WO2017143696A1 - 测距模组、三维扫描***以及测距方法 - Google Patents

测距模组、三维扫描***以及测距方法 Download PDF

Info

Publication number
WO2017143696A1
WO2017143696A1 PCT/CN2016/085416 CN2016085416W WO2017143696A1 WO 2017143696 A1 WO2017143696 A1 WO 2017143696A1 CN 2016085416 W CN2016085416 W CN 2016085416W WO 2017143696 A1 WO2017143696 A1 WO 2017143696A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
mirror
center point
photosensitive surface
angle
Prior art date
Application number
PCT/CN2016/085416
Other languages
English (en)
French (fr)
Inventor
武延兵
张兴
王漪
Original Assignee
京东方科技集团股份有限公司
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京大学 filed Critical 京东方科技集团股份有限公司
Priority to JP2017531668A priority Critical patent/JP6786491B2/ja
Priority to US15/535,649 priority patent/US20180356216A1/en
Priority to KR1020177017716A priority patent/KR101920586B1/ko
Priority to EP16871781.7A priority patent/EP3425330B1/en
Publication of WO2017143696A1 publication Critical patent/WO2017143696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument
    • G01C3/14Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument with binocular observation at a single point, e.g. stereoscopic type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Definitions

  • Embodiments of the present disclosure relate to a ranging module, a three-dimensional scanning system, and a ranging method.
  • 3D scanning technology is a technology that has been widely concerned in recent years. From Microsoft's Kinect, to the acquisition of Primsense by Apple, to the realsense that Intel is promoting, it belongs to 3D scanning technology.
  • the basis of 3D scanning technology is to output the distance of an object point in front of the 3D scanning device from the origin of the 3D scanning device.
  • Embodiments of the present disclosure provide a ranging module, a three-dimensional scanning system, and a ranging method.
  • a ranging module includes a camera, the camera including: a lens, a first mirror and a second mirror, a first image sensor, and a first image sensor.
  • the lens includes a lens group and has an optical axis; the first mirror and the second mirror are configured to reflect imaging light from the lens; the first image sensor corresponds to the first mirror and receives from the first The imaging light of a mirror is imaged.
  • the first image sensor has a first photosensitive surface, the first photosensitive surface having a first center point.
  • the second image sensor corresponds to the second mirror and receives imaging light from the second mirror for imaging.
  • the second image sensor has a second photosensitive surface, and the second photosensitive surface has a second center point.
  • a line connecting the first center point and the second center point is perpendicular to an optical axis of the lens.
  • the first photosensitive surface and the second photosensitive surface are inclined with respect to a line connecting the first center point and the second center point.
  • the first photosensitive surface has a first angle with respect to the line.
  • the second photosensitive surface has a second angle with respect to the connecting line. At least one of the first angle and the second angle is not zero.
  • a three-dimensional scanning system including the ranging module.
  • a ranging method using a ranging module includes: capturing an image of an object to be tested by using a lens of a camera of the ranging module; and forming two images in the first image sensor and the second image sensor of the camera according to the object to be tested Determining a vertical distance h of the object to be tested to the camera.
  • the lens includes a lens group and has an optical axis.
  • the camera also includes a first mirror and a second mirror configured to reflect from the mirror The imaging light of the head.
  • the first image sensor corresponds to the first mirror and receives imaging light from the first mirror for imaging.
  • the first image sensor has a first photosensitive surface.
  • the first photosensitive surface has a first center point.
  • the second image sensor corresponds to the second mirror and receives imaging light from the second mirror for imaging.
  • the second image sensor has a second photosensitive surface.
  • the second photosensitive surface has a second center point.
  • a line connecting the first center point and the second center point is perpendicular to an optical axis of the lens.
  • the first photosensitive surface and the second photosensitive surface are inclined with respect to a line connecting the first center point and the second center point.
  • the first photosensitive surface has a first angle with respect to the line.
  • the second photosensitive surface has a second angle with respect to the connecting line. At least one of the first angle and the second angle is not zero.
  • Figure 1 shows the relationship between the recognition distance and the test accuracy for a large-sized binocular ranging system
  • FIG. 2 is a schematic structural diagram of a ranging module according to an embodiment of the present disclosure
  • FIG. 3 illustrates a structural block diagram of a ranging module according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of another ranging module according to an embodiment of the present disclosure.
  • FIG. 5 shows a schematic structural view of a further ranging module according to an embodiment of the present disclosure.
  • the 3D scanning technology of binocular parallax ranging is one of the important technologies, which uses the camera to determine the difference in the position of the same object in the two imaging images to obtain the distance of the object.
  • Binocular disparity ranging calculates depth based on depth of field, and the farther object resolution is lower.
  • Figure 1 shows the relationship between the recognition distance and the test accuracy for a large-size binocular stereoscopic device (binocular distance 12 cm), where the abscissa indicates the distance between the camera and the object, and the ordinate indicates the unit data at the distance ( For example, 1) represents the distance.
  • the greater the distance between the camera and the object the greater the distance represented by the unit data, that is, the lower the test accuracy.
  • the volume of the terminal device that accommodates the binocular ranging device is not conducive to miniaturization and ultra-thinness of the terminal device.
  • An embodiment of the present disclosure provides a ranging module, a three-dimensional scanning system including the ranging module, and a ranging method using the ranging module, which can change the distance between the components of the ranging module, that is, In the case of not increasing the size of the ranging module, the accuracy of the ranging and the expansion of the range are realized.
  • the ranging module includes a camera.
  • the camera includes a lens, a first mirror and a second mirror, a first image sensor, and a second image sensor.
  • the lens includes a lens group and has an optical axis.
  • the first mirror and the second mirror are configured to reflect imaging light from the lens.
  • a first image sensor corresponds to the first mirror and receives imaging light from the first mirror for imaging.
  • the first image sensor has a first photosensitive surface, the first photosensitive surface having a first center point.
  • a second image sensor corresponds to the second mirror and receives imaging light from the second mirror for imaging.
  • the second image sensor has a second photosensitive surface, and the second photosensitive surface has a second center point.
  • a line connecting the first center point and the second center point is perpendicular to an optical axis of the lens.
  • the first photosensitive surface and the second photosensitive surface are inclined with respect to a line connecting the first center point and the second center point.
  • the first photosensitive surface has a first angle with respect to the line.
  • the second photosensitive surface has a second angle with respect to the connecting line. At least one of the first angle and the second angle is not zero.
  • the ranging module since the first image sensor and the second image sensor are obliquely disposed, they are no longer perpendicular to the optical axis of the lens, so that an image formed by the same object in each of the two image sensors can be increased.
  • the distance from the center point of the image sensor thereby improving the accuracy of the ranging and Extend the range.
  • the test accuracy of the distant object can be improved without changing the distance between the components of the ranging module, and the distance measurement can be realized without increasing the size of the distance measuring module.
  • the improvement of the accuracy is advantageous for realizing the miniaturization and ultra-thinness of the distance measuring module and the three-dimensional scanning system for accommodating the distance measuring module, and improving the portability.
  • a ranging module provided by an embodiment of the present disclosure, a three-dimensional scanning system including the ranging module, and a ranging method using the ranging module will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 shows a schematic structural view of the three-dimensional camera module.
  • the ranging module includes a camera 100.
  • the camera 100 includes a lens 10, a first mirror 21 and a second mirror 22, a first image sensor 41, and a second image sensor 42.
  • the lens 10 includes a lens group and has an optical axis OA.
  • the first mirror 21 and the second mirror 22 are configured to reflect the imaging light L from the lens 10.
  • the first image sensor 41 corresponds to the first mirror 21 and receives the imaging light L1 from the first mirror 21 for imaging.
  • the first image sensor 41 has a first photosensitive surface S1 having a first center point O1.
  • the second image sensor 42 corresponds to the second mirror 22 and receives imaging light L2 from the second mirror 22 for imaging.
  • the second image sensor 42 has a second photosensitive surface S2, and the second photosensitive surface S2 has a second center point O2.
  • the line O1O2 of the first center point O1 and the second center point O2 is perpendicular to the optical axis OA of the lens, and the first photosensitive surface S1 and the second photosensitive surface S2 are inclined with respect to the connection line O1O2, and the first photosensitive surface S1 is opposite to the line
  • the wire O1O2 has a first angle ⁇ 1
  • the second photosensitive surface S2 has a second angle ⁇ 2 with respect to the wire O1O2.
  • At least one of the first angle ⁇ 1 and the second angle ⁇ 2 is not zero. Accordingly, for example, the first photosensitive surface S1 is inclined and the second photosensitive surface S2 is perpendicular to the optical axis OA of the lens, or the second photosensitive surface S2 is inclined, and the first photosensitive surface S1 is perpendicular to the optical axis OA of the lens or the first photosensitive surface. Both S1 and the second photosensitive surface S2 are disposed obliquely.
  • the first angle and the second angle refer to an angle formed by the line O1O2 and the photosensitive surface, for example, a clockwise angle or a counterclockwise angle.
  • center point of the photosensitive surface may be equivalent to the center point of the image sensor.
  • At least one of the first angle ⁇ 1 and the second angle ⁇ 2 is in a range greater than 0° (degrees) and less than 90° (degrees).
  • At least one of the first angle ⁇ 1 and the second angle ⁇ 2 may be greater than or equal to 70° and less than 90°.
  • embodiments of the present disclosure are not limited thereto.
  • at least one of the first angle ⁇ 1 and the second angle ⁇ 2 may be other angles, such as 50°, 55°, 60°, or 65° and less than 90 degrees. °.
  • the first included angle may be equal to the second included angle, and the example of FIG. 2 only shows the case where the first included angle and the second included angle are equal, but embodiments of the present disclosure are not limited thereto.
  • the inclination of the first image sensor with respect to the connection O1O2 may not be equal to the inclination of the second image sensor with respect to the connection O1O2, which may be slightly different; or the first image sensor And the second image sensor can be tilted one while the other is not tilted.
  • the first image sensor and the second image sensor are opposite to the midpoint of the line O1O2 passing through the first center point and the second center point and perpendicular to the line, that is, the optical axis OA of the lens Symmetrical settings, as shown in the example in Figure 2.
  • the camera 100 may further include a spectroscopic system 30 disposed on the slave lens 10 to the first mirror 21 and On the optical path between the two mirrors 22, the imaging light L from the lens 10 is directed to the first mirror 21 and the second mirror 22, respectively.
  • the light L incident perpendicularly to the lens is illustrated as an example in FIG. 2, but the embodiment of the present disclosure is not limited thereto, for example, the light from the object to be measured may also be inclined. Injected into the lens.
  • the ranging module may further include: a storage unit for storing image information captured by the camera, in addition to the camera. a processing unit for processing the image information, and a control unit for controlling a shooting action of the camera.
  • the storage unit may be, for example, a read only memory unit (ROM) or a random read/write memory unit (RAM) or the like, such as a flash memory or the like, and the control unit may be a motor or the like.
  • ROM read only memory
  • RAM random read/write memory unit
  • the above processing unit may be a digital signal processor, two image sensors may share a single digital signal processor, or both may each use a respective digital signal processor.
  • the digital signal processor can be implemented using a general purpose computing device or a special purpose computing device such as a DSP.
  • the lens according to an embodiment of the present disclosure may be implemented by any micro lens of a glass or plastic material, and the camera 100 may also be a camera provided with a red filter.
  • the camera 100 may further include a first optical module 61 disposed between the first mirror 21 and the first image sensor 41 and configured to guide the imaging light emitted from the first mirror 21 to the first image.
  • the sensor 41; the second optical module 62 is disposed between the second mirror 22 and the second image sensor 42 and configured to guide the imaging light emitted from the second mirror 22 to the second image sensor 42, as shown in FIG. Show.
  • the first optical module 61 and the second optical module 62 are, for example, a set of optical elements such as lenses, mirrors, and the like.
  • the ranging module may include a loading station, and the first image sensor 41 and the second image sensor 42 may be disposed on the loading platform, and the loading platform may be directly disposed on the loading platform. On the outer casing of the module.
  • the number of loading stations may be one, and the side of the loading table provided with the side of the first image sensor and the side of the second image sensor disposed with respect to the first center point O1 and the second center point O2 O1O2 is inclined, and its angle of inclination is the same as the angle of the first image sensor or the second image sensor disposed on the side with respect to the line O1O2.
  • the included angles may not be strictly equal but slightly different, and these deviations are within the tolerances.
  • the side of the loading station provided with the first camera and the side provided with the second camera may be parallel to the midpoint of the line O1O2 passing through the first center point O1 and the second center point O2 and parallel to the optical axis OA Axisymmetric.
  • the number of loading stations may be two, and each image sensor is respectively disposed on a separate loading table, and the side of each loading table provided with the image sensor is inclined with respect to the connection O1O2, and the inclination angle with respect to the connection O1O2 It is equal to the inclination of the image sensor set thereon with respect to the line O1O2.
  • 4 is a structural diagram showing an example of a distance measuring module according to an embodiment of the present disclosure. As shown in FIG. 4, the loading stage 51 and 52 are respectively provided with a first image sensor 41 and a second image sensor 42.
  • the cross section of the loading platform may be triangular, as shown in FIG. 4, or may be trapezoidal, but embodiments of the present disclosure are not limited thereto, for example, the cross section of the loading table may be set to other such that the loading is enabled.
  • the stage is capable of making the inclination of the first image sensor and the second image sensor relative to the line O1O2 equal to the inclination of the corresponding image sensor.
  • the loading platform can be formed by a supporting insulating material, and the image sensor can It is fixed to the loading station in a variety of ways.
  • a mounting slot can be provided in the loading station, the inner wall of the mounting slot can be threaded, and each image sensor can be housed within a housing that can be threaded to secure the image sensor by threaded engagement.
  • a mounting hole may be formed in the loading table, and the image sensor is fixed to the loading table by rivets, bolts, or the like, but the embodiment of the present disclosure is not limited thereto.
  • a through hole may be formed in the loading stage, and the connector of the image sensor is electrically connected to the printed circuit board or the flexible circuit board through the through hole.
  • the image sensor can also be tilted by a thin rigid support having an angle at one end.
  • the image sensor is fixed to the rigid support by bolting and riveting, and the angled end of the rigid support is fixed to the outer casing of the distance measuring module, and the angle can be equal to the image sensor relative to the connection O1O2. Inclination.
  • the first image sensor 41 and the second image sensor 42 may be respectively disposed on two printed circuit boards, each of which may be disposed obliquely, and the tilt setting of the image sensor with respect to the wire O1O2 is achieved by the tilt setting of the printed circuit board.
  • two printed circuit boards provided with an image sensor may be further disposed on a loading platform formed with two ramps, the loading station being disposed on the outer casing of the distance measuring module.
  • the two ramps may be symmetrical about the optical axis OA, and the slope angle of each ramp is equal to the tilt of the two image sensors relative to the line O1O2.
  • the slope angle of the slope and the inclination of the image sensor may vary slightly within the tolerance of the error, which are within the scope of protection of the embodiments of the present disclosure.
  • the cross section of the loading platform having the slope may be an isosceles triangle or an isosceles trapezoid, and embodiments of the present disclosure are not limited thereto.
  • two printed circuit boards provided with the first image sensor 41 and the second image sensor 42 may be disposed on one loading stage or on two loading stages.
  • the loading stage in the example 1 can also be applied to the example 2, and therefore, the structure of the loading stage will not be repeatedly described here.
  • the fixing manner of the two printed circuit boards and the loading table may be riveted, welded, bolted, etc., so that the fixed connection of the printed circuit board can be realized, but the embodiment of the present disclosure is not limited thereto.
  • connection and fixing manner in which the inclination angles of the first camera and the second camera with respect to the connection line O1O2 are equal, but those skilled in the art easily think of the inclination angle.
  • the difference is that, for example, in the case where the tilt angle is not equal to the loading table, the inclination of the surface on which the image sensor is mounted with respect to the line O1O2 corresponds to the inclination of the image sensor, and therefore The inclination of the surface on which the image sensor is mounted is different from that of the connection line O1O2, and the other connections and fixing manners are also similar. For the sake of clarity and conciseness, repeated description will not be repeated here.
  • FOV horizontal and vertical field of view
  • FOV 75, 60
  • focal length It is a 2.4mm camera.
  • the first image sensor and the second image sensor in the embodiments of the present disclosure may be image sensors of the same type or different types, and the image sensor may be a CCD (Charge-coupled Device) image.
  • a sensor or a (Complementary Metal-Oxide Semiconductor) CMOS image sensor or the like may be a CCD image sensor, a CMOS image sensor or the like having different specifications, but embodiments of the present disclosure are not limited thereto.
  • the distance measuring module of the embodiment of the present disclosure by tilting the lines of the two image sensors with respect to the center points of the two photosensitive surfaces of the two image sensors, it is possible to expand the same object in each of the two image sensors.
  • the distance between the formed image point and the center point of the image sensor whereby the ranging accuracy can be improved and the range can be expanded.
  • the distance measuring module according to the embodiment of the present disclosure can improve the testing accuracy of a distant object without changing the size of the existing ranging module, and is advantageous for implementing the ranging module and the receiving.
  • the three-dimensional scanning system of the distance measuring module is miniaturized and thinned, and the degree of portability is improved.
  • the two image sensors in the three-dimensional camera module have exactly the same inclination angle, thereby further improving the ranging accuracy of the distant object, and are more advantageous for implementing the ranging module and accommodating the ranging module.
  • the three-dimensional scanning system is miniaturized and ultra-thin, and the degree of portability is further improved.
  • the above description is a scheme in which the image sensor is tilted.
  • the deflection angles of the first and second mirrors in the ranging module may also be adjusted. achieve. For example, by adjusting the deflection of the mirror to adjust the projection position and projection angle of the reflected imaging light on the image sensor, the distance between the image point formed by the object on the image sensor and the center of the photosensitive surface of the image sensor is increased, thereby Increased range accuracy.
  • the scheme of adjusting the mirror may be used alone or in combination with the scheme in which the image sensor is tilted, but the embodiment of the present disclosure is not limited thereto, and for example, it is also possible to increase the object in Other ways of using the image sensor's resulting image points from the center of the photosensitive surface.
  • an embodiment of the present disclosure further provides a ranging method, in particular, a ranging method using any of the above ranging modules.
  • a ranging method according to an embodiment of the present disclosure includes:
  • Step S1 capturing an image of the object to be tested by using a camera of the ranging module
  • Step S2 determining a vertical distance h of the object to be tested to the camera according to two images formed by the object to be tested in the first image sensor and the second image sensor of the camera.
  • the camera includes a lens that includes a lens group and has an optical axis.
  • the camera also includes a first mirror and a second mirror configured to reflect imaging light from the lens, the first image sensor corresponding to the first mirror and receiving from the first mirror Imaging light to image.
  • the first image sensor has a first photosensitive surface, and the first photosensitive surface has a first center point.
  • the second image sensor corresponds to the second mirror and receives imaging light from the second mirror for imaging.
  • the second image sensor has a second photosensitive surface, and the second photosensitive surface has a second center point.
  • a line connecting the first center point and the second center point is perpendicular to an optical axis of the lens.
  • the first photosensitive surface and the second photosensitive surface are inclined with respect to a line connecting the first center point and the second center point.
  • the first photosensitive surface has a first angle with respect to the connecting line
  • the second photosensitive surface has a second angle with respect to the connecting line. At least one of the first angle and the second angle is not zero.
  • the ranging method of the ranging module described above by arranging the lines of the two image sensors with respect to the center points of the two photosensitive surfaces, the same object can be enlarged in the two image sensors. The distance from the image point formed in each of the dots to the center point of the photosensitive surface, thereby improving the ranging accuracy and increasing the range.
  • an embodiment of the present disclosure further provides a three-dimensional scanning system, including the ranging module described in the above embodiments.
  • a three-dimensional scanning system further includes a housing that is disposed inside or outside the housing.
  • the distance measuring module is disposed inside the casing
  • a camera hole is opened in the casing, and the lens of the distance measuring module is exposed to the outside through the camera hole.
  • the distance measuring module when the ranging module is disposed outside the casing, the distance measuring module further includes a casing, wherein the lens of the ranging module, an image sensor, a digital signal processor, and the like are accommodated, and the ranging module passes
  • the wire, USB interface, serial interface or parallel interface is connected to the main control circuit of the 3D scanning system.
  • the three-dimensional scanning system also includes an output device such as a display screen.
  • the three-dimensional scanning system may be a tablet computer, a smart phone, a notebook, a desktop computer, a navigator, etc.
  • the ranging module according to an embodiment of the present disclosure may also be applied to other terminal devices, The disclosed embodiments are not limited thereto.
  • the binocular parallax ranging module, the three-dimensional scanning system, and the ranging method using two image sensors, which are two image sensors are taken as an example, but The technical solution of the embodiments of the present disclosure is also applicable to a ranging module composed of a plurality of image sensors, a three-dimensional scanning system, and a ranging method using a plurality of image sensors.
  • a ranging module composed of a plurality of image sensors, a three-dimensional scanning system, and a ranging method using a plurality of image sensors.
  • the optical axis of the lens in the embodiment of the present disclosure refers to a main optical axis, which is a line connecting the lens centers of the lenses in the lens group included in the lens.
  • a three-dimensional scanning system including the ranging module as described above can extend an object in two images by tilting a line connecting the two image sensors with respect to the center of the photosensitive surface of the two image sensors
  • the distance between the image points formed by each of the sensors from the center of the photosensitive surface can improve the accuracy of ranging and widen the range.
  • the improvement of the ranging accuracy is realized, which is advantageous in achieving miniaturization and ultra-thinness of the three-dimensional scanning system, and improving the portability.
  • the above description is an image sensor tilt setting scheme.
  • the deflection angles of the first and second mirrors in the ranging module may also be adjusted. For example, by adjusting the deflection of the mirror to adjust the projection position and projection angle of the reflected imaging light on the image sensor, the distance between the image point formed by the object on the image sensor and the center of the photosensitive surface of the image sensor is increased, thereby Increased range accuracy.
  • the scheme of adjusting the mirror may be used alone or in combination with the scheme in which the image sensor is tilted, but the embodiment of the present disclosure is not limited thereto, and for example, it is also possible to increase the formed image point distance of the object in the image sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Measurement Of Optical Distance (AREA)
  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

一种测距模组、三维扫描***以及测距方法。该测距模组包括:摄像头(100)。摄像头(100)包括:镜头(10),第一和第二反射镜(21,22),第一和第二图像传感器(41,42)。镜头(10)包括透镜组且具有光轴(OA);第一和第二反射镜(21,22)构造为反射来自镜头(10)的成像光(L);第一和第二图像传感器(41,42)分别对应于所述第一和第二反射镜(21,22)且分别接收来自所述第一和第二反射镜(21,22)的成像光(L1,L2)以成像。第一和第二图像传感器(41,42)分别具有第一和第二感光面(S1,S2)。所述第一和第二感光面(S1,S2)相对于其各自的中心点的连线(O1O2)分别具有第一和第二夹角(β1,β2),所述第一夹角(β1)和所述第二夹角(β2)至少之一不为零。

Description

测距模组、三维扫描***以及测距方法 技术领域
本公开的实施例涉及一种测距模组、三维扫描***以及测距方法。
背景技术
3D扫描技术是近年来被广泛关注的技术。从微软公司的Kinect,到苹果公司收购的Primsense,再到Intel大力推广的realsense都属于3D扫描技术。3D扫描技术的基础是通过3D扫描器件,输出前方某一物点距离3D扫描器件的原点的距离。
发明内容
本公开的实施例提供一种测距模组、三维扫描***以及测距方法。
根据本公开的至少一个实施例,提供一种测距模组。该测距模组包括摄像头,该摄像头包括:镜头,第一反射镜和第二反射镜,第一图像传感器,以及第一图像传感器。该镜头包括透镜组且具有光轴;该第一反射镜和第二反射镜构造为反射来自所述镜头的成像光;该第一图像传感器对应于所述第一反射镜且接收来自所述第一反射镜的成像光以成像。该第一图像传感器具有第一感光面,所述第一感光面具有第一中心点。该第二图像传感器对应于所述第二反射镜且接收来自所述第二反射镜的成像光以成像。该第二图像传感器具有第二感光面,所述第二感光面具有第二中心点。所述第一中心点和所述第二中心点的连线垂直于所述镜头的光轴。所述第一感光面和所述第二感光面相对于所述第一中心点和所述第二中心点的连线倾斜。所述第一感光面相对于所述连线具有第一夹角。所述第二感光面相对于所述连线具有第二夹角。所述第一夹角和所述第二夹角至少之一不为零。
根据本公开的至少一个实施例,还提供一种三维扫描***,包括所述的测距模组。
根据本公开的实施例,还提供一种利用测距模组的测距方法。该方法包括:利用所述测距模组的摄像头的镜头拍摄待测物体的影像;以及根据所述待测物体在所述摄像头的第一图像传感器和第二图像传感器中所成的两个像确定所述待测物体到所述摄像头的垂直距离h。所述镜头包括透镜组且具有光轴。所述摄像头还包括第一反射镜和第二反射镜,构造为反射来自所述镜 头的成像光。所述第一图像传感器对应于所述第一反射镜且接收来自所述第一反射镜的成像光以成像。所述第一图像传感器具有第一感光面。所述第一感光面具有第一中心点。所述第二图像传感器对应于所述第二反射镜且接收来自所述第二反射镜的成像光以成像。所述第二图像传感器具有第二感光面。所述第二感光面具有第二中心点。所述第一中心点和所述第二中心点的连线垂直于所述镜头的光轴。所述第一感光面和所述第二感光面相对于所述第一中心点和所述第二中心点的连线倾斜。所述第一感光面相对于所述连线具有第一夹角。所述第二感光面相对于所述连线具有第二夹角。所述第一夹角和所述第二夹角至少之一不为零。
附图说明
以下将结合附图对本公开的实施例进行更详细的说明,以使本领域普通技术人员更加清楚地理解本公开的实施例,其中:
图1示出了用于大尺寸的双目测距***的识别距离与测试精度的关系;
图2示出了根据本公开实施例的测距模组的结构示意图;
图3示出了根据本公开实施例的测距模组的结构框图;以及
图4示出了根据本公开实施例的另一测距模组的结构示意图;
图5示出了根据本公开实施例的又一测距模组的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或 者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在立体视觉测距技术中,双目视差测距的3D扫描技术是重要的技术之一,其利用摄像头,判断同一物体在两幅成像画面中位置的不同从而获取物体的距离。
双目视差测距根据景深计算深度,越远的物体分辨率越低。图1示出了用于大尺寸的双目立体视觉装置(双目距离12cm)的识别距离与测试精度的关系,其中横坐标表示摄像头与物体的距离,纵坐标表示在该距离下单位数据(例如,1)代表的距离。如图1所示,摄像头与物体的距离越大,单位数据代表的距离越大,也就是,测试精度越低。应用中,为了提高远距离测试精度,通常需要增加两个摄像头之间的距离,然而两个摄像头之间的距离越大,双目测距装置所占的空间的就越大,这势必会增加容置该双目测距装置的终端设备的体积,不利于该终端设备的小型化、超薄化。
本公开的实施例提供一种测距模组、包括该测距模组的三维扫描***以及采用该测距模组的测距方法,能够在不改变测距模组部件之间的距离,即,在不增加测距模组的尺寸的情况下,实现测距精度的提高以及量程的扩大。
该测距模组包括摄像头。该摄像头包括:镜头,第一反射镜和第二反射镜,第一图像传感器,以及第二图像传感器。该镜头包括透镜组且具有光轴。第一反射镜和第二反射镜构造为反射来自所述镜头的成像光。第一图像传感器对应于所述第一反射镜且接收来自所述第一反射镜的成像光以成像。第一图像传感器具有第一感光面,所述第一感光面具有第一中心点。第二图像传感器对应于所述第二反射镜且接收来自所述第二反射镜的成像光以成像。第二图像传感器具有第二感光面,所述第二感光面具有第二中心点。所述第一中心点和所述第二中心点的连线垂直于所述镜头的光轴。所述第一感光面和所述第二感光面相对于所述第一中心点和所述第二中心点的连线倾斜。所述第一感光面相对于所述连线具有第一夹角。所述第二感光面相对于所述连线具有第二夹角。所述第一夹角和所述第二夹角至少之一不为零。
在该测距模组中,由于第一图像传感器和第二图像传感器倾斜设置,不再垂直于所述镜头的光轴,从而能够增加同一物体在两个图像传感器的每个中所形成的像点到图像传感器的中心点的距离,由此,能够提升测距精度且 延长量程。在本公开的实施例中,在不改变测距模组部件之间的距离的情况下,能够提高对远距离物体的测试精度,在不增加测距模组的尺寸的情况下,实现测距精度的提高,有利于实现测距模组以及容置该测距模组的三维扫描***的小型化、超薄化,提高便携程度。以下将结合附图对本公开实施例提供的测距模组、包括该测距模组的三维扫描***以及采用该测距模组的测距方法进行详细说明。
本公开的实施例提供一种测距模组,图2示出了该三维摄像头模组的结构示意图。如图2所示,测距模组包括摄像头100。摄像头100包括:镜头10,第一反射镜21和第二反射镜22,第一图像传感器41,以及第二图像传感器42。镜头10包括透镜组且具有光轴OA。第一反射镜21和第二反射镜22构造为反射来自镜头10的成像光L。第一图像传感器41对应于第一反射镜21且接收来自第一反射镜21的成像光L1以成像。第一图像传感器41具有第一感光面S1,第一感光面S1具有第一中心点O1。第二图像传感器42对应于第二反射镜22且接收来自第二反射镜22的成像光L2以成像。第二图像传感器42具有第二感光面S2,第二感光面S2具有第二中心点O2。
这里,第一中心点O1和第二中心点O2的连线O1O2垂直于镜头的光轴OA,第一感光面S1和第二感光面S2相对于连线O1O2倾斜,第一感光面S1相对于连线O1O2具有第一夹角β1,第二感光面S2相对于连线O1O2具有第二夹角β2。
例如,在本公开的实施例中,第一夹角β1和第二夹角β2至少之一不为零。相应地,例如,第一感光面S1倾斜而第二感光面S2垂直于镜头的光轴OA,或第二感光面S2倾斜而第一感光面S1垂直于镜头的光轴OA或者第一感光面S1和第二感光面S2二者均倾斜设置。
这里,为了描述的方便,第一夹角和第二夹角指的是连线O1O2与感光面所成的角,例如,可以是顺时针方向的角或者是逆时针方向的角。
还需要注意的是,在本公开的实施例中,为了简化和便于描述,感光面的中心点可以被等同于图像传感器的中心点。
示例性地,第一夹角β1和第二夹角β2至少之一在大于0°(度)且小于90°(度)的范围内。
由图2可见,由于感光面倾斜,待测物体在图像传感器上的像点距感光面中心点的距离增加,从而在图像传感器密度一定的情况下,提高了测距精 度。
例如,为了使得测距精度被更大程度的提高,第一夹角β1和第二夹角β2至少之一可以大于等于70°且小于90°。但是本公开的实施例并不限于此,例如,第一夹角β1和第二夹角β2至少之一还可以是其他角度,例如大于等于50°、55°、60°或65°且小于90°。
示例性地,第一夹角可以等于第二夹角,图2的示例仅示出了第一夹角和第二夹角相等的情况,但是本公开的实施例并不限于此。
本领域的普通技术人员应该注意的是,第一图像传感器相对于连线O1O2的倾角也可以不等于第二图像传感器相对于连线O1O2的倾角,二者可以略有差别;或者第一图像传感器和第二图像传感器可以一个倾斜而另一个不倾斜。示例性地,第一图像传感器和第二图像传感器相对于通过第一中心点和第二中心点的连线O1O2的中点且与所述连线垂直的轴,也就是,镜头的光轴OA对称设置,如图2的示例所示。
在一个或多个实施方式中,对于单镜头的双目视差测距模组,如图2所示,摄像头100还可以包括分光***30,其设置在从镜头10到第一反射镜21以及第二反射镜22之间的光路上,将来自镜头10的成像光L分别射向第一反射镜21和第二反射镜22。
需要说明的是,为了描述的方便,图2中以垂直入射到镜头的光L作为示例进行了说明,但是本公开的实施例并不限于此,例如,来自待测物体的光线也可以是倾斜入射到镜头。
示例性地,如图3所示,根据本公开第一实施例的测距模组,该测距模组除了包括摄像头外,还可以包括:存储单元,用于存储所述摄像头拍摄的图像信息;处理单元,用于处理所述图像信息;控制单元,用于控制所述摄像头的拍摄动作。
该存储单元例如可以为只读存储单元(ROM)或随机读写存储单元(RAM)等,例如闪存等,控制单元可以为马达等。
例如,以上处理单元可以为数字信号处理器,两个图像传感器可以共用一个数字信号处理器,或者二者分别采用各自的数字信号处理器。该数字信号处理器可以使用通用计算装置或专用计算装置(例如DSP)实现。
示例性地,根据本公开实施例的镜头可以由玻璃或塑料材质的任意微镜头实现,摄像头100还可以为设置有红色滤光片的摄像头。
示例性地,摄像头100还可以包括:第一光学模块61,设置在第一反射镜21与第一图像传感器41之间,构造为将从第一反射镜21出射的成像光引导到第一图像传感器41;第二光学模块62,设置在第二反射镜22与第二图像传感器42之间,构造为将从第二反射镜22出射的成像光引导到第二图像传感器42,如图5所示。第一光学模块61和第二光学模块62例如为一组光学元件,诸如透镜,反射镜等。
下面对测距模组中第一和第二图像传感器的倾斜设置方式进行示例性描述。
示例1
示例性地,为了实现图像传感器的倾斜设置,该测距模组可以包括装载台,第一图像传感器41和第二图像传感器42可以设置在该装载台上,该装载台可以直接设置在该测距模组的外壳上。
示例性地,该装载台的数量可以为一个,该装载台的设置有第一图像传感器的侧面和设置有第二图像传感器的侧面相对于第一中心点O1和第二中心点O2的连线O1O2倾斜,且其倾斜的角度与该侧面上所设置的第一图像传感器或第二图像传感器相对于连线O1O2的夹角相同。另一方面,由于工艺偏差,夹角可能不能严格相等而是略有差别,则这些偏差都在误差允许的范围内。例如,该装载台的设置有第一摄像头的侧面和设置有第二摄像头的侧面可以相对于通过第一中心点O1和第二中心点O2的连线O1O2的中点且与光轴OA平行的轴对称。
例如,装载台的数量可以为两个,每个图像传感器分别设置在独立的装载台上,每个装载台的设置有图像传感器的侧面相对于连线O1O2倾斜,且相对于连线O1O2的倾角等于其上设置的图像传感器相对于连线O1O2的倾角。图4给出了根据本公开实施例的测距模组的一个示例的结构图,如图4所示,装载台51和52上分别设置有第一图像传感器41和第二图像传感器42。
示例性地,装载台的截面可以为三角形,如图4所示,或者也可以为梯形,但是本公开的实施例并不限于此,例如,装载台的截面还可以设置成其它能使得该装载台能够使得第一图像传感器和第二图像传感器相对于连线O1O2的倾角与相应的图像传感器的倾角相等的形状。
这里,装载台可以采用具有支撑作用的绝缘材料形成,图像传感器可以 采用多种方式固定到装载台。例如,可以在装载台中开设安装槽,该安装槽的内壁可以设置有螺纹,而每个图像传感器可以被容置在壳体内,该壳体外壁可以设有螺纹,从而通过螺纹啮合固定图像传感器。或者,装载台中可以形成安装孔,通过铆钉、螺栓等将图像传感器固定到装载台,但是,本公开的实施例并不限于此。
另外,例如,装载台中可以形成通孔,通过通孔使得图像传感器的连接器电连接到印刷电路板或柔性电路板。
示例性地,也可以通过薄的一端具有弯角的刚性支撑件将图像传感器倾斜设置。例如,将图像传感器通过螺栓、铆接方式固定到刚性支撑件上,将该刚性支撑件的带有弯角的一端固定到该测距模组的外壳,弯角可以等于图像传感器相对于连线O1O2的倾角。
示例2
第一图像传感器41和第二图像传感器42可以分别设置在两个印刷电路板上,每个印刷电路板可以倾斜设置,通过印刷电路板的倾斜设置实现图像传感器相对于连线O1O2的倾斜设置。
示例性地,设置有图像传感器的两个印刷电路板可以进一步设置在形成有两个斜坡的装载台上,该装载台设置在测距模组的外壳上。
例如,这两个斜坡可以关于光轴OA对称,且每个斜坡的坡角等于两个图像传感器相对于连线O1O2的倾角。当然,在误差允许的范围内,斜坡的坡角和图像传感器的倾角可以略有差别,这些都在本公开实施例的保护范围内。
示例性地,具有斜坡的装载台的截面可以为等腰三角形或等腰梯形,本公开的实施例并不限于此。
另外,设置有第一图像传感器41和第二图像传感器42的两个印刷电路板可以设置在一个装载台,或,设置在两个装载台上。这里,示例1中的装载台也可以适用于示例2,因此,这里对装载台的结构不再做重复描述。
两个印刷电路板与装载台的固定方式,可以采用铆接、焊接、螺栓连接等方式,以便能够实现印刷电路板的固定连接,但是本公开的实施例并不限于此。
以上仅是对第一摄像头和第二摄像头相对于连线O1O2的倾角相等的连接和固定方式进行了描述,但是本领域的普通技术人员容易想到,对于倾角 不等的情况以上方式也同样适用,但是略有不同的是,例如对于装载台,在倾角不等的情况下,安装有图像传感器的面相对于连线O1O2的倾角与图像传感器的倾角对应,因此,安装有图像传感器的面相对于连线O1O2的倾角也彼此不同,其他连接和固定方式也类似,为了使描述清楚简洁,这里不再进行重复描述。
本领域的技术人员应该注意的是,在本公开的实施例中,例如,可以采用分辨率为1280*720、水平和垂直视场角FOV(α,β)为FOV(75,60)、焦距为2.4mm的摄像头。
示例性地,本公开实施例中的第一图像传感器和所述第二图像传感器可以是相同类型或不同类型的图像传感器,所述图像传感器可以为CCD(Charge-coupled Device,电荷耦合元件)图像传感器或(Complementary Metal-Oxide Semiconductor,互补金属氧化物半导体)CMOS图像传感器等,或者二者可以为规格不同的CCD图像传感器、CMOS图像传感器等,但是本公开的实施例并不限于此。
根据本公开实施例的测距模组,通过将两个图像传感器相对于这两个图像传感器的两个感光面的中心点的连线倾斜,能够扩大同一物体在两个图像传感器中每个所形成的像点与该图像传感器的中心点之间的距离,由此,能够提升测距精度且扩大量程。而且,对根据本公开实施例的测距模组,在不改变现有的测距模组的尺寸的情况下,能够提高对远距离物体的测试精度,有利于实现测距模组以及容置该测距模组的三维扫描***的小型化、超薄化,提高便携程度。进一步地,例如,三维摄像头模组中的两个图像传感器具有完全相同的倾角,从而能够进一步提升远距离物体的测距精度,更有利于实现测距模组以及容置该测距模组的三维扫描***的小型化、超薄化,更提高便携程度。
这里,需要注意的是,以上描述的是图像传感器倾斜设置的方案,进一步地,例如,为了提升测距精度,也可以通过调整测距模组中的第一和第二反射镜的偏转角度而实现。例如,通过调整反射镜的偏转从而调整其反射的成像光在图像传感器上的投射位置和投射角度,使得物体在该图像传感器上所成的像点距图像传感器的感光面中心的距离增加,从而增加了测距精度。调整反射镜的方案可以单独使用,也可以和图像传感器倾斜设置的方案结合使用,但是本公开的实施例并不限于此,例如,还可以采用能够增加物体在 图像传感器的所成的像点距感光面的中心距离的其它使用方式。
另外,本公开的实施例还提供一种测距方法,特别是利用上述任意测距模组的测距方法。根据本公开实施例的测距方法,包括:
步骤S1,利用所述测距模组的摄像头拍摄待测物体的影像;
步骤S2,根据所述待测物体在所述摄像头的第一图像传感器和第二图像传感器中所成的两个像确定所述待测物体到所述摄像头的垂直距离h。
该摄像头包括镜头,该镜头包括透镜组且具有光轴。所述摄像头还包括第一反射镜和第二反射镜,构造为反射来自所述镜头的成像光,所述第一图像传感器对应于所述第一反射镜且接收来自所述第一反射镜的成像光以成像。所述第一图像传感器具有第一感光面,所述第一感光面具有第一中心点。所述第二图像传感器对应于所述第二反射镜且接收来自所述第二反射镜的成像光以成像。所述第二图像传感器具有第二感光面,所述第二感光面具有第二中心点。
所述第一中心点和所述第二中心点的连线垂直于所述镜头的光轴。所述第一感光面和所述第二感光面相对于所述第一中心点和所述第二中心点的连线倾斜。所述第一感光面相对于所述连线具有第一夹角,所述第二感光面相对于所述连线具有第二夹角。所述第一夹角和所述第二夹角至少之一不为零。
根据本公开实施例采用以上所述的测距模组的测距方法,通过将两个图像传感器相对于这两个感光面的中心点的连线倾斜设置,能够扩大同一物体在两个图像传感器中的每个中所形成的像点到感光面中心点的距离,由此,能够提升测距精度且提升量程。
另外,本公开的实施例还提供了一种三维扫描***,包括以上实施例所述的测距模组。
根据本公开实施例的三维扫描***还包括:外壳,测距模组设置在外壳内部或外部。
例如,在测距模组设置在外壳内部的情况下,外壳中开设有摄像头孔,测距模组的镜头通过摄像头孔暴露到外部。
例如,在测距模组设置在外壳外部的情况下,该测距模组还包括壳体,其中容置测距模组的镜头、图像传感器和数字信号处理器等,该测距模组通过导线、USB接口、串行接口或并行接口连接到三维扫描***的主控电路。例如,所述三维扫描***还包括例如显示屏等输出设备。
示例性地,根据本公开实施例的三维扫描***可以是平板电脑、智能手机、笔记本、台式机、导航仪等,当然根据本公开实施例的测距模组也可以应用于其他终端设备,本公开的实施例并不限于此。
另外,应该注意的是,本公开的实施例中仅是以设置两个图像传感器的双目视差测距模组、三维扫描***和采用两个图像传感器的测距方法为例进行的描述,但是本公开实施例的技术方案也同样适用于多个图像传感器构成的测距模组、三维扫描***和采用多个图像传感器的测距方法。例如,其中部分图像传感器倾斜而其余图像传感器不倾斜,或者全部图像传感器均倾斜等,本公开的实施例并并不限于此。另外,应该注意的是,本公开实施例中的镜头的光轴是指主光轴,是镜头所包括的透镜组中共轴的各透镜的透镜中心的连线。
根据本公开实施例的包括如上所述的测距模组的三维扫描***,通过将两个图像传感器相对于这两个图像传感器的感光面中心的连线倾斜设置,能够延长物体在两个图像传感器中的每个所形成的像点距感光面中心的距离,能够提升测距精度以及扩大量程。而且,在不增加测距模组的尺寸的情况下,实现测距精度的提高,有利于实现三维扫描***的小型化、超薄化,提高便携程度。
这里,需要注意的是,以上描述的是图像传感器倾斜设置的方案,进一步地,为了提升测距精度,也可以通过调整测距模组中的第一和第二反射镜的偏转角度而实现,例如,通过调整反射镜的偏转从而调整其反射的成像光在图像传感器上的投射位置和投射角度,使得物体在该图像传感器上所成的像点距图像传感器的感光面中心的距离增加,从而增加了测距精度。调整反射镜的方案可以单独使用,也可以和图像传感器倾斜设置的方案结合使用,但是本公开的实施例并不限于此,例如,还可以采用能够增加物体在图像传感器的所成的像点距感光面的中心距离的其它方案。以上所述,仅为本公开的示例性实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的普通技术人员在本公开的实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。
本申请要求于2016年02月23日提交的名称为“测距模组、三维扫描***以及测距方法”的中国专利申请No.201610099285.8的优先权,其全文通过引用合并于本文。

Claims (18)

  1. 一种测距模组,包括摄像头,该摄像头包括:
    镜头,该镜头包括透镜组且具有光轴;
    第一反射镜和第二反射镜,构造为反射来自所述镜头的成像光;
    第一图像传感器,对应于所述第一反射镜且接收来自所述第一反射镜的成像光以成像,该第一图像传感器具有第一感光面,所述第一感光面具有第一中心点;以及
    第二图像传感器,对应于所述第二反射镜且接收来自所述第二反射镜的成像光以成像,该第二图像传感器具有第二感光面,所述第二感光面具有第二中心点,
    其中,所述第一中心点和所述第二中心点的连线垂直于所述镜头的光轴,所述第一感光面和所述第二感光面相对于所述第一中心点和所述第二中心点的连线倾斜,所述第一感光面相对于所述连线具有第一夹角,所述第二感光面相对于所述连线具有第二夹角,以及所述第一夹角和所述第二夹角至少之一不为零。
  2. 如权利要求1所述的测距模组,其中所述第一夹角和所述第二夹角至少之一在大于0°且小于90°的范围内。
  3. 如权利要求1或2所述的测距模组,其中所述第一夹角和所述第二夹角至少之一大于等于约70°且小于90°。
  4. 如权利要求1-3中任一项所述的测距模组,其中所述第一夹角与所述第二夹角大致相等。
  5. 如权利要求4所述的测距模组,其中所述第一图像传感器和所述第二图像传感器相对于通过所述第一中心点和所述第二中心点的连线的中点且与所述连线垂直的轴对称设置。
  6. 如权利要求1-3中任一项所述的测距模组,其中所述第一夹角不等于所述第二夹角。
  7. 如权利要求1-6中任一项所述的测距模组,其中所述摄像头还包括:
    分光***,设置在从所述镜头到所述第一反射镜以及第二反射镜之间的光路上,配置来将来自所述镜头的成像光分别射向所述第一反射镜和所述第二反射镜。
  8. 如权利要求1-7中任一项所述的测距模组,还包括:
    存储单元,配置来存储所述摄像头拍摄的图像信息;
    处理单元,配置来处理所述图像信息;以及
    控制单元,配置来控制所述摄像头的拍摄动作。
  9. 如权利要求1-8中任一项所述的测距模组,还包括:装载台,所述第一图像传感器和所述第二图像传感器设置在所述装载台上,
    其中所述装载台的设置有所述第一图像传感器的侧面和设置有所述第二图像传感器的侧面相对于所述第一中心点和所述第二中心点的连线倾斜。
  10. 如权利要求1-8中任一项所述的测距模组,还包括:至少两个装载台,分别构造为设置所述第一图像传感器和所述第二图像传感器,
    其中所述两个装载台的设置有所述第一图像传感器的侧面和设置有所述第二图像传感器的侧面相对于所述第一中心点和所述第二中心点的连线倾斜。
  11. 如权利要求1-5中任一项所述的测距模组,还包括:至少两个印刷电路板,其中一个印刷电路板上设置有所述第一图像传感器,另一个印刷电路板上设置有所述第二图像传感器,所述两个印刷电路板相对于所述第一中心点和所述第二中心点的连线倾斜。
  12. 如权利要求1-5中任一项所述的测距模组,其中所述第一图像传感器和所述第二传感器为CCD图像传感器或CMOS图像传感器。
  13. 如权利要求1-3中任一项所述的测距模组,其中所述第一反射镜和/或所述第二反射镜的偏转角度被调整以使得待测物体在所述第一图像传感器和/或所述第二图像传感器上所成的像距对应的图像传感器的感光面中心的距离增加。
  14. 如权利要求1-13中任一项所述的测距模组,还包括:第一光学模块,设置在第一反射镜与第一图像传感器之间,构造为将从第一反射镜出射的成像光引导到第一图像传感器;第二光学模块,设置在第二反射镜与第二图像传感器之间,构造为将从第二反射镜出射的成像光引导到第二图像传感器。
  15. 一种三维扫描***,包括:如权利要求1-14中任一项所述的测距模组。
  16. 如权利要求15所述的三维扫描***,还包括:外壳,
    其中所述外壳中形成有摄像头孔,所述测距模组设置在所述外壳内且所 述镜头通过所述摄像头孔暴露到外部。
  17. 如权利要求15所述的三维扫描***,还包括:外壳,其中所述测距模组安装在所述外壳外部。
  18. 一种利用测距模组的测距方法,包括:
    利用所述测距模组的摄像头拍摄待测物体的影像;
    根据所述待测物体在所述摄像头的第一图像传感器和第二图像传感器中所成的两个像,确定所述待测物体到所述摄像头的垂直距离h;
    其中所述摄像头包括:镜头,该镜头包括透镜组且具有光轴;第一反射镜和第二反射镜,构造为反射来自所述镜头的成像光;
    所述第一图像传感器对应于所述第一反射镜且接收来自所述第一反射镜的成像光以成像,所述第一图像传感器具有第一感光面,所述第一感光面具有第一中心点,所述第二图像传感器对应于所述第二反射镜且接收来自所述第二反射镜的成像光以成像,所述第二图像传感器具有第二感光面,所述第二感光面具有第二中心点;
    所述第一中心点和所述第二中心点的连线垂直于所述镜头的光轴,所述第一感光面和所述第二感光面相对于所述第一中心点和所述第二中心点的连线倾斜,所述第一感光面相对于所述连线具有第一夹角,所述第二感光面相对于所述连线具有第二夹角,所述第一夹角和所述第二夹角至少之一不为零。
PCT/CN2016/085416 2016-02-23 2016-06-12 测距模组、三维扫描***以及测距方法 WO2017143696A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017531668A JP6786491B2 (ja) 2016-02-23 2016-06-12 測距モジュール、3次元走査システム及び測距方法
US15/535,649 US20180356216A1 (en) 2016-02-23 2016-06-12 Distance measuring module, three-dimensional (3d) scanning system and distance measuring method
KR1020177017716A KR101920586B1 (ko) 2016-02-23 2016-06-12 거리 측정 모듈, 3차원(3d) 스캐닝 시스템 및 거리 측정 방법
EP16871781.7A EP3425330B1 (en) 2016-02-23 2016-06-12 Distance measurement module and distance measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610099285.8 2016-02-23
CN201610099285.8A CN105627933B (zh) 2016-02-23 2016-02-23 测距模组、三维扫描***以及测距方法

Publications (1)

Publication Number Publication Date
WO2017143696A1 true WO2017143696A1 (zh) 2017-08-31

Family

ID=56043087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085416 WO2017143696A1 (zh) 2016-02-23 2016-06-12 测距模组、三维扫描***以及测距方法

Country Status (6)

Country Link
US (1) US20180356216A1 (zh)
EP (1) EP3425330B1 (zh)
JP (1) JP6786491B2 (zh)
KR (1) KR101920586B1 (zh)
CN (1) CN105627933B (zh)
WO (1) WO2017143696A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108235A (zh) * 2019-06-19 2019-08-09 二八六视觉科技(佛山)有限责任公司 多目测量装置和多目测量方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105627933B (zh) * 2016-02-23 2018-12-21 京东方科技集团股份有限公司 测距模组、三维扫描***以及测距方法
US10455214B2 (en) * 2016-03-03 2019-10-22 Disney Enterprises, Inc. Converting a monocular camera into a binocular stereo camera
CN110500959A (zh) * 2019-09-29 2019-11-26 中国科学院云南天文台 一种单摄像头口内三维扫描***
CN111473766A (zh) * 2020-04-01 2020-07-31 长沙艾珀科技有限公司 一种智能拍照测距离的方法
CN112603256B (zh) * 2020-12-03 2022-10-25 昆明依利科特科技有限公司 基于瞳孔大小的高精度非接触式涉毒检测方法及检测***
CN112656366B (zh) * 2020-12-03 2022-10-25 昆明依利科特科技有限公司 一种非接触式测量瞳孔大小的方法和***
CN112672027B (zh) * 2020-12-30 2022-04-22 维沃移动通信有限公司 摄像模组及电子设备
CN113251953B (zh) * 2021-04-19 2022-07-15 霖鼎光学(上海)有限公司 一种基于立体偏折技术的镜面夹角测量装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942946A (ja) * 1995-03-07 1997-02-14 New Japan Radio Co Ltd 電子部品の測定装置、測定方法及びキャリブレーションマスク
CN102183235A (zh) * 2010-01-13 2011-09-14 株式会社理光 测距设备和模块、使用测距设备或模块的图像捕获设备
US20130321790A1 (en) * 2012-06-02 2013-12-05 Richard Kirby Three dimensional surface mapping system using optical flow
CN104506842A (zh) * 2015-01-15 2015-04-08 京东方科技集团股份有限公司 三维摄像头模组、终端设备以及测距方法
CN105627933A (zh) * 2016-02-23 2016-06-01 京东方科技集团股份有限公司 测距模组、三维扫描***以及测距方法
CN205537631U (zh) * 2016-02-23 2016-08-31 京东方科技集团股份有限公司 测距模组以及三维扫描***

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5672575A (en) * 1979-11-19 1981-06-16 Toshiba Corp Picture input unit
JPS5793208A (en) * 1980-12-01 1982-06-10 Nippon Kogaku Kk <Nikon> Optical system of distance measuring apparatus
JPS5880132A (ja) * 1981-11-06 1983-05-14 Fuji Photo Film Co Ltd 磁気記録材料
US4589030A (en) * 1983-07-25 1986-05-13 Kley Victor B Solid state camera
US5194959A (en) * 1989-12-21 1993-03-16 Ricoh Company, Ltd. and Nippon Telegraph and Telephone Corporation Image forming apparatus for forming image corresponding to subject, by dividing optical image corresponding to the subject into plural adjacent optical image parts
US5016109A (en) * 1990-07-02 1991-05-14 Bell South Corporation Apparatus and method for segmenting a field of view into contiguous, non-overlapping, vertical and horizontal sub-fields
US5153621A (en) * 1991-10-31 1992-10-06 Nview Corporation Optical system for projecting multiple images in adjoining relation without illuminance discontinuities
KR940024704A (ko) * 1993-04-08 1994-11-18 제임스 에이.에더 주사 광학 레인지파인더
US5548348A (en) * 1993-12-10 1996-08-20 Japan Aviation Electronics Industry Limited Distributed projection type liquid crystal display device
JP2001100086A (ja) * 1999-09-28 2001-04-13 Olympus Optical Co Ltd 測距装置
JP4029131B2 (ja) 2002-07-09 2008-01-09 株式会社ニコン 距離計付き双眼鏡
US8134637B2 (en) * 2004-01-28 2012-03-13 Microsoft Corporation Method and system to increase X-Y resolution in a depth (Z) camera using red, blue, green (RGB) sensing
CN2703267Y (zh) * 2004-02-15 2005-06-01 林永全 采用多个感光器件的摄像装置
US7719674B2 (en) * 2006-11-28 2010-05-18 Applied Materials South East Asia Pte. Ltd. Image splitting in optical inspection systems
JP5273356B2 (ja) * 2008-06-18 2013-08-28 株式会社リコー 複眼画像入力装置及びそれを用いた距離測定装置
JP2013236291A (ja) * 2012-05-10 2013-11-21 Sharp Corp 立体撮像装置
JP2016095243A (ja) * 2014-11-14 2016-05-26 キヤノン株式会社 計測装置、計測方法、および物品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942946A (ja) * 1995-03-07 1997-02-14 New Japan Radio Co Ltd 電子部品の測定装置、測定方法及びキャリブレーションマスク
CN102183235A (zh) * 2010-01-13 2011-09-14 株式会社理光 测距设备和模块、使用测距设备或模块的图像捕获设备
US20130321790A1 (en) * 2012-06-02 2013-12-05 Richard Kirby Three dimensional surface mapping system using optical flow
CN104506842A (zh) * 2015-01-15 2015-04-08 京东方科技集团股份有限公司 三维摄像头模组、终端设备以及测距方法
CN105627933A (zh) * 2016-02-23 2016-06-01 京东方科技集团股份有限公司 测距模组、三维扫描***以及测距方法
CN205537631U (zh) * 2016-02-23 2016-08-31 京东方科技集团股份有限公司 测距模组以及三维扫描***

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425330A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108235A (zh) * 2019-06-19 2019-08-09 二八六视觉科技(佛山)有限责任公司 多目测量装置和多目测量方法
CN110108235B (zh) * 2019-06-19 2024-05-10 广东威利坚机械集团有限公司 多目测量装置和多目测量方法

Also Published As

Publication number Publication date
JP2019508663A (ja) 2019-03-28
KR101920586B1 (ko) 2018-11-20
CN105627933A (zh) 2016-06-01
JP6786491B2 (ja) 2020-11-18
US20180356216A1 (en) 2018-12-13
KR20170131342A (ko) 2017-11-29
EP3425330A1 (en) 2019-01-09
CN105627933B (zh) 2018-12-21
EP3425330B1 (en) 2023-02-01
EP3425330A4 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
WO2017143696A1 (zh) 测距模组、三维扫描***以及测距方法
US8289409B2 (en) Compact camera module with lens array
CN112020852B (zh) 摄像机模块
EP3767937B1 (en) Camera module and electronic device
US20120287333A1 (en) Double direction camera and portable electronic device
EP3349429B1 (en) Camera module applied to terminal and terminal including same
WO2021212979A1 (zh) 图像传感器、摄像装置及电子设备
KR20190137657A (ko) 듀얼 카메라 모듈
KR102486425B1 (ko) 카메라 모듈 및 그의 초해상도 영상 처리 방법
US20220365314A1 (en) Imaging device, imaging system, and recording medium
CN111551563A (zh) 一种显示面板的多视角检测装置及检测***
KR101859380B1 (ko) 멀티 카메라 장치
CN212586269U (zh) 一种显示面板的多视角检测装置及检测***
JP5234490B2 (ja) ステレオ画像形成装置
CN205537631U (zh) 测距模组以及三维扫描***
WO2018161387A1 (zh) 用于三维成像的多镜头合成转接件组件及相机
US20190253590A1 (en) Camera Module
KR20180023354A (ko) 듀얼 카메라 모듈
KR102561935B1 (ko) 카메라 모듈
KR20140077310A (ko) 3차원 카메라 모듈
KR20090026523A (ko) 카메라 모듈
CN214627103U (zh) 摄像组件和电子设备
CN214101550U (zh) 图像传感组件、成像设备和终端
CN107483787A (zh) 一种摄像模组
CN107360357A (zh) 一种摄像模组

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531668

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016871781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177017716

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871781

Country of ref document: EP

Kind code of ref document: A1