監視者監視システムMSは、複数の被監視者Obが入居する複数の居室RMや、ナースステーション等の複数の部屋を備える介護施設の建物に配設されている。
 センサ装置SUは、ネットワークNWを介して他の装置SV、SP、TAと通信する通信機能等を備え、被監視者Obに関わる所定のイベントを検知してこの検知した前記イベントを管理サーバ装置SVへ通知し、端末装置SP、TAとの間で音声通話を行い、そして、動画を含む画像を生成して端末装置SP、TAへ動画を配信する装置である。前記所定のイベントは、好ましくは、対処が必要なイベントを含む。
 図1には、一例として、4個の第1ないし第4センサ装置SU-1~SU-4が示されており、第1センサ装置SU-1は、被監視者Obの一人であるAさんOb-1の居室RM-1(不図示)に配設され、第2センサ装置SU-2は、被監視者Obの一人であるBさんOb-2の居室RM-2(不図示)に配設され、第3センサ装置SU-3は、被監視者Obの一人であるCさんOb-3の居室RM-3(不図示)に配設され、そして、第4センサ装置SU-4は、被監視者Obの一人であるDさんOb-4の居室RM-4(不図示)に配設されている。
 管理サーバ装置SVは、ネットワークNWを介して他の装置SU、SP、TAと通信する通信機能等を備え、センサ装置SUから、被監視者Obに関わる所定のイベントの通知を受信すると被監視者Obに対する監視に関する情報(監視情報)を管理する装置である。管理サーバ装置SVは、センサ装置SUから前記イベントの通知として第1イベント通知通信信号を受信すると、前記第1イベント通知通信信号に収容された各情報に基づいて、被監視者Obに対する監視に関する前記監視情報を記憶(記録)し、そして、被監視者Obに対する監視に関する前記監視情報を収容した通信信号(第2イベント通知通信信号)を、前記センサ装置SUに予め対応付けられた所定の端末装置SP、TAに送信する。このために、管理サーバ装置SVは、センサ装置SUから送信された第1イベント通知通信信号等の通知先(再通知先、再報知先、送信先)を示す、送信元であるセンサIDと通知先(再通知先)である端末IDとの対応関係(通知先対応関係)、及び、その通信アドレスを記憶する。端末ID(端末装置識別子)は、端末装置SP、TAを特定し識別するための識別子である。そして、管理サーバ装置SVは、クライアント(本実施形態では固定端末装置SP及び携帯端末装置TA等)の要求に応じたデータを前記クライアントに提供する。このような管理サーバ装置SVは、例えば、通信機能付きのコンピュータによって構成可能である。
 固定端末装置SPは、被監視者監視システムMSのユーザインターフェース(UI)として機能する装置である。この機能を達成するために、固定端末装置SPは、ネットワークNWを介して他の装置SU、SV、TAと通信する通信機能、所定の情報を表示する表示機能、及び、所定の指示及びデータを入力する入力機能等を備え、管理サーバ装置SV及び携帯端末装置TAに与える所定の指示及びデータが入力されたり、センサ装置SUで得られた監視情報を表示したりする。このような固定端末装置SPは、例えば、通信機能付きのコンピュータによって構成可能である。
 携帯端末装置TAは、監視者NSが携帯している。携帯端末装置TAは、ネットワークNWを介して他の装置SV、SP、SUと通信する通信機能、所定の情報を表示する表示機能、所定の指示やデータを入力する入力機能、及び、音声通話を行う通話機能等を備え、管理サーバ装置SV及びセンサ装置SUに与える所定の指示及びデータを入力したり、管理サーバ装置SVからの通知によってセンサ装置SUで得られた監視情報(動画を含む)を表示したり、センサ装置SUとの間で音声通話によってナースコールの応答や声かけしたり等をするための機器である。
 センサ装置SUについて詳しく説明する。センサ装置SUは、上述した機能(例えば、被監視者Obの動画を生成する機能、端末装置SP、TAとの間で音声通話をする機能)に加えて、被監視者Obの呼吸異常を検出することにより、被監視者Obの生体を監視する機能を有する。この機能の観点からセンサ装置SUについて詳しく説明する。図2は、センサ装置SUが配置された居室RMを示す模式図である。居室RMには、被監視者Obの寝床1が設けられている。寝床1は、ベッド3に敷かれた布団5である。寝床1は、これに限らず、例えば、畳みに敷かれた布団5でもよいし、床に敷かれた布団5でもよい。図2は、被監視者Obが、寝床1で寝ている状態を示しており、被監視者Obの身体のうち、被監視者Obの頭部のみが表れている。居室RMの天井7には、センサ装置SUが取り付けられている。
 図3は、実施形態に係る被監視者監視システムMSに備えられるセンサ装置SUの構成を示すブロック図である。センサ装置SU(生体監視装置、呼吸異常検出装置)は、ドップラセンサ部10、呼吸異常検出部11、撮像部12、撮像制御部13、画像記録部14、センサ側制御処理部(SU制御処理部)15、及び、センサ側通信インターフェース部(SU通信IF部)16を備える。図2では、センサ装置SUを構成するブロックのうち、撮像部12及びドップラセンサ部10が示され、他のブロックは省略されている。
 ドップラセンサ部10は、被監視者Obの生体信号を検出する装置である。ドップラセンサ部10は、取得部として機能し、被監視者Obの生体信号を取得する。ドップラセンサ部10は、送信波を送信し、物体で反射した送信波の反射波を受信し、送信波と反射波とに基づいてドップラ周波数成分のドップラ信号DSを出力する体動センサである。物体が動いている場合、いわゆるドップラ効果により物体の動いている速度に比例して反射波の周波数がシフトするため、送信波の周波数と反射波の周波数とに差(ドップラ周波数成分)が生じる。ドップラセンサ部10は、このドップラ周波数成分の信号をドップラ信号DSとして生成する。送信波は、超音波やマイクロ波等であって良いが、実施形態では、マイクロ波である。マイクロ波は、着衣を透過して被監視者Obの体表で反射できるため、被監視者Obが衣服を着ていても体表の動きを検知でき、好ましい。
 図2を参照して、ドップラセンサ部10は、被監視者Obが使用するベッド3の上方の天井面上に設置されている。ドップラセンサ部10の設置場所は、これに限らず、ドップラセンサ部10は、例えば、被監視者Obが使用するベッド3のマット下に設置してもよいし、ベッド3のサイドの位置(ベッド3のサイドの方向から被監視者Obに向けて送信波を送信する位置)に設置してもよい。
 図3を参照して、呼吸異常検出部11は、波形生成部111、波形パターン選択部112、及び、一致判定部113を備える。呼吸異常検出部11は、検出部として機能する。検出部は、取得部(ドップラセンサ部10)によって取得された生体信号を基にして、被監視者Obの呼吸が異常か否かを検出する。
 波形生成部111は、ウェーブレット解析等を用いて、ドップラセンサ部10が出力したドップラ信号DSから呼吸信号成分を抽出する。波形生成部111は、この呼吸信号成分を用いて、時間と信号強度との関係を示す呼吸信号を生成する。この呼吸信号の波形が、被監視者Obの呼吸状態を示す。このように、波形生成部111は、生成部として機能し、取得部(ドップラセンサ部10)によって取得された生体信号を用いて、被監視者Obの呼吸状態を示す呼吸信号を生成する。
 呼吸信号が示す呼吸波形パターンについて説明する。図4は、各種の呼吸波形パターンPを説明する説明図である。図4には、正常呼吸の呼吸波形パターンP-A,呼吸停止の呼吸波形パターンP-B、睡眠時無呼吸症候群の呼吸波形パターンP-C、徐呼吸の呼吸波形パターンP-D、頻呼吸の呼吸波形パターンP-E、低呼吸の呼吸波形パターンP-F、過呼吸の呼吸波形パターンP-G、チェーンストーク呼吸の呼吸波形パターンP-H、クスマウル呼吸の呼吸波形パターンP-I、及び、失調性呼吸(Biot呼吸)の呼吸波形パターンP-Jが示されている。
 正常呼吸の呼吸波形パターンP-A以外は、呼吸異常の呼吸波形パターンPである。異常呼吸の呼吸波形パターンPは、それぞれ、波形パターンが異なる。呼吸停止の呼吸波形パターンP-Bは、呼吸波形がフラットな状態が継続している。呼吸波形がフラットな状態が継続しているとき、呼吸異常検出部11は、呼吸停止と判定する。呼吸停止以外の呼吸異常に該当するか否かは、後で説明するパターンマッチングを利用して判定される。パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、8種類(呼吸波形パターンP-C~呼吸波形パターンP-J)である。これらの呼吸波形パターンPは、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの具体例である。
 パターンマッチングの対象となる呼吸異常の呼吸波形パターンの種類が多くなると、これらの呼吸波形パターンの中には似ているパターンが存在する等の理由により、パターンマッチングにおいて、誤判定する可能性が高くなる。誤判定には、正常呼吸であるのに呼吸異常と判定すること、呼吸異常の種類を間違って判定することがある。前者は、監視者NSの不要な駆け付けの原因となり、後者は、呼吸異常への対処に遅れが生じる原因となる。そこで、実施形態では、被監視者Obの健康状態を示す指標を基にして、パターンマッチングの対象となる呼吸異常の呼吸波形パターンの種類を少なくすることにより、パターンマッチングにおいて、誤判定する可能性を低くする。
 被監視者Obの健康状態を示す指標と呼吸異常の種類とは、関連性があることが分かっている。健康状態を示す指標が、体重を例にして説明する。体重の減少量が多い場合、徐呼吸、チェーンストーク呼吸、失調性呼吸(Biot呼吸)のいずれかの可能性が高く、他の種類の呼吸異常の可能性が低いことが分かっている。本発明者は、被監視者Obの健康状態を示す指標と呼吸異常の種類との関係を示す表の一例を作成した。これを表1で示す。健康状態を示す指標は、体温、体重、血圧、食事量、睡眠時間を例にしている。
Figure JPOXMLDOC01-appb-T000001
 日中の体温が高い場合(例えば、37.5度以上の場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-E(頻呼吸)である。日中の体温が低い場合(例えば、35.5度以下の場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-E(頻呼吸)、及び、呼吸波形パターンP-G(過呼吸)である。日中の体温とは、被監視者Obが睡眠中以外の起きている時間に測定された体温である。一般には、老人福祉施設等において、朝食後、入浴前(15時前後)、及び、夕食後に、被監視者Obの体温が測定される。
 体重が減少している場合(例えば、1ヶ月前に比べて、体重が10%以上減少している場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-D(徐呼吸)、呼吸波形パターンP-H(チェーンストーク呼吸)、及び、呼吸波形パターンP-J(失調性呼吸(Biot呼吸))である。体重が増加している場合(例えば、1ヶ月前に比べて、体重が10%以上増加している場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-I(クスマウル呼吸)である。
 血圧が減少している場合(例えば、1週間前に比べて、平時の拡張期血圧(最低血圧)が10%以上減少している場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-D(徐呼吸)、呼吸波形パターンP-E(頻呼吸)、呼吸波形パターンP-H(チェーンストーク呼吸)、及び、呼吸波形パターンP-J(失調性呼吸(Biot呼吸))である。血圧が増加している場合(例えば、1週間前に比べて、平時の収縮期血圧(最高血圧)が10%以上増加している場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-I(クスマウル呼吸)である。
 食事量が減少している場合(例えば、3日前に比べて、20%以上減少している場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-D(徐呼吸)、呼吸波形パターンP-E(頻呼吸)、呼吸波形パターンP-H(チェーンストーク呼吸)、及び、呼吸波形パターンP-J(失調性呼吸(Biot呼吸))である。
 睡眠時間が減少している場合(例えば、1週間前に比べて睡眠時間が20%以上減少している場合)、パターンマッチングの対象となる呼吸異常の呼吸波形パターンPは、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-G(過呼吸)である。
 以上説明したように、被監視者Obの健康状態を示す指標を基にして、パターンマッチングの対象となる呼吸波形パターンPの種類を少なくすることができる。
 図3を参照して、波形パターン選択部112は、後で説明する条件判定部32(図6)が判定した結果に基づいて、呼吸波形パターンP-C~呼吸波形パターンP-Jの中から、パターンマッチングの対象となる1以上の呼吸波形パターンPを選択する。呼吸波形パターンP-C~呼吸波形パターンP-Jは、複数の種類の呼吸異常のそれぞれを示す複数の波形パターンの具体例である。図4及び表1を参照して、例えば、被監視者Obの体温が35.5度以下の場合、波形パターン選択部112は、呼吸波形パターンP-E(頻呼吸)、及び、呼吸波形パターンP-G(過呼吸)を選択する。被監視者Obの体温が35.5度以下の場合に、頻呼吸又は過呼吸の可能性はあるが、これら以外の呼吸異常の可能性はない(ほぼない)からである。このように、波形パターン選択部112は、選択部として機能し、被監視者Obの健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンPの中から、1以上の呼吸波形パターンPを選択する。
 一致判定部113は、波形生成部111によって生成された呼吸信号の波形を、波形パターン選択部112によって選択された1以上の呼吸波形パターンPのそれぞれとパターンマッチングする。これにより、一致判定部113は、波形生成部111によって生成された呼吸信号の波形が、波形パターン選択部112によって選択された1以上の呼吸波形パターンPいずれかと一致するか否かを判定する。このように、一致判定部113は、判定部として機能し、生成部(波形生成部111)によって生成された呼吸信号の波形と、選択部(波形パターン選択部112)によって選択された1以上の呼吸波形パターンPとを用いて、生成部によって生成された呼吸信号の波形が、選択部によって選択された1以上の呼吸波形パターンPのいずれかに該当するか否かを判定する。
 一致判定部113が、一致する判定をした場合、該当する呼吸波形パターンPに対応する呼吸異常が、被監視者Obの呼吸異常の種類と判定する。なお、徐呼吸(図4)の判定には、1分間の呼吸数が9回以下の条件がさらに加わる。頻呼吸(図4)の判定には、1分間の呼吸数が25回以上の条件がさらに加わる。低呼吸(図4)の判定には、呼吸波形の振幅が平時の呼吸波形の振幅と比べて、50%以下に低下した状態が10秒以上継続する条件がさらに加わる。
 以上説明したように、呼吸異常検出部11は、上記パターンマッチングに加えて、呼吸信号を基にして、1分間の呼吸数を測定し、呼吸信号が示す呼吸波形の振幅の値を測定する。呼吸異常検出部11は、これらを用いて、呼吸異常か否かの検出、及び、呼吸異常の種類を検出する。
 呼吸異常検出部11は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、および、HDD(Hard Disk Drive)等のハードウェア、並びに、呼吸異常検出部11の機能を実行するためのプログラムおよびデータ等によって実現される。呼吸異常検出部11の機能について、各機能の一部又は全部は、CPUによる処理に替えて、又は、これと共に、DSP(Digital Signal Processor)による処理によって実現されてもよい。又、同様に、呼吸異常検出部11の機能の一部又は全部は、ソフトウェアによる処理に替えて、又は、これと共に、専用のハードウェア回路による処理によって実現されてもよい。以上説明したことは、後述する撮像制御部13(図3、図8、図10)、画像記録部14(図3、図8、図11)、SU制御処理部15(図3、図8、図10)、表示制御部22(図5)、TA制御処理部24(図5)、介護記録部31(図6、図11)、条件判定部32(図6、図11)、SV制御処理部33(図6、図11)についても同様である。
 撮像部12は、撮像対象を撮像し、撮像対象の画像を生成する装置である。画像には、静止画及び動画が含まれる。撮像部12は、被監視者Obが所在を予定している空間(所在空間、図1に示す例では配設場所の居室RM)を監視可能に配置され、所在空間を撮像対象としてその上方から撮像し、撮像対象を俯瞰した画像を生成する。好ましくは、被監視者Ob全体を撮像できる蓋然性が高いことから、撮像部12は、被監視者Obが横臥する寝具(例えばベッド等)における、被監視者Obの頭部が位置すると予定されている予め設定された頭部予定位置(通常、枕の配設位置)の直上から撮像対象を撮像できるように配設される。センサ装置SUは、この撮像部12によって、被監視者Obを、被監視者Obの上方から撮像した画像、好ましくは前記頭部予定位置の直上から撮像した画像を取得する。
 このような撮像部12は、可視光の画像を生成する装置であって良いが、比較的暗がりでも被監視者Obを監視できるように、実施形態では、赤外線の画像を生成する装置である。このような撮像部12は、例えば、実施形態では、撮像対象における赤外の光学像を所定の結像面上に結像する結像光学系、前記結像面に受光面を一致させて配置され、前記撮像対象における赤外の光学像を電気的な信号に変換するイメージセンサ、及び、イメージセンサの出力を画像処理することで前記撮像対象における赤外の画像を表すデータである画像データを生成する画像処理部等を備えるデジタル赤外線カメラである。撮像部12の前記結像光学系は、実施形態では、その配設された居室RM全体を撮像できる画角を持つ広角な光学系(いわゆる広角レンズ(魚眼レンズを含む))であることが好ましい。
 撮像制御部13は、撮像部12を制御し、撮像部12に撮像対象の動画を撮像させる。動画の替わりに、時系列に並ぶ複数の静止画(スライド画像)でもよい。このように、撮像制御部13は、制御部として機能し、撮像部12に被監視者Obを継続的に撮像させる機能を有する。
 画像記録部14は、被監視者Obの画像を記録する。画像記録部14は、不揮発性記憶部141、リングバッファ142、及び、記憶処理部143を備える。
 不揮発性記憶部141(記憶部)は、センサ装置SUの電源が切れても、記憶している情報(データ)を保持する機能(すなわち、不揮発性)を有し、ハードディスクドライブ、フラッシュメモリ等によって実現でされる。
 リングバッファ142は、所定量の情報(データ)を記憶でき、新たな情報(データ)を記憶するとき、古い情報(データ)から順に破棄することにより、所定量の情報(データ)をエンドレスで記憶する機能を有する。
 記憶処理部143は、撮像部12が撮像した動画を、リングバッファ142に記憶させる。これにより、リングバッファ142は、最新のフレームから所定時間前のフレームにより構成される動画をエンドレスで記憶する。
 記憶処理部143は、呼吸異常検出部11によって呼吸異常が検出されたとき、呼吸異常が検出されたときより前の所定のタイミングで撮像されたフレームを、リングバッファ142から読み出し、不揮発性記憶部141(記憶部)に記憶させる。このフレームは、呼吸異常が検出されたときより前の被監視者Obの像を示す。このフレームから、呼吸異常が検出される前において、監視者Obが寝ている姿勢、及び、顔等の向きが分かる。よって、このフレームは、呼吸異常の原因究明の情報となる。
 所定のタイミングで撮像されたフレームとは、例えば、呼吸異常が検出されたときを基準にして、この基準より数秒から数十秒前までに撮像されたフレームである(例えば、5秒前に撮像されたフレーム)。これにより、呼吸異常が検出される直前の被監視者Obの静止画(1つのフレーム)が不揮発性記憶部141に記憶される。静止画に限らず、動画でもよい。
 なお、記憶処理部143は、リングバッファ142から読み出したフレーム(画像)に含まれる被監視者Obの像をシルエットにしたシルエット画像を生成し、シルエット画像を不揮発性記憶部141に記憶させてもよい。シルエットとは、輪郭の中を単色で塗りつぶした像である。被監視者Obのシルエットからは、被監視者Obの顔が分からない。従って、不揮発性記憶部141に記憶された画像が流出する事態が発生しても、被監視者Obのプライバシーを守ることができる。被監視者Obが寝ている姿勢、及び、顔等の向きは、シルエット画像から分かるので、シルエット画像は、呼吸異常の原因究明の情報となる。
 以上説明したように、記憶処理部143は、処理部として機能する。処理部は、検出部(呼吸異常検出部11)によって、被監視者Obの呼吸異常が検出されたとき、呼吸異常が検出されたときを含む時間帯中に、撮像部12で撮像された被監視者Obの画像を取得し、取得した画像を、不揮発性記憶部141に記憶させる。
 SU通信IF部16は、SU制御処理部15に接続され、SU制御処理部15の制御に従って通信を行うための通信回路である。SU通信IF部16は、SU制御処理部15から入力された転送すべきデータを収容した通信信号を、この被監視者監視システムMSのネットワークNWで用いられる通信プロトコルに従って生成し、この生成した通信信号を、ネットワークNWを介して他の装置SV、SP、TAへ送信する。SU通信IF部16は、ネットワークNWを介して他の装置SV、SP、TAから通信信号を受信し、この受信した通信信号からデータを取り出し、この取り出したデータをSU制御処理部15が処理可能な形式のデータに変換してSU制御処理部15へ出力する。SU通信IF部16は、例えば、IEEE802.11規格等に従った通信インターフェース回路を備えて構成される。
 SU制御処理部15は、センサ装置SUの各部(ドップラセンサ部10、呼吸異常検出部11、撮像部12、撮像制御部13、画像記録部14、SU通信IF部16)を当該各部の機能に応じてそれぞれ制御し、被監視者Obに関わる所定のイベントを検知してこの検知した前記イベントを管理サーバ装置SVへ通知し、端末装置SP、TAとの間で音声通話を行い、そして、動画を含む画像を端末装置SP、TAへ動画を配信するための装置である。
 センサ装置SUは、呼吸異常検出部11及び画像記録部14を備えることにより、生体監視装置として機能する。この観点からすれば、被監視者監視システムMSは生体監視システムとなる。
 センサ装置SUは、呼吸異常検出部11を備えることにより、呼吸異常検出装置として機能する。この観点からすれば、被監視者監視システムMSは呼吸異常検出システムとなる。この場合、センサ装置SUは、撮像部12、撮像制御部13及び画像記録部14を備えていなくてもよい。
 携帯端末装置TAについて詳しく説明する。図5は、実施形態に係る被監視者監視システムMSに備えられる携帯端末装置TAの構成を示すブロック図である。携帯端末装置TAは、表示部21、表示制御部22、操作部23、端末側制御処理部(TA制御処理部)24、及び、端末側通信インターフェース部(TA通信IF部)25を備える。
 表示部21は、液晶ディスプレイ等により実現される。表示制御部22は、表示部21に画像(例えば、動画)を表示させる制御をする。操作部23は、携帯端末装置TAを操作するための命令等を入力するための装置である。操作部23は、タッチパネル等により実現される。
 TA通信IF部25は、TA制御処理部24に接続され、TA制御処理部24の制御に従って通信を行うための通信回路である。TA通信IF部25は、TA制御処理部24から入力された転送すべきデータを収容した通信信号を、この被監視者監視システムMSのネットワークNWで用いられる通信プロトコルに従って生成し、この生成した通信信号を、ネットワークNWを介して他の装置SU、SV、SPへ送信する。TA通信IF部25は、ネットワークNWを介して他の装置SU、SV、SPから通信信号を受信し、この受信した通信信号からデータを取り出し、この取り出したデータをTA制御処理部24が処理可能な形式のデータに変換してTA制御処理部24へ出力する。TA通信IF部25は、例えば、IEEE802.11規格等に従った通信インターフェース回路を備えて構成される。
 TA制御処理部24は、携帯端末装置TAの各部(表示部21、表示制御部22、操作部23、TA通信IF部25)を当該各部の機能に応じてそれぞれ制御し、被監視者Obに対する監視情報を受けて表示し、実施意思情報の入力を受け付け、ナースコールの応答や声かけするための装置である。
 監視者NSは、携帯端末装置TAの操作部23を操作して、被監視者Obの介護記録となる情報を毎日入力する。情報には、バイタルデータ(例えば、体温、体重、最高血圧、最低血圧等)、一日の食事量、及び、一日の睡眠時間が含まれる。TA制御処理部24は、TA通信IF部25に対して、その情報を管理サーバ装置SVに送信する命令をする。TA通信IF部25は、その情報を管理サーバSVに送信する。その情報は、介護記録として、後で説明する介護記録部31(図6)に記録される。
 管理サーバ装置SVについて説明する。図6は、実施形態に係る被監視者監視システムMSに備えられる管理サーバ装置SVの構成を示すブロック図である。管理サーバ装置SVは、介護記録部31、条件判定部32、管理サーバ側制御処理部(SV制御処理部)33、及び、管理サーバ側通信インターフェース部(SV通信IF部)34を備える。
 介護記録部31は、被監視者Ob毎に介護記録を作成し、記憶する。介護記録は、一日単位で作成されており、バイタルデータ(例えば、体温、体重、最高血圧、最低血圧等)、一日の食事量、及び、一日の睡眠時間を含む。
 条件判定部32は、予め定められたタイミングで、被監視者Obの介護記録を参照し、被監視者Obの健康状態が、表1に示す8つの条件C(条件C-1~条件C-8)のいずれかに該当するか否かを、被監視者Ob毎に判定する。予め定められたタイミングは、例えば、夕食後に測定された体温(1日の最後に測定された体温)を示す体温情報が、携帯端末装置TAから介護記録部31に送られ、介護記録部31が、その体温情報が示す体温を介護記録に記録したタイミングである。
 SV通信IF部34は、SV制御処理部33に接続され、SV制御処理部33の制御に従って通信を行うための通信回路である。SV通信IF部34は、SU通信IF部16と同様の通信回路であり、例えば、IEEE802.11規格等に従った通信インターフェース回路を備える。
 SV制御処理部33は、管理サーバ装置SVの各部(介護記録部31、条件判定部32、SV通信IF部34)を当該各部の機能に応じてそれぞれ制御し、センサ装置SUから前記所定のイベントの通知を受けると、被監視者Obに対する監視に関する監視情報を管理し、前記所定のイベントをクライアント(ここでは、所定の端末装置SP,TA)へ通知(送信)し、クライアントの要求に応じたデータを前記クライアントに提供し、被監視者監視システムMS全体を管理するための装置である。
 実施形態に係る被監視者監視システムMSによって実行される呼吸異常検出及び画像記録について説明する。図7は、それを説明するフローチャートである。被監視者Ob-1(図1)を例にする。図6を参照して、条件判定部32が、介護記録部31に記録されている被監視者Ob-1の介護記録を用いて、表1に示す8つの条件Cのいずれかに該当するか否かを判定する。8つの条件Cのいずれにも該当しない場合もあるし、いずれか一つに該当する場合もあるし、二つ以上に該当する場合もある。ここでは、条件C-4(1ヶ月前に比べて、体重が10%以上増加している場合)に該当する例で説明する。SV制御処理部33は、SV通信IF部34に対して、条件C-4を示す条件情報を、センサ装置SU-1に送信する命令をする。SV通信IF部34は、条件情報をセンサ装置SU-1に送信する。
 図3を参照して、センサ装置SU-1のSU通信IF部16は、条件情報を受信し、SU制御処理部15は、条件情報を波形パターン選択部112に記憶させる。波形パターン選択部112は、予め記憶している呼吸波形パターンP-C~呼吸波形パターンP-J(図4)の中から、条件情報で示される条件を基にして、パターンマッチングの対象となる呼吸波形パターンPを選択する(ステップS1)。ここでは、条件C-4に該当するので、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-I(クスマウル呼吸)が選択される。
 センサ装置SU-1において、撮像部12は、被監視者Ob-1を含む撮像対象に対して、動画を撮像し、記憶処理部143は、撮像された動画をリングバッファ142に記憶する(ステップS2)。これと並行して、波形生成部111は、ドップラセンサ部10が出力したドップラ信号DSから呼吸信号成分を抽出する。波形生成部111は、この呼吸信号成分を用いて、時間と信号強度との関係を示す呼吸信号を生成する(ステップS2)。呼吸信号の波形が、被監視者Ob-1の呼吸状態を示す。
 呼吸異常検出部11は、ステップS2で生成された呼吸信号を用いて、呼吸停止か否かを判断する(ステップS3)。詳しくは、呼吸異常検出部11は、呼吸波形がフラットな状態が予め定められた期間継続しているとき、呼吸停止と判断する。
 呼吸異常検出部11は、呼吸停止でないと判断したとき(ステップS3でNo)、一致判定部113は、ステップS2で生成された呼吸信号の波形が、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-I(クスマウル呼吸)のいずれかに該当するか否かを、パターンマッチングを用いて判定する(ステップS4)。なお、表1に示す8つの条件Cのいずれにも該当しない場合、ステップS4の処理はされない。
 一致判定部113が、ステップS2で生成された呼吸信号の波形が、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-I(クスマウル呼吸)のいずれにも該当しないと判定したとき(ステップS4でNo)、呼吸異常検出部11は、被監視者Ob-1の呼吸状態は、正常呼吸と判定し(ステップS5)、ステップS2の処理に戻る。
 一致判定部113が、ステップS2で生成された呼吸信号が、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-I(クスマウル呼吸)のいずれかに該当すると判定したとき(ステップS4でYes)、SU制御処理部15は、SU通信IF部16に対して、管理サーバ装置SVに異常発生情報を送信する命令をする。異常発生情報は、呼吸異常の発生、呼吸異常が発生した被監視者Ob-1を特定する情報(例えば、被監視者Ob-1の氏名及び居室RMの番号)、及び、呼吸異常の種類を含む。異常発生情報は、さらに、後で説明するステップS7において、不揮発性記憶部141に記憶される被監視者Ob-1の画像を含む。SU通信IF部16は、異常発生情報を管理サーバ装置SVに送信する(ステップS6)。
 図5及び図6を参照して、管理サーバ装置SVは、異常発生情報を受信し、これを、各携帯端末装置TAに転送する。これにより、各携帯端末装置TAは、異常発生を監視者NSに報知する。例えば、携帯端末装置TAは、アラーム音を鳴らし、かつ、表示部21に異常発生を示す画像を表示させる。この画像には、ステップS7において、不揮発性記憶部141に記憶される被監視者Ob-1の画像が含まれる。なお、図3に示す記憶処理部143が、被監視者Ob-1の画像を、シルエット画像(被監視者Ob-1の像がシルエットにされた画像)にする処理をして、シルエット画像を不揮発性記憶部141に記憶させる場合、異常発生情報に含まれる被監視者Ob-1の画像は、シルエット画像でなく、シルエット処理前の被監視者Ob-1の画像(被監視者Ob-1の顔が認識できる画像)である。表示制御部22は、表示部21に表示する画像を、シルエット処理前の被監視者Ob-1の画像から他の画像に切り替えるとき、その画像のデータを消去する。これにより、携帯端末装置TAのメモリには、シルエット処理前の被監視者Ob-1の画像が保存されないので、被監視者Ob-1のプライバシーを保護することができる。
 図3及び図7を参照して、ステップS6と並行して、記憶処理部143は、呼吸異常検出部11によって呼吸異常が検出されたときより前の所定のタイミングで撮像されたフレーム(例えば、5秒前に撮像されたフレーム)を、リングバッファ142から読み出し、不揮発性記憶部141に記憶させる。これにより、呼吸異常が検出される前の被監視者Ob-1の画像が記録される(ステップS7)。
 呼吸異常検出部11が、被監視者Ob-1の呼吸が停止していると判断したとき(ステップS3でYes)、呼吸異常検出部11は、ステップS6及びステップS7の処理をする。ステップS6の異常発生情報には、呼吸停止の発生、及び、呼吸停止が発生した被監視者Ob-1を特定する情報(例えば、被監視者Ob-1の氏名及び居室RMの番号)が含まれる。記憶処理部143は、呼吸異常検出部11によって呼吸停止が判断されたときより前の所定のタイミングで撮像されたフレーム(例えば、5秒前に撮像されたフレーム)を、リングバッファ142から読み出し、不揮発性記憶部141に記憶させる。これにより、呼吸停止が判断される前の被監視者Ob-1の画像が記録される(ステップS7)。
 実施形態の主な効果として、効果1~効果4がある。効果1から説明する。図3及び図7を参照して、センサ装置SU(生体監視装置、呼吸異常検出装置)は、被監視者Obの呼吸異常を検出したとき(ステップS3でYes、ステップS4でYes)、呼吸異常が検出されたときより前の所定のタイミングで撮像された被監視者Obのフレーム(画像)を、リングバッファ142から読み出して、不揮発性記憶部141に記憶させる(ステップS7)。このフレームには、被監視者Obが寝ている姿勢、及び、顔等の向きが写されている。従って、実施形態によれば、被監視者Obの呼吸異常が検出されたとき、被監視者Obが寝ている姿勢、及び、顔等の向きに関する情報を同時に取得できる。
 効果2を説明する。被監視者Obの呼吸異常が検出されたときより前の所定のタイミングで撮像されたフレーム(例えば、呼吸異常が検出されたときより数秒から数十秒前に撮像されたフレーム)には、被監視者Obの呼吸異常が検出される直前の被監視者Obが寝ている姿勢、及び、顔等の向きが写されている。これらは、呼吸異常の原因究明に重要な情報となる。図3及び図7を参照して、実施形態は、被監視者Obの呼吸異常が検出される前から、撮像部12に被監視者Obの動画MIを撮像させ、動画MIをリングバッファ142に記憶する(ステップS2)。これにより、大容量の記憶装置を備えることなく、被監視者Obの呼吸異常が検出されたときより前の所定のタイミングで撮像されたフレームを、不揮発性記憶部141に記憶させることができる(ステップS7)。
 効果3を説明する。図3及び図7を参照して、実施形態は、被監視者Obの健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する(ステップS1)。これにより、呼吸異常の呼吸波形パターンの種類を少なくできるので(絞り込むことができるので)、被監視者Obの呼吸信号の波形が、呼吸異常の呼吸波形パターンに該当するか否かの判定において(ステップS4)、誤判定を少なくすることができる。従って、本実施形態によれば、呼吸異常か否かの判定精度、及び、呼吸異常の種類の判定精度を向上させることができる。
 効果4を説明する。図4及び図7を参照して、被監視者Obの呼吸信号の波形が、呼吸異常の呼吸波形パターンPに該当するか否かの判定において(ステップS4)、波形パターンが似ていることを理由にして、誤判定を起こしやすい組み合わせが経験的に分かっている。呼吸波形パターンP-C(睡眠時無呼吸症候群)と呼吸波形パターンP-D(徐呼吸)との組み合わせ、及び、呼吸波形パターンP-D(徐呼吸)と呼吸波形パターンP-I(クスマウル呼吸)との組み合わせである。
 被監視者Obが睡眠時無呼吸症候群である場合、一致判定部113(図3)は、被監視者Obの呼吸信号の波形が、呼吸波形パターンP-Cと一致すると判定すべきであるが、呼吸波形パターンP-Dと一致すると判定することがある。逆に、被監視者Obが徐呼吸である場合、一致判定部113は、被監視者Obの呼吸信号の波形が、呼吸波形パターンP-Dと一致すると判定すべきであるが、呼吸波形パターンP-Cと一致すると判定することがある。呼吸波形パターンP-Dと呼吸波形パターンP-Iとの組み合わせについても同じことが言える。
 実施形態において、波形パターン選択部112は、表1に示す条件Cを用いて、呼吸波形パターンPを選択するので(ステップS1)、呼吸波形パターンP-Cと呼吸波形パターンP-Dとを同時に選択しない場合がある。例えば、表1に示す条件C-4のみ該当するとき、呼吸波形パターンP-Cは選択されるが、呼吸波形パターンP-Dは選択されない。このような場合、一致判定部113が、被監視者Obの呼吸信号の波形は、呼吸波形パターンP-Cと一致すると判定すべきであるが、呼吸波形パターンP-Dと一致すると判定することは生じない。呼吸波形パターンP-Dと呼吸波形パターンP-Iとの組み合わせについても同じことが言える。
 実施形態には、変形例1及び変形例2がある。変形例1から説明する。実施形態は、呼吸異常が検出される前の被監視者Obの画像を、不揮発性記憶部141に記憶させる。これに対して、変形例1は、呼吸異常が検出されたときの被監視者Obの画像を、不揮発性記憶部141に記憶させる。
 図8は、変形例1に備えられるセンサ装置SUの構成を示すブロック図である。図3に示す実施形態に備えられるセンサ装置SUとの相違点を説明する。変形例1と実施形態とは、画像記録部14の構成が異なる。変形例1において、呼吸異常検出部11によって呼吸異常が検出されたとき、撮像制御部13は、被監視者Ob-1を含む撮像対象の画像を、撮像部12に撮像させる。記憶処理部143は、その画像を不揮発性記憶部141に記憶させる。変形例1によれば、リングバッファ142が不要となる。
 変形例1に係る被監視者監視システムMSによって実行される呼吸異常検出及び画像記録について説明する。図9は、それを説明するフローチャートである。図7に示すフローチャートとの相違点は、以下の通りである。
 変形例1は、ステップS2の替わりに、ステップS2aを実行する。ステップS2aにおいて、呼吸異常検出部11は、被監視者Ob-1の呼吸信号を生成する。この処理は、ステップS2の呼吸信号の生成と同じである。
 変形例1は、ステップS6の替わりに、ステップS6aを実行する。ステップS6aにおいて、SU通信IF部16は、異常発生情報を管理サーバ装置SVに送信する。この処理は、ステップS6と同じである。さらに、ステップS6aにおいて、呼吸異常検出部11が、被監視者Ob-1の呼吸停止を判定したとき(ステップS3でYes)、又は、ステップS2aで生成された呼吸信号が、呼吸波形パターンP-C(睡眠時無呼吸症候群)、呼吸波形パターンP-F(低呼吸)、及び、呼吸波形パターンP-I(クスマウル呼吸)のいずれかに該当すると判定したとき(ステップS4でYes)、撮像制御部13は、被監視者Ob-1を含む撮像対象の画像(静止画又は動画)を、撮像部12に撮像させる。
 変形例1は、ステップS7の替わりに、ステップS7aを実行する。ステップS7aにおいて、記憶処理部143は、ステップS6aで撮像された画像を、不揮発性記憶部141に記憶させる。これにより、呼吸異常が検出されたときの被監視者Ob-1の画像が記録される。
 変形例2を説明する。変形例2は、管理サーバ装置SVが生体監視装置(呼吸異常検出装置)の機能を有する。図10は、変形例2に備えられるセンサ装置SUの構成を示すブロック図である。図11は、変形例2に備えられる管理サーバ装置SVの構成を示すブロック図である。図3及び図6に示す実施形態に備えられるセンサ装置SU及びサーバ装置SVとの相違点を説明する。
 実施形態において、呼吸異常検出部11及び画像記録部14が、センサ装置SUに備えられる。これに対して、変形例2において、これらは、管理サーバ装置SVに備えられる。SU制御処理部15は、SU通信IF部16に対して、ドップラ信号DS及び動画MIを、管理サーバ装置SVに送信する命令をする。SU通信IF部16は、ドップラ信号DS及び動画MIを、SV通信IF部34と通信可能な通信信号に変更して、管理サーバ装置SVに送信する。
 実施形態において、ドップラセンサ部10が、被監視者Obの生体信号を取得する取得部として機能する。これに対して、変形例2において、SV通信IF部34が取得部の機能を有する。実施形態において、記憶処理部143が、被監視者Obの呼吸異常が検出されたとき、呼吸異常が検出されたときを含む時間帯中に、撮像部12で撮像された被監視者Obの画像を取得する機能を有する。これに対して、変形例2において、SV通信IF部34がその機能を有する。
(実施形態の纏め)
 本実施形態の第1の態様に係る呼吸異常検出装置は、監視対象となる被監視者の生体信号を取得する取得部と、前記取得部によって取得された前記生体信号を用いて、前記被監視者の呼吸状態を示す呼吸信号を生成する生成部と、前記被監視者の健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する選択部と、前記生成部によって生成された前記呼吸信号の波形と、前記選択部によって選択された前記1以上の呼吸波形パターンとを用いて、前記生成部によって生成された前記呼吸信号の波形が、前記選択部によって選択された前記1以上の呼吸波形パターンのいずれかに該当するか否かを判定する判定部と、を備える。
 被監視者の健康状態を示す指標と呼吸異常の種類とは、関連性があることが分かっている。健康状態を示す指標が、体重を例にして説明する。体重の減少量が多い場合、徐呼吸、チェーンストーク呼吸、失調性呼吸(Biot呼吸)のいずれかの可能性が高く、他の種類の呼吸異常の可能性が低い。本実施形態の第1の態様に係る呼吸異常検出装置は、被監視者の健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する。これにより、呼吸異常の呼吸波形パターンの種類を少なくできるので(絞り込むことができるので)、被監視者の呼吸信号の波形が、呼吸異常の呼吸波形パターンに該当するか否かの判定において、誤判定を少なくすることができる。従って、本実施形態の第1の態様に係る呼吸異常検出装置によれば、呼吸異常か否かの判定精度、及び、呼吸異常の種類の判定精度を向上させることができる。
 前記所定の指標は、前記被監視者のバイタルデータ、摂取食事量、及び、睡眠時間の少なくともいずれか一つである。前記バイタルデータは、体温データ、体重データ、及び、血圧データの少なくともいずれか一つである。
 本実施形態の第2の態様に係る呼吸異常検出方法は、監視対象となる被監視者の生体信号を取得する取得ステップと、前記取得ステップによって取得された前記生体信号を用いて、前記被監視者の呼吸状態を示す呼吸信号を生成する生成ステップと、前記被監視者の健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する選択ステップと、前記生成ステップによって生成された前記呼吸信号の波形と、前記選択ステップによって選択された前記1以上の呼吸波形パターンとを用いて、前記生成ステップによって生成された前記呼吸信号の波形が、前記選択ステップによって選択された前記1以上の呼吸波形パターンのいずれかに該当するか否かを判定する判定ステップと、を備える。
 本実施形態の第2の態様に係る呼吸異常検出方法は、本実施形態の第1の態様に係る呼吸異常検出装置を方法の観点から規定しており、本実施形態の第1の態様に係る呼吸異常検出装置と同様の作用効果を有する。
 この出願は、2016年6月29日に出願された日本国特許出願特願2016-128650を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明によれば、呼吸異常検出装置及び呼吸異常検出方法を提供することができる。

Claims (4)

  1.  監視対象となる被監視者の生体信号を取得する取得部と、
     前記取得部によって取得された前記生体信号を用いて、前記被監視者の呼吸状態を示す呼吸信号を生成する生成部と、
     前記被監視者の健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する選択部と、
     前記生成部によって生成された前記呼吸信号の波形と、前記選択部によって選択された前記1以上の呼吸波形パターンとを用いて、前記生成部によって生成された前記呼吸信号の波形が、前記選択部によって選択された前記1以上の呼吸波形パターンのいずれかに該当するか否かを判定する判定部と、を備える呼吸異常検出装置。
  2.  前記所定の指標は、前記被監視者のバイタルデータ、摂取食事量、及び、睡眠時間の少なくともいずれか一つである請求項1に記載の呼吸異常検出装置。
  3.  前記バイタルデータは、体温データ、体重データ、及び、血圧データの少なくともいずれか一つである請求項2に記載の呼吸異常検出装置。
  4.  監視対象となる被監視者の生体信号を取得する取得ステップと、
     前記取得ステップによって取得された前記生体信号を用いて、前記被監視者の呼吸状態を示す呼吸信号を生成する生成ステップと、
     前記被監視者の健康状態を示す指標となる所定の指標を用いて、複数の種類の呼吸異常のそれぞれを示す複数の呼吸波形パターンの中から、1以上の呼吸波形パターンを選択する選択ステップと、
     前記生成ステップによって生成された前記呼吸信号の波形と、前記選択ステップによって選択された前記1以上の呼吸波形パターンとを用いて、前記生成ステップによって生成された前記呼吸信号の波形が、前記選択ステップによって選択された前記1以上の呼吸波形パターンのいずれかに該当するか否かを判定する判定ステップと、を備える呼吸異常検出方法。
PCT/JP2017/023433 2016-06-29 2017-06-26 呼吸異常検出装置及び呼吸異常検出方法 WO2018003752A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17820107.5A EP3466336A4 (en) 2016-06-29 2017-06-26 DEVICE FOR DETECTING RESPIRATORY ANOMALIES AND METHOD FOR DETECTING RESPIRATORY ANOMALIES
JP2018525158A JPWO2018003752A1 (ja) 2016-06-29 2017-06-26 呼吸異常検出装置及び呼吸異常検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016128650 2016-06-29
JP2016-128650 2016-06-29

Publications (1)

Publication Number Publication Date
WO2018003752A1 true WO2018003752A1 (ja) 2018-01-04

Family

ID=60787179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023433 WO2018003752A1 (ja) 2016-06-29 2017-06-26 呼吸異常検出装置及び呼吸異常検出方法

Country Status (3)

Country Link
EP (1) EP3466336A4 (ja)
JP (1) JPWO2018003752A1 (ja)
WO (1) WO2018003752A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109191787A (zh) * 2018-11-08 2019-01-11 宁波市医疗中心李惠利东部医院 用于老人的非接触式生命监测***
JP7411855B1 (ja) 2022-03-03 2024-01-11 Sompoケア株式会社 方法、情報処理装置、システム、及びプログラム
JP7427247B2 (ja) 2020-06-09 2024-02-05 株式会社タニタ 呼吸状態判別装置、呼吸状態判定方法、及び呼吸状態判定プログラム
JP7478473B2 (ja) 2021-12-09 2024-05-07 ビットセンシング インコーポレイテッド レーダを利用して病症を判断する装置、方法及びコンピュータプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301048A (ja) * 2001-04-04 2002-10-15 Teijin Ltd 呼吸パターンにより通報可能な在宅医療機器及びその在宅医療システム
JP2012075861A (ja) * 2010-09-09 2012-04-19 Citizen Holdings Co Ltd 安否監視装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477166B2 (ja) * 2000-12-07 2003-12-10 学校法人慶應義塾 監視装置
EP1786315A4 (en) * 2004-02-05 2010-03-03 Earlysense Ltd TECHNIQUES FOR PREDICTING AND MONITORING CLINICAL EPISODES MANAGING BREATHING
US20110245703A1 (en) * 2010-04-01 2011-10-06 Engineered Vigilance, Llc System and method providing biofeedback for treatment of menopausal and perimenopausal symptoms

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002301048A (ja) * 2001-04-04 2002-10-15 Teijin Ltd 呼吸パターンにより通報可能な在宅医療機器及びその在宅医療システム
JP2012075861A (ja) * 2010-09-09 2012-04-19 Citizen Holdings Co Ltd 安否監視装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3466336A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109191787A (zh) * 2018-11-08 2019-01-11 宁波市医疗中心李惠利东部医院 用于老人的非接触式生命监测***
JP7427247B2 (ja) 2020-06-09 2024-02-05 株式会社タニタ 呼吸状態判別装置、呼吸状態判定方法、及び呼吸状態判定プログラム
JP7478473B2 (ja) 2021-12-09 2024-05-07 ビットセンシング インコーポレイテッド レーダを利用して病症を判断する装置、方法及びコンピュータプログラム
JP7411855B1 (ja) 2022-03-03 2024-01-11 Sompoケア株式会社 方法、情報処理装置、システム、及びプログラム

Also Published As

Publication number Publication date
EP3466336A1 (en) 2019-04-10
EP3466336A4 (en) 2019-04-17
JPWO2018003752A1 (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2018003752A1 (ja) 呼吸異常検出装置及び呼吸異常検出方法
JP6806145B2 (ja) 被監視者監視システムおよび被監視者監視方法
JP6852733B2 (ja) 生体監視装置及び生体監視方法
WO2017183603A1 (ja) 被監視者監視システムおよび被監視者監視方法
JP7183788B2 (ja) 行動判定装置及び行動判定方法
WO2017195839A1 (ja) 被監視者監視システム、端末装置及び被監視者監視方法
WO2020003715A1 (ja) レポート出力プログラム、レポート出力方法およびレポート出力装置
JP6908028B2 (ja) 被監視者監視装置、該方法、該システムおよびプログラム
JP6930536B2 (ja) 生体監視システム及び生体監視システムのプログラム
JP2020052808A (ja) 見守り装置、見守りシステム、見守りプログラム、および見守り方法
JP7251546B2 (ja) レポート出力プログラム、レポート出力方法、およびレポート出力装置
JP7147787B2 (ja) 被監視者監視支援装置、被監視者監視支援方法、および、被監視者監視支援プログラム
JP7268604B2 (ja) 被監視者監視支援装置、被監視者監視支援システム、被監視者監視支援方法、および、被監視者監視支援プログラム
JP7467869B2 (ja) 制御プログラム、情報処理装置、および情報処理システム
JP7327396B2 (ja) 制御プログラム、レポート出力方法、およびレポート出力装置
WO2020003714A1 (ja) レポート出力プログラム、レポート出力方法およびレポート出力装置
JP7415434B2 (ja) 情報共有装置、情報共有システム、および情報共有プログラム
JP7268387B2 (ja) 見守り装置および見守り装置用プログラム
JP2023108725A (ja) 表示装置、システム、表示方法およびプログラム
JP2022190750A (ja) 情報処理装置、情報処理システム、情報処理プログラムおよび制御方法
JP2024079830A (ja) 制御プログラム、情報処理装置、情報処理システム、および制御方法
JP2022189269A (ja) 情報処理装置、情報処理システム、情報処理プログラムおよび制御方法
JP2020140418A (ja) 携帯端末の制御プログラム、携帯端末および見守りシステム
JP2020135063A (ja) 見守り装置および見守り装置用プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525158

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17820107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017820107

Country of ref document: EP

Effective date: 20190104