WO2017199731A1 - 分析方法及び分析装置 - Google Patents

分析方法及び分析装置 Download PDF

Info

Publication number
WO2017199731A1
WO2017199731A1 PCT/JP2017/016894 JP2017016894W WO2017199731A1 WO 2017199731 A1 WO2017199731 A1 WO 2017199731A1 JP 2017016894 W JP2017016894 W JP 2017016894W WO 2017199731 A1 WO2017199731 A1 WO 2017199731A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
substrate
level
fine particles
analysis
Prior art date
Application number
PCT/JP2017/016894
Other languages
English (en)
French (fr)
Inventor
雅之 小野
糸長 誠
祐一 長谷川
辻田 公二
茂彦 岩間
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Priority to EP17799161.9A priority Critical patent/EP3460473B1/en
Priority to CN201780026892.4A priority patent/CN109154608B/zh
Publication of WO2017199731A1 publication Critical patent/WO2017199731A1/ja
Priority to US16/176,264 priority patent/US10520417B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • B01L2300/0806Standardised forms, e.g. compact disc [CD] format
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1024Counting particles by non-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0437Cleaning cuvettes or reaction vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • the present disclosure relates to an analysis method and an analysis apparatus for analyzing biological materials such as antigens and antibodies.
  • An immunoassay is known in which a specific antigen or antibody associated with a disease is detected as a biomarker to quantitatively analyze the effect of disease discovery or treatment.
  • an antibody fixed in a reaction region on an analysis substrate is bound to a detection target substance that is an antigen in a sample, and the detection target substance and the fine particle are further bound to form a microparticle and a detection target substance.
  • An analysis method and an analysis apparatus are described in which fine particles captured in the reaction region are detected by scanning the laser beam irradiated from the optical pickup and scanning the laser beam emitted from the optical pickup.
  • Patent Document 1 In the conventional analysis method as described in Patent Document 1, a laser beam is irradiated from an optical pickup, the reaction area is scanned, and the reflected light from the reaction area is analyzed to detect fine particles. Indirectly detect the target substance.
  • An analysis method and an analysis apparatus described in Patent Document 1 are obtained by applying an optical disk and an optical disk apparatus for specimen detection.
  • the protein agglomerates and washing solution
  • a salt, a surfactant, or the like contained in is contained as a residue in the reaction region. Residues are also detected when detecting fine particles.
  • a detection signal (noise signal) caused by residue and a detection signal (particle detection signal) caused by fine particles have similar pulse waveforms. For this reason, it is difficult for conventional analysis methods and analyzers to distinguish between a noise signal and a particle detection signal with high accuracy.
  • the amount of the detection target substance is extremely small, the amount of the fine particles that are bound to the detection target substance and trapped in the reaction region is also extremely small. That is, it is a factor that deteriorates the accuracy (detection limit) when quantitatively analyzing fine particles such as the detection limit and resolution of the fine particles.
  • the embodiment is an analysis method capable of indirectly improving the detection accuracy of a detection target substance by extracting a particle detection signal with higher accuracy than before and detecting the particle based on the extracted particle detection signal. And it aims at providing an analyzer.
  • a laser beam is applied to an analysis substrate formed of a resin material having a reaction region in which a detection target substance and fine particles that are metal compounds for labeling the detection target substance are captured.
  • the signal level generated by receiving the reflected light from the analysis substrate is extracted as a substrate signal level, the reflected light from the reaction region is received to generate a received light level signal, and the reaction region
  • the light receiving level signal having a signal level higher than the substrate signal level is extracted as a particle detection signal, and the particle is detected based on the extracted particle detection signal.
  • a laser beam is applied to an analysis substrate formed of a resin material having a reaction region in which a detection target substance and fine particles that are metal compounds for labeling the detection target substance are captured.
  • An optical pickup that detects a light reception level of reflected light from the reaction region and an unreacted region where the reaction region is not formed, and generates a light reception level signal, and a light reception level from the unreacted region.
  • a substrate level detection circuit for extracting a signal level of the signal as a substrate signal level, a determination circuit for extracting a light reception level signal having a signal level higher than the substrate signal level in the reaction region as a particle detection signal, and the particle detection signal.
  • the detection accuracy of the detection target substance is indirectly detected by extracting the particle detection signal with higher accuracy than before and detecting the particle based on the extracted particle detection signal. Can be improved.
  • FIG. 1 is a top view showing an analysis substrate having a reaction region.
  • FIG. 2 is an enlarged schematic view showing a state where fine particles are captured in the track region of the reaction region.
  • FIG. 3 is an enlarged schematic view showing a state where the fine particles are specifically bound to the detection target substance and are captured on the track region of the reaction region.
  • FIG. 4 is a configuration diagram illustrating the analyzer according to the present embodiment.
  • FIG. 5 is a flowchart for explaining a method for analyzing fine particles.
  • FIG. 6 is a diagram illustrating an example of a light reception level signal obtained by the analysis method of the present embodiment.
  • FIG. 7 is a simulation diagram showing the relationship between the complex refractive index of the fine particles and the signal level of the light reception level signal.
  • FIG. 8 is a partially enlarged view of FIG.
  • FIG. 9 is a diagram illustrating an example of a conventional light reception level signal.
  • the analysis substrate 1 has a disk shape equivalent to an optical disc such as a Blu-ray disc (BD), DVD, or compact disc (CD).
  • a positioning hole 2 is formed at the center of the analysis substrate 1.
  • the analysis substrate 1 is made of, for example, a resin material such as polycarbonate resin or cycloolefin polymer generally used for optical disks.
  • the analysis substrate 1 is not limited to the optical disc described above, and an optical disc conforming to another form or a predetermined standard can also be used.
  • track regions 5 in which convex portions 3 and concave portions 4 are alternately arranged in the radial direction are formed on the surface of the analysis substrate 1.
  • the convex portion 3 and the concave portion 4 are formed in a spiral shape from the inner peripheral portion of the analysis substrate 1 toward the outer peripheral portion.
  • the track pitch W4 which is the pitch in the radial direction of the recesses 4 (projections 3), is, for example, 320 nm.
  • a reaction region 10 is formed in the track region 5 of the analysis substrate 1. A method of forming the reaction region 10 will be described with reference to FIG.
  • the antibody 12 that specifically binds to the detection target substance 11 that is a specific antigen associated with the disease is fixed to a predetermined region on the track region 5 (region where the reaction region 10 is formed). For example, a buffer solution containing the antibody 12 is reacted with the analysis substrate 1. After removing the buffer solution after the reaction, the analysis substrate 1 is washed and dried to fix the antibody 12 on the track region 5.
  • the detection target substance 11 is, for example, a specific protein.
  • the detection target substance 11 is specifically bound to the antibody 12 immobilized on the track region 5. For example, a sample solution containing the detection target substance 11 is reacted with the antibody 12. After removing the sample solution after the reaction, the detection target substance 11 is captured in the concave portion 4 of the track region 5 by washing and drying the analysis substrate 1.
  • the outer diameter of the detection target substance 11 is about 100 nm, for example. In some cases, the detection target substance 11 may not be included depending on the sample liquid. However, in order to make the explanation easy to understand, a case where the detection target substance 11 is included in the sample liquid will be described below.
  • the fine particles 20 for labeling the detection target substance 11 are specifically bound to the detection target substance 11 captured on the track region 5.
  • An antibody 21 that specifically binds to the detection target substance 11 is immobilized on the surface of the fine particle 20.
  • the fine particle 20 is captured in the recess 4 of the track region 5. The size and material characteristics of the fine particles 20 will be described later.
  • a region where the detection target substance 11 and the fine particles 20 are captured is a reaction region 10 shown in FIG.
  • eight reaction regions 10 are formed at equal intervals so that the centers of the reaction regions 10 are located on the same circumference Cb with respect to the center Ca of the analysis substrate 1.
  • the number and formation positions of the regions 10 are not limited to this.
  • the analyzing apparatus 30 includes a turntable 31, a clamper 32, a turntable drive unit 33, a turntable drive circuit 34, a guide shaft 35, an optical pickup 40, an optical pickup drive circuit 36, and a control unit 37.
  • the analysis substrate 1 is placed on the turntable 31 so that the reaction region 10 faces downward.
  • the clamper 32 is driven in a direction away from and approaching the turntable 31, that is, in an upward direction and a downward direction in FIG.
  • the analysis substrate 1 is held on the turntable 31 by the clamper 32 and the turntable 31.
  • the analysis substrate 1 is held such that the center Ca is positioned on the rotation axis C31 of the turntable 31.
  • the turntable driving unit 33 drives the turntable 31 to rotate together with the analysis substrate 1 and the clamper 32 on the rotation axis C31.
  • a spindle motor may be used as the turntable driving unit 33.
  • the turntable drive circuit 34 controls the turntable drive unit 33.
  • the turntable driving circuit 34 controls the turntable driving unit 33 so that the turntable 31 rotates with the analysis substrate 1 and the clamper 32 at a constant linear velocity Lv.
  • the guide shaft 35 is arranged in parallel with the analysis substrate 1 and along the radial direction of the analysis substrate 1. That is, the guide shaft 35 is arranged along a direction orthogonal to the rotation axis C31 of the turntable 31.
  • the optical pickup 40 is supported on the guide shaft 35.
  • the optical pickup 40 is driven along the guide shaft 35 in the radial direction of the analysis substrate 1 and in parallel with the analysis substrate 1. That is, the optical pickup 40 is driven along a direction orthogonal to the rotation axis C31 of the turntable 31.
  • the optical pickup 40 includes an objective lens 41.
  • the objective lens 41 is supported by the suspension wire 42.
  • the objective lens 41 is driven in a direction approaching and separating from the analysis substrate 1, that is, an upward direction and a downward direction in FIG. 4.
  • the optical pickup 40 irradiates the analysis substrate 1 with laser light 40a.
  • the laser beam 40a is condensed by the objective lens 41 onto the surface of the analysis substrate 1 where the reaction region 10 is formed (the lower surface of the analysis substrate 1 in FIG. 4).
  • the wavelength ⁇ of the laser light 40a is, for example, about 405 nm.
  • the optical pickup 40 receives the reflected light from the analysis substrate 1.
  • the optical pickup 40 detects the light reception level of the reflected light, generates a light reception level signal JS, and outputs it to the control unit 37.
  • the optical pickup driving circuit 36 controls the driving of the optical pickup 40.
  • the optical pickup driving circuit 36 moves the optical pickup 40 along the guide shaft 35 or moves the objective lens 41 of the optical pickup 40 in the vertical direction.
  • the control unit 37 controls the turntable drive circuit 34 and the optical pickup drive circuit 36.
  • a CPU Central Processing Unit
  • the control unit 37 controls the turntable drive circuit 34 and the optical pickup drive circuit 36.
  • a CPU Central Processing Unit
  • the control unit 37 includes a signal detection unit 50 that detects a signal from the analysis substrate 1.
  • the signal detection unit 50 includes a substrate level detection circuit 51, a storage circuit 52, a received light signal detection circuit 53, a determination circuit 54, and a counting circuit 55.
  • the signal detection unit 50 detects and quantifies the fine particles 20 captured in the reaction region 10 by extracting and counting the fine particle detection signal KS from the received light level signal JS output from the optical pickup 40. Since the detection target substance 11 is as small as about 100 nm, it is difficult to directly detect the detection target substance 11. Therefore, by detecting and quantifying the fine particles 20 larger than the detection target substance 11, the detection target substance 11 captured in the reaction region 10 can be indirectly detected and quantified.
  • step S ⁇ b> 1 the control unit 37 controls the turntable drive circuit 34 so that the analysis substrate 1 on which the reaction region 10 is formed rotates at a constant linear velocity Lv, and the turntable drive unit 33 controls the turntable drive unit 33. 31 is driven to rotate.
  • step S2 the substrate level detection circuit 51 irradiates the analysis substrate 1 with the laser light 40a and controls the optical pickup drive circuit 36 to cause the optical pickup 40 to react with the analysis substrate 1. It moves to the radius position of a predetermined unreacted region 9 where the region 10 is not formed.
  • the laser beam 40a is irradiated and scanned on the unreacted region 9 where the reaction region 10 does not exist on the same circumference Cc with respect to the center Ca of the analysis substrate 1 of FIG.
  • the optical pickup 40 receives the reflected light from the unreacted region 9 in step S3.
  • the optical pickup 40 detects the light reception level of the reflected light from the unreacted region 9, generates a light reception level signal JS, and outputs it to the substrate level detection circuit 51.
  • the substrate level detection circuit 51 extracts the light reception level of the light reception level signal JS from the unreacted region 9 as the substrate signal level DL and stores it in the storage circuit 52 in step S4.
  • the substrate signal level DL depends on the substrate characteristics of the analysis substrate 1 itself.
  • the processing for extracting the substrate light receiving level DL from step S2 to step S4 need not be performed each time the analysis substrate 1 is replaced if the analysis substrate 1 having the same design is used.
  • the extraction of the substrate signal level DL may be performed only once when the analysis apparatus 30 is operated, or may be performed each time the lot of the analysis substrate 1 is changed.
  • step S2 If the substrate signal level DL is extracted first, the processing from step S2 to step S4 can be omitted.
  • the processing from step S2 to step S4 can be omitted.
  • the light reception level signal JS from the unreacted region 9 is acquired every time the analysis substrate 1 is replaced will be described.
  • step S ⁇ b> 5 the light reception signal detection circuit 53 irradiates the laser light 40 a from the optical pickup 40 toward the analysis substrate 1, controls the optical pickup drive circuit 36, and causes the optical pickup 40 to react with the analysis substrate 1. It moves to the radial position where the region 10 is formed. As shown in FIG. 3, the laser beam 40 a is irradiated to the reaction region 10 and scanned along the recess 4.
  • the optical pickup 40 receives the reflected light from the reaction region 10 in step S6.
  • the optical pickup 40 detects the light reception level of the reflected light, generates a light reception level signal JS, and outputs it to the light reception signal detection circuit 53.
  • FIG. 6 shows an example of the received light level signal JS obtained by the analysis method of the present embodiment.
  • the vertical axis in FIG. 6 indicates the signal level of the light reception level signal JS.
  • the horizontal axis indicates time.
  • the light reception level of the reflected light from the analysis substrate 1 in the reflected light from the reaction region 10 is hereinafter referred to as a substrate signal level DL.
  • the substrate signal level DL is a light reception level of the reflected light from the recess 4 in the reaction region 10 of the analysis substrate 1.
  • the light reception level signal having a signal level (high level) higher than the substrate signal level DL is the fine particle detection signal KS
  • the light reception level signal having a signal level (low level) lower than the substrate signal level DL is the noise signal NS.
  • the substrate signal level DL in the light reception level signal JS is a constant light reception level in a time period that does not include the fine particle detection signal KS and the noise signal NS.
  • reaction region 10 In the process of forming the reaction region 10, specifically, in the process of capturing the detection target substance 11 on the analysis substrate 1 by the antigen-antibody reaction or washing the unreacted unnecessary substance, etc. In some cases, a salt, a surfactant, or the like contained in the cleaning liquid is contained as a residue in the reaction region 10. The noise signal NS resulting from such residue is also detected as the light reception level signal JS.
  • FIG. 8 is a partially enlarged view of FIG.
  • FIGS. 7 and 8 indicate the signal level (voltage relative value) of the particle detection signal KS.
  • the horizontal axis represents the refractive index n of the real part in the complex refractive index m of the fine particles.
  • ki represents an imaginary part.
  • k represents an extinction coefficient.
  • the signal level of the particle detection signal KS is shown.
  • DL in FIGS. 7 and 8 indicates the substrate signal level.
  • FIG. 9 shows the relationship between the conventional fine particle detection signal KS and the noise signal NS.
  • the fine particles are formed of a synthetic resin such as polystyrene.
  • a synthetic resin such as polystyrene has a refractive index n of about 1.5 and an extinction coefficient k of about 0.2 to 0.4. Therefore, as shown in FIG. 9, conventionally, the particle detection signal KS has a signal level lower than the substrate signal level DL. Therefore, conventionally, as shown in FIG. 9, the fine particle detection signal KS and the noise signal NS are detected as light reception level signals having a signal level lower than the substrate signal level DL.
  • the particle detection signal KS has a lower signal level than the noise signal NS. Therefore, it is possible to discriminate between the particulate detection signal KS and the noise signal NS with a certain degree of accuracy by comparing the signal level of the light reception level signal with the threshold value Ltha.
  • the influence of the noise signal NS becomes relatively large, which becomes a factor that deteriorates the quantitative accuracy of the fine particles.
  • the fine particles 20 in which the fine particle detection signal KS has a signal level higher than the substrate signal level DL are used.
  • the real part refractive index n is in the range of 2.1 to 2.5 (2.1 ⁇ n ⁇ 2.5), or the extinction coefficient k is 0.2 or less (k ⁇ 0.2), and
  • the refractive index n is made of a material having a range of 2.1 to 2.6 (2.1 ⁇ n ⁇ 2.6).
  • a metal compound such as an oxide of a transition metal such as titanium oxide, niobium oxide, or tantalum oxide may be used.
  • the surface of the fine particle 20 may be polymerized with a resin material for the purpose of constituting a ligand.
  • the effective complex refractive index of the fine particles 20 is a combined complex refractive index of the metal compound and the resin material.
  • a ligand can be formed by polymerizing the surface of the fine particles 20 with a thin resin film.
  • the fine particle detection signal KS can be set to a signal level higher than the substrate signal level DL by setting the refractive index n and the extinction coefficient k of the combined complex refractive index within the above ranges.
  • the fine particles 20 may contain a magnetic material.
  • the effective complex refractive index of the fine particles 20 is a combined complex refractive index of the metal compound and the magnetic material.
  • the fine particle detection signal KS can be set to a signal level higher than the substrate signal level DL by setting the refractive index n and the extinction coefficient k of the combined complex refractive index within the above ranges.
  • the laser beam 40a is scanned along the recess 4 on the reaction region 10.
  • the fine particles 20 be captured in the recesses 4 with a high probability and be captured along the scanning direction.
  • the diameter d (see FIG. 3) of the fine particles 20 is smaller than ⁇ / 4
  • the detection accuracy of the fine particles 20 is deteriorated, or a plurality of fine particles 20 are captured in a direction orthogonal to the scanning direction. It becomes a factor that deteriorates the quantitative accuracy of.
  • is the wavelength of the laser light 40a irradiated to the fine particles 20.
  • the diameter d of the fine particles 20 is larger than ⁇ / 2, the fine particles 20 are not easily captured by the concave portions 4. Therefore, it is desirable that the diameter d of the fine particles 20 be in the range of ⁇ / 4 to ⁇ / 2 ( ⁇ / 4 ⁇ d ⁇ ⁇ / 2).
  • the determination circuit 54 determines the received light level signal having a signal level higher than the substrate signal level DL stored in the storage circuit 52 as the particle detection signal KS in step S ⁇ b> 7. For example, the determination circuit 54 compares the light reception level signal JS with the threshold value Lth, and determines the light reception level signal JS having a signal level equal to or higher than the threshold value Lth as the particulate detection signal KS.
  • the threshold value Lth is set to a level higher than the substrate signal level DL.
  • the noise signal NS has a signal level lower than the substrate signal level DL. Therefore, it is possible to easily distinguish the fine particle detection signal KS having a high signal level and the noise signal NS having a low signal level with respect to the substrate signal level DL. Therefore, only the particle detection signal KS can be accurately extracted from the light reception level signal JS.
  • step S8 the counting circuit 55 counts the number of pulses of the fine particle detection signal KS, specifically, the fine particle detection signal KS, for each reaction region 10, and adds it for each track. Thereby, the fine particles 20 in each reaction region 10 can be quantified. By quantifying the fine particles 20, the detection target substance 11 labeled with the fine particles 20 can be indirectly quantified.
  • step S9 the control unit 37 controls the optical pickup driving circuit 36 to move the optical pickup 40 to the initial position, and stops the irradiation of the laser light 40a.
  • the control unit 37 controls the turntable drive circuit 34 to stop the rotation of the turntable 31.
  • the fine particles 20 in which the fine particle detection signal KS has a signal level higher than the substrate signal level DL discrimination from a noise signal having a signal level lower than the substrate signal level DL is possible. It becomes easy. For example, by comparing the light reception level signal JS with the threshold value Lth set to a level higher than the substrate signal level DL, only the particle detection signal KS can be accurately extracted from the light reception level signal JS. Based on the extracted particle detection signal KS, the particles 20 captured in the reaction region 10 can be detected with high accuracy.
  • the detection accuracy of the detection target substance is indirectly detected by extracting the particle detection signal with higher accuracy than before and detecting the particle based on the extracted particle detection signal. Can be improved.
  • the present invention can be used when analyzing biological substances such as antigens and antibodies.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

分析方法は、検出対象物質(11)と検出対象物質(11)を標識するための金属化合物である微粒子(20)とが捕捉されている反応領域(10)を有する、樹脂材料で形成された分析用基板(1)にレーザ光を照射する(ステップS2)。分析方法は、分析用基板(1)からの反射光を受光して生成された信号レベルを基板信号レベル(DL)として抽出する(ステップS4)。分析方法は、反応領域(10)からの反射光を受光して受光レベル信号(JS)を生成する(ステップS6)。分析方法は、反応領域(10)における分析用基板(1)からの反射光の受光レベルよりも高い信号レベルの受光レベル信号(JS)を微粒子検出信号(KS)として抽出する(ステップS7)。分析方法は、抽出された微粒子検出信号(KS)に基づいて微粒子(20)を検出する(ステップS8)。

Description

分析方法及び分析装置
 本開示は、抗原、抗体等の生体物質を分析するための分析方法及び分析装置に関する。
 疾病に関連付けられた特定の抗原または抗体をバイオマーカーとして検出することで、疾病の発見や治療の効果等を定量的に分析する免疫検定法(immunoassay)が知られている。
 特許文献1には、分析用基板上の反応領域に固定されている抗体と試料中の抗原である検出対象物質とを結合させ、さらに検出対象物質と微粒子とを結合させて微粒子及び検出対象物質を反応領域に捕捉し、光ピックアップから照射されるレーザ光を走査することにより、反応領域に捕捉された微粒子を検出する分析方法及び分析装置が記載されている。
 特許文献1に記載されているような従来の分析方法では、光ピックアップからレーザ光を照射させて反応領域上を走査し、反応領域からの反射光を分析することにより、微粒子を検出することで、間接的に検出対象物質を検出する。特許文献1に記載されている分析方法及び分析装置は、光ディスク及び光ディスク装置を検体検出用に応用したものである。
特表2002-530786号公報
 しかしながら、反応領域を形成する過程、具体的には検出対象物質を抗原抗体反応により分析用基板上に捕捉させたり、未反応の不要な物質を洗浄したりする過程において、たんぱく質の凝集塊や洗浄液に含まれる塩や界面活性剤等が反応領域に残渣として含まれている場合がある。微粒子を検出するときに残渣も検出される。
 通常、残渣に起因する検出信号(ノイズ信号)と微粒子に起因する検出信号(微粒子検出信号)とは似たようなパルス波形を有する。そのため、従来の分析方法及び分析装置では、ノイズ信号と微粒子検出信号とを高い精度で識別することは困難であった。特に、検出対象物質が極微量である場合、検出対象物質と結合して反応領域に捕捉されている微粒子も極微量となるため、ノイズ信号による影響が相対的に大きくなり、微粒子の定量精度、即ち、微粒子の検出限界や分解能など微粒子を定量的に分析する際の精度(検出限界)を悪化させる要因となっている。
 実施形態は、微粒子検出信号を従来よりも高い精度で抽出し、抽出された微粒子検出信号に基づいて微粒子を検出することにより、間接的に検出対象物質の検出精度を向上させることができる分析方法及び分析装置を提供することを目的とする。
 実施形態の第1の態様は、検出対象物質と前記検出対象物質を標識するための金属化合物である微粒子とが捕捉されている反応領域を有する、樹脂材料で形成された分析用基板にレーザ光を照射し、前記分析用基板からの反射光を受光して生成された信号レベルを基板信号レベルとして抽出し、前記反応領域からの反射光を受光して受光レベル信号を生成し、前記反応領域において前記基板信号レベルよりも高い信号レベルの受光レベル信号を微粒子検出信号として抽出し、抽出された微粒子検出信号に基づいて前記微粒子を検出することを特徴とする分析方法を提供する。
 実施形態の第2の態様は、検出対象物質と前記検出対象物質を標識するための金属化合物である微粒子とが捕捉されている反応領域を有する、樹脂材料で形成された分析用基板にレーザ光を照射し、前記反応領域、及び、前記反応領域が形成されていない未反応領域からの反射光の受光レベルを検出して受光レベル信号を生成する光ピックアップと、前記未反応領域からの受光レベル信号の信号レベルを基板信号レベルとして抽出する基板レベル検出回路と、前記反応領域において前記基板信号レベルよりも高い信号レベルの受光レベル信号を微粒子検出信号として抽出する判定回路と、前記微粒子検出信号に基づいて前記微粒子を検出する計数回路とを備えることを特徴とする分析装置を提供する。
 実施形態の分析方法及び分析装置によれば、微粒子検出信号を従来よりも高い精度で抽出し、抽出された微粒子検出信号に基づいて微粒子を検出することにより、間接的に検出対象物質の検出精度を向上させることができる。
図1は、反応領域を有する分析用基板を示す上面図である。 図2は、反応領域のトラック領域に微粒子が捕獲されている状態を拡大して示す模式図である。 図3は、微粒子が検出対象物質と特異的に結合して反応領域のトラック領域上に捕獲されている状態を拡大して示す模式図である。 図4は、本実施形態の分析装置を示す構成図である。 図5は、微粒子の分析方法を説明するためのフローチャートである。 図6は、本実施形態の分析方法により得られる受光レベル信号の一例を示す図である。 図7は、微粒子の複素屈折率と受光レベル信号の信号レベルとの関係を示すシミュレーション図である。 図8は、図7の部分拡大図である。 図9は、従来の受光レベル信号の一例を示す図である。
[反応領域の形成]
 図1~図3を用いて、分析用基板に反応領域を形成する方法を説明する。
 図1に示すように、分析用基板1は、例えば、ブルーレイディスク(BD)、DVD、コンパクトディスク(CD)等の光ディスクと同等の円板形状を有する。分析用基板1の中心部には位置決め孔2が形成されている。
 分析用基板1は、例えば、一般的に光ディスクに用いられるポリカーボネート樹脂やシクロオレフィンポリマー等の樹脂材料で形成されている。なお、分析用基板1は、上記の光ディスクに限定されるものではなく、他の形態や所定の規格に準拠した光ディスクを用いることもできる。
 図2に示すように、分析用基板1の表面には、凸部3と凹部4とが半径方向に交互に配置されたトラック領域5が形成されている。凸部3及び凹部4は、分析用基板1の内周部から外周部に向かってスパイラル状に形成されている。凹部4(凸部3)の半径方向のピッチであるトラックピッチW4は例えば320nmである。
 分析用基板1のトラック領域5には反応領域10が形成されている。図3を用いて反応領域10の形成方法を説明する。
 疾病に関連付けられた特定の抗原である検出対象物質11と特異的に結合する抗体12を、トラック領域5上の所定の領域(反応領域10が形成される領域)に固定させる。例えば抗体12を含む緩衝液を分析用基板1と反応させる。反応後の緩衝液を除去した後、分析用基板1を洗浄して乾燥させることにより、抗体12をトラック領域5上に固定させる。検出対象物質11は例えば特定のたんぱく質である。
 検出対象物質11をトラック領域5上に固定されている抗体12と特異的に結合させる。例えば検出対象物質11を含む試料液を抗体12と反応させる。反応後の試料液を除去した後、分析用基板1を洗浄して乾燥させることにより、検出対象物質11をトラック領域5の凹部4に捕捉させる。検出対象物質11の外径は例えば100nm程度である。なお、試料液によっては検出対象物質11が含まれていない場合もあるが、説明を分かりやすくするために、以下に試料液に検出対象物質11が含まれている場合について説明する。
 検出対象物質11を標識するための微粒子20をトラック領域5上に捕捉されている検出対象物質11と特異的に結合させる。微粒子20の表面には検出対象物質11と特異的に結合する抗体21が固定されている。微粒子20の抗体21が検出対象物質11と特異的に結合することにより、微粒子20はトラック領域5の凹部4に捕捉される。なお、微粒子20の大きさや材料特性については後述する。
 従って、検出対象物質11及び微粒子20は、分析用基板1のトラック領域5の凹部4に捕捉される。検出対象物質11及び微粒子20が捕捉されている領域が図1に示す反応領域10である。なお、図1では、分析用基板1の中心Caに対して同一円周Cb上に各反応領域10の中心がそれぞれ位置するように8つの反応領域10が等間隔に形成されているが、反応領域10の数や形成位置はこれに限定されるものではない。
[分析装置]
 図4を用いて、分析用基板1の反応領域10に捕捉されている微粒子20を検出するための分析装置の構成例を説明する。
 分析装置30は、ターンテーブル31、クランパ32、ターンテーブル駆動部33、ターンテーブル駆動回路34、ガイド軸35、光ピックアップ40、光ピックアップ駆動回路36、及び、制御部37を備える。
 ターンテーブル31上には、分析用基板1が、反応領域10が下向きになるように載置される。
 クランパ32は、ターンテーブル31に対して離隔する方向及び接近する方向、即ち、図4の上方向及び下方向に駆動される。分析用基板1は、クランパ32が下方向に駆動されると、クランパ32とターンテーブル31とによって、ターンテーブル31上に保持される。具体的には、分析用基板1は、その中心Caがターンテーブル31の回転軸C31上に位置するように保持される。
 ターンテーブル駆動部33は、ターンテーブル31を分析用基板1及びクランパ32と共に、回転軸C31にて回転駆動させる。ターンテーブル駆動部33として、例えばスピンドルモータを用いてもよい。
 ターンテーブル駆動回路34はターンテーブル駆動部33を制御する。例えば、ターンテーブル駆動回路34は、ターンテーブル31が分析用基板1及びクランパ32と共に一定の線速度Lvで回転するようにターンテーブル駆動部33を制御する。
 ガイド軸35は、分析用基板1と平行に、かつ、分析用基板1の半径方向に沿って配置されている。即ち、ガイド軸35は、ターンテーブル31の回転軸C31に直交する方向に沿って配置されている。
 光ピックアップ40はガイド軸35に支持されている。光ピックアップ40は、ガイド軸35に沿って分析用基板1の半径方向に、かつ、分析用基板1と平行に駆動される。即ち、光ピックアップ40は、ターンテーブル31の回転軸C31に直交する方向に沿って駆動される。
 光ピックアップ40は対物レンズ41を備えている。対物レンズ41はサスペンションワイヤ42に支持されている。対物レンズ41は、分析用基板1に対して接近する方向及び離隔する方向、即ち、図4の上方向及び下方向に駆動される。
 光ピックアップ40は分析用基板1に向けてレーザ光40aを照射する。レーザ光40aは対物レンズ41によって分析用基板1の反応領域10が形成されている側の面(図4では分析用基板1の下側の面)に集光される。レーザ光40aの波長λは例えば405nm程度である。
 光ピックアップ40は分析用基板1からの反射光を受光する。光ピックアップ40は反射光の受光レベルを検出して受光レベル信号JSを生成し、制御部37へ出力する。
 光ピックアップ駆動回路36は光ピックアップ40の駆動を制御する。例えば光ピックアップ駆動回路36は、光ピックアップ40をガイド軸35に沿って移動させたり、光ピックアップ40の対物レンズ41を上下方向に移動させたりする。
 制御部37は、ターンテーブル駆動回路34及び光ピックアップ駆動回路36を制御する。制御部37として例えばCPU(Central Processing Unit)を用いてもよい。
 制御部37は、分析用基板1からの信号を検出する信号検出部50を有する。信号検出部50は、基板レベル検出回路51、記憶回路52、受光信号検出回路53、判定回路54、及び、計数回路55を有する。
 信号検出部50は、光ピックアップ40から出力された受光レベル信号JSから微粒子検出信号KSを抽出してカウントすることにより、反応領域10に捕捉されている微粒子20を検出して定量する。検出対象物質11は100nm程度と小さいため、検出対象物質11を直接検出することは難しい。そこで、検出対象物質11よりも大きな微粒子20を検出して定量することにより、反応領域10に捕捉されている検出対象物質11を間接的に検出して定量することができる。
[微粒子及び微粒子の検出]
 図5のフローチャートを用いて、微粒子20の分析方法(検出対象物質11の分析方法)を説明する。なお、試料液によっては検出対象物質11が含まれていない場合もある。この場合、分析用基板1の反応領域10には検出対象物質11及び微粒子20が捕捉されない。そこで、説明を分かりやすくするために、反応領域10に検出対象物質11及び微粒子20が捕捉されている場合について説明する。
 制御部37は、ステップS1にて、反応領域10が形成されている分析用基板1が一定の線速度Lvで回転するようにターンテーブル駆動回路34を制御し、ターンテーブル駆動部33にターンテーブル31を回転駆動させる。
 基板レベル検出回路51は、ステップS2にて、光ピックアップ40から分析用基板1に向けてレーザ光40aを照射させ、光ピックアップ駆動回路36を制御して、光ピックアップ40を分析用基板1の反応領域10が形成されていない所定の未反応領域9の半径位置まで移動させる。レーザ光40aは、例えば、図1の分析用基板1の中心Caに対して同一円周Cc上の、反応領域10が存在しない未反応領域9に照射され、走査される。
 光ピックアップ40は、ステップS3にて、未反応領域9からの反射光を受光する。光ピックアップ40は未反応領域9からの反射光の受光レベルを検出して受光レベル信号JSを生成し、基板レベル検出回路51へ出力する。
 基板レベル検出回路51は、ステップS4にて、未反応領域9からの受光レベル信号JSの受光レベルを基板信号レベルDLとして抽出し、記憶回路52に記憶させる。
 基板信号レベルDLは、分析用基板1自体の基板特性に依存するものである。ステップS2からステップS4までの基板受光レベルDLを抽出する処理は、同じ設計の分析用基板1を使用すれば、分析用基板1を載せ換える度に行う必要はない。基板信号レベルDLの抽出は、分析装置30を動作させる際に一度だけ行ってもよいし、分析用基板1のロットが変わる毎に処理を行ってもよい。
 基板信号レベルDLの抽出を先に行った場合は、ステップS2からステップS4までの処理を省略することができる。なお、本実施形態では、分析用基板1を載せ換える毎に未反応領域9からの受光レベル信号JSを取得する場合について説明する。
 受光信号検出回路53は、ステップS5にて、光ピックアップ40から分析用基板1に向けてレーザ光40aを照射させ、光ピックアップ駆動回路36を制御して、光ピックアップ40を分析用基板1の反応領域10が形成されている半径位置まで移動させる。図3に示すように、レーザ光40aは、反応領域10に照射され、凹部4に沿って走査される。
 光ピックアップ40は、ステップS6にて、反応領域10からの反射光を受光する。光ピックアップ40は反射光の受光レベルを検出して受光レベル信号JSを生成し、受光信号検出回路53へ出力する。
 図6は、本実施形態の分析方法により得られる受光レベル信号JSの一例を示している。図6の縦軸は受光レベル信号JSの信号レベルを示す。横軸は時間を示す。反応領域10からの反射光における分析用基板1からの反射光の受光レベルを、以下、基板信号レベルDLと称する。基板信号レベルDLは、具体的には分析用基板1の反応領域10における凹部4からの反射光の受光レベルである。
 基板信号レベルDLよりも高い信号レベル(ハイレベル)の受光レベル信号が微粒子検出信号KSであり、基板信号レベルDLよりも低い信号レベル(ローレベル)の受光レベル信号がノイズ信号NSである。受光レベル信号JSにおける基板信号レベルDLは、微粒子検出信号KSとノイズ信号NSとを含まない時間における一定の受光レベルである。
 反応領域10を形成する過程、具体的には検出対象物質11を抗原抗体反応により分析用基板1上に捕捉させたり、未反応の不要な物質を洗浄したりする過程等において、たんぱく質の凝集塊や洗浄液に含まれる塩や界面活性剤等が反応領域10に残渣として含まれている場合がある。このような残渣に起因するノイズ信号NSも受光レベル信号JSとして検出されてしまう。
 図7は、微粒子の複素屈折率m(m=n-ki)と微粒子検出信号KSの信号レベルとの関係を、FDTD(Finite-Difference Time-Domain method)法により光学シミュレーションしたものである。図8は図7の部分拡大図である。
 図7及び図8の縦軸は微粒子検出信号KSの信号レベル(電圧相対値)を示す。横軸は微粒子の複素屈折率mにおける実数部の屈折率nを示す。なお、複素屈折率m=n-ki中のkiは虚数部を示す。kは消衰係数を示す。図7及び図8中のLk0、Lk1、Lk2、Lk3、及びLk4は、k=0、k=0.1、k=0.2、k=0.3、及びk=0.4の場合の微粒子検出信号KSの信号レベルを示している。図7及び図8中のDLは基板信号レベルを示している。図7及び図8は、レーザ光40aの波長λを405nm、微粒子の外径を200nm、分析用基板1の実数部の屈折率nを1.53(ki=0)として光学シミュレーションしたものである。
 図9は、従来の微粒子検出信号KSとノイズ信号NSとの関係を示している。従来、微粒子はポリスチレン等の合成樹脂で形成されている。通常、ポリスチレン等の合成樹脂は、屈折率nが1.5程度であり、消衰係数kが0.2~0.4程度である。従って、図9に示すように、従来では微粒子検出信号KSは基板信号レベルDLよりも低い信号レベルとなる。そのため、従来では、図9に示すように、微粒子検出信号KS及びノイズ信号NSは、基板信号レベルDLよりも低い信号レベルの受光レベル信号として検出される。
 通常、微粒子検出信号KSはノイズ信号NSよりも信号レベルが低い。そこで、受光レベル信号の信号レベルを閾値Lthaと比較することにより、微粒子検出信号KSとノイズ信号NSとをある程度の精度で判別することは可能である。しかしながら、検出される微粒子が極微量である場合、ノイズ信号NSによる影響が相対的に大きくなるため、微粒子の定量精度を悪化させる要因となる。
 そこで、本実施形態では、微粒子検出信号KSが基板信号レベルDLよりも高い信号レベルとなる微粒子20を用いている。具体的には、微粒子20は、図8に示すように、複素屈折率m(m=n-ki)の虚数部の消衰係数kが0.3以下(k≦0.3)で、かつ、実数部の屈折率nが2.1~2.5の範囲(2.1≦n≦2.5)、または、消衰係数kが0.2以下(k≦0.2)で、かつ、屈折率nが2.1~2.6の範囲(2.1≦n≦2.6)である材料により形成されている。このような材料として、酸化チタン、酸化ニオブ、酸化タンタル等の遷移金属の酸化物等の金属化合物を用いてもよい。
 微粒子20の表面に、リガンドを構成する目的で樹脂材料を重合被覆するようにしてもよい。微粒子20の実効的な複素屈折率は金属化合物と樹脂材料との合成複素屈折率となる。微粒子20の表面を薄い樹脂被膜で重合被覆することでリガンドを構成することが可能である。この場合、合成複素屈折率の屈折率n及び消衰係数kを上記の範囲とすることにより、微粒子検出信号KSを基板信号レベルDLよりも高い信号レベルにすることができる。
 微粒子20を磁気捕集する目的で、微粒子20に磁性体を内包するようにしてもよい。微粒子20の実効的な複素屈折率は金属化合物と磁性体との合成複素屈折率となる。この場合、合成複素屈折率の屈折率n及び消衰係数kを上記の範囲とすることにより、微粒子検出信号KSを基板信号レベルDLよりも高い信号レベルにすることができる。
 レーザ光40aは、反応領域10上を凹部4に沿って走査される。微粒子20を精度よく定量するためには、微粒子20が高い確率で凹部4に捕捉され、かつ、走査方向に沿って捕捉されることが望ましい。例えば、微粒子20の直径d(図3参照)がλ/4よりも小さいと、微粒子20の検出精度を悪化させたり、微粒子20が走査方向と直交する方向に複数個捕捉されることで微粒子20の定量精度を悪化させたりする要因となる。なお、λは微粒子20に照射されるレーザ光40aの波長である。
 微粒子20の直径dがλ/2よりも大きいと、微粒子20が凹部4に捕捉されにくくなる。従って、微粒子20の直径dを、λ/4~λ/2の範囲(λ/4≦d≦λ/2)にすることが望ましい。
 図5に戻り、判定回路54は、ステップS7にて、記憶回路52に記憶された基板信号レベルDLよりも高い信号レベルの受光レベル信号を微粒子検出信号KSと判定する。例えば、判定回路54は、受光レベル信号JSと閾値Lthとを比較し、閾値Lth以上の信号レベルの受光レベル信号JSを微粒子検出信号KSと判定する。閾値Lthは、基板信号レベルDLよりも高いレベルに設定されている。
 受光レベル信号JSにノイズ信号NSが含まれている場合、ノイズ信号NSは基板信号レベルDLよりも低い信号レベルである。そのため、基板信号レベルDLに対して、高い信号レベルの微粒子検出信号KSと低い信号レベルのノイズ信号NSとを容易に識別することができる。従って、受光レベル信号JSから微粒子検出信号KSのみを精度よく抽出することができる。
 計数回路55は、ステップS8にて、微粒子検出信号KS、具体的には微粒子検出信号KSのパルス数を反応領域10毎にカウントし、トラック毎に加算する。これにより、各反応領域10における微粒子20を定量することができる。微粒子20を定量することで、微粒子20により標識された検出対象物質11を間接的に定量することができる。
 制御部37は、ステップS9にて、光ピックアップ駆動回路36を制御して、光ピックアップ40を初期位置へ移動させ、レーザ光40aの照射を停止させる。制御部37は、ターンテーブル駆動回路34を制御して、ターンテーブル31の回転を停止させる。
 本実施形態の分析方法によれば、微粒子検出信号KSが基板信号レベルDLよりも高い信号レベルとなる微粒子20を用いることにより、基板信号レベルDLよりも低い信号レベルとなるノイズ信号との識別が容易になる。例えば、受光レベル信号JSと基板信号レベルDLよりも高いレベルに設定されている閾値Lthとを比較することで、受光レベル信号JSから微粒子検出信号KSのみを精度よく抽出することができる。抽出された微粒子検出信号KSに基づいて、反応領域10に捕捉されている微粒子20を精度よく検出することができる。
 従って、本実施形態の分析方法によれば、微粒子検出信号を従来よりも高い精度で抽出し、抽出された微粒子検出信号に基づいて微粒子を検出することにより、間接的に検出対象物質の検出精度を向上させることができる。
 本発明は、以上説明した上述した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。
 本発明は、抗原、抗体等の生体物質を分析する際に用いることができる。

Claims (5)

  1.  検出対象物質と前記検出対象物質を標識するための金属化合物である微粒子とが捕捉されている反応領域を有する、樹脂材料で形成された分析用基板にレーザ光を照射し、
     前記分析用基板からの反射光を受光して生成された信号レベルを基板信号レベルとして抽出し、
     前記反応領域からの反射光を受光して受光レベル信号を生成し、
     前記反応領域において前記基板信号レベルよりも高い信号レベルの受光レベル信号を微粒子検出信号として抽出し、
     抽出された微粒子検出信号に基づいて前記微粒子を検出する
     ことを特徴とする分析方法。
  2.  前記微粒子は、複素屈折率n-kiの虚数部kiの消衰係数kが0.3以下で、かつ、実数部の屈折率nが2.1~2.5の範囲、または、消衰係数kが0.2以下で、かつ、屈折率nが2.1~2.6の範囲を有することを特徴とする請求項1に記載の分析方法。
  3.  前記微粒子は樹脂被膜で被覆されていることを特徴とする請求項1または2に記載の分析方法。
  4.  前記微粒子は磁性体が内包されていることを特徴とする請求項1または2に記載の分析方法。
  5.  検出対象物質と前記検出対象物質を標識するための金属化合物である微粒子とが捕捉されている反応領域を有する、樹脂材料で形成された分析用基板にレーザ光を照射し、前記反応領域、及び、前記反応領域が形成されていない未反応領域からの反射光の受光レベルを検出して受光レベル信号を生成する光ピックアップと、
     前記未反応領域からの受光レベル信号の信号レベルを基板信号レベルとして抽出する基板レベル検出回路と、
     前記反応領域において前記基板信号レベルよりも高い信号レベルの受光レベル信号を微粒子検出信号として抽出する判定回路と、
     前記微粒子検出信号に基づいて前記微粒子を検出する計数回路と、
     を備えることを特徴とする分析装置。
PCT/JP2017/016894 2016-05-16 2017-04-28 分析方法及び分析装置 WO2017199731A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17799161.9A EP3460473B1 (en) 2016-05-16 2017-04-28 Analysis method and analysis device
CN201780026892.4A CN109154608B (zh) 2016-05-16 2017-04-28 分析方法以及分析装置
US16/176,264 US10520417B2 (en) 2016-05-16 2018-10-31 Analysis method and analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016097830A JP6740703B2 (ja) 2016-05-16 2016-05-16 分析方法及び分析装置
JP2016-097830 2016-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/176,264 Continuation US10520417B2 (en) 2016-05-16 2018-10-31 Analysis method and analysis device

Publications (1)

Publication Number Publication Date
WO2017199731A1 true WO2017199731A1 (ja) 2017-11-23

Family

ID=60325085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016894 WO2017199731A1 (ja) 2016-05-16 2017-04-28 分析方法及び分析装置

Country Status (5)

Country Link
US (1) US10520417B2 (ja)
EP (1) EP3460473B1 (ja)
JP (1) JP6740703B2 (ja)
CN (1) CN109154608B (ja)
WO (1) WO2017199731A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243660A (zh) * 2018-09-19 2019-01-18 深圳大学 一种基于手性依赖透镜激发的spp光镊装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7208468B2 (ja) 2018-08-01 2023-01-19 株式会社Jvcケンウッド 分析装置及び分析方法
EP3940390A4 (en) * 2019-03-13 2022-05-04 Jvckenwood Corporation METHOD FOR MAKING ANALYSIS SUBSTRATE, ANALYSIS SUBSTRATE, AND ANALYSIS UNIT
JP7183899B2 (ja) * 2019-03-25 2022-12-06 株式会社Jvcケンウッド 分析装置及び分析方法
JP2022053204A (ja) 2020-09-24 2022-04-05 株式会社Jvcケンウッド 細胞の状態の評価方法、及び評価キット
WO2022196036A1 (ja) 2021-03-17 2022-09-22 株式会社Jvcケンウッド 結合体の形成方法、対象物質の測定方法、及びキット
JP2022175664A (ja) 2021-05-14 2022-11-25 株式会社Jvcケンウッド 反応ユニットの製造方法、反応ユニットの製造キット、及び検出対象物質の測定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115665A (ja) * 2007-11-07 2009-05-28 Toshiba Corp 物質の測定方法および物質測定用キット
JP2013134083A (ja) * 2011-12-26 2013-07-08 Jvc Kenwood Corp 試料分析用ディスク
WO2016052118A1 (ja) * 2014-09-30 2016-04-07 株式会社Jvcケンウッド 分析装置及び分析方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025202A (en) * 1995-02-09 2000-02-15 The Penn State Research Foundation Self-assembled metal colloid monolayers and detection methods therewith
US5922537A (en) * 1996-11-08 1999-07-13 N.o slashed.AB Immunoassay, Inc. Nanoparticles biosensor
JP2002530786A (ja) 1998-10-30 2002-09-17 バースタイン・ラボラトリーズ・インコーポレイテッド 同時読み取り可能な解析分析材料を備えたトラッキング可能な光ディスク
US6221579B1 (en) * 1998-12-11 2001-04-24 Kimberly-Clark Worldwide, Inc. Patterned binding of functionalized microspheres for optical diffraction-based biosensors
WO2002056311A2 (en) * 2001-01-11 2002-07-18 Burstein Technologies Inc Optical disc analysis system including related methods for biological and medical imaging
US20030003457A1 (en) * 2001-06-26 2003-01-02 Valeri Golovlev Bio-polymer array system with detection sensitivity enhanced by radiation treatment
US20050019901A1 (en) * 2002-01-31 2005-01-27 Evgenia Matveeva Methods for synthesis of bio-active nanoparticles and nanocapsules for use in optical bio-disc assays and disc assembly including same
US20060171288A1 (en) * 2005-01-04 2006-08-03 Children's Hospital Oakland Research Institute Optical disk assay device, system and method
CN1928561A (zh) * 2006-09-15 2007-03-14 东南大学 基于光子晶体微球的多元免疫检测方法
US7812318B1 (en) * 2008-03-14 2010-10-12 Advanced Technology Applications, Llc Electromagnetic biosensor
US9322823B2 (en) * 2013-03-15 2016-04-26 Nicoya Lifesciences Inc. Method and apparatus for chemical detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115665A (ja) * 2007-11-07 2009-05-28 Toshiba Corp 物質の測定方法および物質測定用キット
JP2013134083A (ja) * 2011-12-26 2013-07-08 Jvc Kenwood Corp 試料分析用ディスク
WO2016052118A1 (ja) * 2014-09-30 2016-04-07 株式会社Jvcケンウッド 分析装置及び分析方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109243660A (zh) * 2018-09-19 2019-01-18 深圳大学 一种基于手性依赖透镜激发的spp光镊装置
CN109243660B (zh) * 2018-09-19 2024-04-30 深圳大学 一种基于手性依赖透镜激发的spp光镊装置

Also Published As

Publication number Publication date
CN109154608B (zh) 2021-11-09
JP6740703B2 (ja) 2020-08-19
EP3460473A4 (en) 2019-03-27
CN109154608A (zh) 2019-01-04
US10520417B2 (en) 2019-12-31
EP3460473A1 (en) 2019-03-27
EP3460473B1 (en) 2020-12-09
JP2017207289A (ja) 2017-11-24
US20190064048A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017199731A1 (ja) 分析方法及び分析装置
US10627398B2 (en) Analysis device and analysis method
CN107076662B (zh) 分析装置以及分析方法
WO2017134944A1 (ja) 分析装置及び分析方法
US20200088626A1 (en) Analysis device and analysis method
JP2017058242A (ja) 検体検出用ユニット、分析装置、及び、分析方法
WO2019235208A1 (ja) 分析用閾値生成装置及び分析用閾値生成方法
JP6958166B2 (ja) 分析装置及び分析方法
JP6210009B2 (ja) 試料分析用基板及び基板分析装置
JP6883248B2 (ja) 微粒子計測機、分析装置、及び、分析方法
JP6760508B2 (ja) 分析方法及び分析装置
JP6962276B2 (ja) 分析用閾値決定装置及び分析用閾値決定方法
JP7218788B2 (ja) 分析用閾値生成装置及び分析用閾値生成方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17799161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017799161

Country of ref document: EP

Effective date: 20181217