WO2017186110A1 - 一类万古霉素衍生物、其制备方法、药物组合物和用途 - Google Patents

一类万古霉素衍生物、其制备方法、药物组合物和用途 Download PDF

Info

Publication number
WO2017186110A1
WO2017186110A1 PCT/CN2017/081941 CN2017081941W WO2017186110A1 WO 2017186110 A1 WO2017186110 A1 WO 2017186110A1 CN 2017081941 W CN2017081941 W CN 2017081941W WO 2017186110 A1 WO2017186110 A1 WO 2017186110A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
vancomycin
branched
straight
pharmaceutically acceptable
Prior art date
Application number
PCT/CN2017/081941
Other languages
English (en)
French (fr)
Inventor
黄蔚
蓝乐夫
熊伦
管栋梁
陈菲菲
杨丽韵
Original Assignee
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所 filed Critical 中国科学院上海药物研究所
Priority to EP17788762.7A priority Critical patent/EP3450450A4/en
Priority to CN201780015730.0A priority patent/CN109071607B/zh
Priority to US16/093,518 priority patent/US10961278B2/en
Priority to JP2018556333A priority patent/JP6826130B2/ja
Publication of WO2017186110A1 publication Critical patent/WO2017186110A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K9/00Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof
    • C07K9/006Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence being part of a ring structure
    • C07K9/008Peptides having up to 20 amino acids, containing saccharide radicals and having a fully defined sequence; Derivatives thereof the peptide sequence being part of a ring structure directly attached to a hetero atom of the saccharide radical, e.g. actaplanin, avoparcin, ristomycin, vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/14Peptides containing saccharide radicals; Derivatives thereof, e.g. bleomycin, phleomycin, muramylpeptides or vancomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention belongs to the field of medicinal chemistry and medicine, relates to a vancomycin derivative represented by the general formula (I) and a pharmaceutically acceptable salt thereof, and a method for preparing the vancomycin derivative, comprising the vancomycin derivative Or a pharmaceutical composition of the pharmaceutically acceptable salt thereof, and the vancomycin derivative and a pharmaceutically acceptable salt thereof, for the preparation of a disease or condition for treating and/or preventing a Gram-positive infection Use of the drug.
  • antibiotics have achieved great success in the treatment of bacterial infectious diseases.
  • its widespread use also makes drug-resistant pathogenic strains a very common pathogen causing clinical infections.
  • traditional infectious diseases have not been fully controlled, new infectious diseases and pathogens are still emerging, and the resistance of various microorganisms is becoming more and more serious, which has become a difficult problem in clinical treatment. Therefore, it is urgent and important to develop a new generation of antibiotics that are effective against drug-resistant strains.
  • Vancomycin and Norvancomycin are natural glycopeptide antibiotics extracted from actinomycete fermentation broth.
  • Glycopeptide antibiotics have a core heptad structure. They act by binding to the D-alanyl-D-alanine (Acyl-D-Ala-D-Ala) dipeptide residue of the bacterial cell wall precursor, inhibiting the synthesis of peptidoglycan, thereby inhibiting bacterial cell walls. Synthesis. Since its application in the 1960s, it has been widely used as a last resort against Gram-positive bacteria in the treatment of bacterial infections for the past 50 years.
  • Another object of the present invention is to provide a process for the preparation of the above vancomycin derivative.
  • Another object of the present invention is to provide a pharmaceutical composition comprising the above vancomycin derivative and/or a pharmaceutically acceptable salt thereof.
  • Still another object of the present invention is to provide a pharmaceutical composition of the above vancomycin derivative and/or a pharmaceutically acceptable salt thereof for use in the preparation of an antibacterial agent.
  • the present invention provides a vancomycin derivative represented by the following formula (I):
  • R 1 is H, -CH 2 -R 4 , -CO-R 4 or -(CH 2 ) m -AR 4 , wherein
  • n is an integer from 1 to 4, preferably 2, 3 or 4,
  • A is selected from NH, O and S,
  • R 4 is selected from substituted or unsubstituted C 8 -C 16 straight or branched alkyl, substituted or unsubstituted C 8 -C 16 straight or branched alkenyl, substituted or unsubstituted C 8 -C 16 a linear or branched alkynyl group, a substituted or unsubstituted C 3 -C 10 cycloalkyl group, a substituted or unsubstituted C 6 -C 20 aryl group, a substituted or unsubstituted one selected from the group consisting of N, O and S a 3-10 membered non-aromatic heterocyclic group of one or more heteroatoms, a substituted or unsubstituted 3-10 membered heteroaryl group containing one or more heteroatoms selected from the group consisting of N, O and S,
  • the above substituted substituent may be selected from the group consisting of halogen, -OH, -NH 2 , cyano, C 1 -C 10 linear or branched alkyl (preferably methyl, ethyl, butyl, pentyl, heptyl) , C 1 -C 10 straight or branched alkoxy, C 1 -C 10 straight or branched alkylamino, C 1 -C 10 straight or branched alkanoyl, C 3 -C 10 cycloalkyl Halogenated C 1 -C 10 linear or branched alkyl (preferably trifluoromethyl), trimethylsilyl C 2 -C 10 linear or branched alkynyl (preferably trimethylsilylethynyl) , C 2 -C 10 linear or branched alkynyl (preferably ethynyl), trifluoromethyl C 6 -C 20 aryl (preferably trifluoromethylphenyl), halogen, -
  • R 4 is selected from the group consisting of:
  • R 2 is OH or -NH(CH 2 ) p R 5 , wherein
  • p is an integer between 0 and 6
  • R 5 is independently selected from a glycosyl group or a substituted amino group; the substituted substituent may be one or two substituents selected from a C 1 -C 6 straight or branched alkyl group;
  • Preferred R 2 is selected from the group consisting of:
  • R 2 is selected from the group consisting of:
  • R 3 is selected from hydrogen or methyl
  • n is an integer between 0 and 6, preferably 0, 1, 2 or 3;
  • X does not exist or is —S–, –O–, –NH–, –C(O)NH–, –NHC(O)– or –(CH 2 ) q –, q is an integer between 0 and 2;
  • X is absent or is -NH-, -C(O)NH-, and -(CH 2 ) 2 -;
  • Y is a glycosyl group
  • the above glycosyl group is a structural moiety derived from a monosaccharide and/or disaccharide having a carbohydrate characteristic, which is the monosaccharide and/or Or a disaccharide residue obtained by a glycosidation reaction comprising O-glycosylation, N-glycosylation and C-glycosylation of a cyclic or acyclic glycosyl group; in an embodiment of the present invention, The glycosyl group is selected from the group consisting of a cyclic monosaccharide, a cyclic disaccharide, a non-cyclic monosaccharide, and an acyclic disaccharide; in another embodiment of the invention, the glycosyl group is selected from the group consisting of deoxygenated a sugar group obtained by a sugar, a carboxyl monosaccharide, an oxidized monosaccharide, or a reduced monosaccharide, and more particularly, the glycosyl group may preferably be selected from
  • glycosyl group is selected from the group consisting of:
  • acyclic monosaccharide means a monosaccharide in which the aldehyde group at the 1-position of the pyranose is reductively hydrogenated, reductively aminated or amidated, and the acyclic monosaccharide is preferably in the 1-position.
  • acyclic disaccharide means a disaccharide which is reductively hydrogenated, reductively aminated or amidated at one position of one or two pyranose, said acyclic disaccharide Preference is given to lactose in which the aldehyde group at the 1-position is reductively aminated or amidated, maltose which is reductively aminated or amidated at the 1-position aldehyde group, and cellobiose which is reductively aminated or amidated at the 1-position aldehyde group.
  • aryl means an aromatic ring group containing no hetero atom, preferably an aryl group having 6 to 18 carbon atoms, more preferably a phenyl group, a naphthyl group or a biphenyl group;
  • substituted aryl groups include, but are not limited to, 4-methylphenyl, 4-methoxyphenyl, 4-pentylphenyl, 4-butylphenyl, 4-ethynylphenyl, 4-tri Fluoromethylphenyl, 4-butoxyphenyl, 4-trimethylsilylethynylphenyl, 4-fluorophenyl, 4-(4-trifluoromethylphenyl)-phenyl or 4-( 4-chlorophenyl)-phenyl.
  • C 8 -C 16 straight or branched alkyl means a straight or branched alkyl group having 8 to 16 carbon atoms in the main chain.
  • the meaning of a C 1 -C 10 straight or branched alkyl group and a C 1 -C 6 straight or branched alkyl group is analogous.
  • C 1 -C 10 linear or branched alkoxy means a straight or branched alkoxy group having 1 to 10 carbon atoms in the main chain.
  • C 1 -C 10 linear or branched alkylamino group means a straight-chain or branched alkyl-substituted amino group having 1 to 10 carbon atoms in the main chain.
  • C 1 -C 10 straight-chain or branched alkanoyl means a straight-chain or branched alkyl-substituted carbonyl group having 1 to 10 carbon atoms in the main chain, and C 1 - C 10 A straight or branched alkylcarbonyl group has the same meaning.
  • C 2 -C 6 straight or branched alkynyl means a straight or branched alkynyl group having 2 to 6 carbon atoms in the main chain.
  • pharmaceutically acceptable salt in the present invention means an inorganic acid such as phosphoric acid, sulfuric acid or hydrochloric acid, or an organic acid such as acetic acid, tartaric acid, citric acid or malic acid, or an acid such as aspartic acid or glutamic acid.
  • the compound of formula I is a vancomycin derivative represented by the following formula I-A:
  • R 6 is selected from the group consisting of chlorine and trifluoromethyl
  • R 2 is selected from OH or the following groups:
  • Y is the same as defined in the general formula (I), and is preferably selected from the following groups:
  • X and n are the same as defined in the formula (I).
  • the vancomycin derivative is preferably selected from the group consisting of:
  • the vancomycin derivative is further preferably selected from the following compounds:
  • the vancomycin derivative of the present invention represented by the above formula (I) is produced by the following method, wherein the method comprises one or more of the following steps:
  • R 1 , R 2 , R 3 , R 4 , n, X and Y are the same as defined in the formula (I), but R 1 is not H and R 2 is not OH.
  • the solvent used in the reaction may be any solvent. As long as the solvent itself is inert in the reaction, it does not inhibit the reaction.
  • Such solvents include halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane and chloroform, aromatic hydrocarbon solvents such as benzene and toluene, etc., aprotic solvents such as acetone, acetonitrile, N , N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide and hexamethylphosphoramide, ester solvents, such as ethyl acetate and methyl acetate, ether solvents, such as tetrahydrofuran , ether and 1,4-dioxane, etc., organic base solvents such as pyridine, picoline, lutidine and clopidogidine, protic solvents such as water and methanol, or mixtures of these solvents.
  • halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane and chloroform
  • aromatic hydrocarbon solvents such as
  • Examples of the base used in this step include an organic base such as triethylamine, pyridine, N,N-diisopropylethylamine, 4-dimethylaminopyridine, 1,8-diazabicyclo[5.4. 0]-7-undecene and 1,2,2,6,6-pentamethylpiperidine, etc., or inorganic bases such as sodium carbonate, potassium carbonate, sodium hydrogencarbonate and potassium hydrogencarbonate.
  • organic base such as triethylamine, pyridine, N,N-diisopropylethylamine, 4-dimethylaminopyridine, 1,8-diazabicyclo[5.4. 0]-7-undecene and 1,2,2,6,6-pentamethylpiperidine, etc.
  • inorganic bases such as sodium carbonate, potassium carbonate, sodium hydrogencarbonate and potassium hydrogencarbonate.
  • the reaction can be carried out at a temperature ranging from 0 ° C to 120 ° C, preferably at a temperature of from 0 ° C to 120 ° C.
  • step (2) reference is made to the literature (MR Leadbetter et al., The Journal of Antibiotics, 2004, 57(5), 326-336 and MN Prebrazhenskaya et al., The Journal of Antibiotics, 2007, 60(4), 235-244.
  • the mixture is selected from the group consisting of HATU, HBTU, DMAP, HOBt.
  • step (3) reference is made to the literature (PAPavlov et al., The Journal of Antibiotics, 1997, 50(6), 509-513, and MRLeadbetter et al, The Journal of Antibiotics, 2004, 57(5), 326- In the modified synthesis method reported in 336), a compound represented by the formula (e) is subjected to Mannich reaction with a substituted amine and formaldehyde under basic conditions to obtain a product represented by the formula (f).
  • the vancomycin derivative according to the present invention is capable of binding to the D-alanyl-D alanine dipeptide residue of the bacterial cell wall precursor, thereby inhibiting cell wall synthesis, and thus can be used Preparation of antibacterial agents for cell wall synthesis inhibitors.
  • the above vancomycin derivative and a pharmaceutically acceptable salt thereof in the present invention have antibacterial activity and can be used for the preparation of a medicament for treating and/or preventing an infectious disease caused by bacteria.
  • Infectious diseases caused by the bacteria especially infectious diseases caused by Gram-positive bacteria.
  • the Gram-positive bacteria include Staphylococcus, Streptococcus, Enterococcus, Streptococcus pneumoniae, Bacillus, Bacillus anthracis, Diphtheria, Tetanus, Difficult carboxybacteria, Listeria monocytogenes.
  • composition comprising a therapeutically effective amount of one or more selected from the above vancomycin derivatives and a pharmaceutically acceptable salt thereof as an active ingredient
  • the composition may further comprise a pharmaceutically acceptable carrier, excipient, adjuvant, adjuvant, and/or diluent, and the like.
  • the above vancomycin derivative and pharmaceutically acceptable salt thereof in the present invention may be administered alone or in combination with other pharmaceutically acceptable therapeutic agents, particularly with other therapeutic and/or prophylactic bacterial infection diseases.
  • the pharmaceutically acceptable therapeutic agents include, but are not limited to, other acceptable therapeutic agents in combination with vancomycin, for example, penicillin G, procaine penicillin and penicillin V, macrolides, red mold , medimycin, acetylspiramycin, columnar leucomycin and clarithromycin, azithromycin, trimethoprim, dapsone, sulfamethoxazole, gatifloxacin, linezolid, a Moxicillin, daptomycin, meropenem, imipenem, two statins, piperacillin sulbactam, cefoperazone sulbactam, fusidic acid, biapenem, etimicin, Ornidazole, metronidazole, etc.
  • the ingredients to be combined may be administered simultaneously or sequentially, in the form of a single preparation or in the form of different preparations.
  • the combination includes not only the above-described combination of the vancomycin derivative and/or a pharmaceutically acceptable salt thereof and one other active agent in the present invention, but also the above-described vancomycin derivative and/or the same in the present invention.
  • a pharmaceutical composition comprising a therapeutically effective amount of one or more of the above-described vancomycin derivative selected from the present invention and a pharmaceutically acceptable salt thereof As an active ingredient and other pharmaceutically acceptable therapeutic agents, especially other drugs for treating and/or preventing bacterial infectious diseases.
  • the pharmaceutical composition optionally may further comprise a pharmaceutically acceptable carrier, excipient, adjuvant, adjuvant, and/or diluent, and the like.
  • composition of the present invention comprising a therapeutically effective amount of one or more of the above-mentioned vancomycin derivatives and pharmaceutically acceptable salts thereof selected from the present invention as an active ingredient, has antibacterial activity and can be used for A medicament for treating and/or preventing a bacterial infectious disease is prepared.
  • therapeutically effective amount is meant that the amount of the compound is sufficient to significantly improve the condition without causing serious side effects.
  • the therapeutically effective amount is determined according to the age, condition, course of treatment, and the like of the subject to be treated.
  • pharmaceutically acceptable carrier is meant one or more compatible solid or liquid fillers or gel materials which are suitable for human use and which must be of sufficient purity and of sufficiently low toxicity.
  • compatibil it is meant herein that the components of the composition are capable of blending with the compounds of the invention and with each other without significantly reducing the potency of the compound.
  • pharmaceutically acceptable carriers are sugars (such as glucose, sucrose, lactose, etc.), starches (such as corn starch).
  • cellulose and its derivatives such as sodium carboxymethyl cellulose, sodium ethyl cellulose, cellulose acetate, etc.
  • gelatin talc
  • solid lubricants such as stearic acid, hard Magnesium sulphate), calcium sulphate, vegetable oil (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyol (such as propylene glycol, glycerin, mannitol, sorbitol, etc.), emulsifier (such as Tween), wetting agent ( Such as sodium lauryl sulfate), colorants, flavoring agents, stabilizers, antioxidants, preservatives, pyrogen-free water, etc.
  • solid lubricants such as stearic acid, hard Magnesium sulphate
  • calcium sulphate such as soybean oil, sesame oil, peanut oil, olive oil, etc.
  • polyol such as propylene glycol, glycerin, mannitol
  • the in vitro bacteriostatic test of the compound of the formula (I) prepared by the invention shows that the antibacterial activity of the compound against vancomycin-resistant Staphylococcus aureus is significantly higher than vancomycin, and some preferred compounds are The antibacterial activity is 10-100 times that of vancomycin, which is 4-10 times that of Travancin, which was launched in 2009.
  • the antibacterial experiment results show that the derivatization strategy of introducing a biphenyl group on the aromatic ring of the 7-amino acid of vancomycin and introducing a biphenyl group on the vancoside of vancomycin can significantly improve the antibacterial activity of vancomycin. Particularly resistant to Staphylococcus aureus.
  • Figure 1 shows the results of a bacterial infection survival experiment in mice of the compounds Van016, Van032, Van037 and Van038;
  • Figure 2 shows the results of toxicity tests of the compounds Van011 and Van037 with vancomycin and telavancin in the HK-2 cell model
  • Figure 3 shows the results of toxicity experiments of the compounds Van011 and Van037 with vancomycin and telavancin in the HL-7702 cell model.
  • the starting materials are generally available from commercial sources such as Aldrich Chemicals Co. and Acros Organics.
  • Commercially available solvents and reagents are generally used without further purification, anhydrous solvents are treated by standard methods, and other reagents are commercially available analytical grades. All temperatures are expressed in ° C (degrees Celsius) unless otherwise stated, and room temperature or ambient temperature means 20 to 25 ° C.
  • the structure of the compound is determined by nuclear magnetic resonance spectroscopy (NMR) and/or mass spectrometry (MS).
  • the nuclear magnetic resonance spectrum shift ( ⁇ ) is given in units of parts per million (ppm).
  • the nuclear magnetic resonance spectrum was measured by Mercury-600MHz and Bruker (AV-400) 400MHz nuclear magnetic resonance spectrometer, deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated chloroform (CDCl 3 ), deuterated methanol (MeOD-d). 4 ), hydrophobic water (D 2 O) is the solvent, and tetramethylsilane (TMS) is the internal standard.
  • High-resolution mass spectrometry was measured using an Agilent 6230 Series TOF LC-MS. If the intensity of ions containing chlorine or bromine is described, the expected intensity ratio (about 3:1 containing 35 Cl/ 37 Cl, including 79 Br/ 81) is observed. The ions of Br are 1:1) and only give the strength of the lower mass ions.
  • HPLC Agilent 1260 Analytical High Performance Liquid Chromatography System (Agilent) and LC3000 Preparative High Performance Liquid Chromatography System (Beijing Innovation Tongheng Technology Co., Ltd.).
  • Analytical high performance liquid chromatography conditions C18 column (5 ⁇ m, 4.6 x 250 mm), ultraviolet detection band of 214 and 280 nm, elution conditions 0-90% acetonitrile (containing 0.1% v / v TFA) gradient wash for 30 minutes.
  • High performance liquid chromatography conditions were prepared: C18 column (5 ⁇ m, 19 ⁇ 250 mm), ultraviolet detection bands of 214 and 280 nm, and elution conditions of 0-90% acetonitrile (containing 0.1% v/v TFA) were washed for 30 minutes.
  • the column generally uses 200 to 300 mesh silica gel as a carrier.
  • DIPEA is N,N-diisopropylethylamine
  • DMF is N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • DCM is dichloromethane
  • Hexane is hexane
  • TfOH is trifluoromethanesulfonic acid
  • DCC is dicyclohexylcarbodiimide
  • Fmoc-Cl is fluorenylmethoxycarbonyl chloride
  • Pd/C is palladium carbon
  • HBTU is O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate
  • TFA is trifluoroacetic acid.
  • the peracetylated mannoside 2a (4.5 g, 12.5 mmol) was added to 10 mL of dichloromethane, and thiophenol (1.96 mL, 19.08 mmol) was added. After stirring at room temperature for 20 min, boron trifluoride diethyl ether (7.8 mL, 63.6 mmol) was added dropwise, and the mixture was stirred for 15 min. The reaction mixture was diluted with methylene chloride (50 mL), and evaporated. The organic layer was washed with saturated sodium hydrogen sulfate and brine, dried over anhydrous sodium sulfate.
  • Phenyl 2,3,4,6-tetra-O-acetyl-1-sulfo- ⁇ -D-mannopyranoside 2b (2 g, 4.5 mmol) and N-(benzyloxycarbonyl)ethanolamine (1.1 g, 5.4 mmol) was dissolved in anhydrous dichloromethane, Molecular sieve, argon gas protection, transfer to 0 ° C, add N-iodosuccinimide (1.52g, 6.75mmol), react at 0 ° C for 15min, add trifluoromethanesulfonic acid (80 ⁇ L, 0.9mmol), react at room temperature overnight.
  • N-Krytyl-N-Fmoc-aminoethyl-vancomycin (550 mg)
  • 10 mL of 20% piperidine in DMF was mixed and stirred at room temperature for 30 minutes.
  • the precipitate was added 200mL of ether, filtered, the filter cake was washed with 300mL diethyl ether, and dried to give a white solid N van -2- (n-decyl) ethyl - vancomycin Van-a (450mg).
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with 2-aminoethyl- ⁇ -D-galactopyranoside 4, and the remaining materials, reagents and preparation methods were the same.
  • Van002 was obtained.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with 2-aminoethyl-2-acetamido-2-deoxy- ⁇ -D-glucopyranoside 5, and the rest Raw materials, reagents and preparation methods were the same as in Example 1, to obtain Van003.
  • High Resolution Mass Spectrum (ESI +) C 89 H 120 Cl 2 N 12 O 30 theoretical value 1906.7610, found 636.5398 [M + 3H] 3+.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with 2-aminoethyl- ⁇ -D-galactopyranoside 4, and the remaining materials, reagents and preparation methods were the same. In Example 1, Van004 was obtained. High Resolution Mass Spectrum (ESI +) C 87 H 117 Cl 2 N 11 O 30 theoretical value 1865.7345, found 622.9195 [M + 3H] 3+.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with ethanolamine, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 1 to obtain Van005.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with 2-deoxy-2-aminomannose, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 1 to obtain Van006.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with 2-deoxy-2-carboglucose, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 1 to obtain Van007.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with 2-deoxy-2-aminogalactose, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 1, to obtain Van008.
  • High Resolution Mass Spectrum (ESI +) C 85 H 113 Cl 2 N 11 O 29 theoretical value 1821.7083, found 911.8666 [M + 2H] 2+ 608.2418 [M + 3H] 3+.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with the gluconolactone derivative 6, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 1, to obtain Van009.
  • Example 1 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 1 was replaced with the lactobionol derivative 7, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 1, to obtain Van010.
  • the second step 2-aminoethyl- ⁇ -D-galactopyranoside 4 (30 mg), dissolved in a mixture of 100 ⁇ L of water and 500 ⁇ L of acetonitrile, added with 30 ⁇ L of DIPEA, stirred at room temperature until the solid is completely dissolved (10 minutes) .
  • Add 2 ⁇ L of 37 wt% formaldehyde solution stir at room temperature for 15 minutes, then stir to -10 ° C and stir for 5 minutes, rapidly with N van -2 (4'-chlorobiphenyl)-vancomycin Van-b 25 mg and DIPEA 30 ⁇ L
  • the mixture was mixed with 1.5 mL of an 80% acetonitrile solution, and stirred at -10 ° C for 8 hours.
  • Example 11 The 2-aminoethyl- ⁇ -D-galactopyranoside 4 in Example 11 was replaced with aminomethylphosphoric acid, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 11 to obtain Van012.
  • High resolution mass spectrometry (ESI + ) C 81 H 90 C l3 N 10 O 27 P The theoretical value is 1770.4780, found, 591.1677 [M+3H] 3+ .
  • Example 11 The 2-aminoethyl- ⁇ -D-galactopyranoside 4 in Example 11 was replaced with 2-aminoethyl- ⁇ -D-mannopyranoside 2, and the remaining raw materials, reagents and preparation methods were the same. In Example 11, Van013 was obtained. High-resolution mass spectroscopy (ESI + ) C 88 H 101 C l3 N 10 O 30 mp 1882.5751, found: 942.2943 [M+2H] 2+ .
  • Example 11 The 2-aminoethyl- ⁇ -D-galactopyranoside 4 in Example 11 was replaced with the gluconolactone derivative 6, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 11 to obtain Van014.
  • High resolution mass spectrometry (ESI + ) C 89 H 104 C l3 N 11 O 30 The theoretical value is 1911.6016, found 956.8070 [M+2H] 2+ .
  • Example 11 The 2-aminoethyl- ⁇ -D-galactopyranoside 4 in Example 11 was replaced with the lactobionol derivative 7, and the remaining desired starting materials, reagents and preparation methods were the same as in Example 11 to obtain Van015.
  • High-resolution mass spectrometry (ESI + ) C 95 H 114 C l3 N 11 O 35
  • the theoretical value was 2073.6544, found to be 1037.9145 [M+2H] 2+ .
  • Example 16 In the second step, the Van-c in Example 16 was replaced with Van-d, and the remaining materials, reagents and preparation methods were the same as in Example 16 to obtain Van017.
  • High resolution mass spectrometry (ESI + ) C 97 H 112 C l3 N 11 O 31 The theoretical value is 2031.6591, found 316.8385 [M+2H] 2+ .
  • Example 16 4'-trifluoromethyldiphenyl-4-carbaldehyde in Example 16 was replaced with p-ethylbenzaldehyde, and the remaining starting materials, reagents and preparation methods were the same as those in Example 16, to obtain Van018.
  • Example 16 In the second step, the Van-c in Example 16 was replaced with Van-f, and the remaining required starting materials, reagents and preparation methods were the same as in Example 16 to obtain Van019.
  • High Resolution Mass Spectrum (ESI +) C 78 H 100 Cl 2 N 10 O 25 theoretical value 1646.6238, found 824.3191 [M + 2H] 2+.
  • 2-Aminoethyl- ⁇ -D-mannopyranoside 2 (30 mg) was dissolved in a mixture of 100 ⁇ L of water and 500 ⁇ L of acetonitrile, and 30 ⁇ L of DIPEA was added thereto, and stirred at room temperature until the solid was completely dissolved (10 minutes). 2 ⁇ L of 37 wt% formaldehyde solution was added, stirred at room temperature for 15 minutes, then stirred at -10 ° C for 5 minutes, rapidly mixed with 1.5 mL of 80% acetonitrile solution of Van020 (25 mg), added with 30 ⁇ L of DIPEA, and stirred at -10 ° C for 8 hours.
  • Example 21 The 2-aminoethyl- ⁇ -D-mannopyranoside 2 in Example 21 was replaced with the gluconolactone derivative 6, and the remaining desired starting materials, reagents and preparation methods were the same as those in Example 21 to obtain Van022.
  • High resolution mass spectrometry (ESI + ) C 94 H 116 C l3 N 13 O 29 The theoretical value is 1995.7067, found as 998.8520 [M+2H] 2+ .
  • Van-b 50 mg, 30 ⁇ mol was dissolved in 1 mL of DMF, HBTU (benzotriazole-N, N, N', N'-tetramethyluronium hexafluorophosphate) (21 mg, 45 ⁇ mol), DIPEA (25 ⁇ L, 150 ⁇ mol), stirred at room temperature for 15 minutes, and added gluconolactone derivative 6 (30 mg, 80 ⁇ mol), and reacted at room temperature for 24 hours, and the reaction was monitored by HPLC.
  • HBTU benzotriazole-N, N, N', N'-tetramethyluronium hexafluorophosphate
  • DIPEA 25 ⁇ L, 150 ⁇ mol
  • the reaction mixture was diluted with water, and the crude material was crystalljjjjj HPLC: C18 column (5 ⁇ m, 4.6 x 250 mm), UV detection band 214 nm, elution conditions 2-90% acetonitrile (containing 0.1% v/v TFA) gradient wash for 30 minutes.
  • High resolution mass spectrometry (ESI + ) C 88 H 102 C l3 N 11 O 29 theoretical value 1881.5910 actual value 941.7995 [M+2H] 2+ .
  • Example 16 In the second step, the Van-c in Example 16 was replaced with Van-g, and the remaining required starting materials, reagents and preparation methods were the same as in Example 16 to obtain Van024.
  • N van -2 (4'-trifluoromethyldiphenyl)-vancomycin Van-c in Example 16 was replaced with N van -2 (undecanoyl)-vancomycin Van- h, the remaining required starting materials, reagents and preparation methods were the same as in Example 16 to obtain Van025.
  • High-resolution mass spectrometry (ESI + ) C 87 H 115 C l2 N 11 O 31 The theoretical value was 1879.7138, found to be 940.8659 [M+2H] 2+ .
  • Van-h in Example 25 was replaced with Van-i, and the remaining required starting materials, reagents and preparation methods were the same as in Example 25 to obtain Van026.
  • High Resolution Mass Spectrum (ESI +) C 86 H 113 Cl 2 N 11 O 31 theoretical value 1865.6931, found 933.8577 [M + 2H] 2+.
  • Van-c in Example 16 was replaced with Van-j, and the remaining materials, reagents and preparation methods were the same as those in Example 15, to obtain Van027.
  • Van-c in Example 16 was replaced with Van-k, and the remaining materials, reagents and preparation methods were the same as in Example 16 to obtain Van028.
  • High resolution mass spectrometry (ESI + ) C 88 H 109 Cl 2 N 11 O 30 Si The theoretical value is 1897.6488, found ⁇ / RTI> ⁇ /RTI> ⁇ /RTI> ⁇ /RTI> 94.9833 [M+2H] 2+ .
  • Van-c in Example 16 was replaced with Van-1, and the remaining required starting materials, reagents and preparation methods were the same as in Example 16 to obtain Van029.
  • High Resolution Mass Spectrum (ESI +) C 85 H 101 Cl 2 N 11 O 30 theoretical value 1825.6093, found 913.8131 [M + 2H] 2+.
  • Van-c in Example 16 was replaced with Van-m, and the remaining required starting materials, reagents and preparation methods were the same as in Example 16 to obtain Van030.
  • High Resolution Mass Spectrum (ESI +) C 87 H 109 Cl 2 N 11 O 31 theoretical value 1873.6668, found 937.8422 [M + 2H] 2+.
  • Van-c in Example 16 was replaced with Van-n, and the remaining materials, reagents and preparation methods were the same as in Example 16 to obtain Van031.
  • Example 8 N van in Example 8 2- (n-decyl) ethyl - Van-a vancomycin replaced by N van -2 (decyl) - vancomycin Van-g, the remaining required raw materials, reagents and The preparation method was the same as in Example 8 to obtain Van034.
  • Example 8 Replace N van -2-(n-nonylamino)ethyl-vancomycin Van-a in Example 8 with N van -2(4-ethynylbenzyl)-vancomycin Van-l, the rest Raw materials, reagents and preparation methods were the same as in Example 8 to obtain Van035.
  • test strains were vancomycin-sensitive Staphylococcus aureus Newman strain and vancomycin-resistant Staphylococcus aureus Mu50strain.
  • Vancomycin was purchased from Wuhan Dahua Weiye Pharmaceutical Chemical Co., Ltd., batch number DH20160105, and Travancin was prepared according to the method described in US20020022590A1.
  • Test method The test compound was dissolved in a certain volume of DMSO to prepare a solution having a concentration of 1.28 mg/mL, and then diluted with DMSO to obtain an initial concentration of 128 ⁇ g/mL. Further, for the double dilution, 96-well cell culture plates, each row was added with a low concentration of 0.125 ⁇ g/mL to a high concentration of 128 ⁇ g/mL, and 100 ⁇ L of the corresponding drug solution was added in sequence, and there was a sterile control (no drug and bacterial solution only cultured) Liquid), growth control (no drug added, DMSO added to the broth culture solution), positive control group (vancomycin).
  • Each test and growth control well was inoculated with 5 microliters of bacterial suspension (100 ⁇ L of bacterial solution at a concentration of 10 5 CFU/mL).
  • the 96-well cell culture plate was cultured at 37 ° C for 16 hours, and the lowest compound concentration that completely inhibited bacterial growth was the MIC value.
  • Van016, Van032, Van037, Van038, vancomycin and telavancin of the present invention were dissolved in sterile red distilled water (ddH 2 O) to prepare a solution in which the concentration of each drug was about 2 mg/mL.
  • SPF female BALB/c mice were purchased from the Shanghai Laboratory Animal Research Center and grown in an environment free of specific microorganisms. Overnight culture of S. aureus USA300LAC strain (community-acquired methicillin-resistant Staphylococcus aureus) was transferred 1:1 to fresh tryptic soy broth (TSB) and continued for three hours. The exponential growth phase of the strain was reached, and the collected cells were washed twice with sterile PBS buffer and suspended in the buffer.
  • TBS tryptic soy broth
  • mice were randomly divided into 7 groups, namely, negative control group, Van016 group, Van032 group, Van037 group, Van038 group, vancomycin group and Travancin group, 15 small each in each experimental group. Rats, each mouse weighed approximately 18 grams.
  • mice Female BALB/c mice reared for 6 to 8 weeks were anesthetized with sodium pentobarbital (80 mg/kg, intraperitoneal injection), and 2.35 ⁇ 10 8 CFU of the USA300LAC suspension suspension was injected into the mice by intravenous injection.
  • the mice were given a single dose of 7 mg/kg of the selected compound and the positive control compound, respectively, except for the negative control group, and the treatment was intraperitoneal injection.
  • mice in the negative control group were injected with the same amount of sterile ddH 2 O. The number of deaths in the mice was recorded for 10 consecutive days, and the percentage of survival of the mice was calculated. The results are shown in Fig. 1.
  • the survival rate of the Van038 group was 93.3%
  • the survival rate of the Van037 group was 86.6%
  • the survival rate of the Van032 group was 73.3%
  • the survival rate of the Van016 group was 60.0%.
  • the survival rate of the Travancin group was 93.3% in the positive control group and 6.6% in the vancomycin group.
  • the mice in the negative control group all died after 6 days, and the survival rate was 0%.
  • mice The compounds Van116, Van032, Van037, Van038 prepared by the present invention and the positive compounds vancomycin and telavancin were selected for pharmacokinetic experiments in mice, and the mice (CD-1 mice) used were all from Shanghai. Lingchang Biotechnology Co., Ltd. grows to 18-22g at 18-29 ° C and humidity range of 30-70%.
  • mice Eighteen male CD-1 normal mice were randomly divided into 6 groups, namely, Van016 group, Van032 group, Van037 group, Van038 group, vancomycin group and Travancin group, with 3 rats in each group.
  • a single dose of 5 mg/kg of each group of mice was intravenously injected into the corresponding compound solution prepared in Biological Test Example 2, and each time was 0.05 h, 0.25 h, 0.75 h, 2 h, 4 h, 8 h, 24 h after injection for 7 times.
  • Take a blood sample take blood from the femoral vein).
  • LC-MS/MS was used to detect the plasma concentration (ng/mL) in 6 groups of mice at different times.
  • the pharmacokinetic software WinNonlin 6.4 was used to obtain the corresponding half-life T 1/2 and the area under the drug concentration-time curve AUC.
  • the four compounds of the present invention are longer than vancomycin and telavancin in half-life T 1/2 , and the area under the drug concentration-time curve AUC is 10-20 larger than vancomycin. Times, comparable to Travans. In terms of plasma clearance CL, the four compounds of the present invention all have a slower clearance rate than vancomycin, and are comparable to telavancin, and both exhibit good drug-forming parameters superior to the positive compound.
  • AUC last area under the drug concentration-time curve of the measured time period
  • AUC INF_obs area under the drug concentration-time curve for the theoretical full time period
  • CL obs plasma clearance detection value
  • MRT INF_obs theoretical full time The average retention time of the segment is detected
  • V SS_obs the measured value of the drug in the steady state volume of the human body
  • the subscript obs is the abbreviation of observed, that is, the observed measured value
  • the subscript INF is the abbreviation of infinity, which refers to the infinite time range, that is, the theory
  • the subscript last refers to the time range from the start point to the end point of the measured time, that is, the measured time period.
  • Liver and kidney cytotoxicity experiments were performed using Van011, Van037, vancomycin and telavancin.
  • Liver and kidney cell viability assays were performed using the Cell Activity Assay Kit CCK8 (Cell Counting Kit-8) method.
  • HK-2 cells human renal tubular epithelial cells
  • HL-7702 cells human liver cells
  • HK-2 cells human renal tubular epithelial cells
  • HL-7702 cells human liver cells
  • OD C represents the optical density at different concentrations of the drug to be tested
  • C represents the concentration of the drug

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供了一类如下面通式I所示结构的万古霉素衍生物及其药学上可接受的盐,其制备方法、包含该化合物的药物组合物,以及这些化合物在制备用于治疗和/或预防细菌感染性疾病,尤其是用于治疗因革兰氏阳性菌导致的感染性疾病的药物中的用途。

Description

一类万古霉素衍生物、其制备方法、药物组合物和用途 技术领域
本发明属于药物化学和医药技术领域,涉及通式(I)所示的万古霉素衍生物及其药学上可接受的盐,制备所述万古霉素衍生物的方法,包含该万古霉素衍生物或其药学上可接受的盐的药物组合物,和所述万古霉素衍生物及其药学上可接受的盐在制备用于治疗和/或预防与革兰氏阳性菌感染有关疾病或病症的药物的用途。
背景技术
在过去的半个多世纪中,抗生素在对细菌感染性疾病的治疗中取得了巨大的成功。但是,它的广泛使用也使得耐药致病菌株成为引起临床感染十分常见的病原菌。在传统感染性疾病尚未完全控制的同时,新的感染性疾病和病原体仍在不断涌现,多种微生物的耐药现象也越来越严重,成为临床治疗中的难题。因此发展新一代对耐药菌株有效的抗生素十分迫切而重要。
万古霉素(Vancomycin)和去甲万古霉素(Norvancomycin)是从放线菌发酵液中提取获得的一种天然糖肽类抗生素。糖肽抗生素具有核心七肽结构。它们的作用方式是和细菌细胞壁前体的D-丙氨酰-D-丙氨酸(Acyl-D-Ala-D-Ala)二肽残基结合,抑制肽聚糖的合成,从而抑制细菌细胞壁的合成。自上个世纪60年代应用于临床以来,在过去的50年中一直作为抗革兰氏阳性菌的最后手段在细菌感染治疗中广泛使用。但是,自1986年临床上第一次检测到耐万古霉素的肠球菌(VRE)以来,肠球菌对它的耐药性变得越来越普遍(>20%)并且开始扩散到其它生物体中,最近有报道显示,国外在对血液透析病人的抗感染治疗中检测到了对万古霉素高度耐药的新的耐甲氧西林青霉素的金葡菌(VRSA)。因此,开发第二代对耐药致病菌株有效的糖肽类抗生素的重要性和迫切性不言而喻。在过去的数十年中,运用结构修饰的策略制备合成活性万古霉素类似物取得了一些重要进步,目前已有数个经不同天然万古霉素类似物化学修饰得到的化合物得到美国FDA批准,如Oritavancin(奥利万星)、Dalbavancin(达巴万星)和Telavancin(特拉万星)显示出对万古霉素敏感菌和耐药菌MRSA(耐甲氧西林金黄色葡萄球菌)、VRSA(耐万古霉素金黄色葡萄球菌)和VRE(耐万古霉素肠球菌)均具有良好的抑菌作用。
Figure PCTCN2017081941-appb-000001
发明内容
本发明的一个目的是提供一类万古霉素衍生物或其药学上可接受的盐。
本发明的另一个目的是提供上述万古霉素衍生物的制备方法。
本发明的另一个目的是提供包含上述万古霉素衍生物和/或其药学上可接受的盐的药物组合物。
本发明的再一个目的是提供上述万古霉素类衍生物和/或其药学上可接受的盐的药物组合物在制备抗菌药物上的用途。
本发明提供的是如下式(I)所示的万古霉素衍生物:
Figure PCTCN2017081941-appb-000002
或者其药学上可接受的盐,其中:
R1是H、–CH2–R4、–CO–R4或—(CH2)m–A-R4,其中
m为1-4的整数,优选为2、3或4,
A选自NH、O和S,
R4选自取代或未取代的C8-C16直链或支链烷基、取代或未取代的C8-C16直链或支链烯基、取代或未取代的C8-C16直链或支链炔基、取代或未取代的C3-C10环烷基、取代或未取代的C6-C20芳基、取代或未取代的含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的含有选自N、O和S中的一个或多个杂原子的3-10元杂芳基,
上述取代的取代基可以为选自卤素、-OH、-NH2、氰基、C1-C10直链或支链烷基(优选甲基、乙基、丁基、戊基、庚基)、C1-C10直链或支链烷氧基、C1-C10直链或支链烷胺基、C1-C10直链或支链烷酰基、C3-C10环烷基、卤代C1-C10直链或支链烷基(优选三氟甲基)、三甲基硅烷基C2-C10直链或支链炔基(优选三甲基硅烷基乙炔基)、C2-C10直链或支链炔基(优选乙炔基)、三氟甲基C6-C20芳基(优选三氟甲基苯基)、用卤素、-OH、-NH2、氰基、C1-C10直链或支链烷基、C1-C10直链或支链烷氧基、C1-C10直链或支链烷酰基、C2-C6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6直链或支链烷基苯基、三氟甲基苯基、氯苯基或C1-C6直链或支链烷基联苯基甲氧基取代的C6-C20芳基、用卤素、-OH、-NH2、氰基、C1-C10直链或支链烷基、C1-C10直链或支链烷氧基、吡啶基、苯基、C1-C6直链或支链烷基苯基、三氟甲基苯基或氯苯基取代的C3-C10环烷基、C1-C10直链或支链烷基羰基、苯基C1-C10直链或支链烷基羰基等中的一个或多个;
在本发明一优选实施方案中,R4选自如下基团:
Figure PCTCN2017081941-appb-000003
R2是OH或–NH(CH2)pR5,其中
p为0-6之间的整数,
R5独立选自糖基或者取代的氨基;所述取代的取代基可以为选自C1-C6直链或支链烷基中的1或2个取代基;
优选的R2选自如下基团:
Figure PCTCN2017081941-appb-000004
进一步优选,R2选自如下基团:
Figure PCTCN2017081941-appb-000005
R3选自氢或甲基;
n为0-6之间的整数,优选为0、1、2或3;
X不存在或为–S–、–O–、–NH–、–C(O)NH–、–NHC(O)–或–(CH2)q–,q为0-2之间的整数;优选X不存在或为–NH–、–C(O)NH–、和–(CH2)2–;
Y为糖基;
上述糖基为源自具有碳水化合物特征的单糖和/或二糖的结构部分,其为所述单糖和/ 或二糖通过糖苷化反应得到的残基,所述糖苷化反应包括环状或非环状糖基的O-糖苷化、N-糖苷化和C-糖苷化反应;本发明一实施方案中,所述糖基选自由环状单糖、环状二糖、非环状单糖、非环状二糖得到的糖基;在本发明另一实施方案中,所述糖基选自由去氧单糖、羧基单糖、氧化单糖、还原单糖得到的糖基,更特别地,所述糖基可优选选自由木糖、甘露糖、N-乙酰氨基葡萄糖、半乳糖、山梨糖、***糖、葡萄糖、果糖、鼠李糖,岩藻糖、唾液酸、核糖、脱氧核糖、阿洛糖、上述单糖的开环结构、以及上述单糖和/或单糖的开环结构组合形成的二糖得到的糖基;
进一步优选的,所述糖基选自:
Figure PCTCN2017081941-appb-000006
Figure PCTCN2017081941-appb-000007
在本发明中,术语“非环状单糖”是指吡喃糖的1位醛基被还原氢化、被还原胺化或被酰胺化的单糖,所述非环状单糖优选为1位醛基被还原胺化或被酰胺化的半乳糖、1位醛基被酰胺化的葡萄糖和1位醛基被酰胺化的甘露糖。
在本发明中,术语“非环状二糖”是指一个或者两个吡喃糖的1位醛基被还原氢化、被还原胺化或被酰胺化的二糖,所述非环状二糖优选1位醛基被还原胺化或酰胺化的乳糖、1位醛基被还原胺化或酰胺化的麦芽糖和1位醛基被还原胺化或酰胺化的纤维二糖。
在本发明中,术语“芳基”是指不含杂原子的芳香族环基,优选是碳原子数为6~18个的芳基,更优选自苯基、萘基、联苯基;所述取代的芳基的实例包括但不限于4-甲基苯基、4-甲氧基苯基、4-戊基苯基、4-丁基苯基、4-乙炔基苯基、4-三氟甲基苯基、4-丁氧基苯基、4-三甲基硅乙炔基苯基、4-氟苯基、4-(4-三氟甲基苯基)-苯基或4-(4-氯苯基)-苯基。
在本发明中,术语“C8-C16直链或支链烷基”是指主链上具有8至16个碳原子的直链或支链烷基。C1-C10直链或支链烷基和C1-C6直链或支链烷基的含义以此类推。
在本发明中,术语“C1-C10直链或支链烷氧基”是指主链上具有1至10个碳原子的直链或支链烷氧基。
在本发明中,术语“C1-C10直链或支链烷胺基”是指主链上具有1至10个碳原子的直链或支链烷基取代的氨基。
在本发明中,术语“C1-C10直链或支链烷酰基”是指主链上具有1至10个碳原子的直链或支链烷基取代的羰基,与C1-C10直链或支链烷基羰基具有相同的含义。
在本发明中,术语“C2-C6直链或支链炔基”是指主链上具有2至6个碳原子的直链或支链炔基。
本发明中的术语“药学上可接受的盐”是指与磷酸、硫酸、盐酸等无机酸,或醋酸、酒石酸、柠檬酸、苹果酸等有机酸,或天冬氨酸、谷氨酸等酸性氨基酸形成的盐,或与上 述酸成酯或酰胺后再与无机碱形成的盐,如钠、钾、钙、铝盐和铵盐。
在本发明一个优选的实施方案中,所述通式I的化合物为由下面通式I-A表示的万古霉素衍生物:
Figure PCTCN2017081941-appb-000008
其中,R6选自氯和三氟甲基,
R2选自OH或以下基团:
Figure PCTCN2017081941-appb-000009
Y的定义与通式(I)中的限定相同,优选选自以下基团:
Figure PCTCN2017081941-appb-000010
X和n与通式(I)中的限定相同。
在本发明的另一个优选实施方案中,所述万古霉素衍生物优选选自下列化合物:
Figure PCTCN2017081941-appb-000011
Figure PCTCN2017081941-appb-000012
Figure PCTCN2017081941-appb-000013
Figure PCTCN2017081941-appb-000014
Figure PCTCN2017081941-appb-000015
所述万古霉素衍生物进一步优选选自下列化合物:
Figure PCTCN2017081941-appb-000016
Figure PCTCN2017081941-appb-000017
Figure PCTCN2017081941-appb-000018
上述通式(I)所示的本发明的万古霉素衍生物采用下述方法制备,其中,该方法包括如下步骤中的一步或多步:
Figure PCTCN2017081941-appb-000019
(1)万古霉素与酰氯或磺酰氯(R1Cl)发生取代反应或与醛(R4CHO)发生缩合反应得到通式d化合物;
(2)将通式d化合物与氨基化合物(R2NH2)发生缩合反应得到通式e化合物;
(3)将通式e化合物与取代胺在甲醛的存在下发生曼尼希(Mannich)反应得到通式(I)化合物;
其中,R1、R2、R3、R4、n、X和Y与通式(I)中的限定相同,但R1不为H,R2不为OH。
在所述步骤(1)中,任选在有或没有碱存在下,在没有溶剂条件下或在溶剂中与醛或酰氯化合物进行反应,此反应中所使用的溶剂可以使任何一种溶剂,只要溶剂本身在反应中是惰性的,且不会抑制反应就可以。这样的溶剂包括卤代烃溶剂,如二氯甲烷、1,2-二氯乙烷和氯仿等,芳香族烃类溶剂,如苯和甲苯等,非质子传递性溶剂,如丙酮、乙腈、N,N-二甲基甲酰胺、N-甲基-2-吡咯烷酮、二甲亚砜和六甲基磷酰胺等,酯类溶剂,如乙酸乙酯和乙酸甲酯等,醚类溶剂,如四氢呋喃、***和1,4-二氧六环等,有机碱溶剂,如吡啶、甲基吡啶、卢替啶和克立啶等,质子溶剂,如水和甲醇等,或这些溶剂的混合物。
该步骤中所使用的碱的例子包括有机碱,如三乙胺、吡啶、N,N-二异丙基乙胺、4-二甲胺基吡啶、1,8-二氮杂双环[5.4.0]-7-十一碳烯和1,2,2,6,6-五甲基哌啶等,或无机碱,如碳酸钠、碳酸钾、碳酸氢钠和碳酸氢钾等。
所述反应可在0℃至120℃的温度范围内进行,优选在0℃至120℃的温度下进行。
在所述步骤(2)中,参照文献(M.R.Leadbetter et al.,TheJournal ofAntibiotics,2004,57(5),326-336和M.N.Prebrazhenskaya et al.,The Journal ofAntibiotics,2007,60(4),235-244)的方法,将通式(d)所示的化合物在缩合剂存在下,在DMF溶剂中与NH2(CH2)mR7进行反应得到通式(e)所示的产物,所述缩合剂选自HATU,HBTU,DMAP,HOBt。
在所述步骤(3)中,参照文献(P.A.Pavlov et al.,TheJournal ofAntibiotics,1997,50(6),509-513,和M.R.Leadbetter et al,TheJournal ofAntibiotics,2004,57(5),326-336)中报道的修饰合成方法,将通式(e)所示的化合物与取代胺和甲醛在碱性条件下进行Mannich反应,得到通式(f)所示的产物。
应理解在任何上述路线中,将各种不同基团和部分引入分子中的合成步骤的精确顺序可能发生变化。本领域技术人员能够确保在所述过程的一个阶段中引入的基团或部分将不会被后续的转化和反应所影响,并据此选择合成步骤的顺序。
在本发明一优选实施方案中,根据本发明的万古霉素衍生物能够和细菌细胞壁前体的D-丙氨酰-D丙氨酸二肽残基结合,从而抑制细胞壁的合成,因此可用于制备细胞壁合成抑制剂类的抗菌药物。
本发明中的上述万古霉素衍生物和其药学上可接受的盐具有抗菌的活性,可用于制备治疗和/或预防细菌所引起的感染性疾病的药物。所述的细菌所引起的感染性疾病,尤其是因革兰氏阳性菌导致的感染性疾病。所述革兰氏阳性菌的实例包括葡萄球菌、链球菌、肠球菌、肺炎双球菌、芽孢杆菌、炭疽杆菌、白喉杆菌、破伤风杆菌、艰难羧状杆菌、单核增生李斯特菌。
根据本发明的再一方面,提供了一种药物组合物,其包含治疗有效剂量的选自上述万古霉素衍生物和其药学上可接受的盐中的一种或多种作为活性成分,该组合物可以进一步包括药学上可接受的载体、赋形剂、佐剂、辅料和/或稀释剂等。
本发明中的上述万古霉素衍生物和其药学上可接受的盐可以单独给药,或者与其他药学上可接受的治疗剂联合给药,特别是与其他治疗和/或预防细菌感染性疾病的药物组合。所述药学上可接受的治疗剂包括但不限于,同万古霉素联合用药的其他可接受的治疗剂,例如,青霉素G、普鲁卡因青霉素和青霉素V、大环内酯类、红霉素、麦迪霉素、乙酰螺旋霉素、柱晶白霉素和克拉霉素、阿齐霉素、甲氧苄啶、氨苯砜、磺胺甲恶唑、加替沙星、利奈唑胺、阿莫西林、达托霉素、美罗培南、亚胺培南两司他丁、哌拉西林舒巴坦、头孢哌酮舒巴坦钠、夫西地酸、比阿培南、依替米星、奥硝唑、甲硝唑等。待组合的各成分可同时或顺序地给予,以单一制剂形式或以不同制剂的形式给予。所述组合不仅包括本发明中的上述万古霉素衍生物和/或其药学上可接受的盐和一种其它活性剂的组合,而且包括本发明中的上述万古霉素衍生物和/或其药学上可接受的盐和两种或更多种其它活性剂的组合。
因此,在本发明的又一方面,提供了一种药物组合物,其包含治疗有效量的选自本发明中的上述万古霉素衍生物和其药学上可接受的盐中的一种或多种作为活性成分以及其他药学上可接受的治疗剂,特别是其他治疗和/或预防细菌感染性疾病药物。所述药物组合物任选可以进一步包含药学上可接受的载体、赋形剂、佐剂、辅料和/或稀释剂等。
本发明的包含治疗有效剂量的选自本发明中的上述万古霉素衍生物和其药学上可接受的盐中的一种或多种作为活性成分的药物组合物,具有抗菌的活性,可用于制备治疗和/或预防细菌感染性疾病的药物。
所述的“治疗有效量”指的是:化合物的量足以明显改善病情,而不至于产生严重的副作用。治疗有效量根据治疗对象的年龄、病情、疗程等来确定。
所述的“药学上可接受的载体”指的是:一种或多种相容性固体或液体填料或凝胶物质,它们适合于人使用,而且必须有足够的纯度和足够低的毒性。“相容性”在此指的是组合物中各组分能和本发明的化合物以及它们之间相互掺和,而不明显降低化合物的药效。药学上可以接受的载体部分例子有糖(如葡萄糖、蔗糖、乳糖等),淀粉(如玉米淀 粉、马铃薯淀粉等),纤维素及其衍生物(如羧甲基纤维素钠、乙基纤维素钠、纤维素乙酸酯等),明胶,滑石,固体润滑剂(如硬脂酸、硬脂酸镁),硫酸钙,植物油(如豆油,芝麻油,花生油,橄榄油等),多元醇(如丙二醇、甘油、甘露醇、山梨醇等),乳化剂(如吐温)、润湿剂(如十二烷基硫酸钠),着色剂,调味剂,稳定剂,抗氧化剂,防腐剂,无热原水等。
有益效果
本发明制备的通式(I)所示的化合物,其体外抑菌实验表明,该类化合物对万古霉素耐药的金黄色葡萄球菌的抑菌活性明显高于万古霉素,部分优选化合物的抗菌活性为万古霉素的10-100倍,为2009年上市的特拉万星的4-10倍。抗菌实验结果表明本发明采用的在万古霉素7位氨基酸芳环上引入含糖结构基团与万古糖胺上引入联苯基团的衍生策略,能显著提高万古霉素抗菌活性,在万古霉素耐药的金黄色葡萄球菌上尤为显著。
附图说明
图1显示化合物Van016、Van032、Van037和Van038的小鼠体内细菌感染存活实验的结果;
图2显示化合物Van011和Van037同万古霉素和特拉万星在HK-2细胞模型中的毒性实验结果;
图3显示化合物Van011和Van037同万古霉素和特拉万星在HL-7702细胞模型中的毒性实验的结果。
具体实施方式
在以下的实施例中将进一步举例说明本发明。这些实施例仅用于说明本发明,但不以任何方式限制本发明的保护范围。
对于以下实施例,可以使用本领域技术人员已知的标准操作和纯化方法。除非另有规定,否则原料通常是从市售来源可获得的,比如Aldrich Chemicals Co.和Acros Organics。商购的溶剂和试剂一般在不进一步纯化的情况下使用,无水溶剂均通过标准方法处理,其他试剂为市售分析纯。除非另有说明,所有温度以℃(摄氏度)表示,室温或环境温度是指20~25℃。化合物的结构通过核磁共振谱(NMR)和/或质谱(MS)来确定的。
核磁共振氢谱位移(δ)以百万分之一(ppm)的单位给出。核磁共振氢谱用Mercury-600MHz和Bruker(AV-400)400MHz型核磁共振仪测定,氘代二甲亚砜(DMSO-d6)、氘代氯仿(CDCl3)、氘代甲醇(MeOD-d4)、氘水(D2O)为溶剂,四甲基硅烷(TMS)为内标。
高分辨质谱采用Agilent 6230系列TOF LC-MS测定,如果描述含氯或溴的离子的强度,则观察到预计的强度比(包含35Cl/37Cl的离子约3:1,包含79Br/81Br的离子1:1),且 仅给出较低质量的离子的强度。
HPLC:Agilent 1260分析型高效液相色谱***(安捷伦公司)和LC3000制备型高效液相色谱***(北京创新通恒科技有限公司)。分析型高效液相色谱条件:C18柱(5μm,4.6x 250mm),紫外检测波段为214和280nm,洗脱条件0-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。制备高效液相色谱条件:C18柱(5μm,19x 250mm),紫外检测波段为214和280nm,洗脱条件0-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。
层析柱一般使用200~300目硅胶为载体。
在上述讨论和下述实施例中,下列缩写具有如下含义。如果某一缩写没有定义,则它具有通常被接受的含义。
TLC为薄层色谱
DIPEA为N,N-二异丙基乙胺;
DMF为N,N-二甲基甲酰胺;
DMSO为二甲基亚砜;
DCM为二氯甲烷;
EtOAc为乙酸乙酯;
Hexane为己烷;
TfOH为三氟甲磺酸;
DCC为二环己基碳二亚胺;
Fmoc-Cl为芴甲氧羰酰氯;
Pd/C为钯碳;
HBTU为O-(苯并***-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;
TFA为三氟乙酸。
起始原料和中间体的制备
制备1制备N-(9-芴基甲氧羰基)-正癸氨基乙醛(1)
Figure PCTCN2017081941-appb-000020
癸醇1a(9.5mL,50mmol),二氯甲烷25mL,甲磺酰氯(5.4mL,70mmol)的二氯甲烷溶液(25mL)混合,在0℃下搅5分钟,加入吡啶(5mL),室温下搅拌24小时。残余物浓缩除溶剂后溶于己烷(100mL),水洗(100mL),收集有机层,硫酸钠干燥。过滤,浓 缩得到无色油状粗品甲磺酸癸酯1b,直接进行下一步反应。粗品甲磺酸癸酯1b溶于30mL乙醇,在室温下15分钟内滴加2-氨基乙醇(6.1g,100mmol)的乙醇溶液(30mL),加毕,升温至90℃搅拌24小时。残余物浓缩除溶剂后加入二氯甲烷(100mL)和水(100mL),分液,收集有机层,硫酸钠干燥。过滤,浓缩得到无色油状癸基氨基乙醇粗品1c(7.5g,收率75%),质谱(ESI+):201.8[M+H]+
癸基氨基乙醇粗品1c(4.15g),DIPEA(3.6mL),二氯甲烷30mL,Fmoc-Cl(4.7g)的二氯甲烷溶液(10mL)混合,在0℃下搅1h,TLC显示反应基本完全。饱和碳酸氢钠水溶液洗涤(500mL),0.1N HCl洗(200mL),收集有机层,无水硫酸钠干燥。过滤,有机层浓缩得到无色油状粗品N-癸基-N-Fmoc-氨基乙醇1d(8g)。质谱(ESI+):424.3[M+H]+
1H NMR(400MHz,CDCl3)δ(ppm)=7.84(d,J=7.5Hz,2H),7.66(d,J=7.4Hz,2H),7.52–7.36(m,4H),4.61(d,J=5.8Hz,2H),4.31(t,J=5.7Hz,1H),3.80(s,1H),3.45(s,2H),3.13(s,3H),1.63–1.07(m,18H),0.96(t,J=6.6Hz,3H)。
将粗品N-癸基-N-Fmoc-氨基乙醇1d(1g),DIPEA(2mL),二氯甲烷20mL混合,在-5℃下(冰-丙酮浴)搅拌15分钟,滴加三氧化硫吡啶(1.88g)的DMSO溶液(6mL),加毕,在-5℃下搅拌30分钟,TLC显示反应基本完全。反应液倒入碎冰和饱和碳酸氢钠水溶液中(50mL),分液,有机层用0.1N HCl洗(50mL),合并有机层后,用无水硫酸钠干燥。过滤,有机层浓缩得到黄色油状粗品N-(9-芴基甲氧羰基)-正癸氨基乙醛1(0.9g)。质谱(ESI+):m/z 422.4[M+H]+
1H NMR(400MHz,CDCl3):δ(ppm)=9.38(d,J=117.7Hz,1H),7.84(d,J=7.5Hz,2H),7.66(d,J=7.4Hz,2H),7.52–7.36(m,4H),4.61(d,J=5.8Hz,2H),4.31(t,J=5.7Hz,1H),3.80(s,1H),3.33–3.18(m,2H),3.18–3.04(m,1H),1.52–1.36(m,1H),1.37–1.14(m,14H),1.15–1.03(m,1H),0.97–0.79(m,3H)。
制备2制备2-氨基乙基-α-D-吡喃甘露糖苷(2)
Figure PCTCN2017081941-appb-000021
1,2,3,4,6-O-乙酰-D-吡喃甘露糖苷(2a)
D-甘露糖(5g,27.9mmol)溶解在25ml吡啶中,0℃冰浴,缓慢加入25ml乙酸酐。室温搅拌16h,减压蒸除溶剂,残留液体溶于乙酸乙酯,依次用1N盐酸、纯水和饱和食盐水洗涤,无水硫酸钠干燥,过滤,残余乙酸乙酯减压蒸除。得到透明粘稠油状的全乙酰化 的甘露糖(2a)(10.6g,27.1mmol,收率97%),产物中含有两种构型(α构型体/β构型体=33:67,w/w)。
1H NMR(400MHz,CDCl3,两种构型体的混合物):β构型体NMR信号δ(ppm)=1.98(s,3H,COCH3),2.07(s,3H,COCH3),2.08(s,3H,COCH3),2.15(s,3H,COCH3),2.19(s,3H,COCH3),3.99–4.05(m,1H,5-H),4.07(dd,J=2.4,12.4Hz,1H,6-Ha),4.26(dd,J=4.9,12.4Hz,1H,6-Hb),5.23(dd,J=2.0,3.1Hz,1H,3-H),5.31–5.34(m,2H,3-H,4-H),6.06(d,J=2.0Hz,1H,1-H);α构型体NMR信号δ(ppm)=1.98(s,3H,COCH3),2.03(s,3H,COCH3),2.07(s,3H,COCH3),2.15(s,3H,COCH3),2.16(s,3H,COCH3),3.79(ddd,J=2.4,5.3,9.9Hz,1H,5-H),4.11(dd,J=2.4,12.4Hz,1H,6-Ha),4.28(dd,J=5.3,12.4Hz,1H,6-Hb),5.11(dd,J=3.3,10.0Hz,1H,3-H),5.27(t,J=10.0Hz,1H,4-H),5.46(dd,J=1.2,3.3Hz,1H,2-H),5.84(d,J=1.2Hz,1H,1-H)。
苯基2,3,4,6-四-O-乙酰基-1-硫-α-D-吡喃甘露糖苷(2b)
全乙酰化的甘露糖苷2a(4.5g,12.5mmol)加入10mL二氯甲烷,加入苯硫酚(1.96mL,19.08mmol)。室温搅拌20min,然后在冰浴条件下,滴加三氟化硼***(7.8mL,63.6mmol),冰浴中继续搅拌15min,转移至室温,反应16h。反应液加二氯甲烷(50mL)稀释,加入冰水(100mL)搅拌,分离得到有机层。用饱和碳酸氢钠和食盐水洗涤有机层,无水硫酸钠干燥,减压蒸除残余溶剂,柱层析分离(乙酸乙酯/己烷1:5至1:3,v/v),得到白色固体的苯基2,3,4,6-四-O-乙酰基-1-硫-α-D-吡喃甘露糖苷2b 4.4g,收率80%。高分辨质谱(ESI+):[M+Na]+C20H24O9SNa理论值为463.1033,实测值为463.1039。
1H NMR(400MHz,CDCl3):δ(ppm)=7.50–5.30(m,5H,ArH),5.50(dd,J1,2=1.6Hz,J2,3=3.2Hz,1H,H-2),5.50(d,1H,H-1),5.33(dd,J4,5=9.8Hz,J3,4=9.9Hz,1H,H-4),5.32(dd,1H,H-3),4.55(ddd,J5,6a=2.3Hz,J5,6b=5.9Hz,1H,H-5),4.31(dd,J6a,6b=–12.3Hz,1H,H-6b),4.11(dd,1H,H-6a),2.16,2.08,2.06,2.02(s,12H,4×OCCH3)。
2-(苄氧基羰基)氨基乙基2,3,4,6-四-O-乙酰-α-D-吡喃甘露糖苷(2c)
苯基2,3,4,6-四-O-乙酰基-1-硫-α-D-吡喃甘露糖苷2b(2g,4.5mmol)和N-(苄氧基羰基)乙醇胺(1.1g,5.4mmol)溶解在无水二氯甲烷中,
Figure PCTCN2017081941-appb-000022
分子筛,氩气保护,转移至0℃,加入N-碘代丁二酰亚胺(1.52g,6.75mmol),在0℃反应15min,加入三氟甲磺酸(80μL,0.9mmol),室温反应过夜。反应中加三乙胺淬灭,加二氯甲烷稀释后过滤得到有机层,用饱和碳酸氢钠溶液、饱和食盐水洗涤有机层,无水硫酸钠干燥,减压蒸除溶剂,通过柱层析分离产物(乙酸乙酯/己烷体积比40:60到50:50洗脱),得到无色油状物的2-(苄氧基羰基)氨基乙基2,3,4,6-四-O-乙酰-α-D-吡喃甘露糖苷(1.66g,3.17mmol,收率57%)。高分辨质谱(ESI+):C24H31NO12[M+H]+理论值为526.1925,实测值526.1913。
1H NMR(400MHz,CDCl3):δ(ppm)=2.00(s,3H,COCH3),2.04(s,3H,COCH3),2.09 (s,3H,COCH3),2.16(s,3H,COCH3),3.36–3.53(m,2H,CH2NH),3.58(ddd,J=3.6,6.8,10.2Hz,1H,CHaHbCH2NH),3.78(ddd,J=3.9,6.210.2Hz,1H,CHaHbCH2NH),3.97(ddd,J=2.3,5.79.5Hz,1H,5-H),4.08(dd,J=2.3,12.2H 1H,6-Ha),4.26(dd,J=5.7,12.2Hz,1H,6-Hb),4.82(d,J=1.7Hz,1H,1-H),5.12(s,2H,CH2Ph),5.20(bt,J=5.8Hz,1H,NH),5.25(dd,J=1.7,3.2Hz,1H,2-H),5.26(dd,J=9.5,10.1H),5.31(dd,J=3.2,10.0Hz,1H,3-H),7.29–7.39(m,5H,C6H5)。
2-(苄氧基羰基)氨基甲基-α-D-吡喃甘露糖苷(2d)
2-(苄氧基羰基)氨基乙基2,3,4,6-四-O-乙酰-α-D-吡喃甘露糖苷2c(466mg,0.887mmol)溶解在4N甲醇钠的甲醇溶液中,保持pH=10,室温反应4h,加入强酸离子树脂,调整pH=7-8,过滤,减压蒸除溶剂,得到无色油状的2-(苄氧基羰基)氨基甲基-α-D-吡喃甘露糖苷2d(301mg,0.842mmol,收率95%)。高分辨质谱(ESI+):C16H23NO8[M+Na]+理论值为380.1321,实测值为380.1316。
1H NMR(400MHz,MeOD-d4):δ(ppm)=3.27–3.39(m,2H,CH2NH),3.47–3.55(m,2H,5-H,CHaHbCH2NH),3.60(t,J=9.5Hz,1H,4-H),3.68(dd,J=5.8,11.7Hz,1H,6-Ha),3.69(dd,J=3.4,9.3Hz,1H,3-H),3.74(ddd,J=4.9,6.4,10.2Hz,1H,CHaHbCH2NH),3.80(dd,J=1.7,3.4Hz,1H,2-H),3.81(dd,J=2.3,11.7Hz,1H,6-Hb),4.75(d,J=1.6Hz,1H,1-H),5.06(s,2H,CH2Ph),7.24–7.36(m,5H,C6H5)。
2-胺乙基-α-D-吡喃甘露糖苷(2)
2-(苄氧基羰基)氨基甲基-α-D-吡喃甘露糖苷2d(285mg,0.798mmol)溶解在甲醇中,加入Pd-C(20%)30mg,反应液通入H2(压力1.5Pa),室温搅拌4h,砂芯漏斗过滤,得到2-胺乙基-α-D-吡喃甘露糖苷2301mg(0.842mmol,收率95%)。高分辨质谱(ESI+):C16H23NO8[M+Na]+理论值为380.1321,实测值为380.1316。
1H NMR(400MHz,MeOD-d4):δ(ppm)=2.82–2.86(m,2H,CH2NH2),3.48(ddd,J=4.7,5.9,10.2Hz,1H,CHaHbCH2NH2),3.56(ddd,J=2.1,5.8,9.7Hz,1H,5-H),3.63(t,J=9.4Hz,1H,4-H),3.73(dd,J=5.8,11.8Hz,1H,6-Ha),3.74(dd,J=3.4,9.1Hz,1H,3-H),3.79(ddd,J=4.7,5.9,10.2Hz,1H,CHaHbCH2NH2),3.86(dd,J=1.7,3.4Hz,1H,2-H),3.86(dd,J=2.1,11.8Hz,1H,6-Hb),4.80(d,J=1.7Hz,1H,1-H)。
制备3制备2-胺乙基-β-D-吡喃葡萄糖苷(3)
Figure PCTCN2017081941-appb-000023
制备2中的甘露糖替换成葡萄糖,其余所需原料,试剂及制备方法同制备2,得到3a-c和3。
苯基2,3,4,6-四-O-乙酰基-1-硫β-D-葡萄糖苷(3a)
1H NMR(400MHz,CDCl3):δ(ppm)=7.55–7.49(m,2H),7.34(dd,J=5.1,1.9Hz,3H),5.24(t,J=9.4Hz,1H),5.03(dt,J=26.5,9.7Hz,2H),4.73(d,J=10.1Hz,1H),4.27–4.17(m,2H),3.75(ddd,J=10.0,5.0,2.6Hz,1H),2.10(d,J=2.9Hz,6H),2.04(s,3H),2.01(s,3H)。
2-(苄氧基羰基)氨基乙基2,3,4,6-四-O-乙酰基-β-D-葡萄糖苷(3b)
高分辨质谱(ESI+):C24H31NO12[M+H]+理论值为526.1925,实测值为526.1899。
1H NMR(400MHz,CDCl3):δ(ppm)=2.00(s,6H,2COCH3),2.03(s,3H,COCH3),2.06(s,3H,COCH3),3.37–3.41(m,2H,CH2NH),3.68(ddd,J=2.5,4.8,9.9Hz,1H,5-H),3.69–3.74(m,1H,OCHaHbCH2),3.87(ddd,J=4.1,5.5,10.0Hz,1H,OCHaHbCH2),4.14(dd,J=2.4,12.3Hz,6-Ha),4.14(dd,J=4.8,12.4Hz,1H,6-Hb),4.48(d,J=8.0Hz,1H,1-H),4.93(dd,J=8.0,9.6Hz,1H,2-H),5.05(dd,J=9.4,9.7Hz,1H,4-H),5.09(s,2H,CH2Ph),5.17(m,1H,NHCBz),5.19(dd,J=9.4,9.6Hz,3-H),7.33–7.36(m,5H,C6H5)。
2-(苄氧基羰基)氨基甲基-β-D-吡喃葡萄糖苷(3c)
高分辨质谱(ESI+):C16H23NO8[M+Na]+理论值为380.1321,实测值为380.1318。
1H NMR(400MHz,MeOD-d4):δ(ppm)=3.17(dd,J=7.9,9.0Hz,1H,2-H),3.22–3.29(m,3H,4-H,5-H,CHaHbNH),3.32–3.38(m,1H,CHaHbNH),3.34(t,J=8.7Hz,3-H),3.58(ddd,J=4.2,6.9,10.4Hz,,1H,CHaHbCH2NH),3.62(dd,J=5.2,12.0Hz,1H,6-Hb),3.81(dd,J=2.0,11.9Hz,1H,6-Hb),3.86(ddd,J=5.6,7.7,10.2Hz,1H,CHaHbCH2NH),4.22(d,J=7.8Hz,1H,1-H),5.02(s,2H,CH2Ph),7.23–7.29(m,5H,C6H5)。
2-胺乙基-β-D-吡喃葡萄糖苷(3)
高分辨质谱(ESI+):C8H17NO6[M+H]+理论值为224.1134,实测值为224.1135。
1H NMR(400MHz,MeOD-d4):δ(ppm)=2.84–2.86(m,2H,CH2NH2),3.15(dd,J=7.8,9.2Hz,1H,2-H),3.21–3.24(m,2H,4-H,5-H),3.31(dd,J=9.0,9.1Hz,1H,3-H),3.58–3.63(m,2H,6-Ha,CHaHbCH2NH),3.81(dd,J=1.3,11.9Hz,1H,6-Hb),3.88(ddd,J=5.0,7.7,9.9Hz,1H,CHaHbCH2NH),4.22(d,J=7.8Hz,1H,1-H)。
制备4制备2-胺乙基-β-D-吡喃半乳糖苷(4)
Figure PCTCN2017081941-appb-000024
将制备2中的甘露糖替换成半乳糖,其余所需原料,试剂及制备方法同制备2,得到4a-c和4。
苯基2,3,4,6-四-O-乙酰基-1-硫β-D-半乳糖苷(4a)
1H NMR(400MHz,CDCl3):δ(ppm)=7.54(ddd,J=7.0,3.8,2.1Hz,2H),7.37–7.33(m,3H),5.44(d,J=3.2Hz,1H),5.27(t,J=9.9Hz,1H),5.07(dd,J=10.0,3.4Hz,1H),4.74(d,J=10.0Hz,1H),4.22(dd,J=11.3,7.0Hz,1H),4.17–4.11(m,1H),3.96(t,J=6.6Hz,1H),2.15(s,3H),2.12(s,3H),2.07(s,4H),2.00(s,3H)。
2-(苄氧基羰基)氨基乙基2,3,4,6-四-O-乙酰基-β-D-半乳糖苷(4b)
高分辨质谱(ESI+):C24H31NO12[M+Na]+理论值为548.1744,实测值为548.1747。
1H NMR(400MHz,CDCl3):δ(ppm)=1.90(s,3H,COCH3),1.93(s,3H,COCH3),1.95(s,3H,COCH3),2.07(s,3H,COCH3),3.32(m,2H,CH2NH),3.62(ddd,J=3.6,7.1,10.2Hz,1H,CHaHbCH2NH),3.80–3.82(m,2H,5-H,CHaHbCH2NH),4.06(d,J=6.6Hz,2H,6-H2),4.38(d,J=7.9Hz,1H,1-H),4.93(dd,J=3.4,10.5Hz,1H,3-H),5.02(s,2H,CH2Ph),5.10(dd,J=8.0,10.4Hz,1H,2-H),5.19(t,J=5.4Hz,1H,NH),5.31(dd,J=0.7,3.4H,1H,4-H),7.22–7.30(m,5H,C6H5)。
2-(苄氧基羰基)氨基甲基-β-D-吡喃半乳糖苷(4c)
高分辨质谱(ESI+):C16H23NO8[M+Na]+理论值为380.1316,实测值为380.1308。
1H NMR(400MHz,MeOD-d4):δ(ppm)=3.30(ddd,J=4.2,6.8,14.2Hz,1H,CHaHbNH),3.40(ddd,J=4.1,6.2,14.2Hz,1H,CHaHbNH),3.46(dd,J=3.2,9.7Hz,1H,3-H),3.50(ddd,J=1.0,5.3,6.8Hz,1H,5-H),3.52(dd,J=7.3,9.8Hz,1H,2-S10H),3.63(ddd,J=4.0,6.8,10.5Hz,1H,CHaHbCH2NH),3.70(dd,J=5.3,11.4Hz,1H,6-Ha),3.75(dd,J=6.9,11.3Hz,1H,6-Hb),3.82(dd,J=1.0,3.2Hz,1H,4-H),3.91(ddd,J=4.2,6.2,10.4Hz,1H,CHaHbCH2NH),4.22(d,J=7.3Hz,1H,1-H),5.06(s,2H,CH2Ph),7.24–7.37(m,5H,C6H5)。
2-胺乙基-β-D-吡喃半乳糖苷(4)
高分辨质谱(ESI+):C8H17NO6[M+H]+理论值为224.1134,实测值为224.1133。
1H NMR(400MHz,MeOD-d4):δ(ppm)=2.80(ddd,J=4.2,6.3,13.4Hz,1H,CHaHbNH2),2.84(ddd,J=4.4,5.5,13.4Hz,1H,CHaHbNH2),3.45(dd,J=3.3,9.7Hz,1H, 3-H),3.49(ddd,J=1.0,5.3,7.0Hz,1H,5-H),3.52(dd,J=7.5,9.7Hz,1H,2-H),3.61(ddd,J=4.4,6.3,10.5Hz,1H,CHaHbCH2NH2),3.69(dd,J=5.3,11.3Hz,1H,6-Ha),3.73(dd,J=7.0,11.3Hz,1H,6-Hb),3.80(dd,J=1.0,3.3Hz,1H,4-H),3.91(ddd,J=4.2,5.5,10.3Hz,1H,CHaHbCH2NH2),4.21(d,J=7.5Hz,1H,1-H)。
制备5制备2-胺乙基-2-乙酰氨基-2-脱氧-β-D-吡喃葡糖苷(5)
Figure PCTCN2017081941-appb-000025
将制备2中的甘露糖替换成乙酰氨基葡萄糖,其余所需原料,试剂及制备方法同制备2,得到5a、5b和5。
2-(苄氧基羰基)氨基乙基2-乙酰氨基-3,4,6-三-O-乙酰基-2-脱氧-β-D-吡喃葡糖苷(5a)
高分辨质谱(ESI+):C24H32N2O11[M+H]+理论值为525.2084,实测值为525.2077。
1H NMR(500MHz,CDCl3):δ(ppm)=1.82(s,3H,COCH3),1.96(s,6H,2COCH3),1.98(s,3H,COCH3),3.21–3.29(m,1H,CHaHbNH),3.33–3.42(m,1H,CHaHbNH),3.61(m,2H,5-H,CHaHbCH2NH),3.80(ddd,J=3.5,5.9,9.9Hz,1H,CHaHbCH2NH),3.84(dt,J=8.6,10.2Hz,1H,2-H),4.06(dd,J=2.0,12.3Hz,1H,6-Ha),4.16(dd,J=4.8,12.3Hz,1H,6-Hb),4.54(d,J=8.3Hz,1H,1-H),4.98(dd,J=9.5,9.8Hz,1H,4-H),5.02(s,2H,CH2Ph),5.12(dd,J=9.8,10.2Hz,1H,3-H),5.31(t,J=5.2Hz,1H,CH2NH),5.87(d,J=8.8Hz,1H,2-NH),7.23–7.31(m,5H,C6H5)。
2-(苄氧基羰基)氨基乙基2-乙酰氨基-2-脱氧-β-D-吡喃葡糖苷(5b)
高分辨质谱(ESI+):C18H26N2O8[M+Na]+理论值为421.1587,实测值为421.1570。
1H NMR(400MHz,MeOD-d4):δ(ppm)=1.93(s,3H,COCH3),3.23–3.34(m,4H,4-H,5-H,CH2NH),3.43(dd,J=8.4,10.3Hz,1H,3-H),3.58(ddd,J=5.4,5.6,10.6Hz,1H,CHaHbCH2NH),3.65(dd,J=8.4,10.3Hz,1H,2-H),3.66(dd,J=5.6,11.9Hz,1H,6-Ha),3.84(m,1H,CHaHbCH2NH),3.86(dd,J=2.2,12.0Hz,1H,6-Hb),4.38(d,J=8.4Hz,1H,1-H),5.05(s,2H,CH2Ph),7.35–7.25(m,5H,C6H5)。
2-胺乙基-2-乙酰氨基-2-脱氧-β-D-吡喃葡糖苷(5)
高分辨质谱(ESI+):C10H20N2O6理论值为265.1400,实测值为265.1404[M+H]+
1H NMR(400MHz,D2O):δ(ppm)=2.05(s,3H,COCH3),2.69–2.85(m,2H,CH2NH2),3.34–3.52(m,2H,4-H,5-H),3.52–3.59(m,1H,3-H),3.59–3.67(m,1H,CHaHbCH2NH2),3.71–3.80(m,2H,2-H,6-Ha),3.87–4.01(m,2H,6-Hb,CHaHbCH2NH2),4.53(d,J=8.4Hz,1H,1-H)。
制备6制备葡萄糖酸内酯衍生物(6)
Figure PCTCN2017081941-appb-000026
葡萄糖酸内酯(2g,11.36mmol)溶解在12mL甲醇中,加入N-叔丁氧羰基-1,3-丙二胺(2.37g,13.63mmol)。回流反应4h,减压蒸除甲醇,得到白色固体,用乙酸乙酯和二氯甲烷洗涤,油泵真空抽得到白色固体6a(3.6g,收率90%)。高分辨质谱(ESI+)C14H28N2O8[M+Na]+理论值为375.1743,实测值为375.1726。
6a:1H NMR(400MHz,DMSO-d6)δ4.48–3.47(m,4H),4.35–3.57(m,2H),3.92–3.07(m,4H),1.51–1.49(m,2H),1.37(s,9H)。
6a溶解在5mL甲醇中,加入4N盐酸,室温搅拌4h,减压蒸除溶剂得到白色固体6。高分辨质谱(ESI+)C9H20N2O6理论值为253.1400,实测值为253.1381[M+H]+
6:1H NMR(400MHz,DMSO-d6)δ4.23–3.53(m,4H),4.12–3.79(m,2H),2.93–2.87(t,4H),1.92–1.88(m,2H)。
制备7制备乳糖酸内酯衍生物(7)
Figure PCTCN2017081941-appb-000027
将制备6中的葡萄糖酸内酯替换成乳糖酸内酯,其余所需原料,试剂及制备方法同制备6,得到7a和7。
7a:高分辨质谱(ESI+)C20H38N2O13理论值为515.2452,实测值为515.2489[M+H]+1H NMR(400MHz,D2O)δ4.58–4.56(d,1H),4.41–4.41(d,1H),4.20–4.18(t,1H),4.01–3.55(m,10H),3.31–3.28(t,2H),3.11–3.10(t,2H),1.75–1.68(m,2H),1.44(s,9H)。
7:高分辨质谱(ESI+)C15H30N2O11理论值为415.1928,实测值为415.1901[M+H]+1H NMR(400MHz,DMSO-d6)δ4.58–4.54(d,1H),4.41–4.40(d,1H),4.19–4.19(t,1H),4.0–3.55 (m,10H),3.36–3.4(t,2H),3.28–3.30(t,2H),1.69–1.73(m,2H)。
实施例1
Figure PCTCN2017081941-appb-000028
第一步,市售万古霉素(950mg),N-葵基-N-Fmoc-氨基乙醛1(550mg),DIPEA(0.65mL),DMF 40mL混合,室温下搅拌1小时后反应液变为澄清,继续搅拌1h。室温下加入NaCNBH3(80mg),甲醇10mL,TFA0.25mL,搅拌60分钟。反应液中加入***(500mL)沉淀,过滤,滤饼先后用***300mL,水300mL洗涤后,干燥。得到白色固体N-葵基-N-Fmoc-氨基乙基-万古霉素(700mg)。HPLC:C18柱(5μm,4.6x 250mm),检测紫外波段为214nm洗脱条件0-90%乙腈(含0.1%v/v TFA)梯度洗30分钟,保留时间tR=22.5min,纯度95%。质谱(ESI+):927.7[M+2H]2+
N-葵基-N-Fmoc-氨基乙基-万古霉素(550mg),20%哌啶的DMF溶液10mL混合,室温下搅拌30分钟。加入***200mL沉淀,过滤,滤饼用***300mL洗涤过滤后,干燥,得到白色固体Nvan-2-(正癸氨基)乙基-万古霉素Van-a(450mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214和280nm,洗脱条件0-90%乙腈(含0.1%v/v TFA)梯度洗30分钟,保留时间tR=16.3min,纯度96%。高分辨质谱(ESI+)C78H100Cl2N10O24理论值为1630.6289,实测值为816.3212[M+2H]2+
第二步,取2-胺乙基-α-D-吡喃甘露糖苷2(30mg),溶于100μL水和500μL乙腈的混合物中,加入DIPEA 30μL,室温下搅拌至固体完全溶解(10分钟)。加入37wt%甲醛溶液2μL,室温下搅拌15分钟后,降至-10℃搅拌5分钟,迅速与Nvan-2-(正癸氨基)乙基-万古霉素Van-a(25mg)的80%乙腈溶液1.5mL混合,加入DIPEA 30μL,-10℃下搅拌8小时,HPLC监测反应,HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。粗品经反相C18制备,冷冻干燥得到白色固体Van001(15mg)。高分辨质谱(ESI+)C87H117Cl2N11O30理论值为1865.7345,实测值为622.9193[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.79(d,J=1.9Hz,1H),7.49(d,J=8.6Hz,1H),7.46–7.43(m,1H),7.41(t,J=7.9Hz,1H),7.28(dd,J=8.2,2.3Hz,2H),7.25(t,J=7.4Hz,1H),7.20(d,J=8.4Hz,1H),7.13–7.10(m,1H),6.84(s,1H),6.77(d,J=8.6Hz,1H),6.51(s,1H),5.71(s,1H),5.66(s,1H),5.28(d,J=7.7Hz,1H),5.24(s,1H),5.14–5.10(m,2H), 5.10–5.07(m,1H),4.81(s,1H),4.65–4.60(m,2H),4.46–4.42(m,1H),4.40(s,1H),4.13–4.06(m,3H),3.84–3.80(m,1H),3.68–3.62(m,4H),3.54(t,J=8.5Hz,3H),3.44–3.40(m,4H),3.38(t,J=9.4Hz,2H),3.33(ddd,J=9.5,6.2,2.2Hz,2H),3.25(d,J=6.4Hz,3H),2.85–2.76(m,3H),2.60(d,J=3.6Hz,1H),2.54(s,2H),2.37(d,J=3.2Hz,1H),2.11(dd,J=16.3,9.1Hz,2H),1.75(d,J=19.3Hz,2H),1.67–1.59(m,3H),1.49(dt,J=14.6,7.7Hz,4H),1.23(d,J=9.7Hz,16H),1.06(d,J=6.3Hz,3H),0.90(d,J=6.2Hz,3H),0.84(q,J=6.8Hz,6H)。
实施例2
Figure PCTCN2017081941-appb-000029
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成2-胺乙基-β-D-吡喃半乳糖苷4,其余所需原料,试剂及制备方法同实施例1,得到Van002。高分辨质谱(ESI+)C87H117Cl2N11O30理论值为1865.7345,实测值为622.9193[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.80–7.77(m,1H),7.49(d,J=8.5Hz,1H),7.46–7.43(m,1H),7.41(t,J=7.9Hz,1H),7.28(dd,J=8.1,3.5Hz,2H),7.27–7.23(m,1H),7.19(d,J=8.4Hz,1H),7.13–7.11(m,1H),6.84(d,J=8.5Hz,1H),6.77(d,J=8.5Hz,1H),6.52–6.49(m,1H),5.66(s,1H),5.27(d,J=7.6Hz,1H),5.24(s,1H),5.11(d,J=7.5Hz,2H),5.09(s,1H),4.83–4.79(m,1H),4.77–4.75(m,1H),4.63(d,J=7.1Hz,1H),4.44(s,1H),4.40–4.38(m,1H),4.11(s,3H),3.95(s,2H),3.81(t,J=15.8Hz,3H),3.65(d,J=10.7Hz,1H),3.62–3.60(m,1H),3.42–3.40(m,2H),3.37(d,J=5.9Hz,3H),3.33–3.23(m,5H),3.07(d,J=21.7Hz,3H),2.85–2.77(m,3H),2.56–2.52(m,2H),2.37(d,J=3.4Hz,1H),2.15–2.07(m,2H),1.80–1.72(m,2H),1.67–1.59(m,3H),1.53–1.43(m,4H),1.23(d,J=9.7Hz,16H),1.10–1.03(m,3H),0.90(d,J=6.1Hz,3H),0.83(q,J=6.8Hz,6H)。
实施例3
Figure PCTCN2017081941-appb-000030
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成2-胺乙基-2-乙酰氨基-2-脱氧-β-D-吡喃葡糖苷5,其余所需原料,试剂及制备方法同实施例1,得到Van003。高分辨质谱(ESI+)C89H120Cl2N12O30理论值为1906.7610,实测值为636.5398[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.80(d,J=5.1Hz,1H),7.50–7.44(m,3H),7.29(dd,J=13.6,8.0Hz,2H),7.22(d,J=8.3Hz,1H),7.11(s,1H),6.84(dd,J=8.4,2.0Hz,1H),6.77(d,J=8.7Hz,1H),6.51(s,1H),5.64(d,J=32.6Hz,2H),5.23(dd,J=15.8,5.7Hz,2H),5.11(s,2H),4.65(q,J=6.6Hz,1H),4.42(d,J=17.0Hz,2H),4.34(d,J=8.5Hz,1H),4.11(q,J=11.5,9.6Hz,3H),3.92–3.80(m,3H),3.74–3.69(m,2H),3.65(d,J=10.9Hz,2H),3.43(td,J=8.2,3.2Hz,5H),3.37(s,4H),3.29(d,J=9.4Hz,1H),3.27–3.24(m,2H),3.23(d,J=8.8Hz,1H),3.18–3.14(m,3H),3.07–3.04(m,2H),3.02–2.98(m,2H),2.88(dd,J=9.4,6.4Hz,2H),2.73(q,J=7.0,6.3Hz,1H),2.36(s,3H),1.78(s,3H),1.71(d,J=13.0Hz,1H),1.54(dt,J=18.6,6.1Hz,4H),1.23(d,J=22.5Hz,16H),1.04(d,J=6.3Hz,3H),0.87(d,J=6.2Hz,3H),0.83(t,J=6.8Hz,6H)。
实施例4
Figure PCTCN2017081941-appb-000031
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成2-胺乙基-β-D-吡喃半乳糖苷4,其余所需原料,试剂及制备方法同实施例1,得到Van004。高分辨质谱(ESI+)C87H117Cl2N11O30理论值为1865.7345,实测值为622.9195[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.80–7.77(m,1H),7.49(d,J=8.5Hz,1H),7.46–7.43 (m,1H),7.41(t,J=7.9Hz,1H),7.28(dd,J=8.1,3.5Hz,2H),7.27–7.23(m,1H),7.19(d,J=8.4Hz,1H),7.13–7.11(m,1H),6.84(d,J=8.5Hz,1H),6.77(d,J=8.5Hz,1H),6.52–6.49(m,1H),5.66(s,1H),5.27(d,J=7.6Hz,1H),5.24(s,1H),5.11(d,J=7.5Hz,2H),5.09(s,1H),4.83–4.79(m,1H),4.77–4.75(m,1H),4.63(d,J=7.1Hz,1H),4.44(s,1H),4.40–4.38(m,1H),4.11(s,3H),3.95(s,2H),3.81(t,J=15.8Hz,3H),3.65(d,J=10.7Hz,1H),3.62–3.60(m,1H),3.42–3.40(m,2H),3.37(d,J=5.9Hz,3H),3.33–3.23(m,5H),3.07(d,J=21.7Hz,3H),2.85–2.77(m,3H),2.56–2.52(m,2H),2.37(d,J=3.4Hz,1H),2.15–2.07(m,2H),1.80–1.72(m,2H),1.67–1.59(m,3H),1.53–1.43(m,4H),1.23(d,J=9.7Hz,16H),1.10–1.03(m,3H),0.90(d,J=6.1Hz,3H),0.83(q,J=6.8Hz,6H)。
实施例5
Figure PCTCN2017081941-appb-000032
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成乙醇胺,其余所需原料,试剂及制备方法同实施例1得到Van005。高分辨质谱(ESI+)C81H107Cl2N11O25理论值为1703.6817,实测值为568.8805[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.79(d,J=2.0Hz,1H),7.48(d,J=8.7Hz,1H),7.45(dd,J=8.3,1.8Hz,1H),7.30(d,J=8.4Hz,1H),7.22(d,J=8.3Hz,1H),7.11–7.09(m,1H),6.84(dd,J=8.5,1.9Hz,1H),6.77(d,J=8.5Hz,1H),6.53(s,1H),5.70–5.61(m,3H),5.23(dd,J=12.6,5.9Hz,2H),5.11(s,3H),4.65(q,J=6.7Hz,1H),4.43(dd,J=14.7,5.6Hz,2H),4.12(dd,J=22.2,13.0Hz,4H),3.65(q,J=4.9,4.1Hz,3H),3.55–3.50(m,4H),3.42(t,J=5.8Hz,3H),3.28–3.21(m,3H),3.15(s,1H),2.96(dd,J=6.4,4.6Hz,3H),2.90(t,J=7.9Hz,3H),2.14–2.08(m,2H),1.90–1.86(m,1H),1.71(d,J=13.1Hz,1H),1.56(dh,J=12.5,6.9,6.5Hz,5H),1.43–1.37(m,2H),1.28–1.18(m,16H),1.04(d,J=6.3Hz,3H),0.88(d,J=6.2Hz,3H),0.85–0.81(m,6H)。
实施例6
Figure PCTCN2017081941-appb-000033
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成2-脱氧-2-氨基甘露糖,其余所需原料,试剂及制备方法同实施例1,得到Van006。高分辨质谱(ESI+)C85H113Cl2N11O29理论值为1821.7083,实测值为608.2428[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.79(d,J=4.9Hz,1H),7.49(s,1H),7.48–7.44(m,2H),7.31(d,J=8.0Hz,1H),7.22–7.20(m,1H),7.11(s,1H),6.84(s,1H),6.77(dd,J=8.6,2.9Hz,1H),6.54–6.52(m,1H),5.70–5.67(m,1H),5.63(s,1H),5.48–5.46(m,1H),5.25(d,J=7.6Hz,1H),5.22(d,J=4.0Hz,1H),5.10(d,J=5.5Hz,3H),4.65(d,J=6.5Hz,2H),4.47–4.44(m,1H),4.41(d,J=5.6Hz,1H),4.26–4.24(m,1H),4.10(s,2H),3.69(d,J=9.7Hz,1H),3.67–3.64(m,2H),3.59(td,J=8.6,6.9,3.5Hz,3H),3.54–3.50(m,4H),3.43–3.40(m,3H),3.28–3.21(m,4H),3.17–3.11(m,4H),2.92–2.88(m,3H),2.60(s,1H),2.38–2.36(m,1H),2.16–2.10(m,2H),1.90–1.87(m,1H),1.72–1.69(m,1H),1.58–1.53(m,4H),1.23(d,J=9.0Hz,16H),1.04(d,J=6.4Hz,3H),0.89(d,J=6.2Hz,3H),0.85–0.83(m,4H)。
实施例7
Figure PCTCN2017081941-appb-000034
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成2-脱氧-2-氨基葡萄糖,其余所需原料,试剂及制备方法同实施例1,得到Van007。高分辨质谱(ESI+)C85H113Cl2N11O29理论值为1821.7083,实测值为608.2418[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.79(d,J=4.9Hz,1H),7.49(s,1H),7.48–7.44(m,2H),7.31(d,J=8.0Hz,1H),7.22–7.20(m,1H),7.11(s,1H),6.84(s,1H),6.77(dd,J=8.6, 2.9Hz,1H),6.54–6.52(m,1H),5.70–5.67(m,1H),5.63(s,1H),5.48–5.46(m,1H),5.25(d,J=7.6Hz,1H),5.22(d,J=4.0Hz,1H),5.10(d,J=5.5Hz,3H),4.65(d,J=6.5Hz,2H),4.47–4.44(m,1H),4.41(d,J=5.6Hz,1H),4.26–4.24(m,1H),4.10(s,2H),3.69(d,J=9.7Hz,1H),3.67–3.64(m,2H),3.59(td,J=8.6,6.9,3.5Hz,3H),3.54–3.50(m,4H),3.43–3.40(m,3H),3.28–3.21(m,4H),3.17–3.11(m,4H),2.92–2.88(m,3H),2.60(s,1H),2.38–2.36(m,1H),2.16–2.10(m,2H),1.90–1.87(m,1H),1.72–1.69(m,1H),1.58–1.53(m,4H),1.23(d,J=9.0Hz,16H),1.04(d,J=6.4Hz,3H),0.89(d,J=6.2Hz,3H),0.85–0.83(m,4H)。
实施例8
Figure PCTCN2017081941-appb-000035
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成2-脱氧-2-氨基半乳糖,其余所需原料,试剂及制备方法同实施例1,得到Van008。高分辨质谱(ESI+)C85H113Cl2N11O29理论值为1821.7083,实测值为911.8666[M+2H]2+608.2418[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.79(d,J=4.9Hz,1H),7.49(s,1H),7.48–7.44(m,2H),7.31(d,J=8.0Hz,1H),7.22–7.20(m,1H),7.11(s,1H),6.84(s,1H),6.77(dd,J=8.6,2.9Hz,1H),6.54–6.52(m,1H),5.70–5.67(m,1H),5.63(s,1H),5.48–5.46(m,1H),5.25(d,J=7.6Hz,1H),5.22(d,J=4.0Hz,1H),5.10(d,J=5.5Hz,3H),4.65(d,J=6.5Hz,2H),4.47–4.44(m,1H),4.41(d,J=5.6Hz,1H),4.26–4.24(m,1H),4.10(s,2H),3.69(d,J=9.7Hz,1H),3.67–3.64(m,2H),3.59(td,J=8.6,6.9,3.5Hz,3H),3.54–3.50(m,4H),3.43–3.40(m,3H),3.28–3.21(m,4H),3.17–3.11(m,4H),2.92–2.88(m,3H),2.60(s,1H),2.38–2.36(m,1H),2.16–2.10(m,2H),1.90–1.87(m,1H),1.72–1.69(m,1H),1.58–1.53(m,4H),1.23(d,J=9.0Hz,16H),1.04(d,J=6.4Hz,3H),0.89(d,J=6.2Hz,3H),0.85–0.83(m,4H)。
实施例9
Figure PCTCN2017081941-appb-000036
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成葡萄糖酸内酯衍生物6,其余所需原料,试剂及制备方法同实施例1,得到Van009。高分辨质谱(ESI+)C88H120Cl2N12O30理论值为1894.7610,实测值为948.3892[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.79(s,1H),7.50–7.47(m,1H),7.45(dd,J=8.3,1.8Hz,1H),7.30(d,J=8.3Hz,1H),7.20(d,J=8.4Hz,1H),7.10(s,1H),6.84(dd,J=8.5,2.0Hz,1H),6.77(d,J=8.5Hz,1H),6.53(s,1H),5.70(d,J=21.8Hz,2H),5.29–5.25(m,2H),5.12(d,J=5.1Hz,2H),5.08(d,J=2.0Hz,1H),4.80(s,1H),4.65(d,J=7.1Hz,1H),4.44(d,J=5.2Hz,1H),4.41(d,J=6.0Hz,1H),4.09(d,J=8.4Hz,1H),4.06(s,2H),4.00(d,J=3.6Hz,1H),3.89(t,J=2.9Hz,1H),3.65(d,J=10.7Hz,2H),3.56(d,J=2.7Hz,1H),3.54(d,J=2.4Hz,2H),3.37(d,J=5.3Hz,1H),3.35(d,J=4.9Hz,1H),3.25(d,J=5.3Hz,3H),3.16(ddt,J=19.9,13.0,6.6Hz,5H),2.92(t,J=7.9Hz,4H),2.61–2.59(m,1H),2.56(s,2H),2.50(d,J=2.0Hz,1H),2.38–2.36(m,1H),2.12–2.05(m,2H),1.95–1.88(m,2H),1.82(dq,J=14.5,7.2Hz,3H),1.67–1.60(m,3H),1.51(t,J=7.8Hz,3H),1.34(s,2H),1.24(d,J=14.1Hz,14H),1.08(d,J=6.1Hz,3H),0.90(d,J=6.0Hz,3H),0.86–0.84(m,3H),0.83(s,1H)。
实施例10
Figure PCTCN2017081941-appb-000037
将实施例1中的2-胺乙基-α-D-吡喃甘露糖苷2替换成乳糖酸内酯衍生物7,其余所需原料,试剂及制备方法同实施例1,得到Van010。高分辨质谱(ESI+)C94H130Cl2N12O35理论值为2056.8139,实测值为1029.4148[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.79(s,1H),7.49(d,J=8.6Hz,1H),7.45(d,J=9.1Hz,1H),7.30(d,J=8.3Hz,1H),7.20(d,J=8.4Hz,1H),7.10(s,1H),6.85–6.83(m,1H),6.77(d,J=8.5Hz,1H),6.53(s,1H),5.72(d,J=7.3Hz,1H),5.68(s,1H),5.29(s,1H),5.27(d,J=7.6Hz,1H),5.11(s,2H),5.08(s,1H),4.80(s,1H),4.65(d,J=6.5Hz,1H),4.45(s,1H),4.41(d,J=5.7Hz,1H),4.27(d,J=7.0Hz,1H),4.11(d,J=2.3Hz,1H),4.07–4.05(m,2H),4.01–3.99(m,2H),3.90–3.88(m,1H),3.69–3.66(m,3H),3.65(s,1H),3.60–3.59(m,1H),3.58(d,J=3.6Hz,1H),3.55(d,J=8.0Hz,2H),3.52(d,J=5.2Hz,2H),3.50(d,J=4.4Hz,1H),3.49–3.47(m,2H),3.39(t,J=6.4Hz,2H),3.30(d,J=2.2Hz,1H),3.26(d,J=3.3Hz,3H),3.19–3.11(m,6H),3.05–3.01(m,2H),2.92(t,J=7.6Hz,4H),2.61–2.59(m,1H),2.56(s,2H),2.51(d,J=1.9Hz,1H),2.38–2.36(m,1H),2.04(s,1H),1.93(s,2H),1.85–1.79(m,4H),1.52(s,4H),1.34(s,3H),1.24(d,J=15.3Hz,16H),1.09(d,J=6.2Hz,3H),0.91(d,J=6.0Hz,3H),0.86–0.84(m,3H),0.84(s,1H)。
实施例11
Figure PCTCN2017081941-appb-000038
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4'-氯联苯-4-甲醛(30mg),加热搅拌4小时。(芳香醛反应活性低,需要延长反应时间和升高温度加速反应进行,万古霉素在DMF中溶解不是很好,加入DIPEA会加速溶解,如果有不溶物会影响反应的速率。)室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-b(60mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI+)C79H84Cl3N9O24理论值为1647.4695,实测值为824.7489[M+2H]2+
第二步,2-胺乙基-β-D-吡喃半乳糖苷4(30mg),溶于100μL水和500μL乙腈的混合物中,加入DIPEA 30μL,室温下搅拌至固体完全溶解(10分钟)。加入37wt%甲醛溶液2μL,室温下搅拌15分钟后,降至-10℃搅拌5分钟,迅速与Nvan-2(4’-氯联苯基)-万古霉素Van-b 25mg和DIPEA 30μL的80%乙腈溶液1.5mL混合,-10℃下搅拌8小时,HPLC 监测反应完全(0.1%v/v TFA分别加到H2O和乙腈,2-90%,30min)。粗品经反相C18制备并后处理后得Van011。高分辨质谱(ESI+)C87H117Cl2N11O30理论值为1882.5751,实测值为628.5331[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.82(d,J=2.0Hz,1H),7.74–7.70(m,4H),7.69(s,1H),7.56–7.52(m,4H),7.51(s,1H),7.49(d,J=8.8Hz,1H),7.46(dd,J=8.3,1.8Hz,1H),7.31(d,J=8.4Hz,1H),7.22(d,J=8.4Hz,1H),7.12(s,1H),6.84(d,J=8.5Hz,1H),6.77(d,J=8.6Hz,1H),6.51(s,1H),5.72(s,1H),5.69(s,1H),5.34(d,J=7.7Hz,1H),5.29–5.27(m,1H),5.11(d,J=10.2Hz,2H),4.82–4.79(m,1H),4.65(d,J=6.6Hz,1H),4.46–4.44(m,1H),4.40(s,1H),4.13–4.11(m,2H),4.02(s,2H),3.95(s,2H),3.81–3.77(m,1H),3.66(d,J=10.6Hz,1H),3.61(d,J=3.1Hz,1H),3.56(t,J=8.5Hz,1H),3.50(ddd,J=12.9,7.5,5.1Hz,4H),3.37(td,J=5.6,5.1,3.5Hz,4H),3.31–3.24(m,5H),2.61–2.58(m,1H),2.56–2.52(m,2H),2.37–2.36(m,1H),2.13–2.08(m,3H),1.81(d,J=13.1Hz,2H),1.68–1.59(m,4H),1.49–1.47(m,2H),1.21(s,1H),1.11(d,J=6.3Hz,3H),0.90(d,J=6.3Hz,3H),0.85(d,J=6.3Hz,3H)。
实施例12
Figure PCTCN2017081941-appb-000039
将实施例11中的2-胺乙基-β-D-吡喃半乳糖苷4替换成氨甲基磷酸,其余所需原料,试剂及制备方法同实施例11,得到Van012。高分辨质谱(ESI+)C81H90Cl3N10O27P理论值为1770.4780,实测值为591.1677[M+3H]3+
1H NMR(600MHz,DMSO-d6)δ7.86(s,1H),7.73–7.70(m,4H),7.69(d,J=2.1Hz,1H),7.56–7.52(m,4H),7.52(d,J=2.2Hz,1H),7.46(dd,J=8.4,1.9Hz,2H),7.31(s,1H),7.21(d,J=8.4Hz,1H),7.13(s,1H),6.79(dd,J=8.4,2.0Hz,2H),6.72(d,J=8.6Hz,2H),6.44(s,1H),5.75(s,1H),5.63(s,1H),5.34(d,J=7.7Hz,1H),5.28(s,1H),5.14(s,2H),5.10(s,1H),4.86(s,1H),4.66(d,J=6.6Hz,1H),4.43(s,1H),4.41(s,1H),4.28(s,1H),4.16(s,1H),4.02(s,1H),3.67(d,J=10.7Hz,1H),3.56(d,J=8.4Hz,2H),3.28–3.24(m,3H),2.67–2.62(m,3H),2.57–2.54(m,2H),2.38–2.36(m,1H),2.09(d,J=8.4Hz,3H),1.82(d,J= 13.0Hz,2H),1.66–1.61(m,3H),1.48(s,2H),1.11(d,J=6.2Hz,3H),0.91–0.89(m,3H),0.85(d,J=6.0Hz,3H)。
实施例13
Figure PCTCN2017081941-appb-000040
将实施例11中的2-胺乙基-β-D-吡喃半乳糖苷4替换成2-胺乙基-α-D-吡喃甘露糖苷2,其余所需原料,试剂及制备方法同实施例11,得到Van013。高分辨质谱(ESI+)C88H101Cl3N10O30理论值为1882.5751,实测值为942.2943[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.83(d,J=2.0Hz,1H),7.73–7.70(m,4H),7.70(d,J=2.1Hz,1H),7.56–7.52(m,4H),7.52(d,J=2.0Hz,1H),7.47–7.44(m,2H),7.30(d,J=8.3Hz,1H),7.19(d,J=8.5Hz,1H),6.86(dd,J=8.5,2.0Hz,1H),6.77(d,J=8.5Hz,1H),6.54(s,1H),5.87(d,J=2.0Hz,1H),5.35(d,J=7.7Hz,1H),5.30(d,J=4.2Hz,1H),5.13(s,1H),5.11(s,1H),5.07(d,J=2.0Hz,1H),4.76(s,1H),4.66(d,J=6.6Hz,1H),4.64(d,J=1.7Hz,1H),4.46(s,1H),4.41(d,J=5.8Hz,1H),4.15(t,J=13.7Hz,3H),4.10(s,1H),4.03(s,2H),3.95(t,J=6.5Hz,1H),3.86–3.83(m,1H),3.67(dd,J=3.5,1.7Hz,1H),3.66–3.64(m,1H),3.63–3.62(m,1H),3.58(d,J=8.7Hz,1H),3.51(d,J=3.3Hz,1H),3.49(d,J=3.5Hz,1H),3.38(t,J=9.4Hz,3H),3.34(dd,J=6.3,2.2Hz,2H),3.26(d,J=6.2Hz,2H),3.11(d,J=6.0Hz,2H),2.73(d,J=15.5Hz,2H),2.10(d,J=11.5Hz,2H),1.92–1.89(m,2H),1.82(d,J=13.1Hz,2H),1.51(s,3H),1.10(d,J=6.2Hz,3H),0.91(t,J=6.6Hz,6H)。
实施例14
Figure PCTCN2017081941-appb-000041
将实施例11中的2-胺乙基-β-D-吡喃半乳糖苷4替换成葡萄糖酸内酯衍生物6,其余所需原料,试剂及制备方法同实施例11,得到Van014。高分辨质谱(ESI+)C89H104Cl3N11O30 理论值为1911.6016,实测值为956.8070[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.82(s,1H),7.74–7.70(m,4H),7.69(s,1H),7.56–7.52(m,4H),7.52(d,J=1.8Hz,1H),7.50–7.48(m,1H),7.46(dd,J=8.3,1.8Hz,1H),7.30(d,J=8.4Hz,1H),7.22(d,J=8.4Hz,1H),7.11(s,1H),6.85(dd,J=8.4,2.0Hz,1H),6.77(d,J=8.6Hz,1H),6.52(s,1H),5.71(d,J=9.9Hz,2H),5.34(d,J=7.6Hz,1H),5.29(d,J=4.1Hz,1H),5.12(d,J=3.8Hz,2H),5.09(s,1H),4.80(s,1H),4.65(d,J=6.6Hz,1H),4.44(s,1H),4.40(s,1H),4.10(s,1H),4.05(s,2H),4.02(d,J=6.9Hz,2H),4.00(d,J=3.6Hz,1H),3.89(t,J=2.8Hz,1H),3.66(d,J=10.7Hz,2H),3.58–3.53(m,3H),3.37(d,J=5.2Hz,1H),3.35–3.34(m,1H),3.28–3.24(m,3H),3.18(q,J=6.8Hz,2H),3.15–3.12(m,2H),2.91(s,3H),2.55(s,2H),2.10(d,J=11.2Hz,3H),1.81(d,J=11.5Hz,3H),1.64(s,3H),1.49(s,3H),1.35(s,1H),1.10(d,J=6.2Hz,3H),0.91(d,J=6.2Hz,3H),0.85(d,J=6.1Hz,3H)。
实施例15
Figure PCTCN2017081941-appb-000042
将实施例11中的2-胺乙基-β-D-吡喃半乳糖苷4替换成乳糖酸内酯衍生物7,其余所需原料,试剂及制备方法同实施例11,得到Van015。高分辨质谱(ESI+)C95H114Cl3N11O35理论值为2073.6544,实测值为1037.9145[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.82(d,J=1.9Hz,1H),7.73–7.70(m,4H),7.69(d,J=2.1Hz,1H),7.56–7.52(m,4H),7.52(d,J=2.0Hz,1H),7.49(d,J=8.5Hz,1H),7.47–7.45(m,1H),7.31(d,J=8.4Hz,1H),7.22(d,J=8.4Hz,1H),7.10(s,1H),6.85(dd,J=8.5,1.8Hz,1H),6.77(d,J=8.5Hz,1H),6.53(s,1H),5.72(dd,J=8.5,4.7Hz,2H),5.34(d,J=7.6Hz,2H),5.29(d,J=4.0Hz,2H),5.13(s,2H),5.09(d,J=1.9Hz,1H),4.81(s,2H),4.66(t,J=6.4Hz,2H),4.44(d,J=5.3Hz,1H),4.41(d,J=5.7Hz,1H),4.26(d,J=6.8Hz,1H),4.10(d,J=2.3Hz,2H),4.06(s,2H),4.02(d,J=7.5Hz,2H),4.00(dd,J=4.6,2.4Hz,2H),3.67(dq,J=10.3,6.1Hz,4H),3.59(d,J=2.7Hz,1H),3.57(d,J=3.7Hz,1H),3.56(t,J=3.3Hz,1H),3.52(d,J=4.8Hz,1H),3.50(d,J=4.6Hz,1H),3.39(t,J=6.3Hz,2H),3.32(d,J=9.5Hz,1H),3.29(d,J=3.0Hz,2H),3.27(d,J=6.9Hz,1H),3.25(s,1H),2.92(t,J=6.6Hz,2H), 2.57(s,2H),2.10(d,J=11.4Hz,2H),2.04(s,2H),1.82(dd,J=12.9,6.7Hz,3H),1.65(d,J=7.4Hz,2H),1.50(d,J=13.1Hz,4H),1.11(d,J=6.3Hz,3H),0.91(d,J=6.1Hz,3H),0.86(d,J=6.1Hz,3H)。
实施例16
Figure PCTCN2017081941-appb-000043
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4'-三氟甲基二苯基-4-甲醛(30mg),加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-c(40mg)。HPLC:C18柱(5μm,4.6x 250mm),检测紫外波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI+)C80H84Cl2F3N9O24理论值为1681.4958,实测值为841.7475[M+2H]2+
第二步,取葡萄糖酸内酯衍生物6(40mg),500μL水和500μL乙腈的混合物中,加入DIPEA 30μL,室温下搅拌至固体完全溶解(10分钟)。加入37wt%甲醛溶液2μL,室温下搅拌15分钟后,降至-10℃搅拌5分钟,迅速与Nvan-2(4’-三氟甲基二苯基)-万古霉素Van-c 25为mg的80%乙腈溶液1.5mL混合,加入DIPEA 30μL,-10℃下搅拌8小时,HPLC监测反应,HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。粗品经反相C18制备,冷冻干燥得到白色固体Van016(10mg)。高分辨质谱(ESI+)C90H104Cl2F3N11O30理论值为1945.6280,实测值为974.8218[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.91(s,1H),7.89(s,1H),7.82(d,J=8.2Hz,3H),7.80(d,J=7.9Hz,2H),7.59(d,J=8.1Hz,2H),7.50–7.45(m,3H),7.31(d,J=8.4Hz,1H),7.23(d,J=8.4Hz,1H),7.11(s,1H),6.85(s,1H),6.77(d,J=8.5Hz,1H),6.52(s,1H),5.72(d,J=7.3Hz,2H),5.34(d,J=7.7Hz,1H),5.29(s,1H),5.12(s,1H),5.10(s,1H),4.80(s,1H),4.66(d,J=6.8Hz,1H),4.45(s,1H),4.41(s,1H),4.11(s,2H),4.07–4.03(m,3H),4.00(d,J=3.6Hz,1H),3.89(dd,J=3.7,2.2Hz,1H),3.67(d,J=10.6Hz,1H),3.57–3.55(m,1H),3.54–3.53(m,1H),3.51(d,J=7.1Hz,2H),3.47–3.45(m,3H),3.37(d,J=5.2Hz,1H),3.35 (d,J=5.0Hz,1H),3.26(s,2H),3.25(s,1H),3.13(d,J=6.8Hz,2H),2.94–2.89(m,3H),2.60(d,J=1.8Hz,1H),2.57–2.54(m,2H),2.38–2.36(m,1H),2.12–2.09(m,2H),1.84–1.80(m,3H),1.66–1.63(m,2H),1.50(s,2H),1.15(t,J=7.3Hz,1H),1.13(s,1H),1.11(d,J=6.2Hz,3H),0.91(d,J=6.2Hz,3H),0.86(d,J=6.1Hz,3H)。
实施例17
Figure PCTCN2017081941-appb-000044
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入3-氯-4-((2-甲基-[1,1'-联苯基]-3-基)甲氧基苯甲醛(30mg),加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-d(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI+)C87H92Cl3N9O25理论值为1767.5270,实测值为884.7633[M+2H]2+
第二步,将实施例16中Van-c替换成Van-d,其余所需原料,试剂及制备方法同实施例16,得到Van017。高分辨质谱(ESI+)C97H112Cl3N11O31理论值为2031.6591,实测值为1016.8385[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.83–7.81(m,1H),7.58(d,J=2.0Hz,1H),7.46(dd,J=14.4,6.8Hz,6H),7.43(d,J=1.7Hz,1H),7.40–7.39(m,1H),7.38–7.35(m,3H),7.30(d,J=8.4Hz,1H),7.29–7.27(m,3H),7.23–7.19(m,3H),6.86–6.83(m,1H),6.77(d,J=8.5Hz,1H),6.53(s,1H),5.72(d,J=10.0Hz,2H),5.33(d,J=7.6Hz,1H),5.26(s,2H),5.12(s,2H),5.09(d,J=2.0Hz,1H),4.80(s,1H),4.64(d,J=6.4Hz,1H),4.45(d,J=5.6Hz,1H),4.41(d,J=5.7Hz,1H),4.06(s,2H),4.00(d,J=3.6Hz,2H),3.93(s,1H),3.89–3.88(m,1H),3.66(d,J=10.6Hz,1H),3.56–3.53(m,2H),3.47–3.46(m,2H),3.36(dd,J=10.7,5.0Hz,2H),3.28–3.24(m,2H),3.21–3.17(m,2H),3.16–3.12(m,2H),2.92(t,J=7.4Hz,3H),2.57(s,3H),2.19(s,3H),2.12–2.07(m,2H),2.06(d,J=7.9Hz,3H),1.84–1.77(m,4H),1.67–1.62(m,3H),1.45(s,3H),1.10(d,J=6.3Hz,3H),0.91(d,J=6.1Hz,3H),0.86(d,J=6.2Hz,3H)。
实施例18
Figure PCTCN2017081941-appb-000045
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入对乙基苯甲醛(30mg),加热搅拌4小时。(芳香醛反应活性低,需要延长反应时间和升高温度加速反应进行,万古霉素在DMF中溶解不是很好,加入DIPEA会加速溶解,如果有不溶物会影响反应的速率。)室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-e(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI+)C75H85Cl2N9O24理论值为1565.5085,实测值783.7540[M+2H]2+
第二步,将实施例16中的4'-三氟甲基二苯基-4-甲醛替换成对乙基苯甲醛,其余所需原料,试剂及制备方法同实施例16,得到Van018。高分辨质谱(ESI+)C85H105Cl2N11O30理论值为1829.6406,实测值为915.8275[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.82(s,1H),7.48(d,J=8.5Hz,2H),7.47–7.45(m,2H),7.36(s,1H),7.35(s,1H),7.30(d,J=8.4Hz,1H),7.25(s,1H),7.24(s,1H),7.22(d,J=8.4Hz,1H),7.10(s,1H),6.84(d,J=8.6Hz,1H),6.77(d,J=8.6Hz,1H),6.52(s,1H),5.72(s,2H),5.33(d,J=7.6Hz,1H),5.12(s,1H),5.09(s,1H),4.80(s,1H),4.63(d,J=6.5Hz,1H),4.45–4.43(m,1H),4.41–4.39(m,1H),4.10(s,1H),4.05(s,2H),4.00(d,J=3.6Hz,2H),3.97–3.92(m,4H),3.90–3.88(m,1H),3.66(d,J=10.7Hz,2H),3.57–3.55(m,2H),3.54(s,1H),3.47–3.46(m,2H),3.45(d,J=2.1Hz,1H),3.36(dd,J=10.6,4.9Hz,3H),3.25(d,J=8.7Hz,2H),3.07(q,J=7.3Hz,3H),2.58(s,1H),2.37(d,J=3.6Hz,1H),2.11–2.06(m,3H),1.81–1.76(m,3H),1.67–1.62(m,3H),1.46(s,2H),1.17–1.15(m,2H),1.14(d,J=1.7Hz,2H),1.13(d,J=1.9Hz,1H),1.09(d,J=6.3Hz,3H),0.91(d,J=6.2Hz,3H),0.86(d,J=6.2Hz,3H)。
实施例19
Figure PCTCN2017081941-appb-000046
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入壬醛(30μL),加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-f(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI+)C75H93Cl2N9O24理论值为1573.5711,实测值为787.7856[M+2H]2+
第二步,将实施例16中的Van-c替换为Van-f,其余所需原料,试剂及制备方法同实施例16,得到Van019。高分辨质谱(ESI+)C78H100Cl2N10O25理论值为1646.6238,实测值为824.3191[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.81(s,1H),7.48(d,J=8.7Hz,1H),7.46–7.44(m,1H),7.41(d,J=7.5Hz,1H),7.29(s,1H),7.28(s,1H),7.20(d,J=8.4Hz,1H),7.10–7.09(m,1H),6.85–6.83(m,1H),6.78(s,1H),6.76(s,1H),6.53(s,1H),5.72(s,1H),5.70(s,1H),5.30(d,J=7.7Hz,1H),5.27(s,1H),5.12(s,2H),5.08–5.06(m,1H),4.79(s,1H),4.59(d,J=6.3Hz,1H),4.43(s,1H),4.40(s,1H),4.10–4.08(m,1H),4.06–4.04(m,2H),4.00(d,J=3.6Hz,1H),3.89(dd,J=3.7,2.2Hz,1H),3.66(d,J=10.9Hz,2H),3.56(t,J=2.8Hz,1H),3.54(d,J=2.4Hz,1H),3.53–3.48(m,3H),3.47–3.46(m,2H),3.37(d,J=5.2Hz,1H),3.35(d,J=4.8Hz,1H),3.25(s,3H),3.20–3.18(m,1H),3.16–3.12(m,2H),2.94–2.91(m,2H),2.76–2.72(m,2H),2.69–2.65(m,2H),2.59(s,1H),2.57–2.53(m,3H),2.37(d,J=3.6Hz,1H),2.13–2.08(m,2H),1.97(d,J=14.5Hz,2H),1.84–1.80(m,2H),1.77(d,J=13.2Hz,2H),1.66–1.62(m,2H),1.53–1.48(m,3H),1.33(s,2H),1.23(d,J=11.9Hz,14H),1.06(d,J=6.3Hz,3H),0.91(d,J=6.1Hz,3H),0.87–0.84(m,3H),0.83(d,J=7.1Hz,2H)。
实施例20
Figure PCTCN2017081941-appb-000047
将Van-b(50mg,30μmol)加1mL DMF溶解,HBTU(苯并三氮唑-N,N,N',N'-四甲基脲六氟磷酸盐)(21mg,45μmol),DIPEA(25μL,150μmol),室温搅拌15分钟,加入N,N-二甲基-1,3-二氨基丙烷(18μL,120μmol),室温反应24h,HPLC监测反应。加水稀释反应液,粗品经反相C18制备分离,冷冻干燥得到白色固体Van020。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI+)C84H96Cl3N11O23理论值为1731.5746,实测值为866.7873[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.84(d,J=1.9Hz,1H),7.74(s,1H),7.73–7.69(m,4H),7.56(d,J=8.1Hz,4H),7.53(d,J=8.3Hz,2H),7.49–7.46(m,1H),7.33(d,J=8.4Hz,1H),7.26(s,1H),7.22(d,J=8.3Hz,1H),6.78(dd,J=8.4,1.9Hz,1H),6.71(d,J=8.4Hz,1H),6.39(d,J=2.3Hz,1H),6.22(d,J=2.3Hz,1H),5.77–5.74(m,1H),5.36(d,J=7.7Hz,1H),5.30–5.27(m,2H),4.93(s,1H),4.68(q,J=6.7Hz,1H),4.48(d,J=5.1Hz,1H),4.32(d,J=5.2Hz,1H),4.26(s,1H),4.04(q,J=12.7Hz,3H),3.96(d,J=7.3Hz,1H),3.68(d,J=10.7Hz,1H),3.58(t,J=8.5Hz,2H),3.35(dt,J=12.9,6.0Hz,2H),3.31–3.24(m,3H),3.11(dt,J=20.1,6.9Hz,2H),3.00–2.96(m,2H),2.75(d,J=4.0Hz,6H),2.63(s,2H),2.14(td,J=15.4,14.1,6.4Hz,3H),1.87–1.77(m,4H),1.71–1.53(m,5H),1.51(s,3H),1.13(d,J=6.3Hz,3H),0.90(d,J=6.2Hz,3H),0.85(d,J=6.3Hz,3H)。
实施例21
Figure PCTCN2017081941-appb-000048
2-胺乙基-α-D-吡喃甘露糖苷2(30mg),溶于100μL水和500μL乙腈的混合物中,加入DIPEA 30μL,室温下搅拌至固体完全溶解(10分钟)。加入37wt%甲醛溶液2μL, 室温下搅拌15分钟后,降至-10℃搅拌5分钟,迅速与Van020(25mg)的80%乙腈溶液1.5mL混合,加入DIPEA 30μL,-10℃下搅拌8小时,HPLC监测反应,HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。粗品经反相C18制备,冷冻干燥得到白色固体Van021。高分辨质谱(ESI+)C93H113Cl3N12O29理论值为1966.6802,实测值为984.3486[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.83(s,1H),7.74–7.70(m,4H),7.69(d,J=2.1Hz,1H),7.57(d,J=8.0Hz,2H),7.52(dd,J=6.9,4.9Hz,4H),7.47–7.45(m,1H),7.31(d,J=8.4Hz,1H),7.23(d,J=8.4Hz,1H),7.19(s,1H),6.84(dd,J=8.7,1.9Hz,1H),6.77(d,J=8.5Hz,1H),6.49(s,1H),5.73(d,J=7.3Hz,1H),5.70(s,1H),5.39(s,1H),5.35(d,J=7.6Hz,1H),5.14(s,1H),5.11(s,1H),4.80(s,1H),4.65(d,J=6.9Hz,1H),4.64(d,J=1.7Hz,1H),4.47(s,1H),4.27(d,J=5.1Hz,1H),4.17(d,J=7.0Hz,1H),4.11(d,J=13.2Hz,2H),4.02(s,3H),3.86–3.82(m,2H),3.67(dd,J=3.5,1.7Hz,1H),3.66–3.64(m,1H),3.63(d,J=2.3Hz,1H),3.56(t,J=8.5Hz,2H),3.50(dd,J=9.0,3.4Hz,2H),3.38(dd,J=11.9,6.8Hz,3H),3.33(ddd,J=9.2,6.3,2.2Hz,2H),3.28–3.24(m,2H),3.11(s,3H),3.01–2.95(m,3H),2.72(d,J=1.8Hz,6H),2.57(s,2H),2.10(d,J=10.0Hz,3H),1.83(d,J=13.6Hz,4H),1.66(s,3H),1.50(s,3H),1.11(d,J=6.2Hz,3H),0.91(d,J=6.1Hz,3H),0.86(d,J=6.2Hz,3H)。
实施例22
Figure PCTCN2017081941-appb-000049
将实施例21中的2-胺乙基-α-D-吡喃甘露糖苷2替换成葡萄糖酸内酯衍生物6,其余所需原料,试剂及制备方法同实施例21,得到Van022。高分辨质谱(ESI+)C94H116Cl3N13O29理论值为1995.7067,实测值为998.8520[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.82–7.81(m,1H),7.75–7.70(m,4H),7.69(d,J=2.1Hz,1H),7.56–7.52(m,4H),7.52(d,J=2.0Hz,1H),7.50(d,J=8.6Hz,1H),7.47–7.45(m,1H),7.30(d,J=8.4Hz,1H),7.24(d,J=8.3Hz,1H),7.20(s,1H),6.85(d,J=9.1Hz,1H),6.77(d,J=8.5Hz,1H),6.48(s,1H),5.72(d,J=12.3Hz,2H),5.35(d,J=7.7Hz,1H),5.30(s,1H),5.13(s,1H),5.11–5.10(m,1H),4.81(s,1H),4.65(d,J=6.5Hz,1H),4.48–4.46(m,1H),4.29(d,J=5.4Hz,1H),4.17(s,1H),4.06–4.04(m,2H),4.02(d,J=11.9Hz,2H),4.00 (d,J=3.6Hz,1H),3.88(dd,J=3.7,2.3Hz,1H),3.67(d,J=10.5Hz,1H),3.56(d,J=3.3Hz,1H),3.54(d,J=2.2Hz,1H),3.52–3.49(m,2H),3.36(dd,J=10.5,4.9Hz,2H),3.26(d,J=8.7Hz,2H),3.11(ddd,J=20.1,13.4,6.5Hz,4H),2.99–2.94(m,3H),2.93–2.89(m,2H),2.73(d,J=4.5Hz,6H),2.61–2.59(m,1H),2.57(s,3H),2.38–2.36(m,1H),2.10(d,J=11.1Hz,3H),1.84–1.76(m,6H),1.66–1.62(m,2H),1.50(s,3H),1.11(d,J=6.3Hz,3H),0.91(d,J=6.1Hz,3H),0.86(d,J=6.1Hz,3H)。
实施例23
Figure PCTCN2017081941-appb-000050
Van-b(50mg,30μmol)加1mL DMF溶解,HBTU(苯并三氮唑-N,N,N',N'-四甲基脲六氟磷酸盐)(21mg,45μmol),DIPEA(25μL,150μmol),室温搅拌15分钟,加入葡萄糖酸内酯衍生物6(30mg,80μmol),室温反应24h,HPLC监测反应。加水稀释反应液,粗品经反相C18制备分离,冷冻干燥得到白色固体Van023。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%v/v TFA)梯度洗30分钟。高分辨质谱(ESI+)C88H102Cl3N11O29理论值为1881.5910实际值为941.7995[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.84(s,1H),7.75–7.70(m,4H),7.69(d,J=2.1Hz,1H),7.56–7.52(m,4H),7.52–7.51(m,1H),7.45(d,J=8.5Hz,2H),7.30(d,J=8.4Hz,2H),7.20(q,J=8.4Hz,3H),7.04(d,J=10.4Hz,2H),6.75(d,J=9.0Hz,1H),6.69(d,J=8.5Hz,1H),6.44–6.42(m,1H),6.34(d,J=2.3Hz,1H),6.29–6.28(m,1H),6.24(d,J=2.4Hz,1H),5.79(d,J=6.6Hz,1H),5.74(d,J=7.2Hz,1H),5.69(s,1H),5.62(s,1H),5.28(s,3H),4.65(d,J=6.6Hz,2H),4.44(s,2H),4.36(d,J=5.4Hz,1H),4.33(d,J=5.7Hz,1H),3.87(t,J=2.8Hz,1H),3.67(d,J=10.9Hz,1H),3.56(d,J=8.4Hz,2H),3.54–3.51(m,2H),3.35–3.32(m,2H),3.27–3.24(m,2H),3.02(s,2H),2.91(s,2H),2.60(d,J=3.4Hz,2H),2.58(s,1H),2.37(d,J=3.6Hz,1H),2.12–2.09(m,2H),1.82(d,J=13.3Hz,2H),1.67–1.63(m,2H),1.55(d,J=8.8Hz,2H),1.49(s,2H),1.13–1.09(m,3H),0.90(d,J=6.3Hz,3H),0.85(t,J=5.8Hz,3H)。
实施例24
Figure PCTCN2017081941-appb-000051
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入癸醛(30μL),加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-g(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C76H95Cl2N9O24理论值为1587.5867,实测值为794.8006[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.70(s,1H),7.81(d,J=1.9Hz,1H),7.52(d,J=8.6Hz,1H),7.44(dd,J=8.3,1.8Hz,1H),7.29(d,J=8.4Hz,1H),7.17(d,J=8.4Hz,1H),7.15–7.11(m,1H),6.76(dd,J=8.4,2.0Hz,1H),6.70(d,J=8.4Hz,2H),6.38(d,J=2.3Hz,1H),6.23(d,J=2.3Hz,1H),5.73(d,J=7.8Hz,1H),5.59(s,1H),5.27(dd,J=22.9,6.0Hz,2H),5.14(dd,J=14.8,2.8Hz,2H),5.09(s,1H),4.89(s,1H),4.60(d,J=6.7Hz,1H),4.42(dd,J=11.8,5.6Hz,2H),4.17(s,2H),3.94(s,1H),3.65(d,J=10.8Hz,1H),3.54(t,J=8.5Hz,1H),3.31–3.22(m,3H),2.74(s,1H),2.67(d,J=7.2Hz,1H),2.60(s,4H),2.12(d,J=12.6Hz,1H),1.96(d,J=11.6Hz,1H),1.77(d,J=13.1Hz,1H),1.63(ddd,J=26.5,12.5,6.7Hz,2H),1.51(s,3H),1.32(s,3H),1.23(d,J=18.1Hz,16H),1.06(d,J=6.3Hz,3H),0.89(d,J=6.2Hz,3H),0.83(td,J=7.1,6.7,3.6Hz,6H)。
第二步,将实施例16中的Van-c替换成Van-g,其余所需原料,试剂及制备方法同实施例16,得到Van024。高分辨质谱(ESI+)C86H115Cl2N11O30理论值为1851.7188,实测值为926.8674[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.77(s,1H),8.64(s,1H),7.80(d,J=1.9Hz,1H),7.60(s,1H),7.48(d,J=8.5Hz,1H),7.46–7.41(m,1H),7.28(d,J=8.3Hz,1H),7.20(d,J=8.3Hz,1H),6.84(dd,J=8.5,1.9Hz,1H),6.77(d,J=8.4Hz,1H),6.53(s,1H),5.73–5.68(m,2H),5.30(d,J=7.7Hz,1H),5.27(d,J=4.1Hz,1H),5.12(s,2H),5.07(d,J=2.0Hz,1H),4.80(s,1H),4.43(s,1H),4.41(d,J=5.8Hz,1H),4.10–4.04(m,3H),4.00(d,J=3.6Hz, 2H),3.89(dd,J=3.6,2.2Hz,1H),3.65(d,J=10.6Hz,1H),3.57–3.46(m,6H),3.36(dd,J=10.7,5.0Hz,1H),3.28–3.22(m,3H),3.21–3.16(m,1H),3.14(dt,J=13.0,6.2Hz,1H),2.92(s,2H),2.71(d,J=39.8Hz,3H),2.56(s,3H),2.11(s,1H),1.96(d,J=10.7Hz,1H),1.86–1.73(m,3H),1.64(d,J=9.9Hz,2H),1.50(s,3H),1.33(s,3H),1.22(s,16H),1.06(d,J=6.3Hz,3H),0.90(d,J=6.1Hz,3H),0.87–0.81(m,6H)。
实施例25
Figure PCTCN2017081941-appb-000052
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,待溶液澄清,将15μL十一烷酰氯在冰水浴条件下分三次加入,氩气保护,搅拌2h。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-h(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C77H95Cl2N9O25理论值为1615.5816,实测值为808.7978[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.63(s,1H),8.46(d,J=5.7Hz,1H),7.80(d,J=2.0Hz,1H),7.46(dd,J=8.4,1.8Hz,1H),7.43(dd,J=8.1,1.9Hz,1H),7.34(d,J=8.3Hz,1H),7.22(s,1H),7.17–7.15(m,1H),7.00(d,J=8.3Hz,1H),6.76(dd,J=8.5,2.1Hz,1H),6.70(dd,J=8.5,3.2Hz,2H),6.39(d,J=2.3Hz,1H),6.22(d,J=2.3Hz,1H),5.69(d,J=8.3Hz,1H),5.48(d,J=2.1Hz,1H),5.26–5.17(m,4H),5.13(d,J=4.7Hz,1H),5.08(s,1H),4.77(dd,J=9.8,4.5Hz,1H),4.66(d,J=6.7Hz,1H),4.45(d,J=5.7Hz,2H),4.41(d,J=5.7Hz,1H),4.18(s,1H),3.64(d,J=10.8Hz,1H),3.56–3.48(m,3H),3.25(d,J=5.5Hz,2H),3.13(s,1H),2.82(s,3H),2.41–2.30(m,3H),2.10(d,J=12.7Hz,2H),1.88(d,J=11.0Hz,1H),1.71(d,J=13.1Hz,1H),1.57(d,J=7.7Hz,3H),1.50–1.42(m,2H),1.36(d,J=7.3Hz,2H),1.34–1.13(m,17H),1.05(d,J=6.4Hz,3H),0.85(dd,J=6.7,2.4Hz,3H),0.81(t,J=7.1Hz,3H),0.77(d,J=6.6Hz,3H)。
第二步,将实施例16中Nvan-2(4’-三氟甲基二苯基)-万古霉素Van-c替换成Nvan-2(十一烷酰基)-万古霉素Van-h,其余所需原料,试剂及制备方法同实施例16,得到Van025。高分辨质谱(ESI+)C87H115Cl2N11O31理论值为1879.7138,实测值为940.8659[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.67(s,1H),7.76(s,1H),7.49–7.45(m,1H),7.43(d,J=8.7Hz,1H),7.31(d,J=8.4Hz,2H),7.11(s,1H),7.06(d,J=8.1Hz,1H),6.84(dd,J=8.7,2.1Hz,1H),6.82–6.72(m,2H),6.52(s,1H),5.64(d,J=7.9Hz,1H),5.57(s,1H),5.22(dt,J=11.7,3.6Hz,3H),5.17–5.05(m,3H),4.74(s,1H),4.65(d,J=6.8Hz,1H),4.44(dd,J=16.5,5.8Hz,2H),4.07(d,J=27.1Hz,3H),4.00(d,J=3.5Hz,1H),3.92–3.86(m,1H),3.64(d,J=10.5Hz,1H),3.58–3.50(m,4H),3.36(dd,J=10.5,4.5Hz,1H),3.26(d,J=5.5Hz,2H),3.23–3.08(m,3H),2.92(s,2H),2.42–2.28(m,2H),1.88(d,J=10.0Hz,1H),1.71(d,J=13.1Hz,1H),1.54(q,J=8.0Hz,4H),1.38(hept,J=6.7Hz,1H),1.28(d,J=8.2Hz,5H),1.21(dd,J=14.0,6.4Hz,14H),1.05(d,J=6.5Hz,3H),0.87(d,J=6.5Hz,3H),0.82(t,J=7.0Hz,3H),0.79(d,J=6.5Hz,3H)。
实施例26
Figure PCTCN2017081941-appb-000053
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,待溶液澄清,在冰水浴条件下分三次加入癸酰氯共15μL氩气保护,搅拌2h。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-i(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C76H93Cl2N9O25理论值为1601.5660,实测值为801.7908[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.63(d,J=4.8Hz,1H),7.80(d,J=2.0Hz,1H),7.49–7.38(m,2H),7.34(d,J=8.3Hz,1H),7.22(s,1H),7.16(s,2H),7.00(d,J=8.3Hz,1H),6.76(dd,J=8.4,2.2Hz,1H),6.70(d,J=8.4Hz,2H),6.39(d,J=2.3Hz,1H),6.22(d,J=2.3Hz,1H),5.69(d,J=8.2Hz,1H),5.48(d,J=2.0Hz,1H),5.29–5.16(m,4H),5.13(d,J=4.7Hz,1H),5.08(s,1H),4.77(dd,J=9.5,4.7Hz,1H),4.66(q,J=6.5Hz,1H),4.45(d,J=5.5Hz,1H),4.41(d,J=5.8Hz,1H),4.18(s,1H),3.64(d,J=10.9Hz,1H),3.59–3.47(m,3H),3.25(d,J=5.8Hz,2H),3.13(s,1H),2.82(s,3H),2.42–2.29(m,2H),2.18(s,1H),2.14–2.07(m,1H),1.88(d,J=10.3Hz,1H),1.70(d,J=13.1Hz,1H),1.57(d,J=7.8Hz,3H),1.46(dt,J=13.7,7.6Hz,1H),1.42–1.34(m,1H),1.30(dd,J=9.8,5.6Hz,2H),1.26(s,3H),1.21(td,J=14.5,11.7,5.6Hz,10H),1.05(d,J=6.4Hz,3H),0.85(dd,J=6.7,2.5Hz,3H),0.84–0.79(m, 3H),0.77(d,J=6.5Hz,3H)。
第二步,将实施例25中Van-h替换成Van-i,其余所需原料,试剂及制备方法同实施例25,得到Van026。高分辨质谱(ESI+)C86H113Cl2N11O31理论值为1865.6931,实测值为933.8577[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.66(s,1H),7.46(dd,J=8.3,1.8Hz,1H),7.45–7.39(m,1H),7.31(d,J=8.4Hz,2H),7.13–6.98(m,2H),6.84(dd,J=8.6,1.8Hz,1H),6.77(t,J=7.7Hz,2H),6.52(s,1H),5.64(d,J=7.9Hz,1H),5.57(s,1H),5.22(dt,J=11.7,3.8Hz,3H),5.17–5.06(m,3H),4.65(d,J=6.7Hz,1H),4.44(dd,J=16.4,5.7Hz,2H),4.13–4.01(m,3H),4.00(d,J=3.5Hz,1H),3.89(t,J=2.8Hz,1H),3.64(d,J=10.9Hz,1H),3.61–3.48(m,4H),3.36(dd,J=9.1,3.5Hz,1H),3.26(d,J=5.1Hz,2H),3.19(dt,J=13.4,6.7Hz,1H),3.14(d,J=7.7Hz,2H),2.92(t,J=7.6Hz,2H),2.83(s,3H),2.43–2.27(m,2H),1.88(d,J=11.4Hz,1H),1.81(dq,J=14.2,7.0Hz,2H),1.71(d,J=13.0Hz,1H),1.54(q,J=8.4,7.5Hz,4H),1.38(dt,J=13.6,6.6Hz,1H),1.28(d,J=8.8Hz,6H),1.26–1.15(m,12H),1.05(d,J=6.3Hz,3H),0.92–0.88(m,1H),0.87(d,J=6.6Hz,3H),0.82(t,J=6.8Hz,3H),0.79(d,J=6.5Hz,3H)。
实施例27
Figure PCTCN2017081941-appb-000054
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入2-萘甲醛(21mg),加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-j(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C77H83Cl2N9O24理论值为1587.4928,实测值为794.7548[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.71(s,1H),8.54(d,J=5.5Hz,1H),7.99(s,1H),7.96(d,J=8.5Hz,1H),7.93(dt,J=7.4,3.1Hz,1H),7.92–7.87(m,1H),7.83(d,J=1.8Hz,1H),7.59–7.49(m,5H),7.46(dd,J=8.3,1.8Hz,1H),7.32(d,J=8.4Hz,1H),7.19(d,J=8.4Hz,1H),7.16–7.12(m,1H),6.76(dd,J=8.4,2.0Hz,1H),6.70(d,J=8.5Hz,2H),6.38(d,J= 2.3Hz,1H),6.23(d,J=2.3Hz,1H),5.74(d,J=7.8Hz,1H),5.62(s,1H),5.34(d,J=7.7Hz,1H),5.28(d,J=4.3Hz,1H),5.16(dd,J=7.9,2.8Hz,2H),5.10(s,1H),4.90(s,1H),4.67(d,J=6.6Hz,1H),4.44(d,J=5.6Hz,1H),4.41(d,J=5.7Hz,1H),4.16(t,J=10.4Hz,4H),3.95(s,1H),3.67(d,J=10.6Hz,1H),3.57(t,J=8.5Hz,1H),3.49(s,2H),3.31–3.21(m,3H),2.61(s,3H),2.11(d,J=11.5Hz,2H),1.83(d,J=13.2Hz,1H),1.64(ddd,J=28.9,13.3,6.2Hz,3H),1.60–1.52(m,2H),1.50(s,3H),1.12(d,J=6.2Hz,3H),0.89(d,J=6.2Hz,3H),0.85(d,J=6.3Hz,3H)。
第二步,将实施例16中Van-c替换成Van-j,其余所需原料,试剂及制备方法同实施例15,得到Van027。高分辨质谱(ESI+)C87H103Cl2N11O30理论值为1851.6249,实测值为926.8124[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.79(s,1H),8.65(d,J=6.0Hz,1H),7.99(s,1H),7.98–7.92(m,2H),7.92–7.87(m,1H),7.60(s,1H),7.59–7.54(m,3H),7.50(s,1H),7.49–7.43(m,1H),7.31(d,J=8.3Hz,1H),7.22(d,J=8.4Hz,1H),6.77(d,J=8.5Hz,1H),6.53(s,1H),5.75–5.70(m,2H),5.34(d,J=7.7Hz,1H),5.29(d,J=4.2Hz,1H),5.12(d,J=4.4Hz,2H),5.09(d,J=1.9Hz,1H),4.67(q,J=6.6Hz,1H),4.45(d,J=5.7Hz,1H),4.41(d,J=5.7Hz,1H),4.06(s,5H),4.00(d,J=3.6Hz,2H),3.89(t,J=2.9Hz,1H),3.66(d,J=10.7Hz,1H),3.60–3.49(m,4H),3.38–3.33(m,1H),3.31–3.22(m,2H),3.16(dp,J=26.2,6.6Hz,2H),2.92(t,J=7.5Hz,2H),2.57(s,3H),2.11(d,J=10.9Hz,2H),1.82(dq,J=14.2,7.0,6.1Hz,3H),1.69–1.60(m,2H),1.51(s,3H),1.12(d,J=6.4Hz,3H),0.91(d,J=6.1Hz,3H),0.85(d,J=6.0Hz,3H)。
实施例28
Figure PCTCN2017081941-appb-000055
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4-三甲基硅乙炔基苯甲醛(27mg),加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-k(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C78H89Cl2N9O24Si理论值为1633.5167,实测值为817.7670[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.70(s,1H),7.82(d,J=1.8Hz,1H),7.51(dd,J=19.0,8.3Hz,4H),7.45(td,J=4.8,2.1Hz,3H),7.31(d,J=8.4Hz,1H),7.18(d,J=8.4Hz,1H),7.16–7.12(m,1H),6.76(dd,J=8.4,2.0Hz,1H),6.70(d,J=8.5Hz,2H),6.38(d,J=2.3Hz,1H),6.23(d,J=2.3Hz,1H),5.73(d,J=7.8Hz,1H),5.61(s,1H),5.32(d,J=7.6Hz,1H),5.27(d,J=4.2Hz,1H),5.15(dd,J=11.8,2.8Hz,2H),5.09(s,1H),4.90(s,1H),4.65(d,J=6.7Hz,1H),4.42(dd,J=15.8,5.5Hz,2H),3.96(d,J=22.9Hz,3H),3.66(d,J=10.7Hz,1H),3.56(t,J=8.5Hz,1H),3.30–3.21(m,3H),2.61(s,3H),2.09(s,3H),1.80(d,J=13.2Hz,1H),1.64(ddt,J=27.3,12.8,6.5Hz,3H),1.54(dt,J=13.2,6.9Hz,2H),1.45(s,3H),1.10(d,J=6.2Hz,3H),0.89(d,J=6.2Hz,3H),0.84(d,J=6.2Hz,3H),0.21(s,9H)。
第二步,将实施例16中Van-c替换成Van-k,其余所需原料,试剂及制备方法同实施例16,得到Van028。高分辨质谱(ESI+)C88H109Cl2N11O30Si理论值为1897.6488,实测值为949.8331[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.78(s,1H),8.65(s,1H),7.61(s,1H),7.50(d,J=7.9Hz,3H),7.46–7.43(m,2H),7.30(d,J=8.3Hz,1H),7.21(d,J=8.4Hz,1H),6.84(dd,J=8.4,1.9Hz,1H),6.77(d,J=8.5Hz,2H),6.53(s,1H),5.72(d,J=10.8Hz,2H),5.32(d,J=7.7Hz,1H),5.28(d,J=4.2Hz,1H),5.12(s,2H),5.08(d,J=1.9Hz,1H),4.80(s,1H),4.64(q,J=6.5Hz,2H),4.44(d,J=5.4Hz,1H),4.41(d,J=5.7Hz,1H),3.89(dd,J=3.6,2.3Hz,1H),3.66(d,J=10.7Hz,1H),3.59–3.52(m,3H),3.39–3.32(m,2H),3.29–3.22(m,3H),3.16(dq,J=25.9,6.8Hz,3H),2.92(t,J=7.5Hz,2H),2.56(s,3H),2.09(s,3H),1.82(td,J=15.9,14.8,8.3Hz,4H),1.64(q,J=6.7,4.2Hz,3H),1.46(s,5H),1.09(d,J=6.3Hz,3H),0.90(d,J=6.0Hz,3H),0.85(d,J=6.1Hz,3H),0.21(s,9H)。
实施例29
Figure PCTCN2017081941-appb-000056
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4-乙炔基苯甲醛(24mg)加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-l (40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C75H81Cl2N9O24理论值为1561.4771,实测值为781.7473[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.57–7.51(m,3H),7.48(dd,J=9.2,4.0Hz,3H),7.33(d,J=8.4Hz,1H),7.21(d,J=8.3Hz,1H),7.16(s,1H),6.78(dd,J=8.5,2.0Hz,1H),6.72(d,J=8.7Hz,1H),5.76(d,J=7.3Hz,1H),5.66–5.59(m,1H),5.34(d,J=7.7Hz,1H),5.29(d,J=4.4Hz,1H),5.20–5.13(m,2H),5.11(s,1H),4.92(s,1H),4.67(t,J=6.6Hz,1H),4.44(dd,J=15.6,5.6Hz,1H),4.25(d,J=2.9Hz,1H),4.19(s,1H),3.68(d,J=10.7Hz,1H),3.58(t,J=8.5Hz,1H),3.55–3.49(m,1H),3.31–3.23(m,2H),2.62(s,3H),2.19–2.05(m,2H),1.82(d,J=13.3Hz,1H),1.72–1.60(m,2H),1.57(dd,J=12.7,6.3Hz,1H),1.48(d,J=8.6Hz,3H),1.28–1.21(m,1H),1.12(d,J=6.4Hz,3H),0.92(d,J=6.2Hz,3H),0.87(d,J=6.2Hz,3H)。
第二步,将实施例16中Van-c替换成Van-l,其余所需原料,试剂及制备方法同实施例16,得到Van029。高分辨质谱(ESI+)C85H101Cl2N11O30理论值为1825.6093,实测值为913.8131[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.79(s,1H),8.65(s,1H),7.61(s,1H),7.52(d,J=7.8Hz,2H),7.50–7.42(m,4H),7.30(d,J=8.3Hz,1H),7.21(d,J=8.4Hz,1H),6.84(dd,J=8.4,1.9Hz,1H),6.77(d,J=8.5Hz,1H),6.53(s,1H),5.72(d,J=10.5Hz,2H),5.32(d,J=7.7Hz,1H),5.28(d,J=4.1Hz,1H),5.12(d,J=3.5Hz,2H),5.08(d,J=2.0Hz,1H),4.64(d,J=6.7Hz,1H),4.44(d,J=5.4Hz,1H),4.41(d,J=5.7Hz,1H),4.25–4.21(m,1H),4.07(d,J=16.7Hz,4H),4.02–3.94(m,4H),3.89(t,J=2.8Hz,1H),3.66(d,J=10.6Hz,1H),3.58–3.51(m,3H),3.36(dd,J=10.8,5.3Hz,1H),3.26(s,2H),3.16(dq,J=26.0,6.8Hz,2H),2.92(t,J=7.3Hz,2H),2.56(s,3H),2.08(s,2H),1.82(td,J=14.1,7.6Hz,3H),1.69–1.60(m,2H),1.45(s,4H),1.09(d,J=6.3Hz,3H),0.91(d,J=6.0Hz,3H),0.85(d,J=6.0Hz,3H)。
实施例30
Figure PCTCN2017081941-appb-000057
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4-丁氧基苯甲醛(24μL),加热搅拌4小时。室温下 加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-m(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C77H88Cl2N9O25理论值为1609.5347,实测值为805.7758[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.72(s,1H),7.85(d,J=1.9Hz,1H),7.47(dd,J=8.3,1.8Hz,1H),7.38–7.34(m,2H),7.33(d,J=8.4Hz,1H),7.22(d,J=8.3Hz,1H),6.96(d,J=8.6Hz,2H),6.78(dd,J=8.4,2.0Hz,1H),6.72(d,J=8.6Hz,2H),6.40(d,J=2.3Hz,1H),6.25(d,J=2.3Hz,1H),5.76(d,J=5.2Hz,1H),5.62(s,1H),5.35(d,J=7.8Hz,1H),5.28(d,J=4.3Hz,1H),5.18(dd,J=7.4,2.9Hz,2H),5.11(s,1H),4.92(s,1H),4.66(q,J=6.5Hz,1H),4.45(d,J=5.5Hz,1H),4.43(d,J=5.8Hz,1H),4.19(s,1H),3.97(t,J=6.5Hz,2H),3.92(q,J=12.6Hz,3H),3.68(d,J=10.7Hz,1H),3.58(t,J=8.5Hz,1H),3.52(dd,J=11.0,4.3Hz,1H),3.32–3.23(m,3H),3.09(q,J=7.3Hz,2H),2.59(s,3H),2.11(s,3H),1.80(d,J=13.2Hz,1H),1.71–1.62(m,4H),1.54(s,2H),1.47(s,2H),1.45–1.38(m,3H),1.17(t,J=7.3Hz,3H),1.12(d,J=6.2Hz,3H),0.96–0.89(m,6H),0.86(d,J=6.0Hz,3H)。
第二步,将实施例16中Van-c替换成Van-m,其余所需原料,试剂及制备方法同实施例16,得到Van030。高分辨质谱(ESI+)C87H109Cl2N11O31理论值为1873.6668,实测值为937.8422[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ7.84(s,1H),7.61(s,1H),7.52–7.49(m,1H),7.48(dd,J=8.3,1.8Hz,1H),7.36(d,J=8.4Hz,2H),7.32(d,J=8.4Hz,1H),7.23(d,J=8.4Hz,1H),7.12(s,1H),6.96(d,J=8.5Hz,2H),6.86(dd,J=8.5,2.0Hz,1H),6.79(d,J=8.5Hz,1H),6.54(s,1H),5.72(d,J=12.4Hz,2H),5.35(d,J=7.6Hz,1H),5.29(d,J=4.2Hz,1H),5.14(s,2H),5.11(d,J=2.0Hz,1H),4.82(s,1H),4.66(q,J=6.6Hz,1H),4.46(d,J=5.5Hz,1H),4.43(d,J=6.1Hz,1H),4.10(d,J=28.9Hz,3H),4.02(d,J=3.6Hz,1H),3.97(t,J=6.5Hz,3H),3.91(dd,J=8.5,6.0Hz,3H),3.68(d,J=10.6Hz,1H),3.60–3.55(m,2H),3.55–3.50(m,2H),3.44(s,2H),3.40–3.36(m,1H),3.31–3.24(m,2H),3.18(ddq,J=31.3,13.3,6.4Hz,3H),2.92(s,2H),2.56(s,2H),2.16–2.07(m,2H),1.83(tt,J=13.7,6.9Hz,3H),1.67(td,J=12.1,10.5,6.1Hz,4H),1.47(s,3H),1.41(dt,J=14.7,7.5Hz,3H),1.11(d,J=6.3Hz,3H),0.94–0.90(m,6H),0.87(d,J=6.2Hz,3H)。
实施例31
Figure PCTCN2017081941-appb-000058
第一步,市售万古霉素(100mg),DIPEA(30μL),DMF 3mL溶解,溶液浑浊,加热升温至50℃,溶液变澄清,加入4-戊基苯甲醛(24μL)加热搅拌4小时。室温下加入NaCNBH3(8mg),甲醇1mL,TFA30μL,搅拌过夜HPLC监测反应。反应液中加入***(50mL)沉淀,过滤得到粗品,用反相C18柱分离,冷冻干燥得到白色固体Van-n(40mg)。HPLC:C18柱(5μm,4.6x 250mm),紫外检测波段为214nm,洗脱条件2-90%乙腈(含0.1%TFA)梯度30分钟。高分辨质谱(ESI+)C78H91Cl2N9O24理论值为1607.5554,实测值为804.7777[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.56(d,J=5.8Hz,1H),7.85(d,J=1.9Hz,1H),7.57–7.53(m,1H),7.47(dd,J=8.3,1.8Hz,1H),7.36(d,J=7.8Hz,2H),7.33(d,J=8.3Hz,1H),7.24(d,J=8.1Hz,2H),7.20(d,J=8.4Hz,1H),7.16(s,1H),6.78(dd,J=8.4,2.0Hz,1H),6.72(d,J=8.5Hz,2H),6.40(d,J=2.3Hz,1H),6.25(d,J=2.3Hz,1H),5.76(d,J=7.9Hz,1H),5.63(s,1H),5.35(d,J=7.8Hz,1H),5.28(d,J=4.2Hz,1H),5.19(d,J=3.6Hz,1H),5.17(d,J=2.0Hz,1H),5.11(s,1H),4.92(s,1H),4.66(d,J=6.6Hz,1H),4.45(d,J=5.4Hz,1H),4.43(d,J=5.7Hz,1H),4.20(s,2H),3.96(s,4H),3.68(d,J=10.7Hz,1H),3.58(t,J=8.5Hz,1H),3.28(h,J=7.9,7.4Hz,2H),2.63(s,3H),2.57(t,J=7.6Hz,2H),2.11(d,J=11.1Hz,2H),1.81(d,J=13.2Hz,1H),1.71–1.60(m,3H),1.55(h,J=7.5Hz,4H),1.47(s,3H),1.32–1.19(m,5H),1.12(d,J=6.3Hz,3H),0.91(d,J=6.2Hz,3H),0.86(d,J=6.9Hz,3H),0.84(d,J=7.2Hz,3H)。
第二步,将实施例16中Van-c替换成Van-n,其余所需原料,试剂及制备方法同实施例16,得到Van031。高分辨质谱(ESI+)C89H111Cl2N11O30理论值为1871.6875,实测值为936.8522[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.80(s,1H),8.67(s,1H),7.85–7.83(m,1H),7.62(s,1H),7.52–7.49(m,1H),7.48(dd,J=8.3,1.7Hz,1H),7.36(d,J=8.0Hz,2H),7.32(d,J=8.3Hz,1H),7.24(d,J=7.7Hz,3H),7.12(s,1H),6.86(dd,J=8.6,1.8Hz,1H),6.79(d,J=8.6Hz,1H),6.54(s,1H),5.75–5.71(m,2H),5.35(d,J=7.7Hz,1H),5.30(d,J=4.1Hz,1H),5.14(s,2H),5.11(d,J=2.0Hz,1H),4.82(s,1H),4.66(t,J=6.5Hz,1H),4.46(d,J=5.7Hz,1H),4.43(d,J=5.9Hz,1H),4.07(s,4H),4.02(d,J=3.6Hz,1H),3.98–3.93(m, 2H),3.92–3.90(m,1H),3.68(d,J=10.5Hz,1H),3.59–3.55(m,3H),3.54–3.49(m,3H),3.40–3.36(m,1H),3.30–3.23(m,2H),3.18(dq,J=25.5,6.9Hz,2H),2.93(s,1H),2.57(d,J=7.1Hz,5H),2.12(d,J=20.5Hz,2H),1.86–1.78(m,3H),1.66(s,2H),1.55(p,J=7.5Hz,3H),1.48(s,3H),1.31–1.22(m,5H),1.11(d,J=6.3Hz,3H),0.92(d,J=6.1Hz,3H),0.87(d,J=6.1Hz,3H),0.85(t,J=7.1Hz,3H)。
实施例32
Figure PCTCN2017081941-appb-000059
将实施例8中的Nvan-2-(正癸氨基)乙基-万古霉素Van-a替换成Nvan-2-(4’-三氟甲基联苯基)-万古霉素Van-c,其余所需原料,试剂及制备方法同实施例8,得到Van032。高分辨质谱(ESI+)C87H97Cl2F3N10O29理论值为1872.5752,实测值为937.2960[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.83(s,1H),7.92(d,J=8.1Hz,2H),7.84(d,J=8.5Hz,3H),7.84–7.79(m,2H),7.62(t,J=10.7Hz,3H),7.54–7.44(m,2H),7.33(d,J=8.3Hz,1H),7.23(dd,J=8.4,3.1Hz,1H),7.16(s,1H),6.90–6.85(m,1H),6.79(t,J=9.0Hz,1H),6.55(d,J=4.7Hz,1H),5.74(d,J=9.7Hz,2H),5.53(d,J=3.5Hz,1H),5.36(d,J=7.7Hz,1H),5.31(s,1H),5.19–5.07(m,3H),4.83(s,1H),4.68(d,J=6.9Hz,1H),4.50(s,1H),4.43(t,J=5.8Hz,1H),4.27(d,J=15.9Hz,1H),4.08(d,J=14.2Hz,2H),4.03(d,J=8.3Hz,1H),3.90–3.83(m,1H),3.82(t,J=6.5Hz,1H),3.58(t,J=8.5Hz,2H),3.53(dt,J=10.6,4.4Hz,3H),3.29(s,2H),2.75(s,1H),2.59(s,3H),2.13(d,J=13.0Hz,2H),1.84(d,J=13.2Hz,1H),1.51(s,4H),1.13(d,J=6.3Hz,3H),0.93(d,J=6.0Hz,3H),0.88(d,J=6.1Hz,3H)。
实施例33
Figure PCTCN2017081941-appb-000060
将实施例8中的Nvan-2-(正癸氨基)乙基-万古霉素Van-a替换成Nvan-2(4-三甲基硅乙炔 基苯甲基)万古霉素Van-k,其余所需原料,试剂及制备方法同实施例8,得到Van033。高分辨质谱(ESI+)C85H102Cl2N10O29Si理论值为1824.5960,实测值为913.3060[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.80(s,1H),8.71(s,1H),7.82(d,J=8.1Hz,1H),7.62(s,1H),7.53–7.47(m,3H),7.45(d,J=7.7Hz,3H),7.30(d,J=8.3Hz,1H),7.19(d,J=8.3Hz,1H),7.13(s,1H),6.86(d,J=8.9Hz,1H),6.76(d,J=8.5Hz,2H),6.53(d,J=4.6Hz,1H),5.71(s,2H),5.33(d,J=7.7Hz,1H),5.28(s,1H),5.16–5.06(m,3H),4.80(s,1H),4.65(d,J=6.8Hz,1H),4.48(s,1H),4.40(t,J=5.9Hz,1H),4.23(s,1H),4.16–3.91(m,5H),3.84(d,J=10.9Hz,0H),3.80(t,J=6.5Hz,1H),3.73–3.63(m,1H),3.55(t,J=8.5Hz,1H),3.50(d,J=10.0Hz,2H),3.26(s,2H),2.72(s,1H),2.57(s,3H),2.17–2.03(m,2H),1.80(d,J=13.2Hz,1H),1.64(d,J=9.8Hz,2H),1.46(s,3H),1.21(s,1H),1.09(d,J=6.3Hz,3H),0.91(d,J=6.0Hz,3H),0.86(d,J=6.1Hz,3H),0.21(s,9H)。
实施例34
Figure PCTCN2017081941-appb-000061
将实施例8中的Nvan-2-(正癸氨基)乙基-万古霉素Van-a替换成Nvan-2(癸基)-万古霉素Van-g,其余所需原料,试剂及制备方法同实施例8,得到Van034。高分辨质谱(ESI+)C83H108Cl2N10O29理论值为1778.6661,实测值为890.3400[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.81(s,1H),8.73(s,0H),7.83(d,J=7.7Hz,1H),7.62(s,1H),7.50(d,J=8.7Hz,1H),7.47(d,J=8.4Hz,1H),7.31(d,J=8.3Hz,1H),7.20(d,J=7.9Hz,1H),7.15(s,1H),6.87(d,J=8.7Hz,1H),6.78(dd,J=8.5,2.5Hz,1H),6.55(s,1H),5.76–5.68(m,1H),5.32(d,J=7.7Hz,1H),5.29(d,J=4.1Hz,1H),5.17–5.05(m,2H),4.82(s,1H),4.61(d,J=6.9Hz,1H),4.42(t,J=6.0Hz,1H),4.25(s,1H),4.18–3.94(m,3H),3.86(d,J=10.3Hz,0H),3.82(t,J=6.5Hz,0H),3.67(d,J=10.9Hz,1H),3.56(t,J=8.5Hz,1H),3.52(d,J=9.6Hz,2H),3.44(d,J=8.4Hz,3H),3.27(d,J=9.8Hz,3H),2.73(d,J=38.7Hz,2H),2.58(s,2H),2.14(s,1H),1.98(d,J=11.8Hz,1H),1.79(d,J=13.1Hz,1H),1.66(s,2H),1.35(s,3H),1.24(s,15H),1.08(d,J=6.2Hz,3H),0.93(d,J=6.0Hz,3H),0.89–0.83(m,6H)。
实施例35
Figure PCTCN2017081941-appb-000062
将实施例8中的Nvan-2-(正癸氨基)乙基-万古霉素Van-a替换成Nvan-2(4-乙炔基苯甲基)-万古霉素Van-l,其余所需原料,试剂及制备方法同实施例8,得到Van035。高分辨质谱(ESI+)C82H94Cl2N10O29理论值为1752.5565,实测值为877.2869[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.81(s,1H),7.85(d,J=8.0Hz,1H),7.63(s,1H),7.55(d,J=8.0Hz,2H),7.50(t,J=11.3Hz,4H),7.33(d,J=8.3Hz,1H),7.22(dd,J=8.6,3.8Hz,1H),6.87(s,1H),6.79(dd,J=10.3,6.2Hz,1H),5.74(d,J=9.4Hz,2H),5.35(d,J=7.6Hz,1H),5.30(d,J=4.2Hz,1H),5.19–5.06(m,3H),4.83(s,1H),4.67(d,J=7.0Hz,1H),4.43(q,J=6.1Hz,1H),4.27(d,J=1.9Hz,2H),3.69(d,J=10.7Hz,1H),3.58(t,J=8.5Hz,1H),3.55–3.49(m,2H),3.47(d,J=8.6Hz,1H),3.37(d,J=8.9Hz,2H),3.32–3.22(m,3H),2.59(s,3H),2.20–2.05(m,2H),1.82(d,J=13.2Hz,1H),1.67(d,J=9.3Hz,2H),1.48(s,3H),1.12(d,J=6.3Hz,3H),0.93(d,J=6.0Hz,3H),0.88(d,J=6.1Hz,3H)。
实施例36
Figure PCTCN2017081941-appb-000063
将实施例8中Nvan-2-(正癸氨基)乙基-万古霉素Van-a替换成Nvan-2(4-戊基苯甲基)-万古霉素Van-n,其余所需原料,试剂及制备方法同实施例8,得到Van036。高分辨质谱(ESI+)C85H104Cl2N10O29理论值为1798.6348,实测值为900.3265[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.80(s,1H),8.72(s,1H),7.82(d,J=7.5Hz,1H),7.61(s,1H),7.49(d,J=8.8Hz,1H),7.46(d,J=8.4Hz,1H),7.34(d,J=7.8Hz,2H),7.30(d,J=8.3Hz,1H),7.21(dd,J=15.1,8.1Hz,3H),6.85(d,J=8.3Hz,1H),6.77(dd,J=10.3,6.2Hz, 1H),6.53(d,J=4.5Hz,1H),6.45(s,0H),5.72(d,J=9.0Hz,2H),5.51(d,J=3.5Hz,0H),5.33(d,J=7.6Hz,1H),5.28(s,1H),5.16–5.07(m,3H),4.80(s,1H),4.64(d,J=6.6Hz,1H),4.48(s,1H),4.40(t,J=5.9Hz,1H),4.23(s,1H),4.09(d,J=41.4Hz,2H),4.00(s,1H),3.93(q,J=12.7Hz,2H),3.84(d,J=11.7Hz,0H),3.80(t,J=6.5Hz,1H),3.72–3.64(m,1H),3.55(t,J=8.5Hz,1H),3.53–3.46(m,3H),3.25(d,J=9.5Hz,2H),2.73(s,1H),2.56(dd,J=10.3,4.8Hz,4H),2.09(d,J=12.0Hz,2H),1.79(d,J=13.2Hz,1H),1.53(p,J=7.5Hz,3H),1.46(s,3H),1.30–1.18(m,4H),1.09(d,J=6.3Hz,3H),0.91(d,J=6.1Hz,3H),0.86(d,J=6.1Hz,3H),0.83(t,J=7.1Hz,3H)。
实施例37
Figure PCTCN2017081941-appb-000064
将实施例2中的Nvan-2-(正癸氨基)乙基-万古霉素Van-a替换成Nvan-2(4’-三氟甲基二苯基)-万古霉素Van-c,其余所需原料,试剂及制备方法同实施例2,得到Van037。高分辨质谱(ESI+)C89H101Cl2F3N10O30理论值为1916.6014,实测值为959.3086[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.79(s,1H),7.92(d,J=8.1Hz,2H),7.84(d,J=8.7Hz,3H),7.82(d,J=7.8Hz,2H),7.61(d,J=7.9Hz,3H),7.52(d,J=8.6Hz,1H),7.49(d,J=8.4Hz,1H),7.33(d,J=8.4Hz,1H),7.25(d,J=8.4Hz,1H),7.15(s,1H),6.86(d,J=8.6Hz,1H),6.78(d,J=8.5Hz,1H),6.51(s,1H),5.75(s,1H),5.70(s,1H),5.37(d,J=7.6Hz,1H),5.31(d,J=4.2Hz,1H),5.14(d,J=6.1Hz,3H),4.83(d,J=15.8Hz,1H),4.69(q,J=6.6Hz,1H),4.47(d,J=5.3Hz,1H),4.43(d,J=6.0Hz,1H),4.14(p,J=10.0,7.2Hz,4H),4.06(s,3H),3.95(s,2H),3.69(d,J=10.7Hz,2H),3.63(d,J=3.0Hz,1H),3.59(t,J=8.5Hz,2H),3.55–3.49(m,5H),3.35–3.22(m,5H),2.54(d,J=5.7Hz,2H),2.14(d,J=16.3Hz,2H),1.84(d,J=13.2Hz,1H),1.71–1.58(m,3H),1.51(s,4H),1.17(t,J=7.3Hz,1H),1.13(d,J=6.2Hz,3H),0.92(d,J=6.2Hz,3H),0.87(d,J=6.3Hz,3H)。
实施例38
Figure PCTCN2017081941-appb-000065
将实施例8中Nvan-2-(正癸氨基)乙基-万古霉素Van-a替换成Nvan-2(4’-氯联苯基)-万古霉素Van-b,其余所需原料,试剂及制备方法同实施例8,得到Van038。高分辨质谱(ESI+)C86H97Cl2N10O29理论值为1838.5489,实测值为920.2862[M+2H]2+
1H NMR(600MHz,DMSO-d6)δ8.80(s,2H),8.72(s,2H),7.85–7.81(m,1H),7.75–7.67(m,4H),7.61(s,2H),7.58–7.53(m,3H),7.52(d,J=4.4Hz,2H),7.51(d,J=8.4Hz,1H),7.46(d,J=8.6Hz,2H),7.31(d,J=8.3Hz,1H),7.20(dd,J=8.4,3.4Hz,1H),6.86(dd,J=8.4,2.1Hz,1H),6.77(t,J=8.6Hz,2H),6.53(d,J=4.7Hz,1H),5.72(d,J=11.0Hz,2H),5.51(d,J=3.6Hz,1H),5.33(d,J=7.7Hz,1H),5.29(d,J=4.2Hz,1H),5.16–5.07(m,3H),4.80(s,1H),4.66(d,J=6.8Hz,2H),4.48(s,1H),4.40(t,J=5.8Hz,2H),4.23(s,1H),4.05–3.97(m,3H),3.86–3.81(m,1H),3.79(d,J=6.5Hz,1H),3.75(d,J=3.2Hz,1H),3.66(d,J=10.8Hz,2H),3.56(t,J=8.5Hz,2H),3.42–3.37(m,2H),3.29–3.23(m,2H),3.15(dd,J=10.5,3.5Hz,1H),2.71(s,2H),2.57(s,3H),2.10(d,J=12.8Hz,3H),1.82(d,J=13.2Hz,1H),1.65(s,3H),1.49(s,4H),1.26–1.19(m,2H),1.10(d,J=6.3Hz,3H),0.91(d,J=6.0Hz,3H),0.86(d,J=6.1Hz,3H)。
活性测试:
生物测试例1体外抑菌活性测试
对本发明中的38个化合物进行了体外抑菌活性的测试。按照2006年CLSI(临床实验室标准化协会)稀释法进行抗菌药物的抑菌浓度测定(Minimal Inhibitory concentration MIC)进行,结果如表1所示。
测试菌株分别为万古霉素敏感的金黄色葡萄球菌(Staphylococcus aureus Newman strain)和万古霉素中等耐药的金黄色葡萄球菌(Staphylococcus aureusMu50strain)。
万古霉素购自武汉大华伟业医药化工有限公司,批号DH20160105,特拉万星按US20020022590A1中描述的方法制备。
测试方法:将待测化合物溶于一定体积的DMSO中,配制成浓度为1.28mg/mL的溶液,再用DMSO进行稀释128μg/mL作为初始浓度。进一步对倍稀释,96孔细胞培养板上,每排按低浓度0.125μg/mL到高浓度128μg/mL依次加入100μL相应的药液,同时 有无菌对照(不加药物和菌液只加培养液)、生长对照(不加药物,孔肉汤培养液中加入DMSO)、阳性对照组(万古霉素)。每个测试和成长控制孔用细菌悬浮液的5微升接种(浓度为105CFU/mL的菌液100μL)。96孔细胞培养板,37℃培养16h观察结果,完全抑制细菌生长的最低化合物浓度为MIC值。
表1本发明化合物的体外抑菌活性的测试结果
Figure PCTCN2017081941-appb-000066
上述体外抗菌活性研究表明,实施例所代表的本发明万古霉素类似物对万古霉素耐药的金黄色葡萄球菌的抗菌活性,大部分高于万古霉素,部分优选化合物抗菌活性为万古霉素10-100倍,为2009年上市药物特拉万星4-10倍。抗菌实验表明本发明涉及的新型万古霉素类似物,其结构改造策略可显著增强其抗菌活性。
生物测试例2小鼠体内抗菌实验
将本发明的Van016、Van032、Van037、Van038、万古霉素和特拉万星加无菌重蒸水(ddH2O)溶解,配置成溶液,其中各个药物的浓度约为2mg/mL。
SPF级雌性BALB/c鼠都购自上海实验动物研究中心,生长在无特定微生物的环境中。过夜培养的金黄色葡萄球菌USA300LAC菌株(社区获得性甲氧西林耐药的金黄色葡萄球菌)按1:100转接到新鲜的胰酪胨大豆肉汤培养基(TSB),继续培养三个小时达到菌株的指数增长期,收集菌体用无菌的PBS缓冲液清洗两遍后悬浮于该缓冲液中。
将105只BALB/c鼠随机分为7组,即,阴性对照组,Van016组,Van032组,Van037组,Van038组,万古霉素组和特拉万星组,每个实验组各15只小鼠,每只小鼠体重约18克。
饲养至6~8周的雌性BALB/c鼠用戊巴比妥钠麻醉(80mg/kg,腹腔注射)后,将2.35×108CFU的USA300LAC悬浮菌液用眼眶静脉注射的方式感染小鼠。小鼠在感染1小时后,除阴性对照组外,其余6组分别给予单次剂量7mg/kg的所选化合物和阳性对照化合物治疗,治疗方式为腹腔注射。同时,对阴性对照组的小鼠注射相同量的无菌ddH2O。接下来连续10天记录小鼠的死亡数量,计算小鼠存活百分比,结果见图1。
由图1可见,在10天之后,Van038组的存活率为93.3%,Van037组的存活率为86.6%,Van032组的存活率为73.3%,Van016组的存活率为60.0%。阳性对照组中特拉万星组的存活率为93.3%,万古霉素组的存活率为6.6%。阴性对照组的小鼠在6天后全部死亡,存活率为0%。
上述体内药效学研究表明,本发明的上述4个万古霉素类似物对耐甲氧西林金黄色葡萄球菌的抗菌活性,全部高于万古霉素,说明Van016,Van032,Van037,Van038对耐甲氧西林的金黄色葡萄球菌具有明显的保护作用,作用明显强于万古霉素。并且,其中Van038和Van037与特拉万星相比作用相当。
生物测试例3小鼠体内药代动力学实验
选择本发明制备的化合物Van016,Van032,Van037,Van038以及阳性化合物万古霉素和特拉万星进行小鼠体内药代动力学实验,其中用到的小鼠(CD-1小鼠)全部来自上海灵畅生物科技有限公司,在18-29℃,湿度范围30-70%条件下成长至18-22g。
将18只雄性的CD-1正常小鼠随机分成6组,即,Van016组,Van032组,Van037组,Van038组,万古霉素组和特拉万星组,每组3只。各组小鼠单剂量5mg/kg分别静脉注射在生物测试例2中配制的相应的化合物的溶液,注射后分别在0.05h,0.25h,0.75h,2h,4h,8h,24h一共7个时间点抽取血样(股静脉取血)。利用LC-MS/MS检测不同时间6组小鼠相应的血浆中药物浓度(ng/mL),利用药物动力学软件WinNonlin 6.4得出相应的半衰期T1/2,药物浓度-时间曲线下面积AUC,血浆清除率CL,平均驻留时间MRT,药物在体内达到稳态时计算得到的分布容积Vss,具体结果如下表2所示。
从表2结果来看,本发明的4个化合物在半衰期T1/2方面都比万古霉素和特拉万星要 长,同时药物浓度-时间曲线下面积AUC比万古霉素大10-20倍,与特拉万星相当的水平。在血浆清除率CL方面,本发明的4个化合物都比万古霉素清除率慢,与特拉万星相当,均表现出优于阳性化合物的良好成药性参数。
表2、本发明代表性化合物的小鼠体内药代动力学的实验结果
Figure PCTCN2017081941-appb-000067
注:AUClast:实测时间段的药物浓度-时间曲线下面积;AUCINF_obs:理论全时间段的药物浓度-时间曲线下面积检测值;CLobs:血浆清除率检测值;MRTINF_obs:理论全时间段的的平均滞留时间检测值;VSS_obs:药物在人体稳态分布容积检测值;下标obs为observed缩写,即观察得到的实测值;下标INF为infinity缩写,指无限时间范围,即理论全时间段;下标last指实测时间起始点到终止点的时间范围,即实测时间段。
生物测试例4肝肾细胞毒性实验
采用Van011、Van037、万古霉素和特拉万星进行肝肾细胞毒性实验。肝肾细胞活力测定采用细胞活性检测试剂盒CCK8(Cell Counting Kit-8)方法进行。
处于对数生长期的HK-2细胞(人肾小管上皮细胞)和HL-7702细胞(人肝脏细胞)分别按合适密度(约5000个细胞)接种至96孔培养板,每孔100μL。培养过夜后,分别加入不同浓度(10 μΜ,50 μΜ,100 μΜ)的万古霉素、特拉万星、Van011或Van037作用72h,每个浓度设三个复孔,并设相应浓度的生理盐水溶媒对照及无细胞调零孔。作用结束后,每孔加入10μL的CCK8检测液,置于37℃细胞培养箱约1.5h后,用VERSMax酶标仪测定450nm波长下的光密度(OD值)。将OD值按下述公式换算成细胞活力值:
细胞活力值=ODC/ODC=0×100,
其中,ODC表示待测药物不同的浓度时的光密度,C表示药物的浓度,ODC=0表示不加待测药物时的光密度,结果图2和图3所示。
结果表明,本发明的Van011和Van037在肝脏细胞中的毒性均小于万古霉素和特拉万星,安全性更好,而在肾脏细胞中毒性小于万古霉素,与特拉万星相当。
以上,仅为本发明的示意性描述,本领域技术人员应该知道,在不偏离本发明的工作原理的基础上,可以对本发明作出多种改进,这均属于本发明的保护范围。

Claims (12)

  1. 具有下面通式I所示结构的万古霉素衍生物或其药学上可接受的盐:
    Figure PCTCN2017081941-appb-100001
    其中:
    R1是H、–CH2–R4、–CO–R4或—(CH2)m–A-R4,其中
    m为1-4的整数,优选为2、3或4,
    A选自NH、O和S,
    R4选自取代或未取代的C8-C16直链或支链烷基、取代或未取代的C8-C16直链或支链烯基、取代或未取代的C8-C16直链或支链炔基、取代或未取代的C3-C10环烷基、取代或未取代的C6-C20芳基、取代或未取代的含有选自N、O和S中的一个或多个杂原子的3-10元非芳香性杂环基、取代或未取代的含有选自N、O和S中的一个或多个杂原子的3-10元杂芳基,上述取代的取代基可以为选自卤素、-OH、-NH2、氰基、C1-C10直链或支链烷基(优选甲基、乙基、丁基、戊基、庚基)、C1-C10直链或支链烷氧基、C1-C10直链或支链烷胺基、C1-C10直链或支链烷酰基、C3-C10环烷基、卤代C1-C10直链或支链烷基(优选三氟甲基)、三甲基硅烷基C2-C10直链或支链炔基(优选三甲基硅烷基乙炔基)、C2-C10直链或支链炔基(优选乙炔基)、三氟甲基C6-C20芳基(优选三氟甲基苯基)、用卤素、-OH、-NH2、氰基、C1-C10直链或支链烷基、C1-C10直链或支链烷氧基、C1-C10直链或支链烷酰基、C2-C6直链或支链炔基、苯乙炔基、三甲基硅烷基乙炔基、吡啶基、苯基、氰基苯基、C1-C6直链或支链烷基苯基、三氟甲基苯基、氯苯基或C1-C6直链或支链烷基联苯基甲氧基取代的C6-C20芳基、用卤素、-OH、-NH2、氰基、C1-C10直链或支链烷基、C1-C10直链或支链烷氧基、吡啶基、苯基、C1-C6直链或支链烷基苯基、三氟甲基苯基或氯苯基取代的C3-C10环烷基、C1-C10直链或支链烷基羰基、苯基C1-C10直链或支链烷基羰基等中 的一个或多个;
    R2是OH或–NH(CH2)pR5,其中
    p为0-6之间的整数,
    R5独立选自糖基或者取代的氨基;所述取代的取代基可以为选自C1-C6直链或支链烷基中的1或2个取代基;
    R3选自氢或甲基;
    n为0-6之间的整数,优选为0、1、2或3;
    X不存在或为–S–、–O–、–NH–、–C(O)NH–、–NHC(O)–或–(CH2)q–,q为0-2之间的整数;
    Y为糖基。
  2. 如权利要求1所述的万古霉素衍生物或其药学上可接受的盐,其中,
    R4选自如下基团:
    Figure PCTCN2017081941-appb-100002
    Figure PCTCN2017081941-appb-100003
    R2选自如下基团:
    Figure PCTCN2017081941-appb-100004
    X不存在或选自–NH–、–C(O)NH–、和–(CH2)2–;和/或
    所述糖基选自由环状单糖、环状二糖、非环状单糖、非环状二糖得到的糖基。
  3. 如权利要求1所述的万古霉素衍生物或其药学上可接受的盐,其中,
    R2选自如下基团:
    Figure PCTCN2017081941-appb-100005
    X为不存在;和/或
    所述糖基选自由去氧单糖、羧基单糖、氧化单糖、还原单糖得到的糖基。
  4. 如权利要求1所述的万古霉素衍生物或其药学上可接受的盐,其中,所述糖基选自由木糖、甘露糖、N-乙酰氨基葡萄糖、半乳糖、山梨糖、***糖、葡萄糖、果糖、鼠李糖,岩藻糖、唾液酸、核糖、脱氧核糖、阿洛糖、上述单糖的开环结构、以及上述单糖和/或单糖的开环结构组合形成的二糖得到的糖基。
  5. 如权利要求1所述的万古霉素衍生物或其药学上可接受的盐,其中,所述糖基选自:
    Figure PCTCN2017081941-appb-100006
  6. 如权利要求1-5中任一项所述的万古霉素衍生物或其药学上可接受的盐,其中,所述通式I的化合物为由以下通式I-A表示的万古霉素衍生物:
    Figure PCTCN2017081941-appb-100007
    其中,R6选自氯和三氟甲基,
    R2选自OH和以下基团:
    Figure PCTCN2017081941-appb-100008
    X、Y和n与通式I中的限定相同。
  7. 如权利要求6所述的万古霉素衍生物或其药学上可接受的盐,其中,Y选自以下基团:
    Figure PCTCN2017081941-appb-100009
  8. 如权利要求1所述的万古霉素衍生物或其药学上可接受的盐,其中,所述通式I的化合物选自下列化合物:
    Figure PCTCN2017081941-appb-100010
    Figure PCTCN2017081941-appb-100011
    Figure PCTCN2017081941-appb-100012
    Figure PCTCN2017081941-appb-100013
    Figure PCTCN2017081941-appb-100014
  9. 制备权利要求1~8中任一项所述的万古霉素衍生物的方法,其特征在于,该方法包括如下步骤中的一步或多步:
    Figure PCTCN2017081941-appb-100015
    (1)万古霉素与酰氯或磺酰氯R1Cl发生取代反应或与醛R4CHO发生缩合反应得到通式d化合物;
    (2)将通式d化合物与氨基化合物R2NH2发生缩合反应得到通式e化合物;
    (3)将通式e化合物与取代胺在甲醛的存在下发生曼尼希反应得到通式(I)化合物;
    其中,R1、R2、R3、R4、n、X和Y与通式(I)中的限定相同,但R1不为H,R2不为OH。
  10. 一种药物组合物,它含有治疗有效量的选自根据权利要求1~8中任一项所述的万古霉素衍生物和其药学上可接受的盐中的一种或多种作为活性成分,以及任选的药学上可接受的载体、赋形剂、佐剂、辅料和/或稀释剂,所述药物组合物还可以包含其他药学上可接受的治疗剂。
  11. 如权利要求1~8中任一项所述的万古霉素衍生物或其药学上可接受的盐和/或根据权利要求10所述的药物组合物在制备用于治疗和/或预防细菌感染性疾病的药物中的用途。
  12. 如权利要求11所述的用途,其中,所述细菌感染性疾病为由革兰氏阳性菌感染引起的疾病,例如,所述革兰氏阳性菌选自葡萄球菌、链球菌、肠球菌、肺炎双球菌、芽孢杆菌、炭疽杆菌、白喉杆菌、破伤风杆菌、艰难羧状杆菌和单核增生李斯特菌。
PCT/CN2017/081941 2016-04-29 2017-04-26 一类万古霉素衍生物、其制备方法、药物组合物和用途 WO2017186110A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17788762.7A EP3450450A4 (en) 2016-04-29 2017-04-26 VANCOMYCINE DERIVATIVE PRODUCTION, PREPARATION, PHARMACEUTICAL COMPOSITION AND USE THEREOF
CN201780015730.0A CN109071607B (zh) 2016-04-29 2017-04-26 一类万古霉素衍生物、其制备方法、药物组合物和用途
US16/093,518 US10961278B2 (en) 2016-04-29 2017-04-26 Vancomycin derivative, preparation method, pharmaceutical composition and use thereof
JP2018556333A JP6826130B2 (ja) 2016-04-29 2017-04-26 バンコマイシン誘導体、その製造方法、医薬組成物及び用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610283830.9 2016-04-29
CN201610283830.9A CN107325159A (zh) 2016-04-29 2016-04-29 一类万古霉素衍生物、其制备方法、药物组合物和用途

Publications (1)

Publication Number Publication Date
WO2017186110A1 true WO2017186110A1 (zh) 2017-11-02

Family

ID=60161823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081941 WO2017186110A1 (zh) 2016-04-29 2017-04-26 一类万古霉素衍生物、其制备方法、药物组合物和用途

Country Status (5)

Country Link
US (1) US10961278B2 (zh)
EP (1) EP3450450A4 (zh)
JP (1) JP6826130B2 (zh)
CN (2) CN107325159A (zh)
WO (1) WO2017186110A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11857597B2 (en) 2017-05-22 2024-01-02 Insmed Incorporated Lipo-glycopeptide cleavable derivatives and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938114B (zh) * 2018-09-21 2023-04-28 中国科学院上海药物研究所 一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途
EP3883589A4 (en) * 2018-11-21 2022-05-25 Insmed Incorporated CLIVABLE LIPO-GLYCOPEPTIDE DERIVATIVES AND THEIR USES
CN111233713A (zh) * 2020-01-20 2020-06-05 福建康鸿生物科技有限公司 一种特拉万星中间体合成方法
CN113943330A (zh) * 2020-07-17 2022-01-18 中国科学院上海药物研究所 一类含糖结构化合物、其制备方法、药物组合物和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001057071A2 (en) * 2000-02-04 2001-08-09 Advanced Medicine, Inc. Glycopeptide derivatives having antibiotic activity
CN1315961A (zh) * 1998-12-23 2001-10-03 先进医药公司 糖肽衍生物或含有它们的药物组合物
WO2001098327A2 (en) * 2000-06-22 2001-12-27 Theravance, Inc. Glycopeptide carboxy-saccharide derivatives
US20030008812A1 (en) * 2001-02-02 2003-01-09 Christensen Burton G. Glycopeptide derivatives
WO2006057303A1 (ja) * 2004-11-29 2006-06-01 National University Corporation Nagoya University グリコペプチド抗生物質モノマー誘導体
CN102307903A (zh) * 2008-12-05 2012-01-04 生物马林药物股份有限公司 作为抗菌剂的新型半合成糖肽

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001259306A1 (en) * 2000-05-02 2001-11-12 Advanced Medicine, Inc. Pharmaceutical compositions containing a glycopeptide antibiotic and a cyclodextrin
TWI233932B (en) * 2001-08-24 2005-06-11 Theravance Inc Process for purifying glycopeptide phosphonate derivatives
CN101111513A (zh) * 2004-11-29 2008-01-23 国立大学法人名古屋大学 糖肽抗生素单体衍生物
AU2008298987B2 (en) * 2007-09-12 2013-12-05 Melinta Therapeutics, Inc. Method of inhibiting clostridium difficile by administration of oritavancin
CN103880930B (zh) * 2014-02-25 2017-07-11 复旦大学 万古霉素类衍生物及其制备方法和药用用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315961A (zh) * 1998-12-23 2001-10-03 先进医药公司 糖肽衍生物或含有它们的药物组合物
WO2001057071A2 (en) * 2000-02-04 2001-08-09 Advanced Medicine, Inc. Glycopeptide derivatives having antibiotic activity
WO2001098327A2 (en) * 2000-06-22 2001-12-27 Theravance, Inc. Glycopeptide carboxy-saccharide derivatives
US20030008812A1 (en) * 2001-02-02 2003-01-09 Christensen Burton G. Glycopeptide derivatives
WO2006057303A1 (ja) * 2004-11-29 2006-06-01 National University Corporation Nagoya University グリコペプチド抗生物質モノマー誘導体
CN102307903A (zh) * 2008-12-05 2012-01-04 生物马林药物股份有限公司 作为抗菌剂的新型半合成糖肽

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEADBETTER, M.R. ET AL.: "Hydrophobic Vancomycin Derivatives with Improved ADME Properties: Discovery of Telavancin (TD-6424", THE JOURNAL OF ANTIBIOTICS, vol. 57, no. 5, 31 May 2004 (2004-05-31), pages 326 - 336, XP002734111 *
See also references of EP3450450A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11857597B2 (en) 2017-05-22 2024-01-02 Insmed Incorporated Lipo-glycopeptide cleavable derivatives and uses thereof

Also Published As

Publication number Publication date
JP2019521079A (ja) 2019-07-25
CN109071607B (zh) 2022-09-27
EP3450450A1 (en) 2019-03-06
CN107325159A (zh) 2017-11-07
EP3450450A4 (en) 2019-04-17
US20190153036A1 (en) 2019-05-23
JP6826130B2 (ja) 2021-02-03
US10961278B2 (en) 2021-03-30
CN109071607A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2017186110A1 (zh) 一类万古霉素衍生物、其制备方法、药物组合物和用途
CN111315733A (zh) 新颖磺酰胺甲酰胺化合物
KR20150006082A (ko) 거대고리 다형체, 이런 다형체를 포함하는 조성물, 및 이의 사용 및 제조방법
AU2013276480A1 (en) N-substituted second generation derivatives of antifungal antibiotic Amphotericin B and methds of their preparation and application
KR101223158B1 (ko) 6,11-다리걸친 바이아릴 매크로라이드
CN107530365A (zh) 具有修饰的脱氧糖胺糖的大环内酯及其用途
JP2011507959A (ja) 抗菌薬としての新規半合成糖ペプチド
WO2015024298A1 (zh) 一种大环内酯类化合物
US20020065219A1 (en) Water soluble thiazolyl peptide derivatives
WO2008140973A1 (en) Semi-synthetic glycopeptides with antibacterial activity
CN110938114B (zh) 一类万古霉素硫鎓衍生物、其制备方法、药物组合物和用途
KR20110099028A (ko) 항세균제로서의 신규 반-합성 글리코펩티드
US6852702B2 (en) 9a-N-[N′-(phenylsulfonyl)carbamoyl] derivatives of 9-deoxo-9-dihydro-9a-aza-9a-homoerythromycin A and of 5-O-desosaminyl-9-deoxo-9-dihydro-9a-aza-9a-homoerythronolide A
JP2004529921A (ja) ロイコマイシンから誘導された9−アミノ−14員環マクロライド
US20040058880A1 (en) Aminoglycoside antibiotics as novel anti-infective agents
JP2013542173A (ja) 新規抗菌性化合物、それらの作製法、およびそれらの使用
KR20180053294A (ko) 시시지미신 a 및 이의 유사체의 전체 합성
EP1044985A1 (en) Erythromycin derivatives
EP3634974B1 (en) Tunicamycin analogues
WO2023142803A1 (zh) 抗病毒化合物及其用途
WO2007127135A2 (en) Antibiotic compounds
WO2010098365A1 (ja) ヌクレオシド系抗生物質
CN111072740A (zh) 红霉素a酮内酯类抗生素衍生物、其制备方法及应用
JP2004123710A (ja) ホスミドシン誘導体及びその製造方法
HU210492B (en) Process for preparing novel 6-0-acyl deriv.s of elsamicin a and pharmaceutical copn.s contg. them

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018556333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017788762

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017788762

Country of ref document: EP

Effective date: 20181129