WO2017190289A1 - 数据处理方法及装置 - Google Patents

数据处理方法及装置 Download PDF

Info

Publication number
WO2017190289A1
WO2017190289A1 PCT/CN2016/080969 CN2016080969W WO2017190289A1 WO 2017190289 A1 WO2017190289 A1 WO 2017190289A1 CN 2016080969 W CN2016080969 W CN 2016080969W WO 2017190289 A1 WO2017190289 A1 WO 2017190289A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
data
type
data transmitted
symbols
Prior art date
Application number
PCT/CN2016/080969
Other languages
English (en)
French (fr)
Inventor
王宗杰
彭金磷
丁梦颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112018072666A priority Critical patent/BR112018072666A2/pt
Priority to PCT/CN2016/080969 priority patent/WO2017190289A1/zh
Priority to CN201680084698.7A priority patent/CN109076045A/zh
Priority to EP16900811.7A priority patent/EP3447981A4/en
Publication of WO2017190289A1 publication Critical patent/WO2017190289A1/zh
Priority to US16/179,887 priority patent/US10805132B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a data processing method and apparatus.
  • ISI inter-symbol interference
  • the Long Term Evolution (LTE) system introduces a Cyclic Prefix (CP) in the radio frame, that is, before each symbol constituting the radio frame. Add a CP to combat the delay spread of the channel.
  • CP Cyclic Prefix
  • the subcarrier spacing As the subcarrier spacing increases, the length of time for each symbol in the radio frame will be proportionally shortened.
  • the duration of the CP added before each symbol is currently scaled proportionally according to the shortening ratio of the length of each symbol.
  • the embodiment of the invention provides a data processing method and device, which are used to solve the problem that the delay spread of the data transmission process becomes smaller when the subcarrier spacing is increased, and the coverage of the data transmission becomes smaller. The problem.
  • an implementation of the present invention provides a data processing method, including:
  • the transmitting end preprocesses data transmitted on at least two first type symbols serially in the time domain in a radio frame, and converts data transmitted on the at least two first type symbols into one Data transmitted on the shared symbol; the data transmitted on the shared symbol includes data transmitted on the two or more first type symbols;
  • the transmitting end adds a first cyclic prefix CP to the data transmitted on the shared symbol after the IFFT processing;
  • the transmitting end sends the data transmitted on the shared symbol after the first CP is added to the receiving end.
  • the radio frame further includes one or more second type symbols, and the time length of the second type of symbols is less than the length of time of the shared symbol.
  • the method further includes:
  • the sending end adds a second CP to the data transmitted on the second type of symbol
  • the transmitting end sends data transmitted on the one or more second type symbols of the second CP and data transmitted on the shared symbol added with the first CP to the receiving end.
  • the transmitting end preprocesses data transmitted on the first type of symbols serially in the time domain in the radio frame, including:
  • the transmitting end preprocesses data transmitted on at least two parallel first type symbols in the radio frame by using an interleaving process Fourier transform, a serial-to-parallel transform, an overall Fourier transform, a Hadamard matrix or an identity matrix .
  • the first type of symbol is used to transmit uplink data or downlink data
  • the second type of symbol is used to transmit a reference signal, or information used to control uplink data transmission or downlink data transmission, or In the time division duplex TDD mode, it acts as a guard interval for uplink and downlink conversion.
  • the data transmitted on the first type of symbol is uplink data
  • the transmitting end performs data transmitted on at least two first type symbols serially in the time domain in the wireless frame.
  • pre-processing it also includes:
  • the transmitting end performs discrete Fourier transform on at least two input data to obtain data transmitted on the first type of symbol.
  • the data transmitted on the first type of symbols is downlink data
  • the transmitting end performs data transmission on at least two first type symbols serially in the time domain in the wireless frame.
  • pre-processing it also includes:
  • the transmitting end performs serial-to-parallel conversion on at least two input data to obtain data transmitted on the first type of symbol.
  • an embodiment of the present invention further provides a data processing method, including:
  • the receiving end receives the data sent by the transmitting end;
  • the data includes: the transmitting end preprocesses data transmitted on at least two first type symbols serially in the time domain in a wireless frame to obtain data transmitted on a shared symbol. And performing fast inverse Fourier transform IFFT processing on the data transmitted on the shared symbol and data obtained after adding the first CP; wherein the data transmitted on the shared symbol includes the at least two first classes Data transmitted on the symbol;
  • the receiving end removes the first CP added before the data transmitted on the shared symbol
  • the receiving end performs fast Fourier transform FFT processing on the data transmitted on the shared symbol after removing the first CP;
  • the receiving end performs inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing to obtain data of the at least two types of symbols transmitted in the first type in the time domain.
  • the radio frame further includes at least one second type of symbol, the time length of the second type of symbol is less than the length of time of the shared symbol, and the sending end is received by the receiving end.
  • the data sent also includes:
  • the receiving end performs the inverse processing of the pre-processing on the data after the first CP is removed, including:
  • the first type of symbol is used to transmit uplink or downlink data
  • the second type of symbol is used to transmit a reference signal, or to control uplink data transmission or downlink data transmission information, or as a time division.
  • the data transmitted on the first type of symbol is uplink data
  • the receiving end performs inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing.
  • the receiving end performs inverse discrete Fourier transform on the data transmitted on the first type of symbols to obtain at least two output data.
  • the data transmitted on the first type of symbol is downlink data
  • the receiving end performs inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing.
  • the receiving end performs parallel-to-serial conversion on the data transmitted on the first type of symbols to obtain at least two output data.
  • the embodiment of the present invention further provides a data processing method, including: sending, by a sending end, a mixed frame structure to send information to a receiving end, where the information includes at least one of service data, control information, or a reference signal,
  • the hybrid frame structure includes: a shared symbol and a second type of symbol, a first CP is added before the shared symbol, and a second CP is added before the second type of symbol, and the length of the shared symbol is greater than the second type of symbol length.
  • the difference between the length of the first CP and the length of the second CP is less than a preset threshold.
  • the length ratio of the shared symbol to the second type of symbol is n:1, and the length of the first CP and the length of the second CP are also n:1, wherein , n is greater than 1.
  • the embodiment of the present invention further provides a data processing method, including: receiving, by a receiving end, a message sent by a sending end by using a hybrid frame structure, where the information includes at least one of service data, control information, or a reference signal, where
  • the hybrid frame structure includes: a shared symbol and a second type of symbol, a first CP is added before the shared symbol, and a second CP is added before the second type of symbol, and the length of the shared symbol is greater than the second type The length of the symbol.
  • the difference between the length of the first CP and the length of the second CP is less than a preset threshold.
  • the embodiment of the present invention further provides a data processing apparatus, including:
  • a processing module configured to preprocess data transmitted on at least two first type symbols serially in a time domain in a radio frame, and convert data transmitted on the at least two first type symbols into one share Data transmitted on the symbol; the data transmitted on the shared symbol includes data transmitted on the at least two first type symbols;
  • the processing module is further configured to perform an inverse fast Fourier transform IFFT processing on the data transmitted on the shared symbol;
  • the processing module is further configured to add a first cyclic prefix CP to the data transmitted on the shared symbol after the IFFT processing;
  • a sending module configured to send data transmitted on the shared symbol after the first CP is added to the receiving end.
  • the radio frame further includes at least one second type of symbol, and the time length of the second type of symbol is less than a length of time of the shared symbol; the processor is further configured to:
  • the processor is configured to:
  • the data transmitted on at least two parallel first-class symbols in the radio frame is pre-processed by an interleaving process Fourier transform, a serial-to-parallel transform, an overall Fourier transform, a Hadamard matrix, or an identity matrix.
  • the first type of symbol is used to transmit uplink data or downlink data
  • the second type of symbol is used to transmit a reference signal, or information used to control uplink data transmission or downlink data transmission, or In the time division duplex TDD mode, it acts as a guard interval for uplink and downlink conversion.
  • the data transmitted on the first type of symbol is uplink data
  • the processing module is further configured to:
  • Discrete Fourier transform is performed on at least two input data to obtain data transmitted on the first type of symbol.
  • the data transmitted on the first type of symbol is downlink data
  • the processing module is further configured to:
  • the at least two input data are serial-to-parallel converted to obtain data transmitted on the first type of symbol.
  • the embodiment of the present invention further provides a data processing apparatus, including:
  • a receiving module configured to receive data sent by the sending end;
  • the data includes: the sending end preprocesses data transmitted on at least two first type symbols serially in a time domain in a wireless frame to obtain a shared symbol Transmitting data, and performing inverse fast Fourier transform IFFT processing on the data transmitted on the shared symbol and data obtained after adding the first CP; wherein the data transmitted on the shared symbol includes the at least two Data transmitted on the first type of symbol;
  • a processing module configured to remove the first CP added before the data transmitted on the shared symbol
  • the processing module is further configured to: perform fast Fourier transform FFT processing on data transmitted on the shared symbol after removing the first CP;
  • the processing module is further configured to: perform inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain the at least two first-class symbols serially in the time domain Data transmitted on.
  • the radio frame further includes at least one second type of symbol, and the time length of the second type of symbol is smaller than the length of time of the shared symbol; the processing module is further configured to:
  • the processing module is configured to:
  • the first type of symbol is used to transmit uplink or downlink data
  • the second type of symbol is used to transmit a reference signal, or to control uplink data transmission or downlink data transmission information, or as a time division. Up and down switching points in duplex TDD mode.
  • the data transmitted on the first type of symbol is uplink data.
  • the processing module is further configured to:
  • the data transmitted on the first type of symbol is downlink data
  • the processing module is further configured to:
  • the embodiment of the present invention further provides a data processing apparatus, including a sending module, where the sending module is configured to: send a message to a receiving end by using a mixed frame structure, where the information includes service data, control information, or a reference signal.
  • a mixed frame structure where the information includes service data, control information, or a reference signal.
  • At least one of the hybrid frame structures includes: a shared symbol and a second type of symbol, the shared symbol is preceded by a first CP, and the second type of symbol is preceded by a second CP, the length of the shared symbol Greater than the length of the second type of symbol.
  • the difference between the length of the first CP and the length of the second CP is less than a preset threshold.
  • the length ratio of the shared symbol to the second type of symbol is n:1, and the length of the first CP and the length of the second CP are also n:1, wherein , n is greater than 1.
  • the embodiment of the present invention further provides a data processing apparatus, including a receiving module, where the receiving module is configured to: receive, by using a hybrid frame structure, information sent by a sending end, where the information includes service data, control information, or a reference signal.
  • the hybrid frame structure includes: a shared symbol and a second type of symbol, the shared symbol is pre-added with a first CP, and the second type of symbol is pre-added with a second CP, the shared symbol The length is greater than the length of the second type of symbol.
  • the difference between the length of the first CP and the length of the second CP is less than a preset threshold.
  • the length ratio of the shared symbol to the second type of symbol is n:1, and the length of the first CP and the length of the second CP are also n:1, wherein , n is greater than 1.
  • a ninth aspect, the embodiment of the present invention further provides a data processing apparatus, including:
  • a processor configured to preprocess data transmitted on at least two first type symbols serially in a time domain in a radio frame to convert data transmitted on the at least two first type symbols Data transmitted on a shared symbol; data transmitted on the shared symbol includes data transmitted on the at least two first type of symbols;
  • the processor is further configured to perform an inverse fast Fourier transform IFFT processing on the data transmitted on the shared symbol;
  • the processor is further configured to add a first cyclic prefix CP to the data transmitted on the shared symbol after the IFFT processing;
  • a transmitter configured to send data transmitted on the shared symbol after the first CP is added to the receiving end.
  • the tenth aspect of the present invention further provides a data processing apparatus, including:
  • a receiver configured to receive data sent by the sender;
  • the data includes: the sender preprocesses data transmitted on at least two first type symbols serially in the time domain in a radio frame to obtain a shared symbol Transmitting data, and performing inverse fast Fourier transform IFFT processing on the data transmitted on the shared symbol and data obtained after adding the first CP; wherein the data transmitted on the shared symbol includes the at least two Data transmitted on the first type of symbol;
  • a processor configured to remove the first CP added before the data transmitted on the shared symbol
  • the processor is further configured to: perform fast Fourier transform FFT processing on data transmitted on the shared symbol after removing the first CP;
  • the processor is further configured to perform inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain the at least two first-class symbols serially in the time domain. Data transmitted on.
  • the data processing method and apparatus provided by the embodiment of the present invention pre-processes data transmitted on at least two parallel first-type symbols in a radio frame by a transmitting end, and transmits the at least two parallel first-class symbols.
  • the data is converted into data transmitted on the shared symbol, and a first CP is added to the data transmitted on the shared symbol, and the number of CPs added in the wireless frame can be reduced.
  • the embodiment of the present invention can ensure the total duration of the CP by reducing the number of CPs compared to the prior art scheme of compressing the CP length of each symbol in a medium scale. The same is true, that is, the CP overhead is unchanged.
  • the duration of each CP is greater than the length of the CP that is proportionally compressed in the prior art, which can resist large channel delay spread and improve the coverage of signal transmission.
  • FIG. 1 is a schematic flowchart diagram of a data processing method according to an embodiment of the present invention
  • FIG. 2 is another schematic flowchart of a data processing method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a process of forming a first type of symbol when transmitting downlink data according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a process of forming a first type of symbol when transmitting uplink data according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of processing data in a downlink according to a data processing method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of processing an uplink data by a data processing method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of processing a downlink data by a data processing method according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of processing an uplink data by a data processing method according to another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of processing a downlink data by a data processing method according to another embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of processing a downlink data by a data processing method according to another embodiment of the present invention.
  • 11 is a schematic structural diagram of a radio frame in an uplink slot used by an uplink when the existing LTE standard adopts a 15 kHZ subcarrier spacing;
  • FIG. 12 is a schematic structural diagram of a radio frame scaled by a 60 kHz subcarrier spacing on the basis of FIG. 4;
  • FIG. 13 is a schematic structural diagram of a radio frame obtained by processing a radio frame shown in FIG. 5 according to a data processing method according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of another radio frame obtained by processing a radio frame shown in FIG. 5 according to a data processing method according to an embodiment of the present invention
  • FIG. 15(a) is a schematic structural diagram of another radio frame obtained by processing a radio frame shown in FIG. 5 according to a data processing method according to an embodiment of the present invention
  • 15(b)-15(c) are schematic diagrams showing the structure of a radio frame of the second type of symbols in different positions in FIG. 15(a);
  • FIG. 16 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • 18(a) and 18(b) are schematic diagrams showing another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • 21(a) and 21(b) are schematic diagrams showing another structure of a radio frame in a data processing method according to an embodiment of the present invention.
  • FIG. 22 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present invention.
  • FIG. 23 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • FIG. 24 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • FIG. 25 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • FIG. 26 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • FIG. 27 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • the channel delay caused by the data arriving at the receiving end through different propagation paths may cause Inter-symbol Interference (ISI) to affect the data transmission quality.
  • ISI Inter-symbol Interference
  • LTE Long Term Evolution
  • CP Cyclic Prefix
  • the duration of the CP added before each symbol needs to be proportionally compressed according to the shortening ratio of the length of each symbol.
  • the delay spread that can be counteracted during the data transmission process is also proportionally smaller, so that the coverage of the data transmission becomes smaller.
  • the embodiment of the invention provides a data processing method and device, which are used to achieve better anti-delay extension (ie, ISI elimination) capability and ensure coverage of data transmission under the premise of ensuring reasonable CP overhead.
  • ISI elimination anti-delay extension
  • FIG. 1 is a schematic flowchart diagram of a data processing method according to an embodiment of the present invention.
  • FIG. 2 is another schematic flowchart of a data processing method according to an embodiment of the present invention.
  • the data processing method of the embodiment of the present invention includes:
  • the transmitting end converts data transmitted on the at least two first type symbols into one share by preprocessing data transmitted on at least two first type symbols serially in a time domain in a radio frame.
  • Data transmitted on the symbol; the data transmitted on the shared symbol includes data transmitted on the at least two first type of symbols.
  • the sending end is a base station
  • the receiving end is a user equipment
  • the sending end is a user equipment
  • the receiving end is a base station
  • the sending end and the receiving end may all be user equipments.
  • the transmitting end and the receiving end are used to implement data transmission between the base station and the user equipment or data transmission between the user equipment and the user equipment.
  • the transmitting end or the receiving end may also be a chip to implement the functions of the sending end or the receiving end.
  • FIG. 3 is a schematic diagram of a process of forming a first type of symbol when transmitting downlink data according to an embodiment of the present invention.
  • n modulated input data is subjected to n-point string conversion and formed into data x 1 -x n transmitted on the first type of symbol.
  • x represents data transmitted on the first type of symbols
  • n represents the number of data transmitted on the first type
  • n is an integer greater than or equal to 1.
  • the modulation according to the present invention may be any existing mature modulation technology, such as Quadrature Phase Shift Keying (QPSK) modulation and Quadrature Amplitude Modulation (QAM) adopted by current LTE systems. )Wait.
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • FIG. 4 is a schematic diagram of a process of forming a first type of symbol when transmitting uplink data according to an embodiment of the present invention.
  • the n modulated input data is subjected to Discrete Fourier Transform (DFT) and then serial-to-parallel to form the first-type symbol.
  • DFT Discrete Fourier Transform
  • one radio frame of LTE includes two or more first-type symbols 1-m (FIG. 1) serially connected in the time domain, and m is an integer greater than or equal to 1.
  • the data transmitted on the two or more first type symbols may be pre-processed to share the same CP.
  • the data in the shared symbol includes data transmitted on the two or more first type symbols, that is, data transmitted on the two or more first type symbols in a frequency domain corresponding to the shared symbol Expand on.
  • the transmitting end may pair two or more parallel first-class symbols in the radio frame by using an interleaved Fourier transform, a serial-to-parallel transform, an overall Fourier transform, a Hadamard matrix, or an identity matrix.
  • the data transmitted on the pre-processing is performed.
  • the specific processing procedure is shown in FIG. 5 to FIG. 10 and described below.
  • the data transmitted on the first type of symbol and the data transmitted on the second type of symbol may be at least one combination of: uplink or downlink data, uplink or downlink reference signal (RS) or Uplink or downlink control information.
  • RS uplink or downlink reference signal
  • Uplink or downlink control information Uplink or downlink control information.
  • FIG. 5 The two key operations or sub-modules are serial-to-parallel conversion and Fourier transform: m-point string-to-parallel conversion is to convert m serial forms of data into parallel form data; m points or m ⁇ n points of Fourier Transformation is the standard practice of the existing classic Fourier transform.
  • Figure 5 is an embodiment of the present invention Schematic diagram of the flow of data processing methods for processing downlink data.
  • the m sets of input data are respectively subjected to n-point string conversion and form m first-class symbols, wherein the data in the j-th first-class symbol is x 1, j , x 2, j ... x n, j , j take values from 1 to m, and then the i-th data x i,1 , x i in each of the first-type symbols is respectively converted by serial-to-parallel conversion . 2 ... x i, m is preprocessed to obtain the shared symbol, where i takes a value from 1 to n.
  • the i-th string is converted and converted to the i-point data for each of the i-th data x i,1 , x i,2 ... x i,m in each set of input data, wherein i takes a value of 1 to n.
  • FIG. 6 is a schematic flowchart of processing data of an uplink according to a data processing method according to an embodiment of the present invention.
  • m sets of input data are subjected to n-point discrete Fourier transform to form m first-class symbols, wherein the data in the j-th first-type symbol is x 1,j . x 2,j ...x n,j ,j takes a value from 1 to m, and then converts the i-th data x i,1 ,x i in each of the first-type symbols by m-point string-conversion . 2 ... x i, m is preprocessed to obtain the shared symbol, where i takes a value from 1 to n.
  • the time domain data transmitted on the shared symbol is y 0 , y 1 ., y N , where y represents a data sample point of the shared symbol transmitted in the time domain, and N represents the The number of data sample points that share symbols in the time domain.
  • FIG. 7 is a schematic flowchart of processing a downlink data by a data processing method according to another embodiment of the present invention.
  • the m-group input data is subjected to n-point string conversion and form m first-class symbols, wherein the data in the j-th first-class symbol is x 1,j. , x 2,j ... x n,j ,j take values from 1 to m, and the first type of symbols are preprocessed by interleaving DFT transform to obtain the shared symbols.
  • the interleaved DFT transform refers to performing an m-point discrete Fourier transform DFT for each of the i-th data x i,1 , x i,2 . . . x i,m in each of the first-type symbols, where The value of i is 1 to n.
  • FIG. 8 is a schematic flowchart of processing data of an uplink according to a data processing method according to another embodiment of the present invention.
  • the m sets of input data are respectively subjected to n-point discrete Fourier transform DFT to form m first-class symbols, wherein the data in the j-th first-class symbol is x 1, j , x 2, j ... x n, j , j take values from 1 to m, and the first type of symbols are preprocessed by interleaving DFT transform to obtain the shared symbols.
  • the interleaved DFT transform refers to performing an m-point discrete Fourier transform DFT for each of the i-th data x i,1 , x i,2 ... x i,m in each of the first-type symbols, where The value of i is 1 to n.
  • FIG. 9 is a schematic flowchart of processing a downlink data by a data processing method according to another embodiment of the present invention.
  • the m-group input data is subjected to n-point string conversion and form m first-type symbols, wherein the data in the j-th first-class symbol is x 1,j. , x 2, j ... x n, j , j takes a value from 1 to m, and the first type of symbols are preprocessed by means of an overall DFT transform to obtain the shared symbol.
  • the global DFT transform is to perform an m ⁇ n point DFT transform on the entire m ⁇ n data in the m first type symbols.
  • FIG. 10 is a schematic flowchart of processing a downlink data by a data processing method according to another embodiment of the present invention.
  • m sets of input data are respectively subjected to n-point discrete Fourier transform to form m first-class symbols, wherein the data in the j-th first-class symbol is x. 1, j , x 2, j ... x n, j , j take values from 1 to m, and then the first type of symbols are preprocessed by the overall DFT transform to obtain the shared symbols. Specifically, an m ⁇ n point DFT transform is performed on the entire m ⁇ n data in the m group data.
  • the data used for performing the pre-processing in the radio frame may be Single-Carrier Frequency-Division Multiple Access (SC-FDMA) data or downlink orthogonal frequency division.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multicarrier
  • the transmitting end performs inverse fast Fourier transform (IFFT) processing on the data transmitted on the shared symbol obtained by the preprocessing.
  • IFFT inverse fast Fourier transform
  • the IFFT processing is used to generate an OFDM time domain signal.
  • the transmitting end adds a first CP to data transmitted on the shared symbol after the IFFT processing.
  • the first CP is shared by data transmitted on the two or more first type symbols, and data transmitted on the at least two first type symbols is converted into data transmitted on the shared symbol. Thereafter, the first CP is added in front of the data transmitted on the shared symbol, and is used to counter the channel delay spread generated by the data transmitted on the two or more first type symbols during transmission.
  • the result of the output symbol S102 after the IFFT processing is y 1 , y 2 &, y N , where y is a data sample point in the shared symbol, and N is the share.
  • the number of data sample points of the symbol in the time domain, then the signal sample point in the first CP is Where N cp is the number of sample points of the first CP.
  • the data sample points included in the data output after the first CP is added before the shared symbol are
  • the sending end sends the data transmitted on the shared symbol to which the first CP is added to the receiving end.
  • each of the first type of symbols has a CP compared with the prior art.
  • a plurality of first type symbols are converted into a shared symbol, and then a CP is added to enable the wireless frame.
  • the number of CPs used in the reduction is reduced, and each CP can be made as long as possible without increasing the total duration of all CPs (i.e., CP overhead), thereby enhancing the ability to resist channel delay spread.
  • the radio frame used in the data processing method of the embodiment of the present invention further includes at least one second type of symbol, and the time length of the second type of symbol is less than the length of time of the shared symbol;
  • the data processing method further includes:
  • the sending end adds a second CP to the data transmitted on the second type of symbol
  • the transmitting end sends data transmitted on the at least one second type symbol of the second CP and data transmitted on the shared symbol added with the first CP to the receiving end.
  • the first type of symbols are used to send uplink or downlink data
  • the second type of symbols are used to send reference signals or control information.
  • the second type of symbol may also be used to send uplink or downlink data.
  • FIG. 11 is a schematic structural diagram of a radio frame in an uplink slot used by an uplink in a conventional LTE standard using a 15 kHz subcarrier spacing
  • FIG. 12 is a schematic structural diagram of a radio frame scaled by using a 60 kHz subcarrier spacing on the basis of FIG.
  • FIG. 13 is a schematic structural diagram of a radio frame obtained by processing a radio frame shown in FIG. 5 according to a data processing method according to an embodiment of the present invention.
  • the data processing method in the embodiment of the present invention processes the radio frame shown in FIG. 5 to obtain the radio frame structure shown in FIG. 6 .
  • the radio frame shown in FIG. 12 includes a first type of symbol 510 and a second type of symbol 520, and each of the first type of symbols 510 and each of the second type of symbols 520 is preceded by a CP 530.
  • the plurality of first type symbols 510 in FIG. 12 are converted into the shared symbol 610. And adding a first CP 630 in front of the shared symbol 610.
  • the first type of symbol 510 is a data symbol for transmitting uplink or downlink data
  • the second type of symbol 520 is for carrying RS, control information, or a time interval.
  • the solution of the present invention is described in detail by taking the second type of symbol 520 to carry the RS as an example. That is, the second type of symbol 520 is an RS symbol.
  • the radio frame structure adopted in FIG. 13 has the following two advantages:
  • the shared CP radio frame structure used in the data processing method of the embodiment of the present invention may be compared to the 60 kHZ equal-compression scheme of the LTE direct scaling. Support for longer CPs, which is more capable of combating multipath delays, and supports more channel models.
  • Table 1 shows a comparison of the CP duration and the supported channels of the three frame structures shown in Figures 11-13 for a given CP overhead of 6.67%. Specifically, please refer to Table 1:
  • ETU Extended Typical Urban Model
  • EVA Extended Vehicular A model
  • EPA Extended Pedestrian A model
  • the density of the RS of the 60kHZ shared CP frame structure adopted by the embodiment of the present invention is at that time.
  • the domain is more dense, and thus it is more resistant to channel estimation performance loss and inter-carrier interference (ICI) caused by high speed (fast channel time domain variation), in addition to its estimable frequency offset.
  • ICI inter-carrier interference
  • FIG. 14 is a schematic structural diagram of another radio frame obtained by processing a radio frame shown in FIG. 1212 according to a data processing method according to an embodiment of the present invention.
  • the radio frame shown in FIG. 14 adjusts the position of the RS symbol as compared with the radio frame shown in FIG. Specifically, one time slot of the radio frame includes two parts symmetrically, each part including three shared symbols 710 and two second type symbols (RS symbols) 720, and each RS symbol 720 is located in two adjacent shares. Between symbols 710.
  • Figures 11 to 13 follow the existing LTE standard and set a time slot to be 0.5 milliseconds. If the radio frame structure shown in FIG. 14 is adopted, the transmission time interval can be minimized to 0.25 ms, which includes the first three shared symbols and the first two second type symbols in FIG. 14, thereby adapting to low delay. Highly reliable service; at the same time, because the RS symbols are more evenly distributed in the time domain, it is easy to estimate the frequency offset.
  • the second type of symbol used for transmitting the reference signal is at least based on the foregoing embodiments. Two, one of which is used to transmit the duration of the second type of symbol of the reference signal, and is divided by the second CP before the other second type of symbols and the shared CP.
  • FIG. 15(a) is a schematic structural diagram of another radio frame obtained by processing the radio frame shown in FIG. 12 by the data processing method according to the embodiment of the present invention.
  • 15(b) to 15(c) are diagrams showing the structure of a radio frame of the second type of symbols in Fig. 15(a) at different positions.
  • FIG. 15(a) another radio frame structure is adopted in the data processing method in the embodiment of the present invention, that is, one of the second type symbols (RS symbols) 520 in FIG. 12 is used as a CP.
  • the radio frame structure shown in FIG. 15 is reduced by one RS symbol, and the duration of the RS symbols is evenly distributed to all of the first CP 810 and the second CP 820.
  • FIG. 15(b) to FIG. 15(c) simultaneously, wherein the position of the second type symbol 840 in the radio frame can be adjusted.
  • Table 2 is a comparison table of the CP duration and the supported channels of the three frame structures shown in Figs. 11, 12, and 15 for a given CP overhead of 6.67%.
  • each CP length is 5.56us, which improves the ability to resist channel delay extension during data transmission.
  • FIG. 16 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • one TTI is 1 ms, and the TTI includes a total of 18
  • the OFDM symbols include six second-type symbols 1610 with sub-carrier spacing of 60 kHz, and twelve shared symbols 1620, 1621, and 1622 with sub-carrier spacing of 15 kHz.
  • Each of the second type of symbols 1610 has a duration of 16.67 us for carrying pilot information.
  • Each of the shared symbols 1620, 1621 or 1622 may be preprocessed by the four 60 kHz first type symbols 510 shown in FIG. 5, each of which has a duration of 66.67 us.
  • the first shared symbol 1620 is used as automatic gain control (AGC), and the AGC refers to an automatic control method for automatically adjusting the gain of the amplifying circuit with the signal strength;
  • the 10 shared symbols 1621 are used for data transmission, and the last shared symbols 1622 are used as guard intervals (GPs).
  • Table 3 shows the specific parameters of the radio frame structure in a 10 MHz bandwidth configuration.
  • two adjacent RS symbols that is, the second type of symbols are separated by only two shared symbols, and the duration is about 150 us, thereby coping with high speed (fast channel time domain variation).
  • the resulting channel estimation performance loss capability is very strong, in addition to its estimated frequency offset range is also very large, 3.5 kHz.
  • the first CP before the symbol is shared and the second CP before the second symbol are longer than 5us, so the ability to resist ISI is also strong.
  • FIG. 17 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • the radio frame structure shown in FIG. 17 is a first CP 920 after being converted into two shared symbols 910 by two 60 kHZ first type symbols (data symbols) 510.
  • FIGs. 18(a) and 18(b) are schematic diagrams showing another radio frame structure used in the data processing method according to the embodiment of the present invention.
  • the radio frame shown in Figs. 18(a) and 18(b) is a frame structure adapted to a self-contained design.
  • the self-contained frame structure design needs to have the protection interval of the uplink and downlink conversion, the data information, the uplink and downlink control information or the feedback information in the same frame, so that the uplink of the communication can be completed in each frame. Or downlink feedback.
  • the guard interval is a guard interval for converting between downlink transmission and uplink transmission in the TDD mode, and is used to avoid interference between downlink and uplink.
  • the shared symbol 1010 converted by the first type symbol 520 shown in FIG. 12 is used for transmitting uplink or downlink data
  • the second type of symbol. 1020 can be used to send uplink/downlink control information or uplink/downlink RS.
  • one of the RS symbols may be used as a guard interval for uplink/downlink handover or a control signal for transmitting uplink/downlink.
  • the data symbols of the partially shared CP or the independent RS symbols may also be used for uplink or downlink control signal transmission.
  • the radio frame structures shown in FIGS. 13-16 can be regarded as sharing a first CP every four 60 kHZ data symbols.
  • the number of data symbols sharing the first CP can be adjusted according to data transmission requirements. As shown in FIG. 17, two 60 kHZ data symbols may share one first CP. Alternatively, it is also possible to expand to five 75kHZ data symbols to share a first CP, or six 90kHZ data symbols to share a first CP.
  • Table 4 shows the bandwidth of 20M and the sampling rate is 30.72 megabits per second (Mbps) (existing LTE)
  • Mbps megabits per second
  • the sampling rate and common bandwidth are the parameter lists of the various radio frame structures in FIGS. 13-18.
  • the parameters of the various embodiments in the above table can be applied to the frequency band below 6 GHz (Sub 6G).
  • Sub 6G In order to be suitable for high frequency (6G or more), higher speed, larger bandwidth or severe phase noise, all subcarrier spacings can be increased in proportion.
  • FIG. 19 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • the duration of the shared symbol 1110 is 59.26 microseconds
  • the duration of the second type of symbol 1120 is 14.81 microseconds
  • the first CP1130 and the The second CP1140 has a duration of 5 microseconds.
  • some of the second type of symbols 1120 may be used to send uplink or downlink data.
  • FIG. 20 is a schematic diagram of another radio frame structure used in a data processing method according to an embodiment of the present invention.
  • the subcarrier spacing is 17.5 kHz
  • the duration of the shared symbol 1210 is 57.14 microseconds
  • the duration of the second type of symbol 1220 is 14.29 microseconds.
  • a CP1130 and the second CP1140 have a duration of 5.95 microseconds.
  • all subcarrier spacings in FIGS. 19 and 20 can be enlarged by n times (the corresponding all symbols and CP duration are reduced by n times.
  • the CP length of each symbol in the same frame format is as close as possible or uniform.
  • the ratio of the length of the CP added before each symbol may be the same as the ratio of the length between the symbols. For example, if the ratio of the shared symbol to the second type of symbol is 4:1, the CP length can also be configured to be 4:1.
  • 21(a) and 21(b) are diagrams showing another radio frame structure used in the data processing method according to an embodiment of the present invention.
  • Narrow subcarrier spacing symbols may have some resource waste (ie, 15K subcarriers) in order to align the guard interval of the uplink and downlink transitions of the wide subcarrier spacing symbol (eg, 60K subcarrier spacing) (time length is symbol level)
  • the interval requires an entire 15K symbol as the guard interval for the transition, while in practice only the guard interval of the transition of 60K symbol length may be required).
  • the frame structure described in the above embodiments of the present invention can efficiently implement a Self-Contain design in which a plurality of numerologies coexist.
  • the shared symbol 2010 is used as a downlink transmission (including control, data, and pilot), and the second type of symbol 2020 is used as a guard interval and uplink control for uplink and downlink conversion.
  • Figure 21 As shown in (b), in the case of uplink traffic, the shared symbol 2030 is used for uplink control, and the second type of symbol 2040 is used for guard interval and uplink transmission (including transmission control information, data, and pilot information) for uplink and downlink transitions.
  • the number, length and position of the first type of symbols and the second type of symbols in the above embodiments are merely exemplary and are not limited thereto.
  • a person skilled in the art can set the specific number of the first type of symbols and the second type of symbols according to the structure of the radio frame and the actual requirements of the data transmission.
  • the data processing method of the embodiment of the present invention further includes:
  • the receiving end receives the data sent by the sending end, where the data includes: the sending end preprocesses the data transmitted on the at least two first type symbols serially in the time domain in the wireless frame to obtain a shared symbol. And data obtained by sequentially performing an inverse fast Fourier transform IFFT processing and adding a common cyclic prefix CP to the data transmitted on the shared symbol; wherein the data transmitted on the shared symbol includes the at least two Data transmitted on the first type of symbol;
  • S106 The receiving end removes the first CP added before the data transmitted on the shared symbol.
  • the receiving end performs Fast Fourier Transform (FFT) processing on the data transmitted on the shared symbol after the first CP is removed.
  • FFT Fast Fourier Transform
  • S108 The receiving end performs inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain the at least two transmissions on the first type symbol serially in the time domain. data.
  • the receiving end performs inverse Fourier transform, parallel string conversion, global inverse Fourier transform, Hadamard inverse matrix or unit inverse matrix on at least two parallel first type symbols in the radio frame.
  • the transmitted data is subjected to inverse processing of the pre-processing.
  • the radio frame further includes at least one second type of symbol, the time length of the second type of symbol is less than the length of time of the shared symbol, and the sending end is received by the receiving end.
  • the data sent also includes:
  • the transmitting end preprocesses data transmitted on at least two first type symbols serially in the time domain in the wireless frame to obtain data transmitted on a shared symbol, including: And transmitting, by the first type of sub-symbol, the data transmitted on the first shared symbol obtained by the pre-processing and the data transmitted on the second shared symbol obtained by the pre-processing of the second-type sub-symbol;
  • the receiving end removes the second first CP before the data transmitted on the first first CP and the second shared symbol before the data transmitted on the first shared symbol;
  • the receiving end performs fast Fourier transform FFT processing on the data transmitted on the shared symbol after the first CP is removed, including:
  • the receiving end performs FFT processing on the first shared symbol from which the first first CP is removed and the second shared symbol from which the second first CP is removed;
  • the receiving end performs inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain data of the at least two first-type symbols serially transmitted in the time domain, include:
  • the receiving end performs the precoding processing on the first shared symbol after the FFT processing, to obtain data transmitted on the at least two first type sub-symbols;
  • the receiving end performs the precoding process on the second shared symbol subjected to the FFT processing to obtain data transmitted on the at least two second type sub-symbols.
  • the receiving end performs the opposite operation on the received data to the data sent by the sending end, so as to implement separation of data transmitted on the first type of symbol, and then adopt and existing The same processing flow at the receiving end can realize the restoration of the data sent by the transmitting end.
  • the data transmitted on the at least two parallel first type symbols is preprocessed by the transmitting end, and the data transmitted on the at least two parallel first type symbols is preprocessed by the transmitting end.
  • Converting to data transmitted on the shared symbol and adding a first CP to the data transmitted on the shared symbol can reduce the number of CPs added in the wireless frame.
  • the medium proportional voltage is compared with the prior art.
  • the embodiment of the present invention can ensure that the total duration of the CP is constant, that is, the CP overhead is constant, and the duration of each CP is larger than that in the prior art.
  • the length of the CP after proportional compression can be extended against larger channel delay and improve the coverage of signal transmission.
  • the embodiment of the invention further provides a data processing method, the method comprising:
  • the transmitting end sends the information to the receiving end by using a hybrid frame structure, where the information includes at least one of service data, control information, or a reference signal, where the mixed frame structure includes: a shared symbol and a second type of symbol, where the shared symbol is A first CP is added, and a second CP is added before the second type of symbol, and the length of the shared symbol is greater than the length of the second type of symbol.
  • a difference between a length of the first CP and a length of the second CP is less than a preset threshold, so that the shared symbol and the length of each CP added before the second type of symbol are as close as possible, thereby The ability to guarantee the anti-ISI of each symbol in the radio frame is similar or the same.
  • the length of the first CP and the length of the second CP are also n:1, where n is greater than 1 . That is to say, the length ratio between the CPs added before each symbol can also be consistent with the length ratio between the symbols, so that the alignment between the symbols is better in the coexistence of various numerologies, that is, the example in FIG. .
  • the embodiment of the invention further provides a data processing method, the method comprising:
  • the receiving end receives the information sent by the sending end by using a hybrid frame structure, where the information includes at least one of service data, control information, or a reference signal, where the mixed frame structure includes: a shared symbol and a second type of symbol, the shared symbol A first CP is added before, and a second CP is added before the second type of symbol, and the length of the shared symbol is greater than the length of the second type of symbol.
  • the data processing method provided by the embodiment of the present invention is similar to the technical effect of the data processing method provided by the foregoing method embodiment, and details are not described herein again.
  • FIG. 22 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a data processing apparatus, where the apparatus includes:
  • the processing module 2110 is configured to preprocess data transmitted on at least two first type symbols serially in a time domain in a radio frame, and convert data transmitted on the at least two first type symbols into one Sharing data transmitted on the symbol; the data transmitted on the shared symbol includes data transmitted on the at least two first type symbols;
  • the processing module 2110 is further configured to perform inverse fast Fourier transform IFFT processing on the data transmitted on the shared symbol;
  • the processing module 2110 is further configured to add a first CP to the data transmitted on the shared symbol after the IFFT processing;
  • the sending module 2120 is configured to send data transmitted on the shared symbol after the first CP is added to the receiving end.
  • the radio frame further includes at least one second type of symbol, and the time length of the second type of symbol is less than the length of time of the shared symbol; the processor 2110 is further configured to:
  • the processor 2110 is configured to:
  • the data transmitted on at least two parallel first-class symbols in the radio frame is pre-processed by an interleaving process Fourier transform, a serial-to-parallel transform, an overall Fourier transform, a Hadamard matrix, or an identity matrix.
  • the first type of symbol is used to transmit uplink data or downlink data
  • the second type of symbol is used to transmit a reference signal, or information used to control uplink data transmission or downlink data transmission, or In the time division duplex TDD mode, it acts as a guard interval for uplink and downlink conversion.
  • the data transmitted on the first type of symbol is uplink data
  • the processing module 2110 is further configured to:
  • Discrete Fourier transform is performed on at least two input data to obtain data transmitted on the first type of symbol.
  • the data transmitted on the first type of symbol is downlink data
  • the processing module 2110 is further configured to:
  • the at least two input data are serial-to-parallel converted to obtain data transmitted on the first type of symbol.
  • the data processing apparatus provided by the embodiment of the present invention is used to perform the data processing method provided by the foregoing method embodiment, and the specific implementation manner and the technical effect of the implementation are similar to the method embodiment, and details are not described herein again.
  • FIG. 23 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • another embodiment of the present invention further provides a data processing apparatus, where the apparatus includes:
  • the receiving module 2210 is configured to receive data sent by the sending end, where the data includes: the sending end preprocesses data transmitted on at least two first type symbols serially in the time domain in a wireless frame to obtain a shared symbol. Data transmitted on the shared symbol, performing inverse fast Fourier transform IFFT processing and data obtained after adding the first CP; wherein the data transmitted on the shared symbol includes the at least two Data transmitted on the first type of symbol;
  • the processing module 2220 is configured to remove the first CP added before the data transmitted on the shared symbol
  • the processing module 2220 is further configured to: perform fast Fourier transform FFT processing on data transmitted on the shared symbol after removing the first CP;
  • the processing module 2220 is further configured to perform inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain the at least two first classes serialized in the time domain.
  • the data transmitted on the symbol is further configured to perform inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain the at least two first classes serialized in the time domain. The data transmitted on the symbol.
  • the radio frame further includes at least one second type of symbol, and the time length of the second type of symbol is less than the length of time of the shared symbol.
  • the processing module 2220 is further configured to:
  • the processing module 2220 is configured to:
  • the first type of symbol is used to transmit uplink or downlink data
  • the second type of symbol is used to transmit a reference signal, or to control uplink data transmission or downlink data transmission information, or as a time division. Up and down switching points in duplex TDD mode.
  • the data transmitted on the first type of symbol is uplink data
  • the processing module 2220 is further configured to:
  • the data transmitted on the first type of symbol is downlink data
  • the processing module 2220 is further configured to:
  • the data processing apparatus provided by the embodiment of the present invention is used to perform the data processing method provided by the foregoing method embodiment, and the specific implementation manner and the technical effect of the implementation are similar to the method embodiment, and details are not described herein again.
  • FIG. 24 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • another embodiment of the present invention further provides a data processing apparatus 2300, including: a sending module 2310, where the processing apparatus sends information to a receiving end by using a mixed frame structure, where the information includes service data, control information, or At least one of the reference signals, the hybrid frame structure includes: a shared symbol and a second type of symbol, the shared symbol is preceded by a first cyclic prefix CP, and the second type of symbol is preceded by a second CP. The length of the shared symbol is greater than the length of the second type of symbol.
  • the difference between the length of the first CP and the length of the second CP is less than a preset threshold.
  • the length ratio of the shared symbol to the second type of symbol is n:1, and the length of the first CP and the length of the second CP are also n:1, wherein , n is greater than 1.
  • the data processing apparatus provided by the embodiment of the present invention sends a message to the receiving end by using a hybrid frame structure, where the hybrid frame structure includes: a shared symbol and a second type of symbol, and the first cyclic prefix CP is added before the shared symbol.
  • the second type of symbol is preceded by a second CP, and the length of the shared symbol is greater than the length of the second type of symbol.
  • the hybrid real structure adopted by the data processing apparatus provided by the present invention can reduce the number of CPs added in the radio frame.
  • the embodiment of the present invention can ensure that the total duration of the CP is constant, that is, the CP overhead is constant, and the duration of each CP is greater than the current duration.
  • the length of the CP after equal compression can be used against large channel delay spread and improve the coverage of signal transmission.
  • FIG. 25 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • another embodiment of the present invention further provides a data processing apparatus 2400, including a receiving module 2410, configured to: receive, by using a hybrid frame structure, information sent by a sending end, where the information includes service data.
  • the hybrid frame structure includes: a shared symbol and a second type of symbol, the shared symbol is preceded by a first CP, and the second type of symbol is preceded by a second CP The length of the shared symbol is greater than the length of the second type of symbol.
  • the difference between the length of the first CP and the length of the second CP is less than a preset threshold.
  • the length ratio of the shared symbol to the second type of symbol is n:1, and the length of the first CP and the length of the second CP are also n:1, wherein , n is greater than 1.
  • the receiving module receives the information sent by the sending end by using a hybrid frame structure, where the mixed frame structure includes: a shared symbol and a second type of symbol, where the shared symbol is preceded by a first CP, and the second type of symbol is added with a first
  • the second CP the length of the shared symbol is greater than the length of the second type of symbol.
  • the hybrid frame structure adopted by the data processing apparatus provided by the embodiment of the present invention can reduce the number of CPs added in the radio frame. When the sub-carrier spacing is increased, the length of the symbol is shortened, the embodiment of the present invention can ensure that the total duration of the CP is constant, that is, the CP overhead is constant, and the duration of each CP is greater than the current duration.
  • the length of the CP after equal compression can be used against large channel delay spread and improve the coverage of signal transmission.
  • FIG. 26 is a schematic structural diagram of a data processing apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention further provides a data processing apparatus, where the apparatus includes:
  • the processor 2610 is configured to preprocess data transmitted on at least two first type symbols serially in a time domain in one radio frame, and convert data transmitted on the at least two first type symbols into one Sharing data transmitted on the symbol; the data transmitted on the shared symbol includes data transmitted on the at least two first type symbols;
  • the processor 2610 is further configured to perform inverse fast Fourier transform IFFT processing on the data transmitted on the shared symbol;
  • the processor 2610 is further configured to add a first CP to the data transmitted on the shared symbol after the IFFT processing;
  • the transmitter 2620 is configured to send data transmitted on the shared symbol after the first CP is added to the receiving end.
  • the data processing apparatus provided by the embodiment of the present invention is used to perform the data processing method provided by the foregoing method embodiment, and the specific implementation manner and the technical effect of the implementation are similar to the method embodiment, and details are not described herein again.
  • FIG. 27 is a schematic structural diagram of a data processing apparatus according to another embodiment of the present invention.
  • another embodiment of the present invention further provides a data processing apparatus, where the apparatus includes:
  • the receiver 2710 is configured to receive data sent by the sending end, where the data includes: the sending end preprocesses data transmitted on at least two first type symbols serially in the time domain in a wireless frame to obtain a shared symbol. Data transmitted on the shared symbol, performing inverse fast Fourier transform IFFT processing and data obtained after adding the first CP; wherein the data transmitted on the shared symbol includes the at least two Data transmitted on the first type of symbol;
  • the processor 2720 is configured to remove the first CP added before the data transmitted on the shared symbol
  • the processor 2720 is further configured to: perform fast Fourier transform FFT processing on data transmitted on the shared symbol after removing the first CP;
  • the processor 2720 is further configured to perform inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain the at least two first classes serialized in the time domain.
  • the data transmitted on the symbol is further configured to perform inverse processing of the pre-processing on the data transmitted on the shared symbol after the FFT processing, to obtain the at least two first classes serialized in the time domain.
  • the data transmitted on the symbol is used to perform the data processing method provided by the foregoing method embodiment, and the specific implementation manner and the technical effect of the implementation are similar to the method embodiment, and details are not described herein again.
  • the aforementioned program can be stored in a readable storage medium of a computer, mobile phone or other portable device.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Communication Control (AREA)

Abstract

本发明实施例提供一种数据处理方法及装置,所述方法包括:发送端对无线帧中并行的至少两个第一类符号上传输的数据进行预处理,将所述并行的至少两个第一类符号上传输的数据转换为共享符号上传输的数据;所述发送端对所述共享符号上传输的数据添加第一CP;并将所述添加了第一CP的共享符号上传输的数据发送给接收端。

Description

数据处理方法及装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种数据处理方法及装置。
背景技术
时延扩展在无线通信***中进行数据传输时,数据经过不同传播路径到达接收端会产生信道时延,从而导致传输的数据产生符号间干扰(Inter-symbol Interference,简称ISI),影响数据传输质量。
为了避免采用复杂的均衡处理方式消除ISI,长期演进(Long Term Evolution,简称LTE)***在无线帧中引入了循环前缀(Cyclic Prefix,简称CP),即在组成所述无线帧的每个符号前添加CP,用以对抗信道的时延扩展。随着通信技术的发展,为了实现低时延高可靠通信或者高速移动场景下的通信,需要调大子载波间隔。当子载波间隔增大时,无线帧中每个符号的时间长度将等比例缩短。为了保证CP的开销不变,目前将每个符号前添加的CP的时长按照每个符号的时间长度的缩短比例进行等比例压缩。
但是,若采用这种等比例压缩CP时长的数据处理方式,由于CP的时长变短,将导致数据传输过程中可对抗的时延扩展也等比例变小,从而使数据传输的覆盖范围变小。
发明内容
本发明实施例提供一种数据处理方法及装置,用以解决现有技术中,当子载波间隔增大时,数据传输过程中可对抗的时延扩展变小,导致数据传输的覆盖范围变小的问题。
第一方面,本发明实施提供一种数据处理方法,包括:
发送端对一个无线帧中在时域上串行的至少两个的第一类符号上传输的数据进行预处理,将所述至少两个第一类符号上传输的数据转换为一 个共享符号上传输的数据;所述共享符号上传输的数据包括所述两个以上的第一类符号上传输的数据;
所述发送端对所述共享符号上传输的数据进行快速傅里叶逆变换IFFT处理;
所述发送端对经过IFFT处理后的所述共享符号上传输的数据添加第一循环前缀CP;
所述发送端将所述添加了第一CP后的所述共享符号上传输的数据发送给接收端。
在上述实施例的基础上,所述无线帧还包括一个或多个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述方法还包括:
所述发送端对所述第二类符号上传输的数据添加第二CP;
所述发送端将添加了所述第一CP的所述共享符号上传输的数据发送给接收端,包括:
所述发送端将添加了所述第二CP的所述一个或多个第二类符号上传输的数据及所述添加了第一CP的共享符号上传输的数据发送给所述接收端。
在上述实施例的基础上,所述发送端对无线帧中在时域上串行的第一类符号上传输的数据进行预处理,包括:
所述发送端通过交织处理傅里叶变换、串并转换、整体傅里叶变换、哈达玛矩阵或单位矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行预处理。
在上述实施例的基础上,所述第一类符号用于传输上行数据或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输的信息,或在时分双工TDD模式下作为上下行转换的保护间隔。
在上述实施例的基础上,所述第一类符号上传输的数据为上行数据,则所述发送端对无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理之前,还包括:
所述发射端对至少两个输入数据进行离散傅里叶变换,得到所述第一类符号上传输的数据。
在上述实施例的基础上,所述第一类符号上传输的数据为下行数据,则所述发送端对无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理之前,还包括:
所述发射端将至少两个输入数据进行串并转换,得到所述第一类符号上传输的数据。
第二方面,本发明实施例还提供一种数据处理方法,包括:
接收端接收发送端发送的数据;所述数据包括,发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,进行快速傅里叶逆变换IFFT处理及添加第一CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
所述接收端去除所述共享符号上传输的数据前添加的所述第一CP;
所述接收端对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理;
所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。
在上述实施例的基础上,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述接收端接收到的所述发送端发送的数据中还包括:
所述发送端对所述无线帧中所述至少一个第二类符号中每一个上传输的时域数据前分别添加第二CP后得到的数据。
在上述实施例的基础上,所述接收端对所述去除了第一CP后的数据进行所述预处理的逆处理,包括:
所述接收端通过傅里叶变换逆变换、并串转换、整体傅里叶逆变换、哈达玛逆矩阵或单位逆矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行所述预处理的逆处理。
在上述实施例的基础上,所述第一类符号用于传输上行或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输信息,或作为时分双工TDD模式下上下行转换的保护间隔。
在上述实施例的基础上,所述第一类符号上传输的数据为上行数据,则所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据之后,还包括:
所述接收端对所述第一类符号上传输的数据进行离散傅里叶逆变换,得到至少两个输出数据。
在上述实施例的基础上,所述第一类符号上传输的数据为下行数据,则所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据之后,还包括:
所述接收端对所述第一类符号上传输的数据进行并串转换,得到至少两个输出数据。
第三方面,本发明实施例还提供一种数据处理方法,包括:发送端采用混合帧结构向接收端发送信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
在上述实施例的基础上,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
在上述实施例的基础上,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
第四方面,本发明实施例还提供一种数据处理方法,包括:接收端采用混合帧结构接收发送端发送的信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
在上述实施例的基础上,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
在上述实施例的基础上,所述共享符号与所述第二类符号的长度比例 为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
第五方面,本发明实施例还提供一种数据处理装置,包括:
处理模块,用于对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理,将所述至少两个第一类符号上传输的数据转换为一个共享符号上传输的数据;所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
所述处理模块,还用于对所述共享符号上传输的数据进行快速傅里叶逆变换IFFT处理;
所述处理模块,还用于对经过IFFT处理后的所述共享符号上传输的数据添加第一循环前缀CP;
发送模块,用于将所述添加了第一CP后的所述共享符号上传输的数据发送给接收端。
在上述实施例的基础上,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述处理器还用于:
对所述第二类符号上传输的数据添加第二CP;
将添加了所述第二CP的所述至少一个第二类符号上传输的数据及所述添加了第一CP的共享符号上传输的数据发送给所述接收端。
在上述实施例的基础上,所述处理器,用于:
通过交织处理傅里叶变换、串并转换、整体傅里叶变换、哈达玛矩阵或单位矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行预处理。
在上述实施例的基础上,所述第一类符号用于传输上行数据或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输的信息,或在时分双工TDD模式下作为上下行转换的保护间隔。
在上述实施例的基础上,所述第一类符号上传输的数据为上行数据,所述处理模块,还用于:
对至少两个输入数据进行离散傅里叶变换,得到所述第一类符号上传输的数据。
在上述实施例的基础上,所述第一类符号上传输的数据为下行数据,则所述处理模块,还用于:
将所述至少两个输入数据进行串并转换,得到所述第一类符号上传输的数据。
第六方面,本发明实施例还提供一种数据处理装置,包括:
接收模块,用于接收发送端发送的数据;所述数据包括,发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,进行快速傅里叶逆变换IFFT处理及添加第一CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
处理模块,用于去除所述共享符号上传输的数据前添加的所述第一CP;
所述处理模块,还用于:对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理;
所述处理模块,还用于:对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。
在上述实施例的基础上,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述处理模块,还用于:
对所述无线帧中所述至少一个第二类符号中每一个上传输的数据分别添加第二CP后得到的数据。
在上述实施例的基础上,所述所述处理模块,用于:
通过傅里叶变换逆变换、并串转换、整体傅里叶逆变换、哈达玛逆矩阵或单位逆矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行所述预处理的逆处理。
在上述实施例的基础上,所述第一类符号用于传输上行或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输信息,或作为时分双工TDD模式下的上下行切换点。
在上述实施例的基础上,所述第一类符号上传输的数据为上行数据, 则所述处理模块,还用于:
对所述第一类符号上传输的数据进行离散傅里叶逆变换,得到至少两个输出数据。
在上述实施例的基础上,所述第一类符号上传输的数据为下行数据,则所述处理模块,还用于:
对所述第一类符号上传输的数据进行并串转换,得到至少两个输出数据。
第七方面,本发明实施例还提供一种数据处理装置,包括发送模块,所述发送模块用于:采用混合帧结构向接收端发送信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
在上述实施例的基础上,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
在上述实施例的基础上,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
第八方面,本发明实施例还提供一种数据处理装置,包括接收模块,所述接收模块用于:采用混合帧结构接收发送端发送的信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
在上述实施例的基础上,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
在上述实施例的基础上,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
第九方面,本发明实施例还提供一种数据处理装置,包括:
处理器,用于对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理,以将所述至少两个第一类符号上传输的数据转换 为一个共享符号上传输的数据;所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
所述处理器,还用于对所述共享符号上传输的数据进行快速傅里叶逆变换IFFT处理;
所述处理器,还用于对经过IFFT处理后的所述共享符号上传输的数据添加第一循环前缀CP;
发送器,用于将所述添加了第一CP后的所述共享符号上传输的数据发送给接收端。
第十方面,本发明实施例还提供一种数据处理装置,包括:
接收器,用于接收发送端发送的数据;所述数据包括,发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,进行快速傅里叶逆变换IFFT处理及添加第一CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
处理器,用于去除所述共享符号上传输的数据前添加的所述第一CP;
所述处理器,还用于:对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理;
所述处理器,还用于:对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。
本发明实施例提供的数据处理方法及装置,通过发送端对无线帧中至少两个并行的第一类符号上传输的数据进行预处理,将所述至少两个并行的第一类符号上传输的数据转换为共享符号上传输的数据,并对所述共享符号上传输的数据添加第一CP,可以减少所述无线帧中添加的CP的数量。当子载波间隔增大导致符号的时间长度缩短的情况下,与现有技术中等比例压缩每个符号的CP长度的方案相比,本发明实施例通过减少CP的数量,可以保证CP的总时长不变,即CP开销不变;同时,每个CP的时长大于现有技术中经过等比例压缩后的CP的时长,可以对抗较大的信道时延扩展,提高信号传输的覆盖范围。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的数据处理方法的流程示意图;
图2为本发明实施例数据处理方法的另一种流程示意图;
图3为本发明实施例中发送下行数据时第一类符号的形成过程示意图;
图4为本发明实施例中发送上行数据时第一类符号的形成过程示意图;
图5为本发明实施例数据处理方法对下行数据进行处理的流程示意图;
图6为本发明实施例数据处理方法对上行数据进行处理的流程示意图;
图7为本发明另一实施例数据处理方法对下行数据进行处理的流程示意图;
图8为本发明另一实施例数据处理方法对上行数据进行处理的流程示意图;
图9为本发明另一实施例数据处理方法对下行数据进行处理的流程示意图;
图10为本发明另一实施例数据处理方法对下行数据进行处理的流程示意图;
图11为现有LTE标准采用15kHZ子载波间隔时上行采用的1时隙下的无线帧的结构示意图;
图12为在图4基础上采用60kHZ子载波间隔进行等比例缩放的无线帧的结构示意图;
图13为本发明实施例数据处理方法对图5所示的无线帧进行处理后得到的无线帧的结构示意图;
图14为本发明实施例数据处理方法对图5所示的无线帧进行处理后得到的另一种无线帧的结构示意图;
图15(a)为本发明实施例数据处理方法对图5所示的无线帧进行处理后得到的另一种无线帧的结构示意图;
图15(b)-图15(c)为图15(a)中的第二类符号在不同位置时的无线帧结构的示意图;
图16为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图;
图17为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图;
图18(a)及图18(b)为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图;
图19为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图;
图20为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图;
图21(a)和图21(b)为本发明实施例数据处理方法中另一种无线帧结构的示意图;
图22为本发明实施例数据处理装置的结构示意图;
图23为本发明另一实施例数据处理装置的结构示意图;
图24为本发明另一实施例数据处理装置的结构示意图;
图25为本发明另一实施例数据处理装置的结构示意图;
图26为本发明另一实施例数据处理装置的结构示意图;
图27为本发明另一实施例数据处理装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在无线通信***中进行数据传输时,数据经过不同传播路径到达接收端产生的信道时延会导致数据产生符号间干扰(Inter-symbol Interference,简称ISI),影响数据传输质量。为了消除ISI,长期演进(Long Term Evolution,简称LTE)***引入了循环前缀(Cyclic Prefix,简称CP),即在无线帧的每个符号前添加CP,用以对抗信道的时延扩展。随着通信技术的发展,为了实现低时延高可靠通信或者高速移动场景下的通信,需要调大子载波间隔。当子载波间隔增大时,无线帧中每个符号的时间长度将等比例缩短。为了保证CP的开销不变,则需要将每个符号前添加的CP的时长按照每个符号的时间长度的缩短比例进行等比例压缩。但是,采用这种等比例压缩CP时长的数据处理方式,由于CP的时长变短,将导致数据传输过程中可对抗的时延扩展也等比例变小,从而使数据传输的覆盖范围变小。
本发明实施例提供一种数据处理方法及装置,用于在保证合理的CP开销的前提下实现较好的对抗时延扩展(即消除ISI)能力,保证数据传输的覆盖范围。
图1为本发明实施例数据处理方法的流程示意图。图2为本发明实施例数据处理方法的另一种流程示意图。
请参阅图1及图2,本发明实施例数据处理方法包括:
S101:发送端通过对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理,将所述至少两个第一类符号上传输的数据转换为一个共享符号上传输的数据;所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据。
具体地,所述发送端为基站,所述接收端为用户设备,或者所述发送端为用户设备,所述接收端为基站,或者所述发送端及所述接收端可以均为用户设备。所述发送端和接收端用以实现基站与用户设备之间的数据传输或者用户设备与用户设备之间的数据传输。所述发送端或所述接收端也可以就是芯片,来实现所述发送端或所述接收端的功能。
图3为本发明实施例中发送下行数据时第一类符号的形成过程示意图。
请参阅图3,对于下行多载波应用场景,即,传输下行数据时,将n个调制后的输入数据进行n点串并转换形成所述第一类符号上传输的数据x1-xn。其中,x表示所述第一类符号上传输的数据,n表示所述第一类上传输的数据的数量,n为大于等于1的整数。其中,本发明所述的调制可以是现有任意成熟的调制技术,比如当前LTE***采用的正交相移键控(Quadrature Phase Shift Keying,QPSK)调制,正交幅度调制(QAM,Quadrature Amplitude Modulation)等。
图4为本发明实施例中发送上行数据时第一类符号的形成过程示意图。
请参阅图4,对于上行单载波应用场景,将n个调制后的输入数据进行n点离散傅里叶变换(Discrete Fourier Transform,简称:DFT变换)后进行串并转换形成所述第一类符号上传输的数据x1-xn
具体地,LTE的一个无线帧中包括两个或多个在时域上串行的第一类符号1-m(如图1),m为大于等于1的整数。所述两个或多个第一类符号上传输的数据经过预处理后可以共享同一个CP。所述发射端对所述两个或多个第一类符号上传输的数据进行预处理,用于将所述两个或多个串行的第一类符号上传输的数据转换为一个共享符号上传输的数据。所述共享符号中的数据包括所述两个或多个第一类符号上传输的数据,即,所述两个或多个第一类符号上传输的数据在所述共享符号对应的频域上展开。
可选地,所述发送端可以通过交织傅里叶变换、串并转换、整体傅里叶变换、哈达玛矩阵或单位矩阵对所述无线帧中的两个或多个并行的第一类符号上传输的数据进行预处理,具体处理过程参考图5~图10所示及下文描述。其中,所述第一类符号上传输的数据及所述第二类符号上传输的数据可以为下述至少一种组合:上行或者下行数据,上行或者下行参考信号(Reference Signal,简称RS)或上行或者下行控制信息。下面结合图5至图10对本发明实施例数据处理方法对所述无线帧中的两个或多个并行的第一类符号上传输的数据进行预处理的过程进行具体说明,其中涉及到的最为关键的两种操作或者子模块为串并转换和傅里叶变换:m点串并转换就是将m个串行形式的数据转换为并行形式的数据;m点或者m×n点的傅里叶变换就是现有经典的傅里叶变换标准做法。图5为本发明实施例 数据处理方法对下行数据进行处理的流程示意图。
请参阅图5,具体地,根据图3所示的方法对m组输入数据分别进行n点串并转换形成m个第一类符号,其中第j个第一类符号中的数据为x1,j,x2,j…xn,j,j取值为1到m,再通过串并转换的方式分别对每个所述第一类符号中第i个数据xi,1,xi,2…xi,m进行预处理得到所述共享符号,其中i取值为1到n。具体地,分别针对每组输入数据中的第i个数据xi,1,xi,2…xi,m进行m点串并转换得到所述共享符号,其中i取值为1到n。
图6为本发明实施例数据处理方法对上行数据进行处理的流程示意图。
请参阅图6,根据图4所示的方法对m组输入数据进行n点离散傅里叶变换形成m个第一类符号,其中第j个第一类符号中的数据为x1,j,x2,j…xn,j,j取值为1到m,再通过m点串并转换的方式分别对每个所述第一类符号中第i个数据xi,1,xi,2…xi,m进行预处理得到所述共享符号,其中i取值为1到n。最终得到所述共享符号上传输的时域数据为y0,y1.....,yN,,其中,y表示所述共享符号在时域上传输的数据样本点,N表示所述共享符号在时域上的数据样本点的数量。
图7为本发明另一实施例数据处理方法对下行数据进行处理的流程示意图。
请参阅图7,具体地,根据图3所示的方法对m组输入数据进行n点串并转换形成m个第一类符号,其中第j个第一类符号中的数据为x1,j,x2,j…xn,j,j取值为1到m,再通过交织DFT变换对所述第一类符号进行预处理得到所述共享符号。具体地,所述交织DFT变换是指分别针对每个所述第一类符号中第i个数据xi,1,xi,2…xi,m进行m点离散傅里叶变换DFT,其中i取值为1到n。
图8为本发明另一实施例数据处理方法对上行数据进行处理的流程示意图。
请参阅图8,具体地,根据图4所示的方法对m组输入数据分别进行n点离散傅里叶变换DFT形成m个第一类符号,其中第j个第一类符号中的数据为x1,j,x2,j…xn,j,j取值为1到m,再经过交织DFT变换对所述第一类符号进行预处理得到所述共享符号。具体地,所述交织DFT变换是指 分别针对每个所述第一类符号中第i个数据xi,1,xi,2…xi,m进行m点离散傅里叶变换DFT,其中i取值为1到n。
图9为本发明另一实施例数据处理方法对下行数据进行处理的流程示意图。
请参阅图9,具体地,根据图3所示的方法对m组输入数据进行n点串并转换形成m个第一类符号,其中第j个第一类符号中的数据为x1,j,x2,j…xn,j,j取值为1到m,再经过整体DFT变换的方式对所述第一类符号进行预处理得到所述共享符号。具体地,所述整体DFT变换是指针对所述m个第一类符号中的m×n个数据整体进行m×n点DFT变换。
图10为本发明另一实施例数据处理方法对下行数据进行处理的流程示意图。
请参阅图10,具体地,根据图4所示的方法对m组输入数据分别进行n点离散傅里叶变换形成m个第一类符号,其中第j个第一类符号中的数据为x1,j,x2,j…xn,j,j取值为1到m,再经过整体DFT变换后对所述第一类符号进行预处理得到所述共享符号。具体地,针对所述m组数据中的m×n个数据整体进行m×n点DFT变换。
需要说明的是,所述无线帧中用于进行所述预处理的数据可以为上行单载波频分多址(Single-carrier Frequency-Division Multiple Access,简称SC-FDMA)数据或下行正交频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)数据,也可以是滤波器组多载波(Filter Bank Multicarrier,简称FBMC)数据。
S102:所述发送端对经过预处理后得到的所述共享符号上传输的数据进行快速傅里叶逆变换(Inverse Fast Fourier Transform,简称IFFT)处理。所述IFFT处理用于产生OFDM时域信号。
S103:所述发送端对经过IFFT处理后的所述共享符号上传输的数据添加第一CP。
具体地,所述第一CP由所述两个或多个第一类符号上传输的数据共享,在所述至少两个第一类符号上传输的数据转换为所述共享符号上传输的数据后,所述第一CP添加于所述共享符号上传输的数据的前面,用于对抗所述两个或多个第一类符号上传输的数据在传输过程中产生的信道 时延扩展。例如,经过IFFT处理后的所述共享符号即S102输出的结果为y1,y2.....,yN,其中,y为所述共享符号内的数据样本点,N为所述共享符号在时域上的数据样本点的数量,则所述第一CP中的信号样本点为
Figure PCTCN2016080969-appb-000001
Figure PCTCN2016080969-appb-000002
其中Ncp为第一CP的样本点数。所述共享符号前添加了第一CP后输出的数据包括的数据样本点为
Figure PCTCN2016080969-appb-000003
S104:所述发送端将添加了第一CP的所述共享符号上传输的数据发送给接收端。
本发明实施例数据处理方法,和现有技术相比每个第一类符号都有一个CP,本发明实施例通过将多个第一类符号转换为一个共享符号再添加一个CP,使得无线帧中使用的CP数量减少,能够在保证不增加所有CP总时长(即CP开销)的情况下使得每个CP尽可能具有较大的时长,从而增强对抗信道时延扩展的能力。
在上述实施例的基础上,本发明实施例数据处理方法中采用的无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;
所述数据处理方法还包括:
所述发送端对所述第二类符号上传输的数据添加第二CP;
所述发送端将添加了所述第二CP的所述至少一个第二类符号上传输的数据及所述添加了第一CP的共享符号上传输的数据发送给所述接收端。
具体地,所述第一类符号用于发送上行或下行数据,所述第二类符号用于发送参考信号或控制信息。
可选地,为了节省无线帧的开销,所述第二类符号也可以用于发送上行或下行数据。
图11为现有LTE标准采用15kHZ子载波间隔时上行采用的1时隙下的无线帧的结构示意图;图12为在图4基础上采用60kHZ子载波间隔进行等比例缩放的无线帧的结构示意图;图13为本发明实施例数据处理方法对图5所示的无线帧进行处理后得到的无线帧的结构示意图。
具体地,请参阅图11-图13,本发明实施例数据处理方法是针对图5所示的无线帧进行处理,从而得到图6所示的无线帧结构。
具体地,如图12所示的无线帧包括第一类符号510及第二类符号520,每个第一类符号510及每个第二类符号520前面添加有CP530。
如图13所示,采用本发明实施例数据处理方法对图12所示的无线帧中的第一类符号510进行处理后,将图12中的多个第一类符号510转换为共享符号610,并在所述共享符号610的前面添加第一CP630。
所述第一类符号510为发送上行或下行数据的数据符号,所述第二类符号520用于承载RS、控制信息或者时间间隔。具体地,在本实施例中,以所述第二类符号520承载发送RS为例对本发明的方案进行详细描述。即,所述第二类符号520为RS符号。
相比于现有的无线帧结构,图13中采用的无线帧结构具有以下两方面优势:
1、在相同的CP开销下(现有LTE标准中CP开销为6.67%),相比于LTE直接缩放的60kHZ等比压缩方案,本发明实施例数据处理方法中采用的共享CP无线帧结构可以支持更长的CP,进而对抗多径时延的能力更强,支持的信道模型更多。表1为给定CP开销为6.67%的情况下,图11-图13所示三种帧结构的CP时长及支持信道的对比表。具体地,请参阅表1:
表1
Figure PCTCN2016080969-appb-000004
其中,ETU表示扩展典型城市信道模型(Extended Typical Urban model),EVA表示扩展车辆信道模型(Extended Vehicular A model),EPA表示扩展步行者信道模型(Extended Pedestrian A model)。2、给定RS符号的开销(RS符号数:数据符号数=1:6),相比于LTE现有15kHZ帧结构方案,本发明实施例采用的60kHZ共享CP帧结构的RS的密度在时域上更密集,进而对抗高速(快速信道时域变化)造成的信道估计性能损失和载波间干扰(Inter-Carrier Interference,简称:ICI)能力更强,除此之外,其可估计的频偏范围也更大。
图14为本发明实施例数据处理方法对图1212所示的无线帧进行处理后得到的另一种无线帧的结构示意图。
请参阅图7,图14所示的无线帧与图13所示的无线帧相比,对RS符号的位置进行了调整。具体地,所述无线帧的一个时隙包括对称的两部分,每部分包括三个共享符号710及两个第二类符号(RS符号)720,每个RS符号720位于相邻的两个共享符号710之间。
图11~13沿用LTE现有标准,设定一个时隙为0.5毫秒。若采用图14所示的无线帧结构,则可以将传输时间间隔最小缩短为0.25ms,其包含了图14中的前3个共享符号和前2个第二类符号,进而适配低时延高可靠业务;同时,由于RS符号在时域上分布更为均匀,便于频偏估计。
请参阅表1,由于采用上述各实施例中的无线帧结构,每个CP的长度相对于现有LTE 15kHZ帧结构的CP长度对抗时延扩展的能力仍然有部分损失。
因此,在上述各实施例的基础上,进一步地,为了保证数据传输过程中对抗时延扩展的能力,在上述各实施例的基础上,所述用于发送参考信号的第二类符号为至少两个,其中一个用于发送参考信号的所述第二类符号的时长,由所述其它第二类符号前的第二CP及所述共享CP均分。
图15(a)为本发明实施例数据处理方法对图12所示的无线帧进行处理后得到的另一种无线帧的结构示意图。图15(b)-图15(c)为图15(a)中的第二类符号在不同位置时的无线帧结构的示意图。
具体地,请参阅图15(a),本发明实施例数据处理方法中采用另一种无线帧结构,即,将图12中的其中的一个第二类符号(RS符号)520作为CP使用。相比于图13及图14所示的无线帧结构,图15所示的无线帧结构减少了一个RS符号,所述RS符号的时长均匀分配于所有的第一CP810及第二CP820。请同时参阅图15(b)-图15(c),其中,所述第二类符号840在所述无线帧中的位置可以进行调整。
表2为给定CP开销为6.67%的情况下,图11、图12及图15所示三种帧结构的CP时长及支持信道的对比表。
表2
  15kHZ帧结构 60kHZ等比缩放 60kHZ共享CP帧
    帧结构 结构
CP时长 4.76微秒 1.19us 5.56us
支持的信道模型 ETU,EVA,EPA EPA ETU,EVA,EPA
具体地,请参阅表2,采用图15所示帧结构,每个CP长度为5.56us,提升了数据传输过程中的抗信道时延扩展的能力。
图16为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图。
请参阅图16,在车联网(vehicle-to-vehicle,简称:V2V)应用场景下,本发明实施例数据处理方法中采用的无线帧结构中,1个TTI为1ms,所述TTI总共包含18个OFDM符号,其中,包括6个为子载波间隔为60kHz的第二类符号1610,及12个子载波间隔为15kHz的共享符号1620、1621及1622。每个所述第二类符号1610的时长为16.67us,用于承载导频信息。每个所述共享符号1620、1621或1622可以是由图5所示的4个60kHz的第一类符号510经过预处理后得到的,每个所述共享符号的时长为66.67us。所述12个共享符号1620中,其中第一个共享符号1620用作自动增益控制(automatic gain control,简称AGC),AGC是指使放大电路的增益自动地随信号强度而调整的自动控制方法;中间的10个共享符号1621用于数据传输,最后一个个共享符号1622用作保护间隔(GP)。
表3为10MHz带宽配置下所述无线帧结构的具体参数。
表3
Figure PCTCN2016080969-appb-000005
根据图16及表3可知,两个相邻RS符号即第二类符号之间间隔只有2个共享符号,时长约为150us,进而对抗高速(快速信道时域变化)造 成的信道估计性能损失能力很强,除此之外,其可估计的频偏范围也很大,为3.5kHz。而且共享符号前的第一CP和第二类符号前的第二CP时长都大于5us,因此其对抗ISI能力也很强。
图17为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图。
请参阅图17,本发明实施例中,将一个时隙的时长缩短为0.25毫秒,则数据符号长度与上述各实施例相比缩短了一半,抗ICI能力增强。同时,由于数据符号长度更接近RS符号长度,在信道估计中的频域插值性能更好。图17所示的无线帧结构是由两个60kHZ的第一类符号(数据符号)510转换为一个共享符号910后共享一个第一CP920。
图18(a)及图18(b)为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图。图18(a)及图18(b)所示的无线帧为适应自包含(self-contained)设计的帧结构。所述self-contained的帧结构设计,需要在同一帧内同时存在上下行转换的保护间隔、数据信息、上下行的控制信息或者反馈信息,如此在每一帧里就可以完成该次通信的上行或者下行反馈。其中所述的保护间隔为TDD模式中下行传输和上行传输之间转换的保护时间间隔,用于避免下行和上行之间的干扰。
具体地,请参阅图18(a)及图18(b),由图12所示的所述第一类符号520转化得到的共享符号1010用于发送上行或下行数据,所述第二类符号1020可以用于发送上行/下行控制信息或者上行/下行RS。本发明实施例中,可以将其中一个RS符号用作上下行切换的保护间隔或者用于传输上行/下行的控制信号。此外,还可以将部分共享CP的数据符号或者独立的RS符号用于上行或者下行的控制信号传输。
在上述各实施例中,图13-图16所示的无线帧结构均可以看做是每四个60kHZ的数据符号共享一个第一CP。在实际应用中,可以根据数据传输需求对共享第一CP的数据符号的数量进行调整。如图17所示,可以是两个60kHZ的数据符号共享一个第一CP。或者,还可以扩展为5个75kHZ的数据符号共享一个第一CP,或者,6个90kHZ的数据符号共享一个第一CP。
表4为以20M带宽、采样率为30.72兆比特每秒(Mbps)(现有LTE 的采样率和常用带宽)为例,图13-图18中的各种无线帧结构的参数列表。
表4
Figure PCTCN2016080969-appb-000006
上表中各实施例的参数,可以适用于6GHZ以下的频段(Sub 6G)。为了适用于高频(6G以上)、更高速、更大带宽或者相位噪声严重的场景,可以将所有子载波间隔等比变大。下面以子载波间隔放大因子为n举例:
表5
Figure PCTCN2016080969-appb-000007
图19为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图。
请参阅图19,为了支持高可靠低时延通信,除了增大子载波间隔以减小TTI长度外,也可以减少TTI的符号数以缩短TTI长度。为了更好的对齐或者缩放,应尽量使得1ms内的TTI数(可划分的最小TTI)为2n。图10为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图。
如图19所示,其中所述子载波间隔为16.875k赫兹,所述共享符号1110的时长为59.26微秒,所述第二类符号1120的时长为14.81微秒,所述第一CP1130及所述第二CP1140时长为5微秒。在本实施例中,为了节省开销,其中的部分第二类符号1120可以用于发送上行或下行数据。
图20为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图。
请参阅图20,另一实施例中,所述子载波间隔为17.5k赫兹,所述共享符号1210的时长为57.14微秒,所述第二类符号1220的时长为14.29微秒,所述第一CP1130及所述第二CP1140时长为5.95微秒。
同样地,为了适用于高频、更高速、更大带宽或者相位噪声严重的场景,可以将图19及图20中的所有子载波间隔放大n倍(相应的所有符号和CP时长缩小n倍。
以上实施例中,同一种帧格式下各符号的CP长度尽量接近或均匀。此外,各符号前添加的CP的长度的比例也可以与各符号之间的长度比例一致。例如,若所述共享符号与所述第二类符号长度比为4:1,则其CP长度也可以配置为4:1。
此外,在未来5G中,为了适应不同业务需求、部署场景等,可能在一段频谱内同时存在多种***参数numerology共存。
图21(a)和图21(b)为本发明实施例数据处理方法中采用的另一种无线帧结构的示意图。
请参阅图21(a)和图21(b),在多种***参数numerology共存的场景下,若采用LTE基线帧结构或者LTE基线等比缩放帧格式,则为了保持自包含Self-Contain特性,窄子载波间隔符号(例如15K子载波间隔)为了对齐宽子载波间隔符号(例如60K子载波间隔)的上下行转换的保护间隔(时间长度为符号级别)会有一些资源浪费(即15K子载波间隔需要一整个15K符号作为转换的保护间隔,而实际中可能只需要60K符号长度的转换的保护间隔)。本发明设计的上述各实施例所述的帧结构,可以高效地实现多种numerology共存的Self-Contain设计。如图21(a)所示,在下行业务为主下,共享符号2010用作下行传输(包括控制、数据和导频),第二类符号2020用作上下行转换的保护间隔和上行控制。如图21 (b)所示,在上行业务为主下,共享符号2030用作上行控制,第二类符号2040用作上下行转换的保护间隔和上行传输(包括传输控制信息、数据和导频信息)。
可以理解的是,上述实施例中所述第一类符号及所述第二类符号的数量、长度及位置仅仅为示例性说明,并不以此为限。本领域的技术人员可以根据无线帧的结构以及数据传输的实际需求对所述第一类符号及所述第二类符号的具体数量进行设置。
进一步地,本发明实施例数据处理方法还包括:
S105:接收端接收发送端发送的数据;所述数据包括,发送端对无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,依次进行快速傅里叶逆变换IFFT处理及添加公共循环前缀CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
S106:所述接收端去除所述共享符号上传输的数据前添加的所述第一CP。
S107:所述接收端对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换(Fast Fourier Transform,简称FFT)处理。
S108:所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。
具体地,所述接收端通过傅里叶变换逆变换、并串转换、整体傅里叶逆变换、哈达玛逆矩阵或单位逆矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行所述预处理的逆处理。
在上述实施例的基础上,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述接收端接收到的所述发送端发送的数据中还包括:
所述发送端对所述无线帧中每个所述第二类符号上传输的数据分别添加第二CP后得到的数据。
接收所述发送端对所述无线帧中每个所述第二类符号上传输的数据分别添加第二CP后得到的数据。
在上述实施例的基础上,所述发送端对无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,包括:所述第一类子符号经过所述预处理后得到的第一共享符号上传输的数据及所述第二类子符号经过所述预处理后得到的第二共享符号上传输的数据;
所述第一共享符号上传输的数据前添加有第一第一CP;所述第二共享符号上传输的数据前添加有第二第一CP;
所述接收端去除所述共享符号上传输的数据前添加的所述第一CP,包括:
所述接收端去除所述第一共享符号上传输的数据前的所述第一第一CP及所述第二共享符号上传输的数据前的所述第二第一CP;
所述接收端对去除了所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理,包括:
所述接收端对去除了所述第一第一CP的所述第一共享符号及去除了所述第二第一CP的所述第二共享符号进行FFT处理;
所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据,包括:
所述接收端对进行了所述FFT处理后的所述第一共享符号进行所述预编码的处理,得到所述至少两个第一类子符号上传输的数据;
所述接收端对进行了所述FFT处理后的所述第二共享符号进行所述预编码的处理,得到所述至少两个第二类子符号上传输的数据。
可以理解,所述接收端对所述接收到的数据执行与所述发送端对数据所做的相反的操作,即可实现所述第一类符号上传输的数据的分离,然后采用与现有接收端相同的处理流程即可实现发送端所发送的数据的复原。
本发明实施例提供的数据处理方法,通过发送端对无线帧中至少两个并行的第一类符号上传输的数据进行预处理,将所述至少两个并行的第一类符号上传输的数据转换为共享符号上传输的数据,并对所述共享符号上传输的数据添加第一CP,可以减少所述无线帧中添加的CP的数量。当子载波间隔增大导致符号的时间长度缩短的情况下,与现有技术中等比例压 缩每个符号的CP长度的方案相比,本发明实施例通过减少CP的数量,可以保证CP的总时长不变,即CP开销不变;同时,每个CP的时长大于现有技术中经过等比例压缩后的CP的时长,可以对抗较大的信道时延扩展,提高信号传输的覆盖范围。
本发明实施例还提供一种数据处理方法,所述方法包括:
发送端采用混合帧结构向接收端发送信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
具体地,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值,以使得所述共享符号及所述第二类符号前添加的各个CP的长度尽量接近,从而保证所述无线帧中每个符号的抗ISI的能力相近或一样。
或者,若所述共享符号与所述第二类符号的长度比例为n:1,则所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。也就是说,各符号前添加的CP之间的长度比例也可以与各符号之间的长度比例一致,从而使得在多种numerology共存下各符号之间较好的对齐,即图20中的例子。
本发明实施例还提供一种数据处理方法,所述方法包括:
接收端采用混合帧结构接收发送端发送的信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
本发明实施例提供的数据处理方法,与前述方法实施例提供的数据处理方法的技术效果类似,在此不再赘述。
图22为本发明实施例数据处理装置的结构示意图。
请参阅图22,本发明实施例还提供一种数据处理装置,所述装置包括:
处理模块2110,用于对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理,将所述至少两个第一类符号上传输的数据转换为一个共享符号上传输的数据;所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
所述处理模块2110,还用于对所述共享符号上传输的数据进行快速傅里叶逆变换IFFT处理;
所述处理模块2110,还用于对经过IFFT处理后的所述共享符号上传输的数据添加第一CP;
发送模块2120,用于将所述添加了第一CP后的所述共享符号上传输的数据发送给接收端。
在上述实施例的基础上,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述处理器2110还用于:
对所述第二类符号上传输的数据添加第二CP;
将添加了所述第二CP的所述至少一个第二类符号上传输的数据及所述添加了第一CP的共享符号上传输的数据发送给所述接收端。
在上述实施例的基础上,所述处理器2110,用于:
通过交织处理傅里叶变换、串并转换、整体傅里叶变换、哈达玛矩阵或单位矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行预处理。
在上述实施例的基础上,所述第一类符号用于传输上行数据或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输的信息,或在时分双工TDD模式下作为上下行转换的保护间隔。
在上述实施例的基础上,所述第一类符号上传输的数据为上行数据,所述处理模块2110,还用于:
对至少两个输入数据进行离散傅里叶变换,得到所述第一类符号上传输的数据。
在上述实施例的基础上,所述第一类符号上传输的数据为下行数据,则所述处理模块2110,还用于:
将所述至少两个输入数据进行串并转换,得到所述第一类符号上传输的数据。
具体地,本发明实施例提供的数据处理装置,用于执行上述方法实施例提供的数据处理方法,及具体实现方式及实现的技术效果与方法实施例类似,在此不再赘述。
图23为本发明另一实施例数据处理装置的结构示意图。
请参阅图23,本发明另一实施例还提供一种数据处理装置,所述装置包括:
接收模块2210,用于接收发送端发送的数据;所述数据包括,发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,进行快速傅里叶逆变换IFFT处理及添加第一CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
处理模块2220,用于去除所述共享符号上传输的数据前添加的所述第一CP;
所述处理模块2220,还用于:对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理;
所述处理模块2220,还用于:对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。
在上述实施例的基础上,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述处理模块2220,还用于:
对所述无线帧中所述至少一个第二类符号中每一个上传输的数据分别添加第二CP后得到的数据。
在上述实施例的基础上,所述处理模块2220,用于:
通过傅里叶变换逆变换、并串转换、整体傅里叶逆变换、哈达玛逆矩阵或单位逆矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行所述预处理的逆处理。
在上述实施例的基础上,所述第一类符号用于传输上行或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输信息,或作为时分双工TDD模式下的上下行切换点。
在上述实施例的基础上,所述第一类符号上传输的数据为上行数据,则所述处理模块2220,还用于:
对所述第一类符号上传输的数据进行离散傅里叶逆变换,得到至少两 个输出数据。
在上述实施例的基础上,所述第一类符号上传输的数据为下行数据,则所述处理模块2220,还用于:
对所述第一类符号上传输的数据进行并串转换,得到至少两个输出数据。
具体地,本发明实施例提供的数据处理装置,用于执行上述方法实施例提供的数据处理方法,及具体实现方式及实现的技术效果与方法实施例类似,在此不再赘述。
图24为本发明另一实施例数据处理装置的结构示意图。
请参阅图24,本发明另一实施例还提供一种数据处理装置2300,包括:发送模块2310,所述处理装置采用混合帧结构向接收端发送信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一循环前缀CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
在上述实施例的基础上,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
在上述实施例的基础上,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
本发明实施例提供的数据处理装置,通过发送模块采用混合帧结构向接收端发送信息,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一循环前缀CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。本发明提供的数据处理装置采用的混合真结构,可以减少所述无线帧中添加的CP的数量。当子载波间隔增大导致符号的时间长度缩短的情况下,本发明实施例通过减少CP的数量,可以保证CP的总时长不变,即CP开销不变;同时,每个CP的时长大于现有技术中经过等比例压缩后的CP的时长,可以对抗较大的信道时延扩展,提高信号传输的覆盖范围。
图25为本发明另一实施例数据处理装置的结构示意图。
请参阅图25,本发明另一实施例还提供一种数据处理装置2400,包括接收模块2410,所述接收模块2410用于:采用混合帧结构接收发送端发送的信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
在上述实施例的基础上,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
在上述实施例的基础上,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
通过接收模块采用混合帧结构接收发送端发送的信息,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。本发明实施例提供的数据处理装置采用的混合帧结构,可以减少所述无线帧中添加的CP的数量。当子载波间隔增大导致符号的时间长度缩短的情况下,本发明实施例通过减少CP的数量,可以保证CP的总时长不变,即CP开销不变;同时,每个CP的时长大于现有技术中经过等比例压缩后的CP的时长,可以对抗较大的信道时延扩展,提高信号传输的覆盖范围。
图26为本发明实施例数据处理装置的结构示意图。
请参阅图26,本发明实施例还提供一种数据处理装置,所述装置包括:
处理器2610,用于对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理,将所述至少两个第一类符号上传输的数据转换为一个共享符号上传输的数据;所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
所述处理器2610,还用于对所述共享符号上传输的数据进行快速傅里叶逆变换IFFT处理;
所述处理器2610,还用于对经过IFFT处理后的所述共享符号上传输的数据添加第一CP;
发送器2620,用于将所述添加了第一CP后的所述共享符号上传输的数据发送给接收端。
具体地,本发明实施例提供的数据处理装置,用于执行上述方法实施例提供的数据处理方法,及具体实现方式及实现的技术效果与方法实施例类似,在此不再赘述。
图27为本发明另一实施例数据处理装置的结构示意图。
请参阅图27,本发明另一实施例还提供一种数据处理装置,所述装置包括:
接收器2710,用于接收发送端发送的数据;所述数据包括,发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,进行快速傅里叶逆变换IFFT处理及添加第一CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
处理器2720,用于去除所述共享符号上传输的数据前添加的所述第一CP;
所述处理器2720,还用于:对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理;
所述处理器2720,还用于:对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。具体地,本发明实施例提供的数据处理装置,用于执行上述方法实施例提供的数据处理方法,及具体实现方式及实现的技术效果与方法实施例类似,在此不再赘述。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机、手机或其他便携装置的可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (36)

  1. 一种数据处理方法,其特征在于,包括:
    发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理,将所述至少两个第一类符号上传输的数据转换为一个共享符号上传输的数据;所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
    所述发送端对所述共享符号上传输的数据进行快速傅里叶逆变换IFFT处理;
    所述发送端对经过IFFT处理后的所述共享符号上传输的数据添加第一循环前缀CP;
    所述发送端将所述添加了第一CP后的所述共享符号上传输的数据发送给接收端。
  2. 根据权利要求1所述的方法,其特征在于,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述方法还包括:
    所述发送端对所述第二类符号上传输的数据添加第二CP;
    所述发送端将添加了所述第一CP的所述共享符号上传输的数据发送给接收端,包括:
    所述发送端将添加了所述第二CP的所述至少一个第二类符号上传输的数据及所述添加了第一CP的共享符号上传输的数据发送给所述接收端。
  3. 根据权利要求1或2所述的方法,其特征在于,所述发送端对无线帧中在时域上串行的第一类符号上传输的数据进行预处理,包括:
    所述发送端通过交织处理傅里叶变换、串并转换、整体傅里叶变换、哈达玛矩阵或单位矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行预处理。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一类符号用于传输上行数据或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输的信息,或在时分双工TDD模式下作为上下行转换的保护间隔。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一类符号上传输的数据为上行数据,则所述发送端对无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理之前,还包括:
    所述发射端对至少两个输入数据进行离散傅里叶变换,得到所述第一类符号上传输的数据。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一类符号上传输的数据为下行数据,则所述发送端对无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理之前,还包括:
    所述发射端将至少两个输入数据进行串并转换,得到所述第一类符号上传输的数据。
  7. 一种数据处理方法,其特征在于,包括:
    接收端接收发送端发送的数据;所述数据包括,发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,进行快速傅里叶逆变换IFFT处理及添加第一CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
    所述接收端去除所述共享符号上传输的数据前添加的所述第一CP;
    所述接收端对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理;
    所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。
  8. 根据权利要求7所述的方法,其特征在于,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述接收端接收到的所述发送端发送的数据中还包括:
    所述发送端对所述无线帧中所述至少一个第二类符号中每一个上传输的时域数据前分别添加第二CP后得到的数据。
  9. 根据权利要求7或8所述的方法,其特征在于,所述接收端对所述去除了第一CP后的数据进行所述预处理的逆处理,包括:
    所述接收端通过傅里叶变换逆变换、并串转换、整体傅里叶逆变换、 哈达玛逆矩阵或单位逆矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行所述预处理的逆处理。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述第一类符号用于传输上行或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输信息,或作为时分双工TDD模式下的上下行切换点。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述第一类符号上传输的数据为上行数据,则所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据之后,还包括:
    所述接收端对所述第一类符号上传输的数据进行离散傅里叶逆变换,得到至少两个输出数据。
  12. 根据权利要求7-10任一项所述的方法,其特征在于,所述第一类符号上传输的数据为下行数据,则所述接收端对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据之后,还包括:
    所述接收端对所述第一类符号上传输的数据进行并串转换,得到至少两个输出数据。
  13. 一种数据处理方法,其特征在于,发送端采用混合帧结构向接收端发送信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
  14. 根据权利要求13所述的方法,其特征在于,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
  15. 根据权利要求13所述的方法,其特征在于,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
  16. 一种数据处理方法,其特征在于,接收端采用混合帧结构接收发送端发送的信息,所述信息包括业务数据、控制信息或参考信号中的至少 一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
  17. 根据权利要求16所述的方法,其特征在于,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
  18. 根据权利要求16所述的方法,其特征在于,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
  19. 一种数据处理装置,其特征在于,包括:
    处理模块,用于对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理,以将所述至少两个第一类符号上传输的数据转换为一个共享符号上传输的数据;所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
    所述处理模块,还用于对所述共享符号上传输的数据进行快速傅里叶逆变换IFFT处理;
    所述处理模块,还用于对经过IFFT处理后的所述共享符号上传输的数据添加第一循环前缀CP;
    发送模块,用于将所述添加了第一CP后的所述共享符号上传输的数据发送给接收端。
  20. 根据权利要求19所述的装置,其特征在于,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述处理器还用于:
    对所述第二类符号上传输的数据添加第二CP;
    将添加了所述第二CP的所述至少一个第二类符号上传输的数据及所述添加了第一CP的共享符号上传输的数据发送给所述接收端。
  21. 根据权利要求19或20所述的装置,其特征在于,所述处理器,用于:
    通过交织处理傅里叶变换、串并转换、整体傅里叶变换、哈达玛矩阵或单位矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行预处理。
  22. 根据权利要求19-21任一项所述的装置,其特征在于,所述第一类符号用于传输上行数据或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输的信息,或在时分双工TDD模式下作为上下行转换的保护间隔。
  23. 根据权利要求19-22任一项所述的装置,其特征在于,所述第一类符号上传输的数据为上行数据,所述处理模块,还用于:
    对至少两个输入数据进行离散傅里叶变换,得到所述第一类符号上传输的数据。
  24. 根据权利要求19-22任一项所述的装置,其特征在于,所述第一类符号上传输的数据为下行数据,则所述处理模块,还用于:
    将所述至少两个输入数据进行串并转换,得到所述第一类符号上传输的数据。
  25. 一种数据处理装置,其特征在于,包括:
    接收模块,用于接收发送端发送的数据;所述数据包括,发送端对一个无线帧中在时域上串行的至少两个第一类符号上传输的数据进行预处理得到一个共享符号上传输的数据,并对所述共享符号上传输的数据,进行快速傅里叶逆变换IFFT处理及添加第一CP后得到的数据;其中,所述共享符号上传输的数据包括所述至少两个第一类符号上传输的数据;
    处理模块,用于去除所述共享符号上传输的数据前添加的所述第一CP;
    所述处理模块,还用于:对去除所述第一CP后的所述共享符号上传输的数据进行快速傅里叶变换FFT处理;
    所述处理模块,还用于:对进行了FFT处理后的所述共享符号上传输的数据进行所述预处理的逆处理,得到所述至少两个在时域上串行的第一类符号上传输的数据。
  26. 根据权利要求25所述的装置,其特征在于,所述无线帧还包括至少一个第二类符号,所述第二类符号的时间长度小于所述共享符号的时间长度;所述处理模块,还用于:
    对所述无线帧中所述至少一个第二类符号中每一个上传输的数据分别添加第二CP后得到的数据。
  27. 根据权利要求25或26所述的装置,其特征在于,所述所述处理模块,用于:
    通过傅里叶变换逆变换、并串转换、整体傅里叶逆变换、哈达玛逆矩阵或单位逆矩阵对所述无线帧中至少两个并行的第一类符号上传输的数据进行所述预处理的逆处理。
  28. 根据权利要求25-27任一项所述的装置,其特征在于,所述第一类符号用于传输上行或下行数据,所述第二类符号用于传输参考信号、或用于控制上行数据传输或下行数据传输信息,或作为时分双工TDD模式下的上下行切换点。
  29. 根据权利要求25-28任一项所述的装置,其特征在于,所述第一类符号上传输的数据为上行数据,则所述处理模块,还用于:
    对所述第一类符号上传输的数据进行离散傅里叶逆变换,得到至少两个输出数据。
  30. 根据权利要求25-28任一项所述的装置,其特征在于,所述第一类符号上传输的数据为下行数据,则所述处理模块,还用于:
    对所述第一类符号上传输的数据进行并串转换,得到至少两个输出数据。
  31. 一种数据处理装置,其特征在于,包括发送模块,所述发送模块用于:采用混合帧结构向接收端发送信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
  32. 根据权利要求31所述的装置,其特征在于,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
  33. 根据权利要求31所述的装置,其特征在于,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
  34. 一种数据处理装置,其特征在于,包括接收模块,所述接收模块用于:采用混合帧结构接收发送端发送的信息,所述信息包括业务数据、控制信息或参考信号中的至少一种,所述混合帧结构包括:共享符号及第 二类符号,所述共享符号前添加有第一CP,所述第二类符号前添加有第二CP,所述共享符号的长度大于所述第二类符号的长度。
  35. 根据权利要求34所述的装置,其特征在于,所述第一CP的长度与所述第二CP的长度的差值小于预设阈值。
  36. 根据权利要求34所述的装置,其特征在于,所述共享符号与所述第二类符号的长度比例为n:1,所述第一CP的长度和所述第二CP的长度比例也为n:1,其中,n大于1。
PCT/CN2016/080969 2016-05-04 2016-05-04 数据处理方法及装置 WO2017190289A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112018072666A BR112018072666A2 (pt) 2016-05-04 2016-05-04 método e aparelho de processamento de dados
PCT/CN2016/080969 WO2017190289A1 (zh) 2016-05-04 2016-05-04 数据处理方法及装置
CN201680084698.7A CN109076045A (zh) 2016-05-04 2016-05-04 数据处理方法及装置
EP16900811.7A EP3447981A4 (en) 2016-05-04 2016-05-04 DATA PROCESSING METHOD AND DEVICE
US16/179,887 US10805132B2 (en) 2016-05-04 2018-11-03 Data processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080969 WO2017190289A1 (zh) 2016-05-04 2016-05-04 数据处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/179,887 Continuation US10805132B2 (en) 2016-05-04 2018-11-03 Data processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2017190289A1 true WO2017190289A1 (zh) 2017-11-09

Family

ID=60202628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080969 WO2017190289A1 (zh) 2016-05-04 2016-05-04 数据处理方法及装置

Country Status (5)

Country Link
US (1) US10805132B2 (zh)
EP (1) EP3447981A4 (zh)
CN (1) CN109076045A (zh)
BR (1) BR112018072666A2 (zh)
WO (1) WO2017190289A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935814B (zh) * 2016-07-18 2021-11-16 中兴通讯股份有限公司 同步信号的发送、接收方法及装置、传输***
WO2018030211A1 (ja) * 2016-08-09 2018-02-15 三菱電機株式会社 通信システム
US11863359B1 (en) * 2021-05-11 2024-01-02 Amazon Technologies, Inc. Subcarrier pre-equalization technology for frequency selective fading characteristics of wireless channels

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675637A (zh) * 2007-05-04 2010-03-17 Nxp股份有限公司 所选ofdm子载波之间的fft扩展
CN105229951A (zh) * 2013-05-07 2016-01-06 Lg电子株式会社 发送数据单元的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149867B2 (en) * 2007-01-30 2012-04-03 Broadcom Corporation Multi-network shared PHY layer
CN101778063B (zh) * 2010-03-18 2013-03-27 展讯通信(上海)有限公司 信道估计方法及其装置
US9900199B2 (en) * 2014-05-06 2018-02-20 Qualcomm Incorporated Systems and methods for improvements to training field design for increased symbol durations
US9736277B2 (en) * 2014-10-28 2017-08-15 Newracom, Inc. PPDU format preamble design

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101675637A (zh) * 2007-05-04 2010-03-17 Nxp股份有限公司 所选ofdm子载波之间的fft扩展
CN105229951A (zh) * 2013-05-07 2016-01-06 Lg电子株式会社 发送数据单元的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3447981A4 *

Also Published As

Publication number Publication date
EP3447981A4 (en) 2019-04-24
CN109076045A (zh) 2018-12-21
EP3447981A1 (en) 2019-02-27
US10805132B2 (en) 2020-10-13
BR112018072666A2 (pt) 2019-02-19
US20190075003A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
TWI624155B (zh) 針對不同子頻帶使用不同開視窗函數來執行脈衝成形的方法和無線傳輸/接收單元
US20170257238A1 (en) Filtering-based signal transmission and receiving methods and corresponding transmitter and receiver
US8670298B2 (en) Method, system and apparatus for signal generation and message transmission in broadband wireless communications
US10063401B2 (en) Communication method and apparatus based on a filter bank multi-carrier modulation
US11212025B2 (en) Transmitting apparatus, receiving apparatus, method, and recording medium
CA2981355A1 (en) System and method of waveform design for operation bandwidth extension
CN104125184B (zh) 一种导频信号的传输方法及设备
CN105122755A (zh) 用于处理具有可变保护间隔的数据帧的方法和设备
WO2017167264A1 (zh) 信息的传输方法及设备
Medjahdi et al. Wola processing: A useful tool for windowed waveforms in 5G with relaxed synchronicity
CN105847209B (zh) 基于滤波器组多载波调制的通信方法和装置
EP3298744B1 (en) Enhancing data transfer
CN107733604A (zh) 一种通信的方法及装置
US10805132B2 (en) Data processing method and apparatus
CN108289069A (zh) 一种参考信号的传输方法、发送端和接收端
US10128995B2 (en) Filter bank multicarrier modulation-based signal transmitting method, signal receiving method and device
JP6718523B2 (ja) 送信装置、受信装置及び通信方法
KR102599769B1 (ko) 필터 뱅크 멀티 캐리어 변조 기반 신호 송신 방법, 신호 수신 방법 및 디바이스
CN1972267A (zh) 一种离散傅立叶变换扩频正交频分复用方法和设备
CN106656892B (zh) 发送数据的方法和设备
CN115811455A (zh) 一种通信方法及相关装置
EP4333529A1 (en) Multi-user communication method and related communication apparatus
CN104052704B (zh) 数据发送和接收方法及设备
CN112688765B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022206634A1 (zh) 一种相位噪声的确定方法及相关装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018072666

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016900811

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016900811

Country of ref document: EP

Effective date: 20181119

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018072666

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181105