WO2017215626A1 - 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺 - Google Patents

一种火力发电厂脱硝催化剂再生废水零排放处理新工艺 Download PDF

Info

Publication number
WO2017215626A1
WO2017215626A1 PCT/CN2017/088419 CN2017088419W WO2017215626A1 WO 2017215626 A1 WO2017215626 A1 WO 2017215626A1 CN 2017088419 W CN2017088419 W CN 2017088419W WO 2017215626 A1 WO2017215626 A1 WO 2017215626A1
Authority
WO
WIPO (PCT)
Prior art keywords
wastewater
tank
treatment
waste water
thermal power
Prior art date
Application number
PCT/CN2017/088419
Other languages
English (en)
French (fr)
Inventor
蒋路漫
周振
仲旭
胡敏娴
张伟
刘冬梅
陈伟伟
张春建
Original Assignee
江苏海容热能环境工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏海容热能环境工程有限公司 filed Critical 江苏海容热能环境工程有限公司
Publication of WO2017215626A1 publication Critical patent/WO2017215626A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to the technical field of waste water treatment, resource recycling and utilization, energy conservation and environmental protection of thermal power plants, in particular to a new process for zero discharge treatment of denitration catalyst regeneration wastewater in a thermal power plant.
  • the flue gas denitration catalyst regeneration wastewater of thermal power plant mainly has the following characteristics: 1.
  • the wastewater has the characteristics of high suspended solid content, high COD, high vanadate content and low PH value; 2.
  • the wastewater contains some heavy metals; 3.
  • the ammonia nitrogen and total nitrogen content of wastewater are lower ( ⁇ 10mg/l), but the problem of interstitial impact of ammonia nitrogen (100-200mg/l) and total nitrogen content (200-300mg/l) is not excluded; 4.
  • Wastewater Although the COD content is high, laboratory tests, the biodegradability of wastewater is not very good.
  • the main pollution factors of recycled wastewater include SS, heavy metals, CODcr, nitrogen, phosphorus and so on.
  • the present invention provides a new technical solution.
  • the object of the present invention is to provide a new process for zero discharge treatment of denitration catalyst regeneration wastewater in a thermal power plant, through primary sedimentation of wastewater, reduction of pentavalent vanadium, clarification with lime, addition of alkali clarification, stripping, pH adjustment, precipitation After the treatment, such as biochemical treatment, disinfection, sand filtration, etc., all of them are recycled to the cleaning process to achieve zero discharge of wastewater and save cost.
  • a new process for zero-emission treatment of denitration catalyst regeneration wastewater in thermal power plants including The following steps:
  • the wastewater from the initial rainwater collection tank and the accident emergency pool is separately flowed to the wastewater buffer pool, and the wastewater in the wastewater buffer pool is introduced into the primary sedimentation tank for pretreatment.
  • the pretreatment time is ⁇ 6h, and the pretreatment produced precipitate is transported to The box filter press is further processed;
  • step b introducing the wastewater pretreated in the primary sedimentation tank in step a into the reduction tank, adding FeSO4 solution to the reduction tank, and reducing the vanadium vanadium to trivalent vanadium under acidic conditions, the reduction time is 30-60 min;
  • step c The wastewater after the reduction treatment in step b is introduced into the reaction clarification tank, and lime is added to the reaction clarification tank until the pH of the wastewater is about 10, and most of the heavy metal ions in the wastewater and the reduced V 3+ form a precipitate, and the precipitate is precipitated. Delivered to the tank filter press and the precipitate formed by the primary settling tank for solid-liquid separation treatment to form a mud cake;
  • step d the wastewater after the precipitation removal in step c is introduced into the tertiary stripping tower for advanced treatment, and the alkali is continuously added to the wastewater to pH 11, and the heavy metal ions in the wastewater and the reduced V 3+ are deeply removed.
  • the stripping time is 2-3h;
  • step e introducing the wastewater treated in step d into the neutralization tank + biological nutrient solution pool, adding hydrochloric acid to the neutralization tank to adjust the pH of the wastewater to 6-9, and degrading the COD content in the wastewater for 1 hour;
  • step f introducing the wastewater degraded in step e to the biofilm processor, and introducing the effluent of the biofilm processor membrane into the ultraviolet sterilizer for sterilization;
  • step f introducing the sterilized water in step f into the multi-media air scrubbing tank through the relay water tank, and filtering, solid-liquid separation, and solid water using a multi-media filter, a chamber filter press, and a dosing device; Purification treatment
  • the pretreatment operation of the wastewater in the pre-sinking tank in the step a is: adding PAC, PAM and CaO to the pre-precipitation tank to remove the suspended solids in the wastewater.
  • Fe 3+ produced by the reduction reaction in the step b is used as a coagulant in the steps c and d.
  • reaction time in the step c is not more than 10 min, and the precipitation time is not more than 6 h.
  • the content of the deep treatment of the three-stage stripping tower in the step d further includes ammonia nitrogen concentration, total nitrogen and turbidity.
  • the process further includes an absorption tower for absorbing the NH4OH blown off by the tertiary stripping column in step d.
  • the working contents of the multi-media filter in the step g include positive washing, gas back washing and water back washing.
  • the invention has the beneficial effects that: a waste water buffer pool is arranged at the front end of the invention, and various waste water collected by the system is discharged to the outdoor sewage pipe through the indoor drainage ditch, discharged to the wastewater buffer pool, and after entering the wastewater treatment process through the buffer pool, the wastewater is passed through the wastewater treatment process.
  • Figure 1 is a block diagram of the process flow of the present invention.
  • a new process for zero-emission treatment of denitration catalyst regeneration wastewater in a thermal power plant as shown in FIG. 1 includes the following steps:
  • the wastewater from the initial rainwater collection tank and the accident emergency pool is separately flowed to the wastewater buffer pool, and the wastewater in the wastewater buffer pool is introduced into the primary sedimentation tank for pretreatment.
  • the pretreatment time is ⁇ 6h, and the pretreatment produced precipitate is transported to The box filter press is further processed;
  • step b introducing the wastewater pretreated in the primary sedimentation tank in step a into the reduction tank, adding FeSO4 solution to the reduction tank, and reducing the vanadium vanadium to trivalent vanadium under acidic conditions, the reduction time is 30-60 min;
  • step c The wastewater after the reduction treatment in step b is introduced into the reaction clarification tank, and lime is added to the reaction clarification tank until the pH of the wastewater is about 10, and most of the heavy metal ions in the wastewater and the reduced V 3+ form a precipitate, and the precipitate is precipitated. Delivered to the tank filter press and the precipitate formed by the primary settling tank for solid-liquid separation treatment to form a mud cake;
  • step d the wastewater after the precipitation removal in step c is introduced into the tertiary stripping tower for advanced treatment, and the alkali is continuously added to the wastewater to pH 11, and the heavy metal ions in the wastewater and the reduced V 3+ are deeply removed.
  • the stripping time is 2-3h;
  • step e introducing the wastewater after the deep treatment in step d into the neutralization tank + biological nutrient solution pool, Adding hydrochloric acid to the neutralization tank to adjust the pH of the wastewater to 6-9, and degrading the COD content in the wastewater for 1 hour;
  • step f introducing the wastewater degraded in step e to the biofilm processor, and introducing the effluent of the biofilm processor membrane into the ultraviolet sterilizer for sterilization;
  • step f introducing the sterilized water in step f into the multi-media air scrubbing tank through the relay water tank, and filtering, solid-liquid separation, and solid water using a multi-media filter, a chamber filter press, and a dosing device; Purification treatment
  • the pretreatment operation of the wastewater in the pre-sinking tank in the step a is: adding PAC, PAM and CaO to the pre-sinking tank to remove the suspended solids in the wastewater, thereby creating conditions for the subsequent deep treatment of the wastewater.
  • the Fe 3+ produced by the reduction reaction in the step b is used as a coagulant in the steps c and d, and the substance formed by the reduction reaction is used in the process, which is advantageous in reducing the process cost.
  • the reaction time in the step c is not more than 10 min, and the precipitation time is not more than 6 h.
  • the COD in the wastewater is reduced from 2750 mg/l to 901.8 mg/l.
  • the content of the deep treatment of the tertiary stripping tower in step d further includes ammonia nitrogen concentration, total nitrogen and turbidity.
  • the pH value is 11
  • the COD in the wastewater is reduced from 901.8 mg/l to 842.9 mg. /l
  • the COD decreased to 580.4mg/l
  • the ammonia nitrogen concentration decreased from 2.5mg/l to 1.0mg/l
  • the total nitrogen decreased from 10mg/l to 1.0mg/l.
  • the turbidity drops to 37 NTU, at which point the wastewater COD concentration has been reduced to the load that the biological treatment system can handle.
  • the process further comprises an absorption tower for absorbing the NH4OH blown off by the three-stage stripping tower in the step d, so that the ammonia gas after the wastewater treatment is absorbed and removed, thereby avoiding secondary pollution of the exhaust gas.
  • the working contents of the multi-media filter in the step g include positive washing, gas back washing and water back washing, and the filtering speed is 8 m/h, the washing power is 3 l/m 2 s, and the gas backwashing strength is It is 15l/m 2 s, the water backwashing strength is 10l/m 2 s, and various cleaning methods can be used to significantly improve the filtration effect of the water.
  • the invention has the beneficial effects that: a waste water buffer pool is arranged at the front end of the invention, and various waste water collected by the system is merged into the outdoor sewage pipe through the indoor drainage ditch, discharged to the wastewater buffer pool, and after entering the wastewater treatment process, all the wastewater is processed after reaching the standard through the buffer pool. It can be used in the cleaning process to achieve zero discharge and recycling of wastewater, saving environmental protection, greatly reducing the cost of the enterprise, and improving the economic and social benefits of the enterprise.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种火力发电厂脱硝催化剂再生废水零排放处理工艺,包括以下步骤:a:废水初沉;b:5价钒还原;c:加石灰澄清;d:吹脱;e:生化处理;f:灭菌;g:滤洗;h:出水。该工艺前端设置一个废水缓冲池,***收集的各种废水经室内排水沟汇流至室外污水管,排至废水缓冲池,经缓冲池后进入废水处理流程达标后全部回用至清洗工序,实现废水的零排放和循环再利用,节约环保,大大降低了企业的成本投入,便于提高企业的经济效益和社会效益。

Description

一种火力发电厂脱硝催化剂再生废水零排放处理新工艺 技术领域
本发明涉及火力发电厂废水处理、资源回收利用、节能环保技术领域,尤其是涉及了一种火力发电厂脱硝催化剂再生废水零排放处理新工艺。
背景技术
火力发电厂烟气脱硝催化剂再生废水主要有如下特点:1、废水具有悬浮物含量高、COD、钒酸盐含量高、PH值低的水质特点;2、废水中含有部分重金属;3、在正常运行条件下,废水氨氮和总氮含量较低(<10mg/l),但不排除存在氨氮(100-200mg/l)和总氮含量(200-300mg/l)间隙冲击的问题;4、废水虽然COD含量高,实验室测试,废水的可生化性不太好。其中,再生废水的主要污染因子包括SS、重金属、CODcr、氮、磷等。
因此针对上述问题,本发明特提供了一种新的技术方案。
发明内容
本发明的目的是提供了一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,通过对废水的初沉、5价钒的还原、加石灰澄清、加碱澄清、吹脱、pH调节、沉淀后,经生化处理、消毒、砂滤等工序处理达标后全部回用至清洗工序,实现废水的零排放,节约成本投入。
本发明针对上述技术缺陷所采用的技术方案是:
一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,包括 以下步骤:
a:分别将初期雨水收集池和事故应急池产生的废水汇流至废水缓冲池,废水缓冲池内的废水被引入初沉池进行预处理,预处理时间为≥6h,预处理产生的沉淀被输送至箱式压滤机进一步处理;
b:将步骤a中经过初沉池预处理过后的废水引入还原池,向还原池中加入FeSO4溶液,在酸性条件下,将五价钒还原为三价钒,还原时间为30-60min;
c:将步骤b中经过还原处理过后的废水引入反应澄清池,向反应澄清池内加入石灰中和至废水pH为10左右,废水中大部分重金属离子和还原后的V3+形成沉淀,沉淀被输送至箱式压滤机中与初沉池生成的沉淀进行固液分离处理形成泥饼;
d:将步骤c中经过沉淀去除处理后的废水引入三级吹脱塔进行深度处理,向废水中继续加碱至pH为11,废水中的重金属离子和还原后的V3+被深度去除,吹脱时间为2-3h;
e:将步骤d中深度处理过后的废水引入中和池+生物营养液池,向中和池内加入盐酸调节废水pH至6-9,降解废水中的COD含量,时间为1h;
f:将步骤e降解处理过后的废水引入至生物膜处理器,并将生物膜处理器膜出水引入紫外线消毒器进行灭菌处理;
g:将步骤f中经过灭菌处理过后的中水通过中继水箱引入多介质空气擦洗小池,采用多介质过滤器、厢式压滤机和加药装置对中水进行过滤、固液分离以及净化处理;
h:将步骤g经过净化处理过后的中水通过中水箱出水,实现废水的零排放。
进一步地,步骤a中预沉池内的废水的预处理操作为:向预沉池内加入PAC、PAM和CaO,使得废水中的悬浮物去除。
进一步地,步骤b中还原反应产生的Fe3+作为凝聚剂用于步骤c、d中。
进一步地,步骤c中的反应时间不超过10min,且沉淀时间不超过6h。
进一步地,步骤d中所述三级吹脱塔的深度处理的内容还包括氨氮浓度、总氮以及浊度。
进一步地,该工艺还包括吸收塔,用于吸收步骤d中所述三级吹脱塔吹脱出来的NH4OH。
进一步地,步骤g中多介质过滤器的作业内容包括正洗、气反洗和水反洗。
本发明的有益效果是:本发明前端设置一个废水缓冲池,***收集的各种废水经室内排水沟汇流至室外污水管,排至废水缓冲池,经缓冲池后进入废水处理流程,通过对废水的初沉、5价钒的还原、加石灰澄清、加碱澄清、吹脱、pH调节、沉淀后,经生化处理、消毒、砂滤等工序处理达标后全部回用至清洗工序,实现废水的零排放和循环再利用,节约环保,大大降低了企业的成本投入,便于提高企业的经济效益和社会效益。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细描述。
图1为本发明工艺流程框图。
具体实施方式
为了加深对本发明的理解,下面将结合实施例和附图对本发明作进一步详述,该实施例仅用于解释本发明,并不构成对本发明的保护范围的限定。
如图1所示的一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,包括以下步骤:
a:分别将初期雨水收集池和事故应急池产生的废水汇流至废水缓冲池,废水缓冲池内的废水被引入初沉池进行预处理,预处理时间为≥6h,预处理产生的沉淀被输送至箱式压滤机进一步处理;
b:将步骤a中经过初沉池预处理过后的废水引入还原池,向还原池中加入FeSO4溶液,在酸性条件下,将五价钒还原为三价钒,还原时间为30-60min;
c:将步骤b中经过还原处理过后的废水引入反应澄清池,向反应澄清池内加入石灰中和至废水pH为10左右,废水中大部分重金属离子和还原后的V3+形成沉淀,沉淀被输送至箱式压滤机中与初沉池生成的沉淀进行固液分离处理形成泥饼;
d:将步骤c中经过沉淀去除处理后的废水引入三级吹脱塔进行深度处理,向废水中继续加碱至pH为11,废水中的重金属离子和还原后的V3+被深度去除,吹脱时间为2-3h;
e:将步骤d中深度处理过后的废水引入中和池+生物营养液池, 向中和池内加入盐酸调节废水pH至6-9,降解废水中的COD含量,时间为1h;
f:将步骤e降解处理过后的废水引入至生物膜处理器,并将生物膜处理器膜出水引入紫外线消毒器进行灭菌处理;
g:将步骤f中经过灭菌处理过后的中水通过中继水箱引入多介质空气擦洗小池,采用多介质过滤器、厢式压滤机和加药装置对中水进行过滤、固液分离以及净化处理;
h:将步骤g经过净化处理过后的中水通过中水箱出水,实现废水的零排放。
在本实施例中,步骤a中预沉池内的废水的预处理操作为:向预沉池内加入PAC、PAM和CaO,使得废水中的悬浮物去除,为废水后续的深度处理创造条件。
在本实施例中,步骤b中还原反应产生的Fe3+作为凝聚剂用于步骤c、d中,将还原反应生成的物质用于该工艺,有利于降低工艺成本。
在本实施例中,步骤c中的反应时间不超过10min,且沉淀时间不超过6h,经步骤c处理后,废水中的COD由2750mg/l降低为901.8mg/l。
在本实施例中,步骤d中三级吹脱塔的深度处理的内容还包括氨氮浓度、总氮以及浊度,当PH值为11后,废水中的COD由901.8mg/l降低为842.9mg/l,其后经吹脱步骤后,COD降至580.4mg/l,氨氮浓度由2.5mg/l降至1.0mg/l,总氮由10mg/l降至1.0mg/l, 浊度降至37NTU,这时废水COD浓度已经降低至生物处理***能够处理的负荷。
在本实施例中,该工艺还包括吸收塔,用于吸收步骤d中三级吹脱塔吹脱出来的NH4OH,使得废水处理后的氨气被吸收去除,避免产生废气的二次污染。
在本实施例中,步骤g中多介质过滤器的作业内容包括正洗、气反洗和水反洗,且滤速为8m/h,正洗强度为3l/m2s,气反洗强度为15l/m2s,水反洗强度为10l/m2s,采用多种清洗方式,能够显著提高中水的滤洗效果。
本发明的有益效果是:本发明前端设置一个废水缓冲池,***收集的各种废水经室内排水沟汇流至室外污水管,排至废水缓冲池,经缓冲池后进入废水处理流程达标后全部回用至清洗工序,实现废水的零排放和循环再利用,节约环保,大大降低了企业的成本投入,便于提高企业的经济效益和社会效益。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,其特征在于:包括以下步骤:
    a:分别将初期雨水收集池和事故应急池产生的废水汇流至废水缓冲池,废水缓冲池内的废水被引入初沉池进行预处理,预处理时间为≥6h,预处理产生的沉淀被输送至箱式压滤机进一步处理;
    b:将步骤a中经过初沉池预处理过后的废水引入还原池,向还原池中加入FeSO4溶液,在酸性条件下,将五价钒还原为三价钒,还原时间为30-60min;
    c:将步骤b中经过还原处理过后的废水引入反应澄清池,向反应澄清池内加入石灰中和至废水pH为10左右,废水中大部分重金属离子和还原后的V3+形成沉淀,沉淀被输送至箱式压滤机中与初沉池生成的沉淀进行固液分离处理形成泥饼;
    d:将步骤c中经过沉淀去除处理后的废水引入三级吹脱塔进行深度处理,向废水中继续加碱至pH为11,废水中的重金属离子和还原后的V3+被深度去除,吹脱时间为2-3h;
    e:将步骤d中深度处理过后的废水引入中和池+生物营养液池,向中和池内加入盐酸调节废水pH至6-9,降解废水中的COD含量,时间为1h;
    f:将步骤e降解处理过后的废水引入至生物膜处理器,并将生物膜处理器膜出水引入紫外线消毒器进行灭菌处理;
    g:将步骤f中经过灭菌处理过后的中水通过中继水箱引入多介 质空气擦洗小池,采用多介质过滤器、厢式压滤机和加药装置对中水进行过滤、固液分离以及净化处理;
    h:将步骤g经过净化处理过后的中水通过中水箱出水,实现废水的零排放。
  2. 根据权利要求1所述的一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,其特征在于:步骤a中预沉池内的废水的预处理操作为:向预沉池内加入PAC、PAM和CaO,使得废水中的悬浮物去除。
  3. 根据权利要求1所述的一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,其特征在于:步骤b中还原反应产生的Fe3+作为凝聚剂用于步骤c、d中。
  4. 根据权利要求1所述的一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,其特征在于:步骤c中的反应时间不超过10min,且沉淀时间不超过6h。
  5. 根据权利要求1所述的一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,其特征在于:步骤d中所述三级吹脱塔的深度处理的内容还包括氨氮浓度、总氮以及浊度。
  6. 根据权利要求1所述的一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,其特征在于:该工艺还包括吸收塔,用于吸收步骤d中所述三级吹脱塔吹脱出来的NH4OH。
  7. 根据权利要求1所述的一种火力发电厂脱硝催化剂再生废水零排放处理新工艺,其特征在于:步骤g中多介质过滤器的作业内容包括正洗、气反洗和水反洗。
PCT/CN2017/088419 2016-06-15 2017-06-15 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺 WO2017215626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610422569.6A CN105906161A (zh) 2016-06-15 2016-06-15 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺
CN201610422569.6 2016-06-15

Publications (1)

Publication Number Publication Date
WO2017215626A1 true WO2017215626A1 (zh) 2017-12-21

Family

ID=56751083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088419 WO2017215626A1 (zh) 2016-06-15 2017-06-15 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺

Country Status (2)

Country Link
CN (1) CN105906161A (zh)
WO (1) WO2017215626A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865661A (zh) * 2019-12-04 2020-03-06 深圳市智水智能***有限公司 一种废水水位控制***
CN111499120A (zh) * 2020-05-27 2020-08-07 大唐南京环保科技有限责任公司 一种脱硝催化剂再生废水的处理***及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906161A (zh) * 2016-06-15 2016-08-31 江苏海容热能环境工程有限公司 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺
WO2020000342A1 (zh) * 2018-06-29 2020-01-02 江苏海容热能环境工程有限公司 一种废烟气脱硝催化剂再生废水降解小分子有机物的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637053A (en) * 1979-09-03 1981-04-10 Kawasaki Heavy Ind Ltd Regenerating treatment of denitrificating catalyst
CN104261585A (zh) * 2014-09-19 2015-01-07 湖南淼鑫环保科技有限公司 冶金污水处理及资源回收利用的方法
CN104528893A (zh) * 2014-12-05 2015-04-22 华南理工大学 一种烟气脱硝催化剂再生工艺废水的电化学处理方法
CN105384296A (zh) * 2015-12-09 2016-03-09 大唐国际化工技术研究院有限公司 一种scr脱硝催化剂再生产生的废水的处理***及处理方法
CN105384279A (zh) * 2015-12-09 2016-03-09 大唐国际化工技术研究院有限公司 一种scr脱硝催化剂再生产生的废水的处理***及处理方法
CN105906161A (zh) * 2016-06-15 2016-08-31 江苏海容热能环境工程有限公司 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120193295A1 (en) * 2011-01-31 2012-08-02 Rahul Shankar Bhaduri Method for treating effluent waters
CN105152459B (zh) * 2015-07-21 2017-09-29 安徽元琛环保科技股份有限公司 一种再生scr脱硝催化剂废水处理工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637053A (en) * 1979-09-03 1981-04-10 Kawasaki Heavy Ind Ltd Regenerating treatment of denitrificating catalyst
CN104261585A (zh) * 2014-09-19 2015-01-07 湖南淼鑫环保科技有限公司 冶金污水处理及资源回收利用的方法
CN104528893A (zh) * 2014-12-05 2015-04-22 华南理工大学 一种烟气脱硝催化剂再生工艺废水的电化学处理方法
CN105384296A (zh) * 2015-12-09 2016-03-09 大唐国际化工技术研究院有限公司 一种scr脱硝催化剂再生产生的废水的处理***及处理方法
CN105384279A (zh) * 2015-12-09 2016-03-09 大唐国际化工技术研究院有限公司 一种scr脱硝催化剂再生产生的废水的处理***及处理方法
CN105906161A (zh) * 2016-06-15 2016-08-31 江苏海容热能环境工程有限公司 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865661A (zh) * 2019-12-04 2020-03-06 深圳市智水智能***有限公司 一种废水水位控制***
CN111499120A (zh) * 2020-05-27 2020-08-07 大唐南京环保科技有限责任公司 一种脱硝催化剂再生废水的处理***及方法

Also Published As

Publication number Publication date
CN105906161A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017215626A1 (zh) 一种火力发电厂脱硝催化剂再生废水零排放处理新工艺
CN101781039B (zh) 催化氧化法与膜分离技术相结合的焦化废水深度处理工艺
CN105461139B (zh) 一种含镍重金属废水零排放工艺
JP5874925B2 (ja) 焼却プラント排水の処理方法および処理設備
CN109879550B (zh) 光伏电池生产废水净化***
CN108249706B (zh) 一种硅行业废水脱氮除氟及回用的处理方法
CN205099548U (zh) A段+a2o污水处理***
CN109867415B (zh) 一种节能半导体新材料砷化镓生产废水处理工艺
CN103288236A (zh) 含盐废水的处理方法
CN105152395A (zh) 一种造纸废水深度处理工艺
CN110950474A (zh) 一种酚氰废水资源化零排放方法及工艺
CN101781048A (zh) 一种低氨氮废水的处理与回收方法
CN102070280A (zh) 造纸废水深度处理回用装置及方法
CN104803542A (zh) 一种酯化废水的集成处理与回用技术
CN107522350B (zh) 废水处理***和废水处理方法
CN209759259U (zh) 光伏电池生产废水处理工艺***
CN209113686U (zh) 一种处理高盐高浓废水的组合装置
CN215712441U (zh) 垃圾焚烧发电厂废水综合处理***
CN105198119B (zh) 一种太阳能电池板生产废水处理工艺
CN103043779B (zh) 一种烟气脱硫废液处理及活性污泥减量处理方法
CN211394158U (zh) 一种电镀废水零排放污水处理装置
CN215480160U (zh) 一种集成化脱硫废水浓缩减量零排处理装置
CN213416607U (zh) 一种污水处理装置***
CN210595643U (zh) 一种电厂全厂废水零排放和资源化利用的***
CN210559895U (zh) 一种电厂全厂废水零排放及资源化利用的***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17812737

Country of ref document: EP

Kind code of ref document: A1