WO2017170427A1 - フェライト粉、樹脂組成物および成形体 - Google Patents

フェライト粉、樹脂組成物および成形体 Download PDF

Info

Publication number
WO2017170427A1
WO2017170427A1 PCT/JP2017/012438 JP2017012438W WO2017170427A1 WO 2017170427 A1 WO2017170427 A1 WO 2017170427A1 JP 2017012438 W JP2017012438 W JP 2017012438W WO 2017170427 A1 WO2017170427 A1 WO 2017170427A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite powder
molded body
mass
resin composition
less
Prior art date
Application number
PCT/JP2017/012438
Other languages
English (en)
French (fr)
Inventor
康二 安賀
五十嵐 哲也
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Priority to CN201780020465.5A priority Critical patent/CN108883947A/zh
Priority to US16/083,533 priority patent/US20190040226A1/en
Priority to EP17774964.5A priority patent/EP3438055B1/en
Priority to JP2018508002A priority patent/JPWO2017170427A1/ja
Publication of WO2017170427A1 publication Critical patent/WO2017170427A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0036Mixed oxides or hydroxides containing one alkaline earth metal, magnesium or lead
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Definitions

  • the present invention relates to a ferrite powder, a resin composition, and a molded body.
  • metal detectors cannot detect general plastic materials or the like, they cannot be detected even if foreign materials derived from tools such as packaging materials used at the time of manufacture are mixed.
  • Patent Document 1 For the purpose of solving such a problem, a work glove including a metal detector composed of a metal such as iron has been proposed (see Patent Document 1).
  • An object of the present invention is to provide a molded body that can be stably detected by a metal detector, and to provide a ferrite powder and a resin composition that can be suitably used for manufacturing the molded body. is there.
  • the ferrite powder of the present invention is a ferrite powder that can be detected by a metal detector, Including hard ferrite particles containing 7.8 mass% or more and 9.0 mass% or less of Sr, 61.0 mass% or more and 65.0 mass% or less of Fe, The amount of Na measured by ion chromatography is 1 ppm or more and 200 ppm or less.
  • the volume average particle diameter of the constituent particles of the ferrite powder is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the residual magnetization by VSM measurement when a magnetic field of 10 K ⁇ 1000 / 4 ⁇ A / m is applied is 25 A ⁇ m 2 / kg or more and 40 A ⁇ m 2 / kg or less.
  • the coercive force by VSM measurement when a magnetic field of 10K ⁇ 1000 / 4 ⁇ A / m is applied is preferably 39.7 kA / m or more and 320 kA / m or less.
  • the amount of Cl measured by ion chromatography is preferably 1 ppm or more and 100 ppm or less.
  • the S amount measured by ion chromatography is preferably 1 ppm or more and 1000 ppm or less.
  • the resin composition of the present invention comprises the ferrite powder of the present invention, And a resin material.
  • the ferrite powder is dispersed in the resin material.
  • the ferrite powder content in the resin composition is preferably 5.0% by mass or more and 90% by mass or less.
  • the resin material is polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol (PVA), fluororesin, silicone rubber, butadiene rubber, thermoplastic elastomer, epoxy resin, and silicone resin. It is preferable to include one or more selected from the group consisting of:
  • the molded article of the present invention is characterized by having a portion formed using the resin composition of the present invention.
  • the ferrite powder content is preferably 2.0% by mass or more and 20% by mass or less.
  • the molded product of the present invention is preferably used in food production, processing and packaging sites.
  • the molded body of the present invention is preferably used for some or all of cooking utensils, cooking utensils, and food packaging members.
  • the molded body of the present invention preferably contains the ferrite powder in a region within 1.0 mm in the thickness direction from the surface.
  • a molded body that can be stably detected by a metal detector, and to provide a ferrite powder and a resin composition that can be suitably used for manufacturing the molded body. it can.
  • the ferrite powder of the present invention is characterized in that it contains a plurality of hard ferrite particles containing Sr 7.8% to 9.0% by mass, Fe 61.0% to 65.0% by mass, and Fe. To do.
  • the ferrite powder as described above has an oxide as a main component, is chemically stable, and has excellent corrosion resistance and chemical resistance. Therefore, the detection stability by the metal detector is excellent.
  • the metal detector composed of a metal material
  • the above ferrite powder is excellent also in the safety
  • the hard ferrite powder of the present invention has an Na (sodium) amount measured by ion chromatography of 1 ppm or more and 200 ppm or less.
  • the amount of Na is a value within the above range, even a molded body to which metal powder is added in addition to ferrite powder can be used in a stable state over a long period of time.
  • the measurement of the amount of Na in hard ferrite powder can be performed as follows, for example. First, 10 ml of ultrapure water (for example, Direct-Q UV3 manufactured by Merck & Co., Inc.) is added to 1 g of ferrite powder, and ultrasonic components are irradiated for 30 minutes to extract ion components. Next, the supernatant of the obtained extract is filtered through a pre-treatment disposable disk filter (for example, W-25-5 manufactured by Tosoh Corporation, pore diameter 0.45 ⁇ m, etc.) to prepare a measurement sample. Next, the amount of Na (amount of sodium ions) can be determined by performing quantitative analysis of the cation component contained in the measurement sample by ion chromatography. The conditions for ion chromatography can be, for example, as follows.
  • IC-2010 manufactured by Tosoh Corporation -Column: TSKgel SuperIC-Cation HSII (4.6 mm ID ⁇ 1 cm + 4.6 mm ID ⁇ 10 cm) -Eluent: Methanesulfonic acid (3.0 mmol / L) + 18-crown 6-ether (2.7 mmol / L) -Flow rate: 1.0 mL / min -Column temperature: 40 ° C -Injection volume: 30 ⁇ L -Measurement mode: Non-suppressor system-Detector: CM detector-Standard sample: Cation mixed standard solution manufactured by Kanto Chemical Co., Inc.
  • the Sr content in the hard ferrite particles is less than 7.8% by mass, the amount of Fe becomes excessive, and a relatively large amount of Fe 2 O 3 is contained in the particles, resulting in a decrease in magnetization. . As a result, it becomes difficult to detect the ferrite powder and the molded body containing the ferrite powder with a metal detector.
  • the Sr content in the hard ferrite particles exceeds 9.0% by mass, the amount of Sr becomes excessive and the particles contain a relatively large amount of SrO, or Sr— other than Sr ferrite. Fe oxide will be contained, and magnetization will fall. As a result, it becomes difficult to detect the ferrite powder and the molded body containing the ferrite powder with a metal detector.
  • the Fe content in the hard ferrite particles is less than 61.0% by mass, the amount of Sr becomes excessive and the particles contain a relatively large amount of SrO, or Sr other than Sr ferrite. -Fe oxide will be contained, and magnetization will fall. As a result, it becomes difficult to detect the ferrite powder and the molded body containing the ferrite powder with a metal detector.
  • the amount of Na is small, but the Na component derived from impurities contained in the raw material (especially impurities contained in the Sr raw material and impurities derived from salt contained in industrial water) should be completely removed. I can't.
  • the amount of Na exceeds the above upper limit, when ferrite powder is used as a filler, it may cause an increase in viscosity at the time of mixing with a resin material, or the molded body requires insulation in a large amount of moisture The resistance of the SUS ball is lowered more than necessary, and the SUS ball sensitivity is increased more than necessary.
  • the content of Sr in the hard ferrite particles may be 7.8% by mass or more and 9.0% by mass or less, but is 7.9% by mass or more and 8.9% by mass or less. Preferably, it is 8.0 mass% or more and 8.8 mass% or less. Thereby, the effects as described above are more remarkably exhibited.
  • the Fe content in the hard ferrite particles may be 61.0% by mass or more and 65.0% by mass or less, and preferably 61.1% by mass or more and 64.9% by mass or less. More preferably, the content is 2% by mass or more and 64.8% by mass or less. Thereby, the effects as described above are more remarkably exhibited.
  • the content of metal elements (Fe, Sr, etc.) constituting the ferrite particles can be measured as follows.
  • ferrite particles are weighed, and a mixture obtained by mixing the ferrite particles in a mixed solvent of pure water: 60 ml, 1N hydrochloric acid: 20 ml and 1N nitric acid: 20 ml is obtained. Thereafter, the mixture is heated to obtain a solution in which the ferrite particles are completely dissolved. Thereafter, the content of the metal element can be determined by measuring the solution using an ICP analyzer (for example, ICPS-1000IV, manufactured by Shimadzu Corporation).
  • ICP analyzer for example, ICPS-1000IV, manufactured by Shimadzu Corporation.
  • the hard ferrite constituting the hard ferrite particles may contain components (elements) other than Fe, Sr, and O.
  • components include Ti, Si, Cl, Ca, Al, and the like.
  • the content of components (elements) other than Fe, Sr, and O contained in the hard ferrite constituting the hard ferrite particles is preferably 1.0% by mass or less.
  • the amount of Na (sodium) measured by ion chromatography may be 1 ppm or more and 200 ppm or less, but preferably 1 ppm or more and 150 ppm or less. More preferably, it is 110 ppm or less. Thereby, the effects as described above are more remarkably exhibited.
  • the hard ferrite particles may contain components other than hard ferrite.
  • the content of components other than hard ferrite contained in the hard ferrite particles is preferably 1.0% by mass or less.
  • the volume average particle diameter of the constituent particles of the ferrite powder is not particularly limited, but is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.2 ⁇ m or more and 80 ⁇ m or less.
  • the dispersibility of the ferrite powder in the resin material can be further improved, and a resin composition containing the ferrite powder and the resin material can be more suitably manufactured.
  • strength of the molded object manufactured using the said resin composition, surface property, and reliability can be improved more.
  • the manufacture of the molded object using a resin composition can be performed more stably.
  • the color tone of the molded product can be adjusted more suitably.
  • the resin material may be used during the production of the resin composition described later. It is not preferable because it takes time to disperse the ferrite powder or the agglomerate is dispersed. Further, the smaller the particle size, the stronger the coloring power of ferrite, and it is not preferable because it tends to become dull when a color other than black, gray or brown is applied.
  • the volume average particle diameter of the constituent particles of the ferrite powder exceeds the upper limit, depending on the amount of ferrite powder used for the production of the resin composition, the shape and size of the molded body produced using the resin composition Depending on the above, the strength and surface properties (finish) of the molded body when it is formed may be reduced, which is not preferable. Further, for example, when an injection molding method is employed as a method for producing a molded body, the resin composition may block the injection path, which is not preferable.
  • the volume average particle diameter of the constituent particles of the ferrite powder is selected, for example, depending on the shape and size of the molded body produced using the ferrite powder, and more specifically, the production of the film / sheet shaped molded body.
  • the volume average particle size of the constituent particles of the ferrite powder is preferably 10 ⁇ m or less.
  • the volume average particle diameter of the ferrite powder is preferably 5 ⁇ m or more. Thereby, the influence of the color of ferrite powder at the time of coloring can be minimized.
  • the volume average particle diameter can be determined, for example, by the following measurement. That is, first, 10 g of ferrite powder as a sample and 80 ml of water are placed in a 100 ml beaker, and 2 to 3 drops of a dispersant (sodium hexametaphosphate) are added. Next, dispersion is performed using an ultrasonic homogenizer (for example, UH-150 model manufactured by SMT Co. LTD.). As an ultrasonic homogenizer, SMT. Co. LTD. When using the UH-150 model, for example, the output level may be set to 4 and dispersion may be performed for 20 seconds. Thereafter, bubbles formed on the surface of the beaker can be removed and introduced into a Microtrac particle size analyzer (for example, Model 9320-X100 manufactured by Nikkiso Co., Ltd.) for measurement.
  • a Microtrac particle size analyzer for example, Model 9320-X100 manufactured by Nikkiso Co., Ltd.
  • the shape of the hard ferrite particles is not particularly limited, but is preferably spherical. More specifically, the ferrite powder preferably contains 80% by number or more of hard ferrite particles having a sphericity of 1 or more and 1.2 or less.
  • the sphericity can be determined as follows. First, using a scanning electron microscope (for example, FE-SEM (SU-8020, manufactured by Hitachi High-Technologies Corporation)), ferrite powder is photographed at a magnification of 100 to 20,000 times. Then, for the hard ferrite particles constituting the ferrite powder, the circumscribed circle diameter and the inscribed circle diameter are obtained from the photographed SEM image, and the ratio (circumscribed circle diameter / inscribed circle diameter) is obtained as the sphericity. If the two diameters are the same, i.e. a true sphere, this ratio is 1.
  • the ferrite powder of the present invention may contain other particles in addition to the hard ferrite particles as described above.
  • hard ferrite particles that do not satisfy the conditions as described above may be included, or soft ferrite particles may be included.
  • the particles constituting the ferrite powder may be subjected to a surface treatment.
  • the surface treatment agent used for the surface treatment of the particles include a silane coupling agent, a phosphoric acid compound, a carboxylic acid, and a fluorine compound.
  • the aggregation of the particles can be more effectively prevented, and the flow of the ferrite powder and the resin composition containing the ferrite powder can be prevented.
  • Property and ease of handling can be further improved.
  • grains in a molded object can be improved more in a resin composition.
  • the silane coupling agent for example, a silane compound having a silyl group and a hydrocarbon group can be used.
  • the silane coupling agent has an alkyl group having 8 to 10 carbon atoms as the alkyl group. It is preferable.
  • the hard ferrite particles can be further effectively prevented, and the fluidity and ease of handling of the ferrite powder and the resin composition containing the ferrite powder can be further improved. Moreover, the dispersibility of the hard ferrite particles in the molded body in the resin composition can be further improved.
  • Examples of the phosphoric acid compound include lauryl phosphate, lauryl-2-phosphate, steareth-2 phosphate, phosphate ester of 2- (perfluorohexyl) ethylphosphonic acid, and the like.
  • carboxylic acid for example, a compound having a hydrocarbon group and a carboxyl group (fatty acid) can be used. Specific examples of such compounds include decanoic acid, tetradecanoic acid, octadecanoic acid, cis-9-octadecenoic acid and the like.
  • fluorine compound examples include a silane coupling agent as described above, a phosphoric acid compound, and a compound having a structure in which at least a part of hydrogen atoms of the carboxylic acid is substituted with a fluorine atom (fluorine silane compound, fluorine A phosphoric acid compound and a fluorine-substituted fatty acid).
  • the residual magnetization of the ferrite powder by VSM measurement when a magnetic field of 10 K ⁇ 1000 / 4 ⁇ A / m is applied is preferably 25 A ⁇ m 2 / kg or more and 40 A ⁇ m 2 / kg or less, and 27 A ⁇ m 2 / kg. More preferably, it is 38 A ⁇ m 2 / kg or less.
  • the molded body may be easily detected by a metal detector. It becomes insufficient.
  • the content rate of the ferrite powder in a molded object is raised in order to improve the ease of detection by a metal detector, the toughness and strength of the molded object are likely to decrease.
  • the remanent magnetization exceeds the above upper limit value, the adjustment of the composition of the ferrite powder becomes complicated in order to realize the magnetic characteristics, and it becomes difficult to stably obtain excellent characteristics. Moreover, even if the remanent magnetization exceeds the upper limit, practically, it is not possible to further improve the ease of detection of the ferrite powder or a molded body containing the ferrite powder by a metal detector.
  • the saturation magnetization of the ferrite powder by VSM measurement when a magnetic field of 10 K ⁇ 1000 / 4 ⁇ A / m is applied is preferably 45 A ⁇ m 2 / kg or more and 70 A ⁇ m 2 / kg or less, and 47 A ⁇ m 2 / kg. More preferably, it is 65 A ⁇ m 2 / kg or less.
  • the saturation magnetization is less than the lower limit, the content of the ferrite powder in the molded body produced using the ferrite powder is not increased, and the metal detector is not easily detected. Become. Moreover, when the content rate of the ferrite powder in a molded object is raised in order to improve the ease of detection by a metal detector, the toughness and strength of the molded object are likely to decrease.
  • the saturation magnetization exceeds the above upper limit value, the adjustment of the composition of the ferrite powder and the like are complicated in order to realize the magnetic characteristics, and it becomes difficult to obtain stable and excellent characteristics. Moreover, even if the saturation magnetization exceeds the upper limit, practically no further improvement in the ease of detection of the ferrite powder or a molded body containing the ferrite powder by a metal detector cannot be expected.
  • the coercive force of the ferrite powder by VSM measurement when a magnetic field of 10 K ⁇ 1000 / 4 ⁇ A / m is applied is preferably 39.7 kA / m or more and 320 kA / m or less, and 55 kA / m or more and 280 kA / m or less. Is more preferable.
  • the coercive force is less than the lower limit value, when the molded body manufactured using the ferrite powder of the present invention is magnetized, sufficient magnetization cannot be performed, and the molded body is detected by a metal detector. This is not preferable because the ease of detection may be reduced.
  • the adjustment of the composition of the ferrite powder becomes complicated in order to realize the magnetic characteristics, and it becomes difficult to stably obtain excellent characteristics. Further, even if the coercive force exceeds the upper limit, practically, it is not possible to further improve the ease of detection of the ferrite powder or a molded body containing the ferrite powder by a metal detector.
  • the said magnetic characteristic can be calculated
  • the amount of Cl (chlorine) measured by ion chromatography in the hard ferrite powder is preferably 1 ppm or more and 100 ppm or less, and more preferably 1 ppm or more and 50 ppm or less.
  • the amount of Cl is small, the Cl component derived from impurities contained in the raw material cannot be completely removed.
  • the measurement of the Cl amount (chloride ion amount) in the hard ferrite powder can be obtained, for example, by combustion method ion chromatography.
  • Combustion method ion chromatography can be performed, for example, under the following conditions.
  • -Combustion device AQF-2100H manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • -Sample amount 50mg -Combustion temperature: 1100 ° C
  • Combustion time 10 minutes-Ar flow rate: 400 ml / min -O 2 flow rate: 200 ml / min -Humidification Air flow rate: 100ml / min -Absorbent: Eluent containing 1% hydrogen peroxide
  • IC-2010 manufactured by Tosoh Corporation -Column: TSKgel SuperIC-Anion HS (4.6 mm ID ⁇ 1 cm + 4.6 mm ID ⁇ 10 cm) - Eluent: NaHCO 3 (3.8mmol / L) + Na 2 CO 3 (3.0mmol / L) -Flow rate: 1.5mL / min -Column temperature: 40 ° C -Injection volume: 30 ⁇ L -Measurement mode: Suppressor method-Detector: CM detector-Standard sample: Anion mixed standard solution manufactured by Kanto Chemical Co., Inc.
  • the amount of S (sulfur) measured by ion chromatography in the hard ferrite powder is preferably 1 ppm or more and 1000 ppm or less, and more preferably 1 ppm or more and 200 ppm or less.
  • the molded product can be produced in a stable state and can be used in a stable state for a long period of time.
  • the amount of S is small, the S component derived from impurities contained in the raw material cannot be completely removed.
  • the amount of S exceeds the upper limit, when ferrite powder is used as the filler, the viscosity tends to increase when mixed with the resin material, or it reacts with another additive, and the molded product is formed over a long period of time. There is a possibility that the molded body may be deteriorated during use.
  • the ferrite powder of the present invention may be produced by any method, but can be suitably produced, for example, by the method described below.
  • Fe 2 O 3 and SrCO 3 are dry mixed as raw materials. Dry mixing is performed by, for example, using a Henschel mixer or the like for 1 minute or more, preferably 3 minutes or more and 60 minutes or less for granulation.
  • the granulated product thus obtained is fired.
  • the granulated product can be fired using, for example, a stationary electric furnace.
  • Calcination conditions are not particularly limited.
  • the temperature can be 1050 ° C. or more and 1250 ° C. or less
  • the calcination time can be 2 hours or more and 8 hours or less (peak).
  • the fired product obtained by firing is wet pulverized by a bead mill or the like, washed, dehydrated, dried, and then subjected to heat treatment.
  • the conditions for the heat treatment are not particularly limited, for example, the temperature may be 750 ° C. or more and 1050 ° C. or less, and the heating time may be 0.1 hours or more and 2 hours or less.
  • the ferrite powder contains other particles in addition to the hard ferrite particles as described above, the powder containing a plurality of hard ferrite particles obtained as described above and other particles are mixed. By doing so, the target ferrite powder can be obtained.
  • the resin composition of the present invention contains the ferrite powder of the present invention as described above and a resin material.
  • the ferrite powder may be contained in any form, but is preferably present dispersed in the resin material.
  • the ease of handling of the resin composition is further improved, and the molded body to be described in detail later can be more suitably molded.
  • the content rate of the ferrite powder in a resin composition is not specifically limited, It is preferable that it is 5.0 mass% or more and 90 mass% or less, and it is more preferable that it is 7.0 mass% or more and 88 mass% or less.
  • the moldability of the molded body can be further improved, the toughness, strength, reliability, etc. of the molded body can be further improved, and the ease of detection by the metal detector of the molded body can be improved. Stability can be further improved.
  • the content of the ferrite powder in the resin composition is less than the lower limit, depending on the composition of the hard ferrite particles, etc., the ease of detection by the metal detector of the molded product, the stability of detection may be It may be insufficient.
  • the ferrite powder content in the resin composition exceeds the upper limit, the moldability of the molded body is lowered, and the toughness, strength, reliability, and the like of the molded body may be lowered.
  • resin material contained in the resin composition for example, various thermoplastic resins, various curable resins, and the like can be used.
  • polyolefin such as polyethylene, polypropylene, poly- (4-methylpentene-1), ethylene-propylene copolymer, cyclic polyolefin; modified polyolefin; polystyrene; butadiene-styrene copolymer; acrylonitrile— Butadiene-styrene copolymer (ABS resin); acrylonitrile-styrene copolymer (AS resin); polyvinyl chloride; polyvinylidene chloride; ethylene-vinyl acetate copolymer (EVA); polyamide (eg, nylon 6, nylon 46) , Nylon 66, nylon 610, nylon 612, nylon 11, nylon 12, nylon 6-12, nylon 6-66); polyimide; polyamideimide; acrylic resin such as polymethyl methacrylate; polycarbonate (PC); eye Polymer alcohol (PVA); ethylene-vinyl alcohol copolymer (EVOH); polyethylene terephthalate (PET),
  • Polyether Polyacetal (POM); Polyphenylene oxide; Modified polyphenylene oxide; Polyetherketone (PEK); Polyetheretherketone (PEEK); Polyetherimide; Polysulfone; Polyethersulfone; Polyphenylenesulfide; Polytetrafluoro Fluorine resins such as ethylene and polyvinylidene fluoride; silicone rubber, isoprene rubber, butadiene rubber, nitrile rubber, natural rubber, etc.
  • Rubber materials Various thermoplastic elastomers such as styrene, polyolefin, polyvinyl chloride, polyurethane, polyester, polyamide, polybutadiene, trans polyisoprene, fluororubber, chlorinated polyethylene; epoxy resin; phenol Resins; Urea resins; Melamine resins; Unsaturated polyesters; Silicone resins; Polyurethanes, etc., and copolymers, blends, polymer alloys, etc. mainly composed of these, etc. Can be used.
  • the resin materials contained in the resin composition are polyethylene, polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol (PVA), fluororesin, silicone rubber, butadiene rubber, thermoplastic elastomer, epoxy resin, and silicone resin. It is preferable to include one or more selected from the group consisting of:
  • the dispersion stability of the ferrite powder in the resin composition is further improved, and the moldability of the molded body can be further improved.
  • the toughness, strength, reliability and the like of the molded body can be further improved.
  • the adhesion to various resins is improved, further improving the dispersion stability of the ferrite powder in the resin composition.
  • the moldability of the molded body can be further improved.
  • the resin material contained in the resin composition may have a composition different from that of the resin material contained in the molded body produced using the resin composition.
  • the resin material contained in the resin composition may be a precursor (for example, a monomer, dimer, trimer, oligomer, prepolymer, etc.) of the resin material contained in the final molded body.
  • the content of the resin material in the resin composition is not particularly limited, but is preferably 8.0% by mass to 95% by mass, and more preferably 10% by mass to 90% by mass.
  • the moldability of the molded body can be further improved, the toughness, strength, reliability, etc. of the molded body can be further improved, and the ease of detection by the metal detector of the molded body can be improved. Stability can be further improved.
  • the content of the resin material in the resin composition is less than the lower limit, the moldability of the molded body is lowered, and the toughness, strength, reliability, etc. of the molded body may be lowered. .
  • the content of the resin material in the resin composition exceeds the upper limit, the content of the ferrite powder is relatively decreased, and depending on the composition of the hard ferrite particles, the metal detector of the molded product can be detected.
  • the stability of detection may be insufficient.
  • the resin composition of the present invention only needs to contain ferrite powder and a resin material, and may further contain other components (other components).
  • Such components include various colorants such as pigments and dyes, various fluorescent materials, various phosphorescent materials, various phosphorescent materials, solvents, infrared absorbing materials, ultraviolet absorbers, dispersants, and surfactants.
  • the resin composition of the present invention may be in any form, and examples of the resin composition include powders, pellets, dispersions, slurries, gels, etc., but pellets are preferred.
  • the ease of handling of the resin composition is further improved, and a molded article using the resin composition can be more suitably produced.
  • the storage stability of the resin composition can be further improved, and deterioration of the constituent components of the resin composition during storage can be more effectively prevented.
  • the volume average particle size is preferably 1 mm or more and 10 mm or less, and more preferably 2 mm or more and 7 mm or less.
  • the resin composition of the present invention can be produced, for example, by mixing the ferrite powder and the resin material described above.
  • Mixing of ferrite powder and resin material is, for example, a mixing device (kneading device) such as a planetary mixer, a twin screw mixer, a kneader, a Banbury mixer, a stirring kneader such as an oven roll, a single screw extruder, a twin screw extruder, etc. It can carry out suitably by using.
  • a mixing device such as a planetary mixer, a twin screw mixer, a kneader, a Banbury mixer, a stirring kneader such as an oven roll, a single screw extruder, a twin screw extruder, etc. It can carry out suitably by using.
  • the molded product of the present invention has a portion formed using the resin composition of the present invention as described above.
  • the strength, durability, etc. of the molded body can be further improved.
  • an external force such as tension or bending is applied, particularly when a large external force is applied. Even when an external force is repeatedly applied, it is more effectively prevented that a part of the molded body is detached due to cutting or the like. Therefore, it is possible to more effectively prevent a part of the molded body from being mixed into the product or the like as a foreign substance.
  • the molded body of the present invention only needs to have at least a part formed using the resin composition of the present invention, and the whole may be formed using the resin composition of the present invention. And in addition to the site
  • it has a base portion made of a material other than the resin composition of the present invention, and a surface layer provided on the surface of the base portion and formed using the resin composition of the present invention. It may be.
  • the molded article of the present invention may be molded by mixing, for example, the resin composition of the present invention and another resin composition (a composition not containing the ferrite powder of the present invention).
  • the molded body preferably contains at least the ferrite powder near the surface thereof.
  • the molded body preferably contains ferrite powder in a region within 1.0 mm in the thickness direction from the surface, and ferrite powder in a region within 0.5 mm in the thickness direction from the surface. It is more preferable that it contains.
  • the vicinity of the surface of the molded body is a part that is particularly easily detached from the molded body. Therefore, the effect of the present invention is more remarkably exhibited by including ferrite powder in such a region.
  • Such a molded body is suitable, for example, by applying a magnetic field from the direction that should be the surface of the molded body when the molded body is molded (the resin material constituting the resin composition is softened or melted). Can be manufactured.
  • the above-described ferrite can be unevenly distributed in the vicinity of the surface of the molded body, and the effects as described above can be exhibited more remarkably.
  • the content of the ferrite powder in the molded body of the present invention varies depending on the usage of the molded body, but is preferably 2.0% by mass or more and 20% by mass or less, and 2.5% by mass or more and 18% by mass or less. It is more preferable that
  • the toughness, strength, reliability and the like of the molded body can be further improved, and the ease of detection of the molded body by a metal detector and the stability of detection can be further improved.
  • the molded body does not contain the ferrite powder (that is, other than the resin composition of the present invention).
  • the above-described conditions for the content of ferrite powder are satisfied in the portion containing the ferrite powder.
  • the molded body of the present invention may be used for the purpose of detection by a metal detector, in other words, all or part of the molded body (for example, a section of the molded body) may be applied to inspection by a metal detector.
  • the molded article of the present invention can be used for, for example, food production, processing, and packaging (including packaging, the same applies hereinafter), cosmetics, and quasi-drugs. Manufacturing, processing, packaging site, pharmaceutical manufacturing, processing, packaging site, products other than the above, processing, packaging site, medical site, cell culture, tissue culture, organ culture, genetic recombination And the like for use in the field of performing biological treatment such as, and for use in the field of performing chemical treatment such as synthesis of compounds.
  • the molded article of the present invention is preferably used in the field of food production, processing, and packaging.
  • articles used in food manufacturing and processing sites include many articles that are applied to microwave ovens (for example, various cooking utensils, various containers, trays, wrap films, etc.). Since ferrite, which is a metal material, is used, it can be suitably adapted to the use of a microwave oven.
  • the form of food in addition to solid form and semi-solid form (gel form of jelly, pudding, etc.), the form of food includes liquid, and the concept of food includes drinks and the like.
  • Food additives and supplements are also included in the concept of food.
  • natural products such as animal-derived meat, seafood, plant-derived vegetables, fruits, seeds, grains, beans, seaweed, and processed products thereof, artificial sweeteners, artificial seasonings such as artificial seasonings, etc.
  • New synthetic products are also included in the concept of food.
  • Examples of molded products used in the production and processing of food include cooking appliances, cooking utensils, cooking utensils, tableware, clothing (articles worn on the human body), and packaging members used for food packaging And articles used in association therewith, as well as articles used for maintenance and repair of these.
  • hot plate hot plate, stove, gas burner, oven, toaster, microwave oven, dishwasher, dish dryer, scale (scale), kitchen timer, thermometer, water purifier, water purification filter (cartridge) Cooking equipment such as: pots, pans, kettles, lids, knives, scissors, ladle, spatula, peeler, slicer, mixer, chopper, masher, rolling pin, mudler, whisk, sieve, bowl, drainer Bowl, cutting board, mat, rice paddle, mold, die cutting, lye removal, grater (food grader), frying (turner), pick, drainer, sieve, mill, drop lid, ice tray, grill, tongs, egg slicer Cooking utensils such as bowls, measuring cups, measuring spoons; towels, kitchen paper, towels, towels, paper towels Cooking utensils such as draining sheets, wrap film, oven paper, squeezed bags, virtues, pans, etc .; dishes, cups, bowls, chopsticks (including chopsticks), spoons,
  • the molded article of the present invention is preferably used for some or all of cooking utensils, cooking utensils, and food packaging members.
  • such a molded body has a high possibility that at least a part of the molded body will be mixed into the food, particularly in the production, processing, and packaging sites of the food. Therefore, when the present invention is applied to the molded body as described above, the effects of the present invention are more remarkably exhibited.
  • Various molding methods can be used as a method for producing a molded body, such as an injection molding method (insert molding method, multicolor molding method, sandwich molding method, injection molding method, etc.), extrusion molding method, inflation molding method, Examples include a T-die film molding method, a laminate molding method, a blow molding method, a hollow molding method, a compression molding method, a calendar molding method and the like, an optical molding method, a three-dimensional layered molding method, and the like.
  • an injection molding method insert molding method, multicolor molding method, sandwich molding method, injection molding method, etc.
  • extrusion molding method inflation molding method
  • Examples include a T-die film molding method, a laminate molding method, a blow molding method, a hollow molding method, a compression molding method, a calendar molding method and the like, an optical molding method, a three-dimensional layered molding method, and the like.
  • the resin composition contains a curable resin
  • a curing reaction of the curable resin is performed.
  • the curing reaction varies depending on the type of the curable resin and the like, but can be performed by heating or irradiation with energy rays such as ultraviolet rays.
  • a resin material for dilution may be used in addition to the resin composition of the present invention.
  • the molded body has a base formed using a material other than the resin composition described above, and a surface layer provided on the base and formed using the resin composition of the present invention, the above Such as casting, forging, powder injection molding method (PIM (Powder Injection Molding)), etc. You may use and form a surface layer.
  • PIM Powder injection molding method
  • it may be magnetized when the molded body is molded. Thereby, it is possible to further improve the ease of detection of the formed body by the metal detector and the stability of the detection.
  • the molded body may be manufactured by subjecting the molded body obtained by the above-described molding method to post-treatment such as grinding and polishing.
  • the resin composition of the present invention in the resin composition, the case where the ferrite powder is dispersed and present in the resin material has been mainly described, but in the resin composition of the present invention, for example, the ferrite powder is It settles in the liquid and may be used after being dispersed by stirring or the like, if necessary.
  • the resin composition of the present invention may be a dispersion in which ferrite powder and resin particles are dispersed in a volatile liquid.
  • the resin composition of the present invention may have a configuration in which, for example, ferrite powder and resin powder are simply mixed.
  • Example A1 Fe 2 O 3 and SrCO 3 were prepared, and these were put into a Henschel mixer at a molar ratio of 5.6: 1.0, and dry-mixed and granulated for 10 minutes.
  • the obtained granulated product was fired in the atmosphere at 1075 ° C. for 4 hours (peak).
  • the fired product obtained by the above firing is wet pulverized using a bead mill at a solid content of 60% by mass for 30 minutes, washed, dehydrated, dried, and then in the atmosphere at 850 ° C. for 1 hour (peak). Heat treatment was performed to obtain ferrite powder.
  • the Sr content in the particles (hard ferrite particles) constituting the ferrite powder thus obtained was 8.78% by mass, and the Fe content was 62.3% by mass.
  • the content of metal elements (Fe, Sr, etc.) in the particles constituting the ferrite powder was determined as follows. Specifically, 0.2 g of ferrite particles were weighed, a mixture of pure water: 60 ml with 1N hydrochloric acid: 20 ml and 1N nitric acid: 20 ml was heated to prepare an aqueous solution in which ferrite particles were completely dissolved, and ICP analysis was performed. The content of each metal element was determined by performing measurement using an apparatus (manufactured by Shimadzu Corporation, ICPS-1000IV). In addition, it calculated
  • the volume average particle diameter of the constituent particles of the ferrite powder was 1.8 ⁇ m.
  • the volume average particle diameter was determined by the following measurement. That is, first, ferrite powder as a sample: 10 g and water: 80 ml were placed in a 100 ml beaker, and two drops of a dispersant (sodium hexametaphosphate) were added. Subsequently, dispersion was performed using an ultrasonic homogenizer (UH-150 type manufactured by SMT Co Ltd). At this time, the output level of the ultrasonic homogenizer was set to 4, and dispersion was performed for 20 seconds.
  • UH-150 type manufactured by SMT Co Ltd ultrasonic homogenizer
  • the saturation magnetization ⁇ s 55.8 A ⁇ m 2 / kg
  • the residual magnetization ⁇ r 33.4 A ⁇ m 2 / kg
  • the coercive force Hc. 285 kA / m.
  • the above magnetic properties were obtained as follows. That is, first, ferrite powder was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetic measuring device (VSM-C7-10A manufactured by Toei Kogyo Co., Ltd.). Next, an applied magnetic field was applied, sweeping was performed to 10K ⁇ 1000 / 4 ⁇ ⁇ A / m, and then the applied magnetic field was decreased to prepare a hysteresis curve. Thereafter, the saturation magnetization ⁇ s, the residual magnetization ⁇ r, and the coercive force Hc were obtained from the data of this curve. In addition, it calculated
  • the cation content of the hard ferrite powder was measured as follows. First, 10 ml of ultrapure water (Direct-Q UV3 manufactured by Merck & Co., Inc.) was added to 1 g of ferrite powder, and ultrasonic components were irradiated for 30 minutes to extract ionic components. Next, the supernatant of the obtained extract was filtered through a pretreatment disposable disk filter (W-25-5, Tosoh Corporation, pore size 0.45 ⁇ m) to obtain a measurement sample. Next, the ion component contained in the measurement sample was quantitatively analyzed by ion chromatography under the following conditions, and converted to the ferrite powder content.
  • ultrapure water Direct-Q UV3 manufactured by Merck & Co., Inc.
  • IC-2010 manufactured by Tosoh Corporation -Column: TSKgel SuperIC-Cation HSII (4.6 mm ID ⁇ 1 cm + 4.6 mm ID ⁇ 10 cm) -Eluent: Methanesulfonic acid (3.0 mmol / L) + 18-crown 6-ether (2.7 mmol / L) -Flow rate: 1.0 mL / min -Column temperature: 40 ° C -Injection volume: 30 ⁇ L -Measurement mode: Non-suppressor system-Detector: CM detector-Standard sample: Cation mixed standard solution manufactured by Kanto Chemical Co., Inc.
  • the anion content was measured by quantitative analysis of the anion component contained in the ferrite powder by the combustion method ion chromatography under the following conditions.
  • -Combustion device AQF-2100H manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • -Sample amount 50mg -Combustion temperature: 1100 ° C
  • Combustion time 10 minutes-Ar flow rate: 400 ml / min -O 2 flow rate: 200 ml / min -Humidification Air flow rate: 100ml / min -Absorbent: Eluent containing 1% hydrogen peroxide
  • IC-2010 manufactured by Tosoh Corporation -Column: TSKgel SuperIC-Anion HS (4.6 mm ID ⁇ 1 cm + 4.6 mm ID ⁇ 10 cm) - Eluent: NaHCO 3 (3.8mmol / L) + Na 2 CO 3 (3.0mmol / L) -Flow rate: 1.5mL / min -Column temperature: 40 ° C -Injection volume: 30 ⁇ L -Measurement mode: Suppressor method-Detector: CM detector-Standard sample: Anion mixed standard solution manufactured by Kanto Chemical Co., Inc.
  • Examples A2, A3 Ferrite powder was produced in the same manner as in Example A1, except that the ratio of materials used for the production of the granulated material was as shown in Table 1.
  • Example A4 Fe 2 O 3 and SrCO 3 were prepared, and these were mixed at a molar ratio of 5.75: 1.0. Next, this mixture was pulverized for 4.5 hours with a dry media mill (vibration mill, 1/8 inch diameter stainless steel beads), and the obtained pulverized product was formed into pellets of about 1 mm square using a roller compactor. After removing the coarse powder with a vibrating sieve having a mesh opening of 3 mm and then removing the fine powder with a vibrating sieve having a mesh opening of 0.5 mm, the pellets are heated at 1080 ° C. for 3 hours in a rotary electric furnace and temporarily fired. The preliminary sintered body was obtained.
  • the obtained slurry was spray-dried with a spray dryer to obtain a granulated product. Then, the particle size adjustment of the obtained granulated material was performed, and further, it heated at 650 degreeC for 2 hours with the rotary electric furnace, and the binder was removed.
  • the obtained granulated product was fired in the atmosphere at 1185 ° C. for 4 hours (peak), and further pulverized and classified to obtain ferrite powder.
  • the Sr content in the particles (hard ferrite particles) constituting the ferrite powder thus obtained was 8.52% by mass, and the Fe content was 62.7% by mass. Moreover, the volume average particle diameter of the constituent particles of the ferrite powder was 15.0 ⁇ m.
  • the saturation magnetization ⁇ s 55.3 A ⁇ m 2 / kg
  • the residual magnetization ⁇ r It was 32.4 A ⁇ m 2 / kg
  • the coercive force Hc 161 kA / m.
  • Example A5 Ferrite powder was produced in the same manner as in Example A4 except that the conditions for the pulverization treatment for the temporary sintered body, the conditions for spray drying using a spray dryer, and the conditions for adjusting the particle size for the granulated product were changed.
  • the volume average particle diameter of the constituent particles of the ferrite powder thus obtained was 39.0 ⁇ m.
  • the manufacturing conditions of the ferrite powders of the respective examples and comparative examples described above are shown together in Table 1, and the characteristics and the like of the ferrite powder are shown together in Table 2.
  • the proportion of particles having a sphericity of 1 or more and 1.2 or less was 90% by number or more.
  • the proportion of particles having a sphericity of 1 or more and 1.2 or less was less than 1% by number. The sphericity was determined as follows.
  • the ferrite powder was photographed at a magnification of 200,000 times using a scanning electron microscope (for example, FE-SEM (SU-8020, manufactured by Hitachi High-Technology Corporation)).
  • FE-SEM FE-SEM (SU-8020, manufactured by Hitachi High-Technology Corporation)
  • the circumscribed circle diameter and the inscribed circle diameter were determined for the hard ferrite particles constituting the ferrite powder from the photographed SEM image, and the ratio (circumscribed circle diameter / inscribed circle diameter) was determined as the sphericity.
  • Example B1 Using a kneader and a pelletizer, the ferrite powder produced in Example A1 and polypropylene as a resin material were mixed, kneaded, and granulated at a mass ratio of 5.0: 95.0. This obtained the resin composition as a pellet whose volume average particle diameter is 3 mm.
  • Examples B2 to B5 A resin composition as a pellet was obtained in the same manner as in Example B1, except that the blending ratio of ferrite powder and polypropylene was changed as shown in Table 3.
  • Example B6 Using a kneader and a pelletizer, the ferrite powder produced in Example A1, polypropylene as a resin material, and silica as a white pigment (manufactured by Nippon Aerosil Co., Ltd., AEROSIL 200) in a mass ratio of 2.0: 93 Mixing, kneading and granulation at 0.0: 5.0. This obtained the resin composition as a pellet whose volume average particle diameter is 3 mm.
  • Example B7 and B8 A resin composition as a pellet was obtained in the same manner as in Example B6 except that the blending ratio of ferrite powder, polypropylene, and silica was changed as shown in Table 3.
  • Examples B9 to B13 A resin composition as a pellet was obtained in the same manner as in Example B8 except that the type of ferrite powder and the type of resin material were as shown in Table 3.
  • Example B14 Using a ball mill, the ferrite powder produced in Example A4, the nylon resin powder, and the silica particles as the white pigment were mixed at the same mass ratio as in Example B12 to obtain a powdery resin composition. Obtained.
  • Example B15 A powdery resin composition was obtained in the same manner as in Example B14 except that the types of resin materials were as shown in Table 3.
  • Example B6 A resin composition as a pellet was obtained in the same manner as in Example B6 except that iron powder (metal powder) was used instead of ferrite powder and the blending amount of each component was changed.
  • Table 3 summarizes the conditions of the resin compositions of the respective examples and comparative examples described above.
  • the column of MFR in Table 3 shows the value of the melt flow rate (MFR) when measured under the conditions of temperature: 190 ° C. and load: 2.16 kg based on JIS K 7210.
  • ⁇ 3 Manufacture of molded body (Example C1) Using a kneader and a T-die, the resin composition (pellet) produced in Example B1 was melted and molded to obtain a sheet-like molded body having a thickness of 100 ⁇ m.
  • Examples C2, C3 A sheet-like molded body was produced in the same manner as in Example C1, except that the pellets produced in Examples B2 and B3 were used instead of the pellets produced in Example B1. did.
  • Example C4 Using a kneader, the resin composition (pellet) produced in Example B4 was melted and injection molded into a molding die to obtain a plate-like molded body having a thickness of 2 mm.
  • Example C5 Using a kneader, the resin composition (pellet) produced in Example B5 was melted and injection molded into a molding die to obtain a plate-like molded body having a thickness of 2 mm.
  • Examples C6 to C13 A sheet-like molded body was produced in the same manner as in Example C1, except that the pellets produced in Examples B6 to B13 were used instead of the pellets produced in Example B1. did.
  • Example C14 The ferrite powder produced in Example A1 and SiO 2 were dispersed in a PVA aqueous solution having a solid content of 10% by mass, and coated and dried using an applicator to obtain a sheet-like molded body having a thickness of 100 ⁇ m. At this time, the mass ratio of the solid content of PVA, ferrite powder, and SiO 2 was 75.0 mass%, 20.0 mass%, and 5.0 mass%, respectively.
  • Example C15 The ferrite powder produced in Example A4, a liquid epoxy resin, a polymerization initiator, a boron trifluoride monoethylamine complex as a curing agent, and silica as a white pigment (manufactured by Nippon Aerosil Co., Ltd., AEROSIL 200). After mixing, the mixture was poured into a mold made of silicone resin. Then, it heated at 120 degreeC, the epoxy resin was hardened, and the disk-shaped molded object of diameter: 13mm and thickness: 2.0mm was manufactured.
  • the content of the ferrite powder in the obtained molded body was 20.0% by mass, the content of the resin material was 75.0% by mass, and the content of the colorant was 5.0% by mass.
  • Example C16 The ferrite powder produced in Example A1, the olefinic thermoplastic elastomer, and titanium dioxide particles as a white pigment were mixed, and this mixture was poured into a silicone resin mold. Then, it heated at 120 degreeC and manufactured the disk-shaped molded object of diameter: 13mm and thickness: 2.0mm.
  • the content of the ferrite powder in the obtained molded body was 20.0% by mass, the content of the resin material was 75.0% by mass, and the content of the colorant was 5.0% by mass.
  • Example C17 and C18 A disc-shaped molded body was produced in the same manner as in Example C16 except that the type of the resin material was changed as shown in Table 4.
  • Example C19 The ferrite powder produced in Example A1, the silicone resin, and the titanium dioxide particles as the white pigment have a ferrite powder content of 20.0% by mass and a resin material content of 75.0% in the molded body.
  • the mixture was mixed so that the content of the colorant (pigment) was 5.0% by mass, and this mixture was poured into a mold made of silicone resin.
  • a silicone resin diluted with an organic solvent to a solid content of 20% by weight was used.
  • the organic solvent was evaporated by heating the entire mold at 65 ° C. and then heated to 120 ° C. to cure the silicone resin to produce a disk-shaped molded body having a diameter of 13 mm and a thickness of 2.0 mm.
  • Example C20 A disc-shaped molded body was produced in the same manner as in Example C19 except that the type of the resin material was changed as shown in Table 4.
  • Example C21 The resin composition (powder) produced in Example B14 was charged into a mold and pressurized, then removed from the mold, heated at 180 ° C. for 4 hours to be melted and cured, diameter: 13 mm, thickness: 2 A disc-shaped molded body of 0.0 mm was manufactured.
  • Example C22 The resin composition (powder) produced in Example B15 was charged into a mold and then pressed, then removed from the mold, heated at 180 ° C. for 4 hours to be melted and cured, diameter: 13 mm, thickness: 2 A disc-shaped molded body of 0.0 mm was manufactured.
  • ⁇ 4 Evaluation of Molded Body ⁇ 4-1 >> Detection by Metal Detector
  • a belt conveyor type metal detector (META-HAWKII, manufactured by System Square Co., Ltd.) was used for the molded body manufactured in each of the above-described Examples and Comparative Examples.
  • the sensitivity level meter (F value, S value), iron ball sensitivity, SUS ball sensitivity) capable of detecting the molded body was determined.
  • ⁇ 4-2 Presence / absence of abnormal heating during microwave irradiation
  • a commercially available microwave oven was used to confirm the presence / absence of abnormal heating during microwave irradiation.
  • the condition of each molded body at this time was evaluated according to the following criteria.
  • the ferrite powder of the present invention is a ferrite powder that can be detected by a metal detector, wherein Sr is 7.8 mass% or more and 9.0 mass% or less, Fe is 61.0 mass% or more and 65.0 mass% or less, Contains hard ferrite particles. Therefore, it is possible to provide a ferrite powder that can be suitably used for manufacturing a molded body that can be stably detected by a metal detector. Therefore, the ferrite powder of the present invention has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

本発明のフェライト粉は、金属探知機で検出可能なフェライト粉であって、Srを7.8質量%以上9.0質量%以下、Feを61.0質量%以上65.0質量%以下、含有するハードフェライト粒子を含み、イオンクロマトグラフィーにより測定されるNa量が1ppm以上200ppm以下であることを特徴とする。フェライト粉の構成粒子の体積平均粒径が0.1μm以上100μm以下であることが好ましい。10K・1000/4πA/mの磁場をかけたときのVSM測定による残留磁化が25A・m/kg以上40A・m/kg以下であることが好ましい。

Description

フェライト粉、樹脂組成物および成形体
 本発明は、フェライト粉、樹脂組成物および成形体に関する。
 例えば、食品の製造現場においては、異物混入の問題がある。異物混入の問題が生じると、大きな社会問題となり、消費者等に多大な不安を与えるとともに、食品の製造業者、加工業者等にも大きな打撃を与える。
 異物混入を防止するために金属探知機を導入し、出荷前の商品について検査を行う機会が増えてきている。
 しかしながら、金属探知機では、一般のプラスチック材料等を検知することができないため、製造時に用いられる包装材等の道具等が由来の異物が混入したとしても、検出することができなかった。
 このような問題を解消する目的で、鉄等の金属で構成された金属探知材を含む作業手袋が提案されている(特許文献1参照)。
 しかしながら、このような技術では、異物として混入した場合でも、金属探知機で検出されない場合があった。また、金属は、酸化反応等の化学反応を受けることによる経時変化により、金属探知機で探知されなくなる場合があった。
特開2009-120974号公報
 本発明の目的は、金属探知機で安定的に検出することができる成形体を提供すること、また、前記成形体の製造に好適に用いることのできるフェライト粉および樹脂組成物を提供することにある。
 このような目的は、下記の本発明により達成される。
 本発明のフェライト粉は、金属探知機で検出可能なフェライト粉であって、
 Srを7.8質量%以上9.0質量%以下、Feを61.0質量%以上65.0質量%以下、含有するハードフェライト粒子を含み、
 イオンクロマトグラフィーにより測定されるNa量が1ppm以上200ppm以下であることを特徴とする。
 本発明のフェライト粉では、前記フェライト粉の構成粒子の体積平均粒径が0.1μm以上100μm以下であることが好ましい。
 本発明のフェライト粉では、10K・1000/4πA/mの磁場をかけたときのVSM測定による残留磁化が25A・m/kg以上40A・m/kg以下であることが好ましい。
 本発明のフェライト粉では、10K・1000/4πA/mの磁場をかけたときのVSM測定による保磁力が39.7kA/m以上320kA/m以下であることが好ましい。
 本発明のフェライト粉では、イオンクロマトグラフィーにより測定されるCl量が1ppm以上100ppm以下であることが好ましい。
 本発明のフェライト粉では、イオンクロマトグラフィーにより測定されるS量が1ppm以上1000ppm以下であることが好ましい。
 本発明の樹脂組成物は、本発明のフェライト粉と、
 樹脂材料とを含むことを特徴とする。
 本発明の樹脂組成物では、前記樹脂材料中に、前記フェライト粉が分散して存在していることが好ましい。
 本発明の樹脂組成物では、前記樹脂組成物中における前記フェライト粉の含有率が5.0質量%以上90質量%以下であることが好ましい。
 本発明の樹脂組成物では、前記樹脂材料は、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール(PVA)、フッ素系樹脂、シリコーンゴム、ブタジエンゴム、熱可塑性エラストマー、エポキシ樹脂およびシリコーン樹脂よりなる群から選択される1種または2種以上を含むことが好ましい。
 本発明の成形体は、本発明の樹脂組成物を用いて形成された部位を有することを特徴とする。
 本発明の成形体では、前記フェライト粉の含有率が2.0質量%以上20質量%以下であることが好ましい。
 本発明の成形体は、食品の製造、加工、包装現場で用いられることが好ましい。
 本発明の成形体は、調理器具類、調理用具類、食品包装部材の一部もしくは全部に使用されることが好ましい。
 本発明の成形体は、表面から厚さ方向に1.0mm以内の領域に前記フェライト粉を含むことが好ましい。
 本発明によれば、金属探知機で安定的に検出することができる成形体を提供すること、また、前記成形体の製造に好適に用いることのできるフェライト粉および樹脂組成物を提供することができる。
 以下、本発明の好適な実施形態について詳細な説明をする。
 《フェライト粉》
 まず、本発明のフェライト粉について説明する。
 本発明のフェライト粉は、Srを7.8質量%以上9.0質量%以下、Feを61.0質量%以上65.0質量%以下、含有するハードフェライト粒子を複数個含むことを特徴とする。
 これにより、フェライト粉や当該フェライト粉を含む成形体を、金属探知機により検出されやすくすることがでる。したがって、例えば、本発明のフェライト粉や、当該フェライト粉を含む成形体の少なくとも一部が、誤って食品等の製品中等に混入した場合等に、金属探知機により好適に検知することができ、当該製品が外部に流通すること等を効果的に防止することができる。
 また、上記のようなフェライト粉は、酸化物を主成分とし、化学的に安定で、耐腐食性、耐薬品性に優れている。したがって、金属探知機による検出の安定性に優れている。特に、金属材料で構成された金属探知材を適用した場合には、酸化反応等の経時変化により、金属探知機による検出が困難になる可能性があるが、上記のようなフェライト粉では、様々な環境に曝された場合であっても、金属探知機による検出の安定性に優れている。また、上記のようなフェライト粉は、人体に対する安全性にも優れている。
 また、本発明のハードフェライト粉は、イオンクロマトグラフィーにより測定されるNa(ナトリウム)量が、1ppm以上200ppm以下である。
 Na量が前記範囲内の値であると、フェライト粉以外に金属粉を添加した成形体であっても長期間にわたり安定な状態で使用できる。
 なお、ハードフェライト粉中におけるNa量の測定は、例えば、以下のようにして行うことができる。
 まず、フェライト粉1gに超純水(例えば、メルク株式会社製 Direct-Q UV3等)10mlを加え、超音波を30分照射してイオン成分を抽出する。
 次に、得られた抽出液の上澄みを前処理用のディスポーザブルディスクフィルター(例えば、東ソー株式会社製 W-25-5、孔径0.45μm等)にてろ過して測定試料する。
 次に、イオンクロマトグラフィーにて、測定試料に含まれる陽イオン成分の定量分析を行うことにより、Na量(ナトリウムイオン量)を求めることができる。
 イオンクロマトグラフィーの条件は、例えば、以下のようにすることができる。
‐ 分析装置:東ソー株式会社製 IC-2010
‐ カラム:TSKgel SuperIC-Cation HSII(4.6mmI.D.×1cm+4.6mmI.D.×10cm)
‐ 溶離液:メタンスルホン酸(3.0mmol/L)+18-クラウン6-エーテル(2.7mmol/L)
‐ 流速:1.0mL/min
‐ カラム温度:40℃
‐ 注入量:30μL
‐ 測定モード:ノンサプレッサ方式
‐ 検出器:CM検出器
‐ 標準試料:関東化学社製陽イオン混合標準液
 これに対し、フェライト粉が上記のような条件を満足しない場合には、上記のような優れた効果が得られない。
 例えば、ハードフェライト粒子中におけるSrの含有率が7.8質量%未満であると、Feの量が過剰となり、粒子中に比較的多くのFeが含まれることとなり、磁化が低下する。その結果、フェライト粉や当該フェライト粉を含む成形体の金属探知機による検出が困難となる。
 また、ハードフェライト粒子中におけるSrの含有率が9.0質量%を超えると、Srの量が過剰となり、粒子中に比較的多くのSrOが含まれることとなったり、Srフェライト以外のSr-Fe酸化物が含まれることとなり、磁化が低下する。その結果、フェライト粉や当該フェライト粉を含む成形体の金属探知機による検出が困難となる。
 また、ハードフェライト粒子中におけるFeの含有率が61.0質量%未満であると、Srの量が過剰となり、粒子中に比較的多くのSrOが含まれることとなったり、Srフェライト以外のSr-Fe酸化物が含まれることとなり、磁化が低下する。その結果、フェライト粉や当該フェライト粉を含む成形体の金属探知機による検出が困難となる。
 また、ハードフェライト粒子中におけるFeの含有率が65.0質量%を超えると、Feの量が過剰となり、粒子中に比較的多くのFeが含まれることとなり、磁化が低下する。その結果、フェライト粉や当該フェライト粉を含む成形体の金属探知機による検出が困難となる。
 また、上記のようなSrとFeとを含むハードフェライト粒子の代わりに、他のフェライト粒子を用いた場合も、上記のような優れた効果は得られない。
 また、上記のようなハードフェライト粒子の代わりに、ソフトフェライト粒子を用いた場合、例えば、電子レンジ等によるマイクロ波による加熱を行う際にフェライト粉が発熱し、樹脂材料を溶融させる等の問題が生じる。
 また、Na量が少ないことは好ましいことであるが、原料中に含まれる不純物(特に、Sr原料に含まれる不純物や、工業用水に含まれる塩分由来の不純物)由来のNa成分は完全に取り除くことはできない。
 また、Na量が前記上限値を超えると、フィラーとしてフェライト粉を用いた際に、樹脂材料との混合時に粘度上昇の原因となったり、成形体を大量の水分中で絶縁性が必要な用途で使用する際に抵抗が下がることで、必要以上にSUS球感度が上昇し、金属検知器による異物検知で使用する際に誤検知されやすくなる。
 上記のように、ハードフェライト粒子中におけるSrの含有率は、7.8質量%以上9.0質量%以下であればよいが、7.9質量%以上8.9質量%以下であるのが好ましく、8.0質量%以上8.8質量%以下であるのがより好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 また、ハードフェライト粒子中におけるFeの含有率は、61.0質量%以上65.0質量%以下であればよいが、61.1質量%以上64.9質量%以下であるのが好ましく、61.2質量%以上64.8質量%以下であるのがより好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 フェライト粒子を構成する金属元素(Fe、Sr等)の含有量は、以下のようにして測定することができる。
 すなわち、まず、フェライト粒子:0.2gを秤量し、純水:60ml、1Nの塩酸:20mlおよび1Nの硝酸:20mlの混合溶媒に、当該フェライト粒子を混合した混合物を得る。その後、当該混合物を加熱し、フェライト粒子を完全溶解させた溶液を得る。その後、当該溶液について、ICP分析装置(例えば、島津製作所製、ICPS-1000IV)を用いた測定を行うことにより、金属元素の含有量を求めることができる。
 ハードフェライト粒子を構成するハードフェライトは、Fe、Sr、O以外の成分(元素)を含んでいてもよい。このような成分としては、例えば、Ti、Si、Cl、Ca、Al等が挙げられる。
 ただし、ハードフェライト粒子を構成するハードフェライト中に含まれるFe、Sr、O以外の成分(元素)の含有率は、1.0質量%以下であるのが好ましい。
 また、上記のように、本発明のハードフェライト粉において、イオンクロマトグラフィーにより測定されるNa(ナトリウム)量は、1ppm以上200ppm以下であればよいが、1ppm以上150ppm以下であるのが好ましく、1ppm以上110ppm以下であるのがより好ましい。
 これにより、前述したような効果がより顕著に発揮される。
 また、ハードフェライト粒子は、ハードフェライト以外の成分を含んでいてもよい。
 ただし、ハードフェライト粒子中に含まれるハードフェライト以外の成分の含有率は、1.0質量%以下であるのが好ましい。
 フェライト粉の構成粒子の体積平均粒径は、特に限定されないが、0.1μm以上100μm以下であるのが好ましく、0.2μm以上80μm以下であるのがより好ましい。
 これにより、フェライト粉の樹脂材料に対する分散性をより向上させることができ、フェライト粉と樹脂材料とを含む樹脂組成物の製造をより好適に行うことができる。また、当該樹脂組成物を用いて製造される成形体の強度、表面性状、信頼性をより向上させることができる。また、樹脂組成物を用いた成形体の製造をより安定的に行うことができる。また、成形体の色調の調整をより好適に行うことができる。
 これに対し、フェライト粉の構成粒子の体積平均粒径が前記下限値未満であると、樹脂組成物の製造に用いるフェライト粉の量等によっては、後述する樹脂組成物の製造時に、樹脂材料にフェライト粉を分散させるのに時間がかかったり、凝集体のまま分散するため好ましくない。また、粒径が小さくなることでフェライトの着色力が強くなり、黒・グレー・茶色以外の色を付ける場合にくすんだ色になりやすいため好ましくない。
 また、フェライト粉の構成粒子の体積平均粒径が前記上限値を超えると、樹脂組成物の製造に用いるフェライト粉の量等によっては、樹脂組成物を用いて製造する成形体の形状や大きさ等にもよるが、成形体としたときの成形体の強度や表面性(仕上がり)が低下する可能性があり好ましくない。また、例えば、成形体の製造方法としてインジェクション成形法を採用する場合に、インジェクションの経路を樹脂組成物が閉塞させる可能性があるため好ましくない。
 また、フェライト粉の構成粒子の体積平均粒径は、例えば、フェライト粉を用いて製造する成形体の形状・大きさ等によって選択され、より具体的には、フィルム・シート状の成形体の製造に用いる場合には、フェライト粉の構成粒子の体積平均粒径は、10μm以下であるのが好ましい。
 また、成形体の製造において、フェライト粉以外に、フィラーを用いて着色を行う場合には、フェライト粉の体積平均粒径は、5μm以上であるのが好ましい。
 これにより、着色時にフェライト粉の色味の影響を最小限に抑えることができる。
 体積平均粒径は、例えば、以下のような測定により求めることができる。すなわち、まず、試料としてのフェライト粉:10gと水:80mlを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2~3滴添加する。次いで、超音波ホモジナイザー(例えば、SMT.Co.LTD.製UH-150型等)を用い分散を行う。超音波ホモジナイザーとして、SMT.Co.LTD.製UH-150型を用いる場合には、例えば、出力レベル4に設定し、20秒間分散を行ってもよい。その後、ビーカー表面にできた泡を取り除き、マイクロトラック粒度分析計(例えば、日機装株式会社製、Model9320-X100等)に導入し、測定を行うことができる。
 また、ハードフェライト粒子の形状は、特に限定されないが、球状をなすものであるのが好ましい。より具体的には、フェライト粉は、球状度が1以上1.2以下であるハードフェライト粒子を80個数%以上含んでいるのが好ましい。
 これにより、樹脂材料とフェライト粉を混合し樹脂組成物を作製する際、樹脂材料が粉末状の場合はフェライト粉の流動性が向上し混合性が改善され、樹脂材料が液状の場合は分散性が向上する効果が得られる。
 球状率は、次のようにして求めることができる。
 まず、走査型電子顕微鏡(例えば、FE-SEM(SU-8020、日立ハイテクノロジー社製)等)を用いて、倍率100倍~2万倍でフェライト粉を撮影する。そして、撮影したSEM画像から、フェライト粉を構成するハードフェライト粒子について、外接円直径、内接円直径を求め、その比(外接円直径/内接円直径)を球状率として求める。2つの直径が同一である場合、すなわち、真球である場合、この比が1となる。
 また、本発明のフェライト粉は、上述したようなハードフェライト粒子に加え、他の粒子を含んでいてもよい。例えば、上述したようなハードフェライト粒子に加え、上述したような条件を満足しないハードフェライト粒子を含んでいてもよいし、ソフトフェライト粒子を含んでいてもよい。
 フェライト粉を構成する粒子は、表面処理が施されていてもよい。
 粒子の表面処理に用いる表面処理剤としては、例えば、シランカップリング剤、リン酸系化合物、カルボン酸、フッ素系化合物等が挙げられる。
 特に、フェライト粉を構成する粒子にシランカップリング剤による表面処理が施されていると、粒子の凝集をより効果的に防止することができ、フェライト粉や当該フェライト粉を含む樹脂組成物の流動性、取り扱いのし易さをより向上させることができる。また、樹脂組成物中、成形体中における粒子の分散性をより向上させることができる。
 シランカップリング剤としては、例えば、シリル基および炭化水素基を有するシラン化合物を用いることができるが、シランカップリング剤は、特に、前記アルキル基として炭素数が8以上10以下のアルキル基を有しているのが好ましい。
 これにより、ハードフェライト粒子の凝集をさらに効果的に防止することができ、フェライト粉や当該フェライト粉を含む樹脂組成物の流動性、取り扱いのし易さをさらに向上させることができる。また、樹脂組成物中、成形体中におけるハードフェライト粒子の分散性をさらに向上させることができる。
 リン酸系化合物としては、例えば、ラウリルリン酸エステル、ラウリル-2リン酸エステル、ステアレス-2リン酸、2-(パーフルオロヘキシル)エチルホスホン酸のリン酸エステル等を挙げることができる。
 カルボン酸としては、例えば、炭化水素基と、カルボキシル基とを有する化合物(脂肪酸)を用いることができる。このような化合物の具体例としては、デカン酸、テトラデカン酸、オクタデカン酸、cis-9-オクタデセン酸等を挙げることができる。
 フッ素系化合物としては、例えば、上述したようなシランカップリング剤、リン酸系化合物、カルボン酸が有する水素原子の少なくとも一部がフッ素原子で置換された構造を有する化合物(フッ素系シラン化合物、フッ素系リン酸化合物、フッ素置換脂肪酸)等が挙げられる。
 10K・1000/4πA/mの磁場をかけたときのVSM測定によるフェライト粉の残留磁化は、25A・m/kg以上40A・m/kg以下であるのが好ましく、27A・m/kg以上38A・m/kg以下であるのがより好ましい。
 これにより、フェライト粉を用いて製造される成形体の金属探知機による検出のされやすさをより向上させつつ、成形体の靭性、強度等をより向上させることができる。また、成形体の生産コストを抑制する上でも有利である。
 これに対し、残留磁化が前記下限値未満であると、フェライト粉を用いて製造される成形体中のフェライト粉の含有率を高くしないと、成形体の金属探知機による検出のされやすさが不十分となる。また、金属探知機による検出のされやすさを向上させるために成形体中におけるフェライト粉の含有率を高めると、成形体の靭性、強度が低下し易くなる。
 また、残留磁化が前記上限値を超えると、その磁気特性を実現するために、フェライト粉の組成の調整等が複雑となり、安定して優れた特性を得ることも困難となる。また、残留磁化が前記上限値を超えても、実用的には、フェライト粉や当該フェライト粉を含む成形体の金属探知機による検出のされやすさのさらなる向上が望めない。
 10K・1000/4πA/mの磁場をかけたときのVSM測定によるフェライト粉の飽和磁化は、45A・m/kg以上70A・m/kg以下であるのが好ましく、47A・m/kg以上65A・m/kg以下であるのがより好ましい。
 これにより、フェライト粉を用いて製造される成形体の金属探知機による検出のされやすさをより向上させつつ、成形体の靭性、強度等をより向上させることができる。また、成形体の生産コストを抑制する上でも有利である。
 これに対し、飽和磁化が前記下限値未満であると、フェライト粉を用いて製造される成形体中のフェライト粉の含有率を高くしないと、金属探知機による検出のされやすさが不十分となる。また、金属探知機による検出のされやすさを向上させるために成形体中におけるフェライト粉の含有率を高めると、成形体の靭性、強度が低下し易くなる。
 また、飽和磁化が前記上限値を超えると、その磁気特性を実現するために、フェライト粉の組成の調整等が複雑となり、安定して優れた特性を得ることも困難となる。また、飽和磁化が前記上限値を超えても、実用的には、フェライト粉や当該フェライト粉を含む成形体の金属探知機による検出のされやすさのさらなる向上が望めない。
 10K・1000/4πA/mの磁場をかけたときのVSM測定によるフェライト粉の保磁力は、39.7kA/m以上320kA/m以下であるのが好ましく、55kA/m以上280kA/m以下であるのがより好ましい。
 これにより、フェライト粉を用いて製造される成形体の金属探知機による検出のされやすさをより向上させることができる。また、成形体の生産コストを抑制することができる。
 これに対し、保磁力が前記下限値未満であると、本発明のフェライト粉を用いて製造された成形体を着磁した場合に、十分な着磁ができず、成形体の金属探知機による検出のされやすさが低下する可能性があるため好ましくない。
 また、保磁力が前記上限値を超えると、その磁気特性を実現するために、フェライト粉の組成の調整等が複雑となり、安定して優れた特性を得ることも困難となる。また、保磁力が前記上限値を超えても、実用的には、フェライト粉や当該フェライト粉を含む成形体の金属探知機による検出のされやすさのさらなる向上が望めない。
 なお、上記磁気特性は、例えば、以下のようにして求めることができる。すなわち、まず、内径5mm、高さ2mmのセルにフェライト粉を詰めて振動試料型磁気測定装置にセットする。次に、印加磁場を加え、10K・1000/4π・A/mまで掃引し、次いで、印加磁場を減少させ、ヒステリシスカーブを作製する。このカーブのデータより飽和磁化、残留磁化および保磁力を求めることができる。振動試料型磁気測定装置としては、例えば、VSM-C7-10A(東英工業社製)等を用いることができる。
 ハードフェライト粉は、イオンクロマトグラフィーにより測定されるCl(塩素)量が、1ppm以上100ppm以下であるのが好ましく、1ppm以上50ppm以下であるのがより好ましい。
 Cl量が前記範囲内の値であると、フェライト粉以外に金属粉を添加した成形体であっても長期間にわたり安定な状態で使用できる。
 Cl量が少ないことは好ましいことであるが、原料中に含まれる不純物由来のCl成分を完全に取り除くことはできない。
 また、Cl量が前記上限値を超えると、フィラーとしてフェライト粉を用いた際に、成形体に含まれるフェライト粉のCl成分を持った化合物が成形体に添加しているフィラーや成形体周辺にある金属材料を腐食させる原因となる。
 なお、ハードフェライト粉中におけるCl量(塩化物イオン量)の測定は、例えば、燃焼法イオンクロマトグラフィーにて求めることができる。
 燃焼法イオンクロマトグラフィーは、例えば、以下のような条件で行うことができる。
‐ 燃焼装置:株式会社三菱化学アナリテック製 AQF-2100H
‐ 試料量:50mg
‐ 燃焼温度:1100℃
‐ 燃焼時間:10分
‐ Ar流量:400ml/min
‐ O流量:200ml/min
‐ 加湿Air流量:100ml/min
‐ 吸収液:過酸化水素を1%含む溶離液
‐ 分析装置:東ソー株式会社製 IC-2010
‐ カラム:TSKgel SuperIC-Anion HS(4.6mmI.D.×1cm+4.6mmI.D.×10cm)
‐ 溶離液:NaHCO(3.8mmol/L)+NaCO(3.0mmol/L)
‐ 流速:1.5mL/min
‐ カラム温度:40℃
‐ 注入量:30μL
‐ 測定モード:サプレッサ方式
‐ 検出器:CM検出器
‐ 標準試料:関東化学社製陰イオン混合標準液
 ハードフェライト粉は、イオンクロマトグラフィーにより測定されるS(硫黄)量が、1ppm以上1000ppm以下であるのが好ましく、1ppm以上200ppm以下であるのがより好ましい。
 S量が前記範囲内の値であると、成形体を安定した状態で製造でき、かつ、長期間にわたり安定な状態で使用できる。
 S量が少ないことは好ましいことであるが、原料中に含まれる不純物由来のS成分は完全に取り除くことはできない。
 また、S量が前記上限値を超えると、フィラーとしてフェライト粉を用いた際に、樹脂材料との混合時に粘度が上がりやすくなったり、別の添加剤と反応を起こし、長期間にわたり成形体を使用する際に成形体が変質するおそれがある。
 本発明のフェライト粉は、いかなる方法で製造してもよいが、例えば、以下に述べるような方法により、好適に製造することができる。
 すなわち、まず、原料としてFeおよびSrCOを乾式混合する。
 乾式混合は、例えば、ヘンシェルミキサー等を用い、1分以上、好ましくは3分以上60分以下の時間混合して造粒する。
 その後、このようにして得られた造粒物を焼成する。
 造粒物の焼成は、例えば、固定式電気炉等を用いて行うことができる。
 焼成条件は、特に限定されないが、例えば、大気中、温度:1050℃以上1250℃以下、焼成時間:2時間以上8時間以下(ピーク)とすることができる。
 その後、焼成によって得られた焼成物をビーズミル等により湿式粉砕し、洗浄、脱水、乾燥後、熱処理を施す。
 当該熱処理の条件は、特に限定されないが、例えば、温度:750℃以上1050℃以下、加熱時間:0.1時間以上2時間以下とすることができる。
 また、フェライト粉が、前述したようなハードフェライト粒子に加え、他の粒子を含んでいる場合、上記のようにして得られた複数個のハードフェライト粒子を含む粉末と、他の粒子とを混合することにより、目的とするフェライト粉を得ることができる。
 《樹脂組成物》
 次に、本発明の樹脂組成物について説明する。
 本発明の樹脂組成物は、前述したような本発明のフェライト粉と、樹脂材料とを含んでいる。
 これにより、金属探知機による検出のされやすさ、検出の安定性に優れる成形体の製造に好適に用いることのできる樹脂組成物を提供することができる。
 本発明の樹脂組成物において、フェライト粉は、いかなる形態で含まれていてもよいが、樹脂材料中に分散して存在しているのが好ましい。
 これにより、樹脂組成物の取扱いのし易さがより向上し、後に詳述する成形体の成形をより好適に行うことができる。また、成形体の各部位におけるフェライト粉の含有率の不本意なばらつきの発生を効果的に防止することができ、フェライト粉を含む成形体の金属探知機による検出の確実性がより向上する。
 樹脂組成物中におけるフェライト粉の含有率は、特に限定されないが、5.0質量%以上90質量%以下であるのが好ましく、7.0質量%以上88質量%以下であるのがより好ましい。
 これにより、成形体の成形性をより向上させることができ、成形体の靭性、強度、信頼性等をより向上させることができるとともに、成形体の金属探知機による検出のされやすさ、検出の安定性をより向上させることができる。
 これに対し、樹脂組成物中におけるフェライト粉の含有率が前記下限値未満であると、ハードフェライト粒子の組成等によっては、成形体の金属探知機による検出のされやすさ、検出の安定性が不十分となる可能性がある。
 また、樹脂組成物中におけるフェライト粉の含有率が前記上限値を超えると、成形体の成形性が低下するとともに、成形体の靭性、強度、信頼性等が低下する可能性がある。
 樹脂組成物中に含まれる樹脂材料としては、例えば、各種熱可塑性樹脂、各種硬化性樹脂等を用いることができる。
 より具体的には、例えば、ポリエチレン、ポリプロピレン、ポリ-(4-メチルペンテン-1)、エチレン-プロピレン共重合体、環状ポリオレフィン等のポリオレフィン;変性ポリオレフィン;ポリスチレン;ブタジエン-スチレン共重合体;アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂);アクリロニトリル-スチレン共重合体(AS樹脂);ポリ塩化ビニル;ポリ塩化ビニリデン;エチレン-酢酸ビニル共重合体(EVA);ポリアミド(例:ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロン6-12、ナイロン6-66);ポリイミド;ポリアミドイミド;ポリメチルメタクリレート等のアクリル系樹脂;ポリカーボネート(PC);アイオノマー;ポリビニルアルコール(PVA);エチレン-ビニルアルコール共重合体(EVOH);ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリシクロヘキサンテレフタレート(PCT)、ポリアリレート、芳香族ポリエステル(液晶ポリマー)等のポリエステル;ポリエーテル;ポリアセタール(POM);ポリフェニレンオキシド;変性ポリフェニレンオキシド;ポリエーテルケトン(PEK);ポリエーテルエーテルケトン(PEEK);ポリエーテルイミド;ポリサルフォン;ポリエーテルサルフォン;ポリフェニレンサルファイド;ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系樹脂;シリコーンゴム、イソプレンゴム、ブタジエンゴム、ニトリルゴム、天然ゴム等のゴム材料;スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、トランスポリイソプレン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー;エポキシ樹脂;フェノール樹脂;ユリア樹脂;メラミン樹脂;不飽和ポリエステル;シリコーン樹脂;ポリウレタン等、またはこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 中でも、樹脂組成物中に含まれる樹脂材料は、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール(PVA)、フッ素系樹脂、シリコーンゴム、ブタジエンゴム、熱可塑性エラストマー、エポキシ樹脂およびシリコーン樹脂よりなる群から選択される1種または2種以上を含むのが好ましい。
 これにより、樹脂組成物中におけるフェライト粉の分散安定性がより向上し、成形体の成形性をより向上させることができる。また、成形体の靭性、強度、信頼性等をより向上させることができる。
 特に、フェライト粉を構成する粒子に、シランカップリング剤による表面処理が施されている場合に、各種樹脂との密着性が向上するので、樹脂組成物中におけるフェライト粉の分散安定性がさらに向上し、成形体の成形性をさらに向上させることができる。
 また、樹脂組成物中に含まれる樹脂材料は、樹脂組成物を用いて製造される成形体中に含まれる樹脂材料とは、異なる組成であってもよい。例えば、樹脂組成物中に含まれる樹脂材料は、最終的な成形体中に含まれる樹脂材料の前駆体(例えば、モノマー、ダイマー、トリマー、オリゴマー、プレポリマー等)であってもよい。
 樹脂組成物中における樹脂材料の含有率は、特に限定されないが、8.0質量%以上95質量%以下であるのが好ましく、10質量%以上90質量%以下であるのがより好ましい。
 これにより、成形体の成形性をより向上させることができ、成形体の靭性、強度、信頼性等をより向上させることができるとともに、成形体の金属探知機による検出のされやすさ、検出の安定性をより向上させることができる。
 これに対し、樹脂組成物中における樹脂材料の含有率が前記下限値未満であると、成形体の成形性が低下するとともに、成形体の靭性、強度、信頼性等が低下する可能性がある。
 また、樹脂組成物中における樹脂材料の含有率が前記上限値を超えると、フェライト粉の含有率が相対的に低下し、ハードフェライト粒子の組成等によっては、成形体の金属探知機による検出のされやすさ、検出の安定性が不十分になる可能性がある。
 本発明の樹脂組成物は、フェライト粉および樹脂材料を含んでいればよく、さらにこれら以外の成分(その他の成分)を含んでいてもよい。
 このような成分(その他の成分)としては、例えば、顔料、染料等の各種着色剤;各種蛍光材料;各種蓄光材料;各種燐光材料;溶剤;赤外線吸収材料;紫外線吸収剤;分散剤;界面活性剤;重合開始剤;重合促進剤;架橋剤;重合禁止剤;増感剤;可塑剤;スリップ剤(レベリング剤);浸透促進剤;湿潤剤(保湿剤);帯電防止剤;定着剤;防腐剤;防黴剤;酸化防止剤;キレート剤;pH調整剤;増粘剤;アルミナ、シリカ、酸化チタン、酸化マグネシウム、酸化アンチモン、酸化カルシウム、酸化亜鉛、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、チタン酸カリウム、ガラス繊維、炭素繊維、石膏繊維、金属繊維、金属粒子、黒鉛、タルク、クレー、マイカ、ウォラストナイト、ゾノトライト、ハイドロタルサイト、ゼオライト等のフィラー;凝集防止剤;消泡剤;発泡剤等が挙げられる。
 本発明の樹脂組成物は、いかなる形態であってもよく、樹脂組成物の形態としては、例えば、粉末、ペレット、分散液、スラリー、ゲル等が挙げられるが、ペレットが好ましい。
 これにより、樹脂組成物の取扱いのし易さがより向上し、樹脂組成物を用いた成形体の製造をより好適に行うことができる。また、樹脂組成物の保存安定性をより向上させることができ、保存時等における樹脂組成物の構成成分の劣化等をより効果的に防止することができる。
 樹脂組成物がペレットである場合、その体積平均粒径は、1mm以上10mm以下であるのが好ましく、2mm以上7mm以下であるのがより好ましい。
 これにより、樹脂組成物の取扱いのし易さがさらに向上し、樹脂組成物を用いた成形体の製造をさらに好適に行うことができる。
 本発明の樹脂組成物は、例えば、前述したフェライト粉、樹脂材料を混合することにより、製造することができる。フェライト粉と樹脂材料との混合は、例えば、プラネタリーミキサー、二軸ミキサー、ニーダー、バンバリーミキサー、オーブンロール等の攪拌混練機、単軸押出機、二軸押出機等の混合装置(混練装置)を用いることにより好適に行うことができる。
 また、必要に応じて、混合の際に、例えば、前述したようなその他の成分をさらに用いてもよい。
 《成形体》
 次に、本発明の成形体について説明する。
 本発明の成形体は、前述したような本発明の樹脂組成物を用いて形成された部位を有する。
 これにより、金属探知機で安定的に検出することができる成形体を提供することができる。
 また、前述したようなフェライト粉を含むことにより、成形体の強度、耐久性等をより向上させることができ、例えば、引張や曲げ等の外力が加わった場合、特に、大きな外力が加わった場合や繰り返し外力が加わった場合等でも、切断等により成形体の一部が脱離することがより効果的に防止される。したがって、成形体の一部が製品等に異物として混入してしまうこと自体をより効果的に防止することができる。
 本発明の成形体は、本発明の樹脂組成物を用いて形成された部位を少なくとも一部に有していればよく、その全体が本発明の樹脂組成物を用いて形成されていてもよいし、本発明の樹脂組成物を用いて形成された部位に加え、本発明の樹脂組成物以外の材料で構成された部位を有していてもよい。
 より具体的には、例えば、本発明の樹脂組成物以外の材料で構成された基部と、当該基部の表面に設けられ、本発明の樹脂組成物を用いて形成された表面層とを有していてもよい。
 また、本発明の成形体は、例えば、本発明の樹脂組成物と、他の樹脂組成物(本発明のフェライト粉を含まない組成物)とを混合して成形されてもよい。
 成形体は、少なくとも、その表面付近に前記フェライト粉を含んでいるのが好ましい。
 より具体的には、成形体は、その表面から厚さ方向に1.0mm以内の領域にフェライト粉を含んでいるのが好ましく、その表面から厚さ方向に0.5mm以内の領域にフェライト粉を含んでいるのがより好ましい。
 成形体の表面付近は、成形体の中でも特に脱離し易い部位である。したがって、このような領域にフェライト粉を含むことにより、本発明の効果がより顕著に発揮される。
 なお、このような成形体は、例えば、成形体の成形時(樹脂組成物を構成する樹脂材料が軟化または溶融した状態)において、成形体の表面となるべき方向から磁場を与えることにより、好適に製造することができる。特に、厚みが比較的大きい成形体である場合、成形体の表面付近に、前述したフェライトを偏在させることができ、前述したような効果をより顕著に発揮させることができる。
 本発明の成形体中における前記フェライト粉の含有率は、成形体の用途等により異なるが、2.0質量%以上20質量%以下であるのが好ましく、2.5質量%以上18質量%以下であるのがより好ましい。
 これにより、成形体の靭性、強度、信頼性等をより向上させることができるとともに、成形体の金属探知機による検出のされやすさ、検出の安定性をより向上させることができる。
 なお、成形体が、前記フェライト粉を含む部位(すなわち、本発明の樹脂組成物を用いて形成された部位)に加え、前記フェライト粉を含まない部位(すなわち、本発明の樹脂組成物以外の材料で構成された部位)を有する場合には、前記フェライト粉を含む部位において、前述したようなフェライト粉の含有率についての条件を満足するのが好ましい。
 本発明の成形体は、その全部または一部(例えば、成形体の切片)が金属探知による検査に適用される可能性、言い換えると、金属探知機で検知することを目的として使用される可能性があれば、いかなる用途であってもよいが、本発明の成形体の用途としては、例えば、食品の製造、加工、包装(梱包を含む。以下同様)の現場用、化粧品、医薬部外品の製造、加工、包装の現場用、医薬品の製造、加工、包装の現場用、上記以外の製品の製造、加工、包装の現場用、医療現場用、細胞培養、組織培養、器官培養、遺伝子組み換え等の生物学的処理を行う現場用、化合物の合成等の化学的処理を行う現場用等が挙げられる。
 中でも、本発明の成形体は、食品の製造、加工、包装の現場で用いられるのが好ましい。
 食品には、高い安全性が求められるが、一般に、異物が混入しやすい環境で製造、加工、包装が行われている。したがって、本発明を食品の製造、加工、包装の現場で用いられる物品に適用することにより、本発明による効果がより顕著に発揮される。
 また、食品の製造、加工現場で用いられる物品には、電子レンジに適用される物品(例えば、各種調理具、各種容器、トレイ、ラップフィルム等)も多いが、本発明の成形体では、非金属材料であるフェライトを用いているため、電子レンジの使用にも好適に対応することができる。
 なお、本明細書において、食品の形態には、固形状、半固形状(ゼリー、プリン等のゲル状等)に加え、液状が含まれ、食品は、飲み物等も含む概念である。また、食品添加物やサプリメント(健康補助食品)も食品の概念に含まれる。また、動物由来の食肉、魚介類、植物由来の野菜、果実、種子、穀物、豆類、海藻のような天然物やこれらの加工物に加え、人工甘味料、人工調味料等のような人工的な合成品も食品の概念に含む。
 食品の製造、加工現場で用いられる成形体としては、例えば、調理機器類、調理器具類、調理用具類、食器類、衣服類(人体に装着して用いる物品)、食品の包装に用いる包装部材、および、これらに付随して用いられる物品、ならびに、これらのメンテナンス、修理等に用いる物品等が挙げられる。
 より具体的には、例えば、ホットプレート、コンロ、ガスバーナー、オーブン、トースター、電子レンジ、食器洗浄機、食器乾燥機、秤(スケール)、キッチンタイマー、温度計、浄水器、浄水フィルター(カートリッジ)等の調理機器類;鍋、フライパン、やかんや、これらの蓋、包丁、はさみ、おたま(レードル)、ヘラ、ピーラー、スライサー、ミキサー、チョッパー、マッシャー、麺棒、マドラー、泡立て器、ざる、ボウル、水切り器、まな板、マット、しゃもじ、成形型、型抜き、灰汁取り、おろし金(フードグレーダー)、フライ返し(ターナー)、ピック、水切り器、篩、ミル、落し蓋、製氷皿、焼き網、トング、卵切器、計量カップ、計量スプーン等の調理器具類;布巾、キッチンペーパー、手ぬぐい、タオル、紙タオル、水切りシート、ラップフィルム、オーブンペーパー、絞り出し袋、五徳、鍋敷き等の調理用具類;皿、コップ、椀、箸(菜箸を含む)、スプーン、フォーク、ナイフ、蟹甲殻類大腿部歩脚身取出器具(カニスプーン、カニフォーク)等の食器類;エプロン、白衣、マスク、手袋、靴、靴下、下着、帽子、眼鏡等の衣服類(人体に装着して用いる物品);食品用ラミネートフィルム等の食品用包装フィルム、包装用チューブ、食品用収納ボトル、プラスチック性密閉容器等の食品包装部材;その他、干物干し網、ホース、まな板立て、食器立て、スポンジ、たわし、洗剤容器、砥石、シャープナーや、これらの構成部材等が挙げられるが、これらに限定されない。
 特に、本発明の成形体は、調理器具類、調理用具類、食品包装部材の一部もしくは全部に使用されるのが好ましい。
 これにより、このような成形体は、各種成形体の中でも、特に、その少なくとも一部が、食品の製造、加工、包装現場等で、食品に混入するおそれが高い。したがって、本発明が上記のような成形体に適用されることにより、本発明の効果がより顕著に発揮される。
 また、医療現場で適用した場合、例えば、手術時等における、体内への医療器具、医療用具の置き忘れ等が発生した場合に、容易に検出することができ、重大な医療過誤事件への発展をより効果的に防止することができる。
 成形体の製造方法としては、各種成形方法を用いることができ、例えば、射出成形法(インサート成形法、多色成形法、サンドイッチ成形法、インジェクション成形法等)、押出成形法、インフレーション成形法、Tダイフィルム成形法、ラミネート成形法、ブロー成形法、中空成形法、圧縮成形法、カレンダー成形法等の成形法、光造形法、三次元積層造形法等が挙げられる。
 また、樹脂組成物が硬化性樹脂を含む場合、当該硬化性樹脂の硬化反応を行う。硬化反応は、硬化性樹脂の種類等により異なるが、加熱や紫外線等のエネルギー線の照射等により行うことができる。
 また、成形体の製造時には、本発明の樹脂組成物に加え、他の材料(例えば、希釈用の樹脂材料等)を用いてもよい。
 また、成形体の製造時には、複数種の本発明の樹脂組成物を組み合わせて用いてもよい。
 また、成形体が、前述した樹脂組成物以外の材料を用いて形成された基部と、当該基部上に設けられ、本発明の樹脂組成物を用いて形成された表面層とを有する場合、上記のような方法や鋳造、鍛造、粉末射出成型法(PIM(Powder Injection Molding))等の方法により製造された基部上に、ディッピング、刷毛塗り等の塗装法、インクジェット法等の各種印刷法等を用いて表面層を形成して製造してもよい。
 また、成形体の成形時に着磁してもよい。これにより、成形体の金属探知機による検出のされやすさ、検出の安定性をより向上させることができる。
 また、成形体は、上記のような成形方法により得られた成形体に対し、例えば、研削、研磨等の後処理を施すことにより製造してもよい。
 以上、本発明の好適な実施形態について説明したが、本発明は、これらに限定されない。
 例えば、前述した実施形態では、樹脂組成物において、フェライト粉が樹脂材料中に分散して存在している場合について中心的に説明したが、本発明の樹脂組成物において、例えば、フェライト粉は、液体中に沈降しており、必要に応じて撹拌等により分散させて、使用してもよい。また、例えば、本発明の樹脂組成物は、揮発性の液体中に、フェライト粉と、樹脂粒子とが分散した分散体であってもよい。また、本発明の樹脂組成物は、例えば、フェライト粉と樹脂粉末とが単に混合された構成であってもよい。
 以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されない。
 《1》フェライト粉の製造
 各実施例および各比較例のフェライト粉を以下のようにして製造した。
(実施例A1)
 まず、FeとSrCOとを用意し、これらを、モル比で、5.6:1.0の割合で、ヘンシェルミキサーに投入し、10分間乾式混合、造粒した。
 固定式電気炉を用いて、得られた造粒物を、大気中、1075℃で4時間(ピーク)焼成した。
 さらに、上記焼成で得られた焼成物を、ビーズミルを用いて固形分:60質量%で30分間という条件で湿式粉砕し、洗浄、脱水、乾燥後、大気中、850℃で1時間(ピーク)熱処理し、フェライト粉を得た。
 このようにして得られたフェライト粉を構成する粒子(ハードフェライト粒子)中におけるSrの含有率は、8.78質量%、Feの含有率は、62.3質量%であった。
 フェライト粉を構成する粒子中における金属元素(Fe、Sr等)の含有量は、以下のようにして求めた。すなわち、フェライト粒子:0.2gを秤量し、純水:60mlに1Nの塩酸:20mlおよび1Nの硝酸:20mlを加えた混合物を加熱し、フェライト粒子を完全溶解させた水溶液を準備し、ICP分析装置(島津製作所製、ICPS-1000IV)を用いた測定を行うことにより、各金属元素の含有量を求めた。なお、後に述べる各実施例および各比較例についても同様にして求めた。
 また、フェライト粉の構成粒子の体積平均粒径は、1.8μmであった。
 体積平均粒径は、以下のような測定により求めた。すなわち、まず、試料としてのフェライト粉:10gと水:80mlとを100mlのビーカーに入れ、分散剤(ヘキサメタリン酸ナトリウム)を2滴添加した。次いで、超音波ホモジナイザー(SMT.Co.LTD.製UH-150型)を用い分散を行った。このとき、超音波ホモジナイザーの出力レベルを4に設定し、20秒間分散を行った。その後、ビーカー表面にできた泡を取り除き、マイクロトラック粒度分析計(例えば、日機装株式会社製、Model9320-X100等)に導入し、測定を行った。なお、後に述べる各実施例および各比較例についても同様にして求めた。
 また、フェライト粉について、振動試料型磁気測定装置を用いて測定を行ったところ、飽和磁化σs:55.8A・m/kg、残留磁化σr:33.4A・m/kg、保磁力Hc:285kA/mであった。
 上記の磁気特性は以下のようにして求めた。すなわち、まず、内径5mm、高さ2mmのセルにフェライト粉を詰めて振動試料型磁気測定装置(東英工業社製 VSM-C7-10A)にセットした。次に、印加磁場を加え、10K・1000/4π・A/mまで掃引し、次いで、印加磁場を減少させ、ヒステリシスカーブを作製した。その後、このカーブのデータより飽和磁化σs、残留磁化σrおよび保磁力Hcを求めた。なお、後に述べる各実施例および各比較例についても同様にして求めた。
 また、ハードフェライト粉の陽イオン含有量の測定を次のようにして行った。
 まず、フェライト粉1gに超純水(メルク株式会社製 Direct-Q UV3)10mlを加え、超音波を30分照射してイオン成分を抽出した。
 次に、得られた抽出液の上澄みを前処理用のディスポーザブルディスクフィルター(東ソー株式会社製 W-25-5、孔径0.45μm)にてろ過して測定試料とした。
 次に、イオンクロマトグラフィーにて、測定試料に含まれる陽イオン成分を下記条件で定量分析し、フェライト粉の含有率に換算した。
‐ 分析装置:東ソー株式会社製 IC-2010
‐ カラム:TSKgel SuperIC-Cation HSII(4.6mmI.D.×1cm+4.6mmI.D.×10cm)
‐ 溶離液:メタンスルホン酸(3.0mmol/L)+18-クラウン6-エーテル(2.7mmol/L)
‐ 流速:1.0mL/min
‐ カラム温度:40℃
‐ 注入量:30μL
‐ 測定モード:ノンサプレッサ方式
‐ 検出器:CM検出器
‐ 標準試料:関東化学社製陽イオン混合標準液
 一方、陰イオン含有量の測定は、燃焼法イオンクロマトグラフィーにて、フェライト粉に含まれる陰イオン成分を下記条件で定量分析することにより行った。
‐ 燃焼装置:株式会社三菱化学アナリテック製 AQF-2100H
‐ 試料量:50mg
‐ 燃焼温度:1100℃
‐ 燃焼時間:10分
‐ Ar流量:400ml/min
‐ O流量:200ml/min
‐ 加湿Air流量:100ml/min
‐ 吸収液:過酸化水素を1%含む溶離液
‐ 分析装置:東ソー株式会社製 IC-2010
‐ カラム:TSKgel SuperIC-Anion HS(4.6mmI.D.×1cm+4.6mmI.D.×10cm)
‐ 溶離液:NaHCO(3.8mmol/L)+NaCO(3.0mmol/L)
‐ 流速:1.5mL/min
‐ カラム温度:40℃
‐ 注入量:30μL
‐ 測定モード:サプレッサ方式
‐ 検出器:CM検出器
‐ 標準試料:関東化学社製陰イオン混合標準液
 なお、後に述べる各実施例および各比較例についても、上記と同様にして、陽イオン含有量の測定、および、陰イオン含有量の測定を行った。
(実施例A2、A3)
 造粒物の製造に用いる材料の比率を表1に示すようにした以外は、前記実施例A1と同様にしてフェライト粉を製造した。
(実施例A4)
 まず、FeとSrCOとを用意し、これらを、モル比で、5.75:1.0の割合で混合した。次いで、この混合物を乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)で4.5時間粉砕し、得られた粉砕物をローラーコンパクターにて、約1mm角のペレットにした。このペレットを目開き3mmの振動篩にて粗粉を除去し、次いで目開き0.5mmの振動篩にて微粉を除去した後、ロータリー式電気炉で、1080℃で3時間加熱し、仮焼成を行い、仮焼結体を得た。
 次に、乾式のメディアミル(振動ミル、1/8インチ径のステンレスビーズ)を用いて体積平均粒径が約4μmとなるまで粉砕し、その後、水を加え、さらに湿式のメディアミル(縦型ビーズミル、1/16インチ径のステンレスビーズ)を用いて10時間粉砕し、そこに、バインダーとしてのポリビニルアルコール(PVA)の水溶液(20質量%溶液)を添加しスラリーを得た。スラリー中の固形分は55.0質量%、バインダーの含有率は1.0質量%であった。
 次に、得られたスラリーを、スプレードライヤーで噴霧乾燥し、造粒物を得た。
 その後、得られた造粒物の粒度調整を行い、さらに、ロータリー式電気炉で、650℃で2時間加熱し、バインダーの除去を行った。
 その後、固定式電気炉を用いて、得られた造粒物を、大気中、1185℃で4時間(ピーク)焼成し、さらに解砕・分級を行い、フェライト粉を得た。
 このようにして得られたフェライト粉を構成する粒子(ハードフェライト粒子)中におけるSrの含有率は、8.52質量%、Feの含有率は、62.7質量%であった。
 また、フェライト粉の構成粒子の体積平均粒径は、15.0μmであった。
 また、フェライト粉について、振動試料型磁気測定装置(東英工業社製 VSM-C7-10A)を用いて測定を行ったところ、飽和磁化σs:55.3A・m/kg、残留磁化σr:32.4A・m/kg、保磁力Hc:161kA/mであった。
(実施例A5)
 仮焼結体に対する粉砕処理の条件、スプレードライヤーによる噴霧乾燥の条件、造粒物に対する粒度調整の条件を変更した以外は、前記実施例A4と同様にしてフェライト粉を製造した。
 このようにして得られたフェライト粉の構成粒子の体積平均粒径は、39.0μmであった。
(比較例A1、A2)
 造粒物の製造に用いる材料の比率を表1に示すようにした以外は、前記実施例A1と同様にしてフェライト粉を製造した。
(比較例A3)
 造粒物製造用の原料としてFeおよびカーボンブラック(C)を用い、本焼結処理を窒素雰囲気中、1000℃で4時間(ピーク)という条件で行うとともに、湿式粉砕による粉砕物に対する熱処理を省略した以外は、前記実施例A1と同様にしてフェライト粉を製造した。
(比較例A4)
 前記熱処理前に、粉砕物:90質量部に対し、融剤としてのNaCl:10質量部を添加し、熱処理後に温水を用いてデカンテーションして得られたハードフェライト粒子を洗浄液の電気伝導率が0.1mS/m以下になるまで水で洗浄し、乾燥した以外は、前記実施例A2と同様にしてフェライト粉を製造した。
(比較例A5)
 前記熱処理前に、粉砕物:50質量部に対し、融剤としてのNaSO:50質量部を添加し、熱処理後に温水を用いてデカンテーションして得られたハードフェライト粒子を洗浄液の電気伝導率が0.1mS/m以下になるまで水で洗浄し、乾燥した以外は、前記実施例A2と同様にしてフェライト粉を製造した。
 前述した各実施例および各比較例のフェライト粉の製造条件を表1にまとめて示し、フェライト粉の特性等を表2にまとめて示す。
 なお、実施例A4、A5のフェライト粉では、フェライト粉を構成するハードフェライト粒子のうち、球状度が1以上1.2以下の粒子の割合が、いずれも、90個数%以上であったのに対し、各比較例では、いずれも、球状度が1以上1.2以下の粒子の割合は、1個数%未満であった。なお、球状度は、以下のようにして求めた。すなわち、まず、走査型電子顕微鏡(例えば、FE-SEM(SU-8020、日立ハイテクノロジー社製)等)を用いて、倍率20万倍でフェライト粉を撮影した。次に、撮影したSEM画像から、フェライト粉を構成するハードフェライト粒子について、外接円直径、内接円直径を求め、その比(外接円直径/内接円直径)を球状率として求めた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 《2》樹脂組成物の製造
 前述したような各実施例および各比較例のフェライト粉を用いて、以下のようにして、樹脂組成物を製造した。
(実施例B1)
 ニーダー、ペレタイザーを用いて、前記実施例A1で製造したフェライト粉と、樹脂材料としてのポリプロピレンとを、質量比で、5.0:95.0で混合・混練、造粒した。
 これにより、体積平均粒径が3mmのペレットとしての樹脂組成物を得た。
(実施例B2~B5)
 フェライト粉とポリプロピレンとの配合比率を表3に示すように変更した以外は、前記実施例B1と同様にしてペレットとしての樹脂組成物を得た。
(実施例B6)
 ニーダー、ペレタイザーを用いて、前記実施例A1で製造したフェライト粉と、樹脂材料としてのポリプロピレンと、白色顔料としてのシリカ(日本アエロジル社製、AEROSIL200)とを、質量比で、2.0:93.0:5.0で混合・混練、造粒した。
 これにより、体積平均粒径が3mmのペレットとしての樹脂組成物を得た。
(実施例B7、B8)
 フェライト粉とポリプロピレンとシリカとの配合比率を表3に示すように変更した以外は、前記実施例B6と同様にしてペレットとしての樹脂組成物を得た。
(実施例B9~B13)
 フェライト粉の種類および樹脂材料の種類を表3に示すようにした以外は、前記実施例B8と同様にしてペレットとしての樹脂組成物を得た。
(実施例B14)
 ボールミルを用いて、前記実施例A4で製造したフェライト粉と、ナイロン樹脂粉末と、白色顔料としてのシリカ粒子とを、前記実施例B12と同様の質量比で混合し、粉状の樹脂組成物を得た。
(実施例B15)
 樹脂材料の種類を表3に示すようにした以外は、前記実施例B14と同様にして粉状の樹脂組成物を得た。
(比較例B1~B5)
 フェライト粉の種類を、それぞれ、前記比較例A1~A5で製造したフェライト粉に変更し、各成分の配合量を変更した以外は、前記実施例B6と同様にしてペレットとしての樹脂組成物を得た。
(比較例B6)
 フェライト粉の代わりに鉄粉(金属粉)を用い、各成分の配合量を変更した以外は、前記実施例B6と同様にしてペレットとしての樹脂組成物を得た。
 前述した各実施例および各比較例の樹脂組成物の条件を表3にまとめて示す。また、表3中のMFRの欄には、JIS K 7210に基づき、温度:190℃、荷重:2.16kgという条件で測定した際のメルトフローレート(MFR)の値を示す。
Figure JPOXMLDOC01-appb-T000003
 《3》成形体の製造
(実施例C1)
 ニーダー、Tダイを用いて、前記実施例B1で製造した樹脂組成物(ペレット)を溶融、成形し、厚さ:100μmのシート状の成形体を得た。
(実施例C2、C3)
 樹脂組成物として、前記実施例B1で製造したペレットの代わりに、それぞれ、前記実施例B2、B3で製造したペレットを用いた以外は、前記実施例C1と同様にしてシート状の成形体を製造した。
(実施例C4)
 ニーダーを用いて、前記実施例B4で製造した樹脂組成物(ペレット)を溶融、成形金型に射出成形し、厚さ:2mmの板状の成形体を得た。
(実施例C5)
 ニーダーを用いて、前記実施例B5で製造した樹脂組成物(ペレット)を溶融、成形金型に射出成形し、厚さ:2mmの板状の成形体を得た。
(実施例C6~C13)
 樹脂組成物として、前記実施例B1で製造したペレットの代わりに、それぞれ、前記実施例B6~B13で製造したペレットを用いた以外は、前記実施例C1と同様にしてシート状の成形体を製造した。
(実施例C14)
 固形分10質量%のPVA水溶液に実施例A1で製造したフェライト粉およびSiOを分散し、アプリケーターを用いて、塗工・乾燥し、厚さ:100μmのシート状の成形体を得た。この時、PVAの固形分、フェライト粉、および、SiOの質量比が、それぞれ、75.0質量%、20.0質量%、5.0質量%となるようにした。
(実施例C15)
 前記実施例A4で製造したフェライト粉と、液状のエポキシ樹脂と、重合開始剤と、硬化剤としての三フッ化ホウ素モノエチルアミンコンプレックスと、白色顔料としてのシリカ(日本アエロジル社製、AEROSIL200)とを混合し、この混合物をシリコーン樹脂製の成形型に流し込んだ。その後、120℃に加熱し、エポキシ樹脂を硬化させ、直径:13mm、厚さ:2.0mmの円盤状の成形体を製造した。
 得られた成形体中におけるフェライト粉の含有率は20.0質量%、樹脂材料の含有率は75.0質量%、着色剤の含有率は5.0質量%であった。
(実施例C16)
 前記実施例A1で製造したフェライト粉と、オレフィン系熱可塑性エラストマーと、白色顔料としての二酸化チタン粒子とを混合し、この混合物をシリコーン樹脂製の成形型に流し込んだ。その後、120℃に加熱し、直径:13mm、厚さ:2.0mmの円盤状の成形体を製造した。
 得られた成形体中におけるフェライト粉の含有率は20.0質量%、樹脂材料の含有率は75.0質量%、着色剤の含有率は5.0質量%であった。
(実施例C17、C18)
 樹脂材料の種類を表4に示すように変更した以外は、前記実施例C16と同様にして円盤状の成形体を製造した。
(実施例C19)
 前記実施例A1で製造したフェライト粉と、シリコーン樹脂と、白色顔料としての二酸化チタン粒子とを、成形体中におけるフェライト粉の含有率が20.0質量%、樹脂材料の含有率が75.0質量%、着色剤(顔料)の含有率が5.0質量%になるように混合し、この混合物をシリコーン樹脂製の成形型に流し込んだ。このとき、シリコーン樹脂は固形分20重量%に有機溶媒で希釈したものを用いた。65℃で成形型ごと加熱することで有機溶媒を蒸発させた後、120℃に加熱し、シリコーン樹脂を硬化させ、直径:13mm、厚さ:2.0mmの円盤状の成形体を製造した。
(実施例C20)
 樹脂材料の種類を表4に示すように変更した以外は、前記実施例C19と同様にして円盤状の成形体を製造した。
(実施例C21)
 前記実施例B14で製造した樹脂組成物(粉状)を金型に投入後加圧した後、金型から取り出し、180℃で4時間加熱し溶融・硬化させ、直径:13mm、厚さ:2.0mmの円盤状の成形体を製造した。
(実施例C22)
 前記実施例B15で製造した樹脂組成物(粉状)を金型に投入後加圧した後、金型から取り出し、180℃で4時間加熱し溶融・硬化させ、直径:13mm、厚さ:2.0mmの円盤状の成形体を製造した。
(比較例C1~C6)
 樹脂組成物として、前記実施例B1で製造したペレットの代わりに、それぞれ、前記比較例B1~B6で製造したペレットを用いた以外は、前記実施例C1と同様にしてシート状の成形体を製造した。
 前述した各実施例および各比較例の成形体の条件を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
 《4》成形体についての評価
 《4-1》金属探知機による検出
 前述した各実施例および各比較例で製造した成形体について、ベルトコンベア式の金属探知機(システムスクエア社製、META-HAWKII)を通過させ、成形体を検出することができる感度(レベルメーター(F値、S値)、鉄球感度、SUS球感度)を求めた。
 《4-2》マイクロ波照射時における異常加熱の有無
 前述した各実施例および各比較例で製造した成形体について、マイクロ波照射時における異常加熱の有無を確認するため、市販の電子レンジを用いて600W、5分間加熱し、このときの各成形体の状態を、以下の基準に従い評価した。
  ○:異常な加熱がほとんど認められない。
  △:適切な範囲内での成形体の温度上昇が認められた。
  ×:成形体の以上加熱が認められ、成形体の焦げ等が確認された。または、電子レンジ内に火花が発生する等の異常が認められ、評価を中止した。
 なお、成形体をシート状に成形した実施例C1~C3、C6~C14、比較例C1~C6については、80mm×60mmサイズに切断し、切片について評価を行った。実施例C4、C5、C15~C22については得られた成形体をそのまま評価に使用した。
 これらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、本発明では、金属探知機で安定的に検出することができる成形体を得ることができた。また、本発明では、成形体の表面性状の制御を好適に行うことができ、粉末を含むことによる不本意な凹凸の発生も効果的に防止されていた。また、本発明では、着色剤により、成形体を、様々な色に調整することが可能であった。これに対し、比較例では、満足のいく結果が得られなかった。
 本発明のフェライト粉は、金属探知機で検出可能なフェライト粉であって、Srを7.8質量%以上9.0質量%以下、Feを61.0質量%以上65.0質量%以下、含有するハードフェライト粒子を含む。そのため、金属探知機で安定的に検出することができる成形体の製造に好適に用いることのできるフェライト粉を提供することができる。従って、本発明のフェライト粉は、産業上の利用可能性を有する。

Claims (15)

  1.  金属探知機で検出可能なフェライト粉であって、
     Srを7.8質量%以上9.0質量%以下、Feを61.0質量%以上65.0質量%以下、含有するハードフェライト粒子を含み、
     イオンクロマトグラフィーにより測定されるNa量が1ppm以上200ppm以下であることを特徴とするフェライト粉。
  2.  前記フェライト粉の構成粒子の体積平均粒径が0.1μm以上100μm以下である請求項1に記載のフェライト粉。
  3.  10K・1000/4πA/mの磁場をかけたときのVSM測定による残留磁化が25A・m/kg以上40A・m/kg以下である請求項1または2に記載のフェライト粉。
  4.  10K・1000/4πA/mの磁場をかけたときのVSM測定による保磁力が39.7kA/m以上320kA/m以下である請求項1ないし3のいずれか1項に記載のフェライト粉。
  5.  イオンクロマトグラフィーにより測定されるCl量が1ppm以上100ppm以下である請求項1ないし4のいずれか1項に記載のフェライト粉。
  6.  イオンクロマトグラフィーにより測定されるS量が1ppm以上1000ppm以下である請求項1ないし5のいずれか1項に記載のフェライト粉。
  7.  請求項1ないし6のいずれか1項に記載のフェライト粉と、
     樹脂材料とを含むことを特徴とする樹脂組成物。
  8.  前記樹脂材料中に、前記フェライト粉が分散して存在している請求項7に記載の樹脂組成物。
  9.  前記樹脂組成物中における前記フェライト粉の含有率が5.0質量%以上90質量%以下である請求項7または8に記載の樹脂組成物。
  10.  前記樹脂材料は、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール(PVA)、フッ素系樹脂、シリコーンゴム、ブタジエンゴム、熱可塑性エラストマー、エポキシ樹脂およびシリコーン樹脂よりなる群から選択される1種または2種以上を含む請求項7ないし9のいずれか1項に記載の樹脂組成物。
  11.  請求項7ないし10のいずれか1項に記載の樹脂組成物を用いて形成された部位を有することを特徴とする成形体。
  12.  前記フェライト粉の含有率が2.0質量%以上20質量%以下である請求項11に記載の成形体。
  13.  前記成形体は、食品の製造、加工、包装現場で用いられる請求項11または12に記載の成形体。
  14.  前記成形体は、調理器具類、調理用具類、食品包装部材の一部もしくは全部に使用される請求項13に記載の成形体。
  15.  前記成形体は、表面から厚さ方向に1.0mm以内の領域に前記フェライト粉を含む請求項11ないし14のいずれか1項に記載の成形体。
PCT/JP2017/012438 2016-03-31 2017-03-27 フェライト粉、樹脂組成物および成形体 WO2017170427A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780020465.5A CN108883947A (zh) 2016-03-31 2017-03-27 铁氧体粉、树脂组合物及成型体
US16/083,533 US20190040226A1 (en) 2016-03-31 2017-03-27 Ferrite powder, resin composition, and molded article
EP17774964.5A EP3438055B1 (en) 2016-03-31 2017-03-27 Ferrite powder, resin composition, and molded article
JP2018508002A JPWO2017170427A1 (ja) 2016-03-31 2017-03-27 フェライト粉、樹脂組成物および成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071500 2016-03-31
JP2016-071500 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170427A1 true WO2017170427A1 (ja) 2017-10-05

Family

ID=59965595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012438 WO2017170427A1 (ja) 2016-03-31 2017-03-27 フェライト粉、樹脂組成物および成形体

Country Status (6)

Country Link
US (1) US20190040226A1 (ja)
EP (1) EP3438055B1 (ja)
JP (1) JPWO2017170427A1 (ja)
CN (1) CN108883947A (ja)
TW (1) TW201806873A (ja)
WO (1) WO2017170427A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019146661A1 (ja) * 2018-01-23 2021-03-25 パウダーテック株式会社 複合粒子、粉末、樹脂組成物および成形体
JP7432413B2 (ja) 2020-03-19 2024-02-16 住友理工株式会社 塩化ビニル系樹脂組成物およびその成形体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3497153B1 (en) 2016-10-03 2020-07-22 Viskase Companies, Inc. Method of manufacturing food packaging cellulosic films and food packaging cellulosic films thus produced
US11969928B2 (en) * 2016-10-03 2024-04-30 Viskase Companies, Inc. Method of manufacturing food packaging plastic films and food packaging plastic films thus produced
US11679991B2 (en) 2019-07-30 2023-06-20 Rogers Corporation Multiphase ferrites and composites comprising the same
TW202116700A (zh) 2019-09-24 2021-05-01 美商羅傑斯公司 鉍釕m型六方晶系鐵氧體、包含彼之組合物及複合物、及製造方法
US11783975B2 (en) * 2019-10-17 2023-10-10 Rogers Corporation Nanocrystalline cobalt doped nickel ferrite particles, method of manufacture, and uses thereof
GB2606909A (en) 2020-02-21 2022-11-23 Rogers Corp Z-type hexaferrite having a nanocrystalline structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145303A (en) * 1979-04-28 1980-11-12 Toda Kogyo Corp Manufacture of hexagonal plate shaped magnetplumbite type ferrite particle powder
JPH0820066A (ja) * 1994-07-07 1996-01-23 Idemitsu Petrochem Co Ltd 部分発泡熱成形容器とその製造方法
JP2002260913A (ja) * 2001-03-01 2002-09-13 Tdk Corp 磁性酸化物焼結体およびこれを用いた高周波回路部品
WO2016117648A1 (ja) * 2015-01-22 2016-07-28 パウダーテック株式会社 六角板状フェライト粉及びその製造方法、並びに該フェライト粉を用いた樹脂組成物及び成型体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713758B2 (ja) * 1995-07-31 2005-11-09 住友化学株式会社 鉄含有複合酸化物粉末の製造方法
RO116754B1 (ro) * 1997-06-24 2001-05-30 Icpe S.A. Procedeu de obţinere a unor componente magnetice cu memorie
CN1179911C (zh) * 2003-04-30 2004-12-15 武汉众兴磁业技术开发有限公司 烧结各向异性永磁铁氧体的生产方法
JP2006351560A (ja) * 2005-06-13 2006-12-28 Tdk Corp フェライト焼結磁石の製造方法
WO2007005487A2 (en) * 2005-06-30 2007-01-11 Nova Chemicals Inc. Magnetic composite materials and articles containing such
JP4877513B2 (ja) * 2007-03-14 2012-02-15 戸田工業株式会社 ボンド磁石用フェライト粒子粉末、ボンド磁石用樹脂組成物ならびにそれらを用いた成型体
CN101205138A (zh) * 2007-03-23 2008-06-25 横店集团东磁股份有限公司 一种烧结永磁铁氧体料粉的制造方法
CN101684004A (zh) * 2008-09-26 2010-03-31 杜小青 柠檬酸法制备纳米SrFe12O19工艺
CN101492286A (zh) * 2009-01-13 2009-07-29 沈阳选矿机械研究所 一种具有高断裂韧性的永磁铁氧体的制备方法
CN101870579A (zh) * 2010-06-10 2010-10-27 上海应用技术学院 一种永磁锶铁氧体材料及其制备方法
CN104350029B (zh) * 2012-06-07 2017-07-18 Tdk株式会社 烧结磁铁用Sr铁氧体颗粒的制造方法、Sr铁氧体颗粒的使用方法、Sr铁氧体烧结磁铁及其制造方法、以及马达和发电机
WO2014058067A1 (ja) * 2012-10-11 2014-04-17 Tdk株式会社 Srフェライト粉末及びSrフェライト焼結磁石の製造方法、並びにモータ及び発電機
CN102898797A (zh) * 2012-11-11 2013-01-30 桂林理工大学 一种改性聚酯耐热粘结永磁材料及其制备方法
CN103626485B (zh) * 2013-12-13 2015-03-04 湖南航天磁电有限责任公司 一种永磁铁氧体预烧料的生产方法
CN104211388B (zh) * 2014-09-03 2016-01-20 安徽工业大学 一种适于低温烧结的M型锶铁氧体SrFe12O19的制备方法
JP6814056B2 (ja) * 2017-01-24 2021-01-13 パウダーテック株式会社 フェライト粉および樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145303A (en) * 1979-04-28 1980-11-12 Toda Kogyo Corp Manufacture of hexagonal plate shaped magnetplumbite type ferrite particle powder
JPH0820066A (ja) * 1994-07-07 1996-01-23 Idemitsu Petrochem Co Ltd 部分発泡熱成形容器とその製造方法
JP2002260913A (ja) * 2001-03-01 2002-09-13 Tdk Corp 磁性酸化物焼結体およびこれを用いた高周波回路部品
WO2016117648A1 (ja) * 2015-01-22 2016-07-28 パウダーテック株式会社 六角板状フェライト粉及びその製造方法、並びに該フェライト粉を用いた樹脂組成物及び成型体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. R. GORDANI ET AL.: "Enhanced magnetic properties of substituted Sr-hexaferrite nanoparticles synthesized by co-precipitation method", CERAMICS INTERNATIONAL, vol. 40, no. 3, April 2014 (2014-04-01), pages 4945 - 4952, XP055467345, ISSN: 0272-8842 *
See also references of EP3438055A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019146661A1 (ja) * 2018-01-23 2021-03-25 パウダーテック株式会社 複合粒子、粉末、樹脂組成物および成形体
JP7432413B2 (ja) 2020-03-19 2024-02-16 住友理工株式会社 塩化ビニル系樹脂組成物およびその成形体

Also Published As

Publication number Publication date
TW201806873A (zh) 2018-03-01
CN108883947A (zh) 2018-11-23
EP3438055A4 (en) 2019-12-04
JPWO2017170427A1 (ja) 2019-02-07
EP3438055B1 (en) 2022-05-11
EP3438055A1 (en) 2019-02-06
US20190040226A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
WO2017170427A1 (ja) フェライト粉、樹脂組成物および成形体
KR102353354B1 (ko) 페라이트 분말, 수지 조성물 및 성형체
WO2017170426A1 (ja) フェライト粉、樹脂組成物および成形体
JP6814056B2 (ja) フェライト粉および樹脂組成物
CN101955697B (zh) 具有抑菌作用的陶瓷不粘涂层及其涂覆方法
JP5515106B2 (ja) 抗菌性製品及び粉末抗菌剤
TWI814778B (zh) 複合粒子、粉末、樹脂組合物及成形體
TWI645050B (zh) 奈米尺寸的真球狀肥粒鐵粒子及其製造方法
JP2017201693A (ja) フェライト粉、樹脂組成物および成形体
JPH01268764A (ja) 抗菌性顔料粉末
KR101978393B1 (ko) 유약 조성물 및 이를 이용하여 제조한 주방 조리 용기
WO2019146661A1 (ja) 複合粒子、粉末、樹脂組成物および成形体
Muhammad et al. Some studies on the wear resistance of artificial teeth in presence of amorphous SiO2 and TiO2 fillers
JP2004141611A (ja) 厨房容器
WO2019159800A1 (ja) 複合粒子、粉末、樹脂組成物および成形体
KR102551772B1 (ko) 구리파우더가 함유된 코팅제 및 이를 이용한 조리기구의 코팅방법
Čurlej et al. SAFETY ISSUES OF MICROPLASTICS RELEASED FROM FOOD CONTACT MATERIALS
JP5843262B2 (ja) 被覆用樹脂組成物
JP6914693B2 (ja) 湿式磁粉探傷試験用蛍光磁粉及び該蛍光磁粉を用いた湿式磁粉探傷試験方法
JPS62256724A (ja) 高分子材料用導電性無機粉体の製造方法
JPH08157750A (ja) 抗菌性・防かび性塗料組成物、及びこれを用いた塗膜の形成方法
KR20210075793A (ko) 기능성 코팅제의 제조방법과 코팅제 및 코팅제를 이용한조리기구
TWM404663U (en) Melamine ware structure having antibacterial effect

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508002

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774964

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774964

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774964

Country of ref document: EP

Kind code of ref document: A1