WO2017109949A1 - 遠心圧縮機及びターボチャージャ - Google Patents

遠心圧縮機及びターボチャージャ Download PDF

Info

Publication number
WO2017109949A1
WO2017109949A1 PCT/JP2015/086278 JP2015086278W WO2017109949A1 WO 2017109949 A1 WO2017109949 A1 WO 2017109949A1 JP 2015086278 W JP2015086278 W JP 2015086278W WO 2017109949 A1 WO2017109949 A1 WO 2017109949A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
angle range
diffuser
flow path
centrifugal compressor
Prior art date
Application number
PCT/JP2015/086278
Other languages
English (en)
French (fr)
Inventor
健一郎 岩切
勲 冨田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2015/086278 priority Critical patent/WO2017109949A1/ja
Priority to EP15911386.9A priority patent/EP3369939B1/en
Priority to JP2017557629A priority patent/JP6470853B2/ja
Priority to CN201580084900.1A priority patent/CN108700089B/zh
Priority to US15/779,110 priority patent/US10837297B2/en
Publication of WO2017109949A1 publication Critical patent/WO2017109949A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/026Scrolls for radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/15Two-dimensional spiral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/25Three-dimensional helical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • This disclosure relates to a centrifugal compressor and a turbocharger.
  • Centrifugal compressors used in compressors for vehicular or marine turbochargers, etc. give kinetic energy to the fluid by the rotation of the impeller, discharge the fluid radially outward, and obtain a pressure increase using centrifugal force. is there.
  • Such a centrifugal compressor is required to have a high pressure ratio and high efficiency in a wide operating range, and various devices are applied.
  • Patent Document 1 discloses a centrifugal compressor for the purpose of reducing the occurrence of pressure pulsation.
  • the centrifugal compressor described in Patent Document 1 includes a spiral housing and a diffuser, and the transition region or tongue is reduced so as to reduce the negative pressure region in the transition region of the spiral housing or the region where the tongue is located.
  • the radius of the diffuser in the region where the part is located is expanded.
  • FIG. 10 is a schematic cross-sectional view perpendicular to the rotation axis of the centrifugal compressor according to the comparative embodiment.
  • the diffuser portion 010 has a circular shape when viewed in the axial direction, and the distance R between the outer peripheral edge 010E of the diffuser portion 010 and the rotation center O of the impeller does not depend on the circumferential position. It is constant.
  • the flow in the scroll flow path 004 becomes a decelerating flow from the winding start 004a to the winding end 004b of the scroll flow path, and the pressure at the start of winding is lower than the pressure at the end of winding. .
  • a recirculation flow fc from the winding end to the winding start is generated at the angular position of the tongue portion 012.
  • Such a recirculation flow is one of the main causes of high loss because separation occurs as a result of the main flow being rapidly drawn into the flow path connection.
  • the flow fd from the diffuser outlet 08a forms a swirling flow along the flow path wall of the scroll flow path 004.
  • the flow from the diffuser outlet is biased to the outer peripheral side region Do in the flow path cross-section of the scroll flow path (FIGS. 11 and FIG. 11).
  • Patent Document 1 discloses a configuration of a centrifugal compressor for the purpose of reducing the occurrence of pressure pulsation. However, a configuration of a centrifugal compressor for suppressing a recirculation flow in the vicinity of a tongue is disclosed. Not.
  • the present invention has been made in view of the above-described problems, and is to provide a centrifugal compressor capable of improving compressor performance by reducing a loss associated with a recirculation flow, and a centrifugal compressor including the centrifugal compressor.
  • a centrifugal compressor is a centrifugal compressor including an impeller and a casing that accommodates the impeller, and the casing has a scroll passage on an outer peripheral side of the impeller. And a diffuser part that forms a diffuser flow path that supplies compressed air compressed by the impeller to the scroll flow path, and the diffuser part has an angular range in the circumferential direction of the impeller.
  • the first diffuser part belonging to the first angle range including the angular position of the tongue of the scroll part, and the first angle in the flow direction in the scroll flow path among the angular range in the circumferential direction of the impeller
  • the outer diameter R1 of the first diffuser portion within the first angle range including the angular position of the tongue portion of the scroll flow path is the first downstream of the first angle range. Since the outer diameter R2 of the second diffuser portion within the two angle range is smaller than the outer diameter R2, the cross section of the scroll channel in the first angle range is set to the radial direction of the impeller with respect to the cross section of the scroll channel in the second angle range. It becomes easy to shift inward. For this reason, it is possible to easily guide the diffuser outlet flow from the diffuser flow path to the scroll flow path in the first angle range to a region on the inner peripheral side (radially inner side) in the downstream flow path cross section.
  • scrolling Angle position at which the diffuser outlet flow reaches the inner peripheral area in the cross section of the flow path near the tongue of the flow path (the angle at which the mass flow rate of the diffuser outlet flow in the inner peripheral area reaches a certain level) Position) can be made closer to the angular position of the tongue.
  • the recirculation flow tends to accumulate in the center of the cross section of the scroll flow path, and the center of the scroll cross section in which the low energy fluid is integrated is related to the occurrence of a surge that limits the operating limit on the low air flow side of the compressor. It is known that backflow occurs from In this regard, according to the above-described embodiment, the outer diameter of the first diffuser portion belonging to the first angle range including the angular position of the tongue portion is set to the second diffuser portion belonging to the second angle range downstream of the first angle range. Since the generation of the recirculation flow is suppressed by making it smaller than the outer diameter, the energy distribution in the cross section of the scroll flow path 4 is made uniform, which can contribute to improvement of surge characteristics (wide range). .
  • the scroll portion includes a centroid of a flow path cross section of the scroll flow path and rotation of the impeller within the first angle range.
  • a distance Ra from the center is configured to be smaller than a distance Rb between the centroid of the cross section of the scroll flow path and the rotation center of the impeller within the second angle range.
  • the flow path cross section of the scroll flow path in the first angle range is the flow of the scroll flow path in the second angle range.
  • the diffuser outlet flow from the diffuser flow path to the scroll flow path in the first angle range including the angular position of the tongue portion is changed in the flow path cross section on the downstream side. It can be made easier to guide to the region on the circumferential side (inner side in the radial direction). Thereby, generation
  • an outer diameter R1 of the first diffuser portion at an angular position of the tongue portion in a circumferential direction of the impeller satisfies 0.8R2 ⁇ R1 ⁇ R2.
  • the outer diameter of the diffuser portion when the outer diameter of the diffuser portion is reduced (when the diffuser flow path is shortened), the amount of decrease in the flow rate in the diffuser flow path is reduced, and the fluid flows into the scroll flow path at a relatively large flow rate.
  • the fluid to the scroll flow path by reducing the outer diameter R1 of the first diffuser portion.
  • the efficiency of the centrifugal compressor can be effectively increased by reducing the loss associated with the recirculation flow while suppressing the influence of the increase in the inflow speed.
  • the first angle range is included in an angle range from ⁇ 90 degrees to 90 degrees.
  • the outer diameter R1 of the first diffuser portion 14 is reduced within an angular range ( ⁇ 90 degrees to 90 degrees) near the angular position of the tongue portion 12 in the scroll flow path 4. This makes it easier to guide the diffuser outlet flow from the diffuser flow path to the scroll flow path in the vicinity of the angular position of the tongue to the inner peripheral side (radially inner side) region in the downstream flow path cross section. . Thereby, generation
  • the first angle range is included in an angle range of ⁇ 45 degrees to 45 degrees.
  • the outer diameter R1 of the first diffuser portion 14 is reduced in the angular range ( ⁇ 40 degrees to 45 degrees) near the angular position of the tongue portion 12 in the scroll flow path 4. This makes it easier to guide the diffuser outlet flow from the diffuser flow path to the scroll flow path in the vicinity of the angular position of the tongue to the inner peripheral side (radially inner side) region in the downstream flow path cross section. . Thereby, generation
  • the second angle range is the first angle range in a circumferential direction of the impeller. It is the whole angle range except.
  • the centrifugal compressor described in the above (6) over the entire angular range (the angular range in which the outer diameter of the diffuser portion hardly contributes to the suppression of the recirculation flow) excluding the first angular range in the circumferential direction of the impeller. Since the second diffuser portion having a relatively large outer diameter is provided in preference to pressure recovery, the pressure loss in the scroll channel can be effectively reduced.
  • the first diffuser portion having a relatively small outer diameter R1 is provided in the first angle range including the angular position of the tongue portion (the angle range that can easily contribute to the suppression of the recirculation flow).
  • the efficiency of the centrifugal compressor can be effectively increased by providing the second diffuser portion having a relatively large outer diameter R2 giving priority to pressure recovery in the second angle range that is unlikely to contribute to the suppression of the recirculation flow. .
  • an outer peripheral end of the first diffuser portion is directed outward in a radial direction of the impeller. It has a curved convex shape that is curved to be convex.
  • an outer peripheral edge of the first diffuser portion is directed radially inward of the impeller. It has a curved concave shape that is curved to be concave.
  • an outer diameter R1 of the first diffuser portion within the first angle range is Assuming that the angular position of the tongue is 0 degree, the angle is minimum within an angular range of -15 degrees to 15 degrees.
  • the winding diameter of the scroll passage is started by minimizing the outer diameter R1 of the first diffuser portion at or near the angular position of the tongue portion in the scroll passage. It is possible to effectively suppress the deviation of the diffuser outlet flow to the outer peripheral side region. Thereby, generation
  • a turbocharger includes the centrifugal compressor described in any one of (1) to (9) above.
  • a centrifugal compressor capable of improving compressor performance by reducing a loss caused by a recirculation flow, and a turbocharger including the same are provided.
  • FIG. 2 It is a figure for demonstrating the path
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of the other constituent elements.
  • FIG. 1 is a schematic cross-sectional view along the axial direction of a centrifugal compressor 100 according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating an example of a cross section perpendicular to the axial direction of the centrifugal compressor 100 illustrated in FIG. 1.
  • FIG. 3 is a diagram illustrating a change in the shape of the scroll flow path 4 for each predetermined angle in the circumferential direction of the centrifugal compressor 100 illustrated in FIG. 2.
  • the centrifugal compressor 100 can be applied to, for example, automobile or marine turbochargers, other industrial centrifugal compressors, blowers, and the like.
  • the centrifugal compressor 100 includes an impeller 2 and a casing 3.
  • the casing 3 includes a scroll portion 6 that forms a scroll passage 4 on the outer peripheral side of the impeller 2, a diffuser portion 10 that forms a diffuser passage 8 that supplies compressed air compressed by the impeller 2 to the scroll passage 4, Is provided.
  • the scroll flow path 4 has a circular shape, and the diffuser flow path 8 is formed linearly.
  • the diffuser portion 10 is configured by a pair of flow path walls 10 a and 10 b provided with the diffuser flow path 8 sandwiched in the axial direction of the impeller 2.
  • the scroll portion 6 and the diffuser portion 10 are hatched differently for convenience, but the casing 3 is connected at an arbitrary position regardless of the boundary position between the scroll portion 6 and the diffuser portion 10. It may be composed of a plurality of casing parts.
  • the casing 3 may include a part of a bearing housing that houses a bearing that rotatably supports the impeller 2 in addition to the compressor housing that houses the impeller 2.
  • the scroll channel 4 starts from the channel cross section 4P corresponding to the angular position of the tongue 12 (the connection position between the winding start 4a and the winding end 4b of the scroll channel 4 in the scroll unit 6).
  • the area of the cross section of the flow path increases as it goes downstream in the circumferential direction.
  • the diffuser unit 10 includes a first diffuser unit 14 that belongs to a first angle range A ⁇ b> 1 that includes the angular position of the tongue 12 of the scroll unit 6 among the angular range in the circumferential direction of the impeller 2.
  • a second diffuser portion 16 having an outer diameter R2 of the two diffuser portion 16 defined along a reference circle C centered on the rotation center O of the impeller 2.
  • the outer diameter R1 of the first diffuser portion 14 in the first angle range A1 is smaller than the outer diameter R2 of the second diffuser portion 16 in the second angle range A2. That is, the distance R1 between the outlet position Po (see FIG. 1) of the diffuser flow path 8 within the first angle range A1 and the rotation center O of the impeller 2 is the outlet position Po of the diffuser flow path 8 within the second angle range A2. It is smaller than the distance R2 between the rotation center O of the impeller 2 (see FIG. 1).
  • the centroid Ia of the flow path cross section (the flow path cross section shown by the solid line in FIG. 3) of the scroll flow path 4 in the first angle range A1 and the rotation center of the impeller 2
  • the distance Ra from O is determined from the distance Rb between the centroid Ib of the flow path cross section of the scroll flow path 4 within the second angle range A2 (the flow path cross section indicated by the one-dot chain line in FIG. 3) and the rotation center O of the impeller. It becomes easy to make it smaller.
  • the diffuser outlet flow fd from the diffuser flow path 8 to the scroll flow path 4 in the first angle range A ⁇ b> 1 is in the flow path cross section on the downstream side (flow path cross section indicated by the alternate long and short dash line). It can be easily guided to the region Di on the inner peripheral side (radially inner side).
  • the comparative example shown in FIG. 10 (the centrifugal compressor in which the outer peripheral edge 010E of the diffuser portion 010 has a circular shape when viewed in the axial direction and the outer diameter R of the diffuser portion 010 is constant regardless of the circumferential position. 5 and 6, the angular position at which the diffuser outlet flow fd reaches the area Di on the inner peripheral side in the cross section of the flow path at the winding start 4 a in the vicinity of the tongue 12 of the scroll flow path 4. (An angular position at which the mass flow rate of the diffuser outlet flow fd in the inner peripheral region Di reaches a certain level) can be easily brought close to the angular position of the tongue 12. This effectively suppresses the technical problem described with reference to FIGS. 10 and 11A to 11C, that is, the bias of the diffuser outlet flow fd to the outer peripheral region Do at the winding start 4a of the scroll flow path 4. Can do.
  • the recirculation flow fc is less likely to enter the inner peripheral region Di of the scroll flow path 4, so that the generation of the recirculation flow fc is suppressed, and the loss associated with the recirculation flow fc is reduced. Occurrence can be suppressed.
  • the necessary cross-sectional area of the scroll flow path 4 can be reduced, and the scroll portion 6 can be downsized.
  • the low-energy recirculation flow tends to accumulate in the center of the cross section of the scroll flow path 4, and the scroll in which the low-energy fluid is integrated is related to the occurrence of a surge that limits the operating limit on the low air volume side of the compressor. It is known that a backflow occurs from the center in the cross section.
  • the outer diameter R1 of the first diffuser portion 14 is made smaller than the outer diameter R2 of the second diffuser portion 16, the generation of the recirculation flow is suppressed.
  • the energy distribution in the cross section 4 is made uniform, which can contribute to improvement of surge characteristics (wide range).
  • the distance Rb between the centroid Ib of the flow path cross section of the scroll flow path 4 and the rotation center O of the impeller in the second angle range A2 is an angle in the circumferential direction of the impeller 2. It may be constant regardless of the position.
  • FIG. 7 shows the angular position in the circumferential direction of the centrifugal compressor 100 shown in FIG. 2 and the outer diameter R of the diffuser part 10 (the outer diameter R1 of the first diffuser part 14 and the outer diameter R2 of the second diffuser part 16). It is a figure which shows a relationship.
  • the outer diameter R1 of the first diffuser portion 14 within the first angle range A1 is ⁇ 15 degrees to 15 degrees when the angular position of the tongue 12 is 0 degrees ( More preferably, it may be the smallest within an angle range of -10 degrees to 10 degrees, more preferably -5 degrees to 5 degrees.
  • the outer diameter R1 of the first diffuser portion 14 decreases from the predetermined angular position ⁇ u upstream of 0 degrees toward the downstream side, and becomes the minimum near the angular position 0 degrees of the tongue 12. Further, the distance increases toward the predetermined angular position ⁇ d on the downstream side.
  • the outer diameter R2 of the second diffuser portion 16 is constant.
  • the outer peripheral region at the winding start 4a of the scroll flow path 4 is obtained. It is possible to effectively suppress the deviation of the diffuser outlet flow fd. Thereby, generation
  • the outer diameter R1 of the first diffuser portion 14 at the angular position (0 degree) of the tongue portion 12 in the circumferential direction of the impeller 2 and the second angle range A2 may satisfy 0.8R2 ⁇ R1 ⁇ R2.
  • the outer diameter of the diffuser portion when the outer diameter of the diffuser portion is reduced (when the diffuser flow path is shortened), the amount of decrease in the flow speed in the diffuser flow path is reduced, and the fluid flows into the scroll flow path at a relatively large flow speed.
  • the inflow of fluid into the scroll flow path 4 by reducing the outer diameter R1 of the first diffuser part 14 by configuring the diffuser part 10 to satisfy 0.8R2 ⁇ R1 ⁇ R2 as described above.
  • the efficiency of the centrifugal compressor 100 can be effectively increased by reducing the loss associated with the recirculation flow while suppressing the influence of the increase in speed.
  • FIG. 8 is a diagram schematically showing a first modification of the shape of the outer peripheral edge 10E of the diffuser portion 10 shown in FIG.
  • FIG. 9 is a diagram schematically showing a second modification of the shape of the outer peripheral edge 10E of the diffuser portion 10 shown in FIG.
  • the first angle range A1 is from ⁇ 90 degrees. It is included in the angle range up to 90 degrees, and the second angle range A2 may be an entire angle range excluding the first angle range A1 in the circumferential direction of the impeller 2.
  • the outer diameter R1 of the first diffuser portion 14 is relatively small in the angular range ( ⁇ 90 degrees to 90 degrees) in the vicinity of the angular position of the tongue portion 12 in the scroll flow path 4, thereby 4 can effectively suppress the deviation of the diffuser outlet flow fd to the outer peripheral region at the winding start 4a. Thereby, generation
  • the first diffuser portion 14 having the relatively small outer diameter R1 is provided in an angle range that easily contributes to the suppression of the recirculation flow, and the angle hardly contributes to the suppression of the recirculation flow.
  • the second diffuser portion 16 having a relatively large outer diameter R2 giving priority to pressure recovery in the range, the efficiency of the centrifugal compressor 100 can be effectively increased.
  • the outer peripheral edge 14 ⁇ / b> E of the first diffuser portion 14 has a curved convex shape that is curved so as to be convex outward in the radial direction of the impeller 2. It may be.
  • the outer diameter R1 of the first diffuser portion 14 can be gradually changed along the circumferential direction. The above-described effect of suppressing the recirculation flow while realizing an increase in pressure loss can be obtained.
  • the outer peripheral edge 14 ⁇ / b> E of the first diffuser portion 14 may have a curved concave shape that is curved toward the inner side in the radial direction of the impeller 2.
  • the present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 遠心圧縮機において、ケーシングは、インペラの外周側にスクロール流路を形成するスクロール部と、インペラで圧縮された圧縮空気をスクロール流路に供給するディフューザ流路を形成するディフューザ部と、を備え、ディフューザ部は、インペラの周方向における角度範囲のうち、スクロール部の舌部の角度位置が含まれる第1角度範囲に属する第1ディフューザ部と、インペラの周方向における角度範囲のうち、スクロール流路での流れ方向における第1角度範囲の下流側の第2角度範囲に属する第2ディフューザ部であって、第2ディフューザ部の外径R2がインペラの回転中心を中心とする基準円に沿って規定される第2ディフューザ部と、を含み、第1角度範囲内における第1ディフューザ部の外径R1は、第2角度範囲内における第2ディフューザ部の外径R2より小さい。

Description

遠心圧縮機及びターボチャージャ
 本開示は、遠心圧縮機及びターボチャージャに関する。
 車両用又は舶用ターボチャージャのコンプレッサ部等に用いられる遠心圧縮機は、インペラの回転によって流体に運動エネルギーを与えて径方向外側に流体を吐出し、遠心力を利用して圧力上昇を得るものである。
 かかる遠心圧縮機には、広い運転範囲において高圧力比と高効率化が求められており、種々の工夫が施されている。
 従来技術として、例えば、特許文献1には、圧力脈動の発生を低減することを目的とした遠心圧縮機が開示されている。特許文献1に記載の遠心圧縮機は、螺旋形ハウジングとディフューザとを備えており、螺旋形ハウジングの移行領域若しくは舌部の位置する領域における負圧域を低減するように、該移行領域若しくは舌部の位置する領域のディフューザの半径が拡張されている。
特表2010-529358号公報
 図10は、比較形態に係る遠心圧縮機の回転軸に垂直な概略断面図である。図10に示す比較形態では、ディフューザ部010は、軸方向視において円形形状を有しており、ディフューザ部010の外周縁010Eとインペラの回転中心Oとの距離Rは、周方向位置によらず一定である。
 一般に、遠心圧縮機の小流量作動点では、スクロール流路004内の流れは、スクロール流路の巻始め004aから巻き終わり004bにかけて減速流れとなり、巻き始めにおける圧力は巻き終わりにおける圧力よりも低くなる。このため、スクロール流路では、舌部012の角度位置において巻き終わりから巻き始めへの再循環流fcが発生する。このような再循環流は、主流が流路接続部に急激に引き込まれる結果として剥離が発生するため、高損失を生じる主要因の一つとなる。
 また、本発明者の知見によれば、図11及び図12A~図12Cに示すように、ディフューザ出口08aからの流れfdは、スクロール流路004の流路壁に沿って旋回流を形成するため、比較形態に係る円形断面形状で形成されたスクロール流路における巻始め004aでは、スクロール流路の流路断面のうち外周側の領域Doにディフューザ出口からの流れが偏ってしまう(図11及び図12A~図12Cに示す例では、舌部12の角度位置をθ=0度とし、舌部12の角度位置に対して下流側への角度位置をθとすると、θ=0度の角度位置及びθ=15度の角度位置では、領域Doにディフューザ出口からの流れが偏ってしまう)。したがって、スクロール流路における巻始めでは、図13に示すように、ディフューザ出口からの流れが充満していない内周側の領域Diに再循環流fcが流入しやすくなっており、このことが、再循環流の流量を増加させて再循環流に伴う損失を増加させる要因となっている。
 特許文献1には、圧力脈動の発生を低減することを目的とした遠心圧縮機の構成が示されているが、舌部近傍における再循環流れを抑制するための遠心圧縮機の構成は開示されていない。
 本発明は、上述した課題に鑑みなされたものであって、再循環流に伴う損失の低減によって圧縮機性能を向上可能な遠心圧縮機、及びこれを備える遠心圧縮機を提供することである。
 (1)本発明の少なくとも一実施形態に係る遠心圧縮機は、インペラと、前記インペラを収容するケーシングと、を備える遠心圧縮機であって、前記ケーシングは、前記インペラの外周側にスクロール流路を形成するスクロール部と、前記インペラで圧縮された圧縮空気を前記スクロール流路に供給するディフューザ流路を形成するディフューザ部と、を備え、前記ディフューザ部は、前記インペラの周方向における角度範囲のうち、前記スクロール部の舌部の角度位置が含まれる第1角度範囲に属する第1ディフューザ部と、前記インペラの周方向における角度範囲のうち、前記スクロール流路での流れ方向における前記第1角度範囲の下流側の第2角度範囲に属する第2ディフューザ部であって、前記第2ディフューザ部の外径R2が前記インペラの回転中心を中心とする基準円に沿って規定される第2ディフューザ部と、を含み、前記第1角度範囲内における前記第1ディフューザ部の外径R1は、前記第2角度範囲内における前記第2ディフューザ部の外径R2より小さい。
 上記(1)に記載の遠心圧縮機によれば、スクロール流路の舌部の角度位置を含む第1角度範囲内における第1ディフューザ部の外径R1が、第1角度範囲の下流側の第2角度範囲内における第2ディフューザ部の外径R2より小さいため、第1角度範囲におけるスクロール流路の流路断面を、第2角度範囲におけるスクロール流路の流路断面に対してインペラの径方向において内側にシフトさせることが容易となる。このため、第1角度範囲におけるディフューザ流路からスクロール流路へのディフューザ出口流れを、下流側の流路断面における内周側(径方向内側)の領域に導き易くすることができる。
 したがって、上述した比較形態(ディフューザ部の外周縁が軸方向視において円形形状を有しており、ディフューザ部の外径が周方向位置によらず一定である遠心圧縮機)と比較して、スクロール流路の舌部近傍の巻始めにおいて流路断面における内周側の領域にディフューザ出口流れが到達する角度位置(内周側の領域におけるディフューザ出口流れの質量流量が一定程度の水準に到達する角度位置)を、舌部の角度位置に近づけやすくなる。これにより、上述した技術的課題、すなわちスクロール流路の巻始めにおける外周側の領域へのディフューザ出口流れの偏りを効果的に抑制することができる。
 したがって、上記比較形態と比較して、スクロール流路における内周側の領域へ再循環流が入り込み難くなるため、再循環流の発生を抑制し、再循環流に伴う損失の発生を抑制することができる。また、再循環流の発生が抑制されることで、必要なスクロール流路の流路断面積を減少することができ、スクロール部を小型化することができる。
 なお、再循環流は、スクロール流路の断面内の中心部に集積する傾向にあり、圧縮機の低風量側の作動限界を制限するサージ発生に関して、低エネルギー流体の集積したスクロール断面内中心部から逆流が発生することが知られている。この点、上記実施形態によれば、舌部の角度位置を含む第1角度範囲に属する第1ディフューザ部の外径を、第1角度範囲の下流側の第2角度範囲に属する第2ディフューザ部の外径より小さくすることにより、再循環流の発生が抑制されるため、スクロール流路4の断面内におけるエネルギー分布が均一化され、サージ特性改善(ワイドレンジ化)にも寄与することができる。
 (2)幾つかの実施形態では、上記(1)に記載の遠心圧縮機において、前記スクロール部は、前記第1角度範囲内における前記スクロール流路の流路断面の図心と前記インペラの回転中心との距離Raが、前記第2角度範囲内における前記スクロール流路の流路断面の図心と前記インペラの回転中心との距離Rbより小さくなるように構成されている。
 上記(2)に記載の遠心圧縮機によれば、上記(1)に記載の遠心圧縮機において、第1角度範囲におけるスクロール流路の流路断面が、第2角度範囲におけるスクロール流路の流路断面に対してインペラの径方向において内側にシフトするため、舌部の角度位置を含む第1角度範囲におけるディフューザ流路からスクロール流路へのディフューザ出口流れを、下流側の流路断面における内周側(径方向内側)の領域に一層導き易くすることができる。これにより、再循環流の発生を効果的に抑制することができる。
 (3)幾つかの実施形態では、上記(1)又は(2)に記載の遠心圧縮機において、前記インペラの周方向における前記舌部の角度位置での前記第1ディフューザ部の外径R1と、前記第2角度範囲内における前記第2ディフューザ部の外径R2とは、0.8R2<R1<R2を満たす。
 一般に、ディフューザ部の外径を小さくすると(ディフューザ流路が短くなると)、ディフューザ流路での流速の低下量が少なくなって比較的大きな流速で流体がスクロール流路に流入することになる。
 この点、上記(3)に記載のように0.8R2<R1<R2を満たすようにディフューザ部を構成することにより、第1ディフューザ部の外径R1を縮小することによるスクロール流路への流体の流入速度の増大の影響を抑制しつつ、再循環流に伴う損失を低減することで、遠心圧縮機の効率を効果的に高めることができる。
 (4)幾つかの実施形態では、上記(1)乃至(3)の何れか1項に記載の遠心圧縮機において、前記インペラの周方向における前記舌部の角度位置を0度とすると、前記第1角度範囲は、-90度から90度までの角度範囲内に含まれる。
 上記(4)に記載の遠心圧縮機によれば、スクロール流路4における舌部12の角度位置付近の角度範囲(-90度から90度)で第1ディフューザ部14の外径R1を縮小することにより、舌部の角度位置近傍でのディフューザ流路からスクロール流路へのディフューザ出口流れを、下流側の流路断面における内周側(径方向内側)の領域に一層導き易くすることができる。これにより、再循環流の発生を効果的に抑制することができる。
 (5)幾つかの実施形態では、上記(4)に記載の遠心圧縮機において、前記第1角度範囲は、-45度から45度までの角度範囲内に含まれる。
 上記(5)に記載の遠心圧縮機によれば、スクロール流路4における舌部12の角度位置付近の角度範囲(-40度から45度)で第1ディフューザ部14の外径R1を縮小することにより、舌部の角度位置近傍でのディフューザ流路からスクロール流路へのディフューザ出口流れを、下流側の流路断面における内周側(径方向内側)の領域に一層導き易くすることができる。これにより、再循環流の発生を効果的に抑制することができる。
 (6)幾つかの実施形態では、上記(1)乃至(5)の何れか1項に記載の遠心圧縮機において、前記第2角度範囲は、前記インペラの周方向における前記第1角度範囲を除く全角度範囲である。
 上記(6)に記載の遠心圧縮機によれば、インペラの周方向における第1角度範囲を除く全角度範囲(ディフューザ部の外径が再循環流の抑制に寄与しにくい角度範囲)に亘って、圧力回復を優先して比較的大きな外径を有する第2ディフューザ部が設けられるため、スクロール流路内での圧損を効果的に低減することができる。このように、インペラの周方向において、舌部の角度位置を含む第1角度範囲(再循環流の抑制に寄与しやすい角度範囲)に比較的小さな外径R1を有する第1ディフューザ部を設けるとともに、再循環流の抑制に寄与しにくい第2角度範囲に圧力回復を優先した比較的大きな外径R2を有する第2ディフューザ部を設けることで、遠心圧縮機の効率を効果的に高めることができる。
 (7)幾つかの実施形態では、上記(1)乃至(6)の何れか1項に記載の遠心圧縮機において、前記第1ディフューザ部の外周端は、前記インペラの径方向外側に向かって凸となるように湾曲した湾曲凸形状を有する。
 上記(7)に記載の遠心圧縮機によれば、第1ディフューザ部の外径R1を周方向に沿って緩やかに変化させることができるため、スクロール流路内の滑らかな流れを実現して圧損の増大を抑制しつつ、再循環流を抑制する上述の効果を得ることができる。
 (8)幾つかの実施形態では、上記(1)乃至(6)の何れか1項に記載の遠心圧縮機において、前記第1ディフューザ部の外周縁は、前記インペラの径方向内側に向かって凹となるように湾曲した湾曲凹形状を有する。
 上記(8)に記載の遠心圧縮機によれば、舌部の角度位置近傍の比較的狭い範囲で第1ディフューザ部の外径R1を減少させやすいため、再循環流を効果的に抑制することができる。
 (9)幾つかの実施形態では、上記(1)乃至(7)の何れか1項に記載の遠心圧縮機において、前記第1角度範囲内における前記第1ディフューザ部の外径R1は、前記舌部の角度位置を0度とすると、-15度から15度までの角度範囲内において最小となる。
 上記(9)に記載の遠心圧縮機によれば、スクロール流路における舌部の角度位置又はそれに近い角度位置で第1ディフューザ部の外径R1を最小とすることにより、スクロール流路の巻始めにおける外周側の領域へのディフューザ出口流れの偏りを効果的に抑制することができる。これにより、再循環流の発生を効果的に抑制することができる。
 (10)本発明の少なくとも一実施形態に係るターボチャージャは、上記(1)乃至(9)の何れか1項に記載の遠心圧縮機を備えている。
 上記(10)に記載のターボチャージャによれば、再循環流の発生を抑制することによって圧縮機性能を向上可能な上記(1)乃至(9)の何れか1項に記載の遠心圧縮機を備えているため、高性能なターボチャージャを提供することができる。
 本発明の少なくとも一つの実施形態によれば、再循環流に伴う損失の低減によって圧縮機性能を向上可能な遠心圧縮機、及びこれを備えるターボチャージャが提供される。
一実施形態に係る遠心圧縮機100の軸方向に沿った概略断面図である。 図1に示す遠心圧縮機100の軸方向に垂直な断面の一例を模式的に示す図である。 図2に示した遠心圧縮機100の周方向における所定角度毎のスクロール流路4の形状変化を示す図である。 ディフューザ出口流れfdが下流側の流路断面における内周側の領域Diに導かれる様子を説明するための図である。 比較形態におけるディフューザ出口流れfdの経路を説明するための図である。 一実施形態におけるディフューザ出口流れfdの経路を説明するための図である。 図2に示した遠心圧縮機100の周方向における角度位置とディフューザ部10の外径R(第1ディフューザ部14の外径R1及び第2ディフューザ部16の外径R2)との関係を示す図である。 図2に示すディフューザ部10の外周縁10Eの形状の第1変形例を模式的に示す図である。 図2に示すディフューザ部10の外周縁10Eの形状の第2変形例を模式的に示す図である。 比較形態に係る遠心圧縮機の軸方向に垂直な断面を模式的に示す図である。 ディフューザ出口流れfdが、スクロール流路004の流路壁に沿って旋回流を形成する様子を示す、ディフューザ出口流れfdの流線図である。 図11に示すθ=0°(舌部位置)の角度位置でのスクロール流路004の流路断面について、ディフューザ出口流れfdの質量流量分布を示す図である。 図11に示すθ=15°の角度位置でのスクロール流路004の流路断面について、ディフューザ出口流れfdの質量流量分布を示す図である。 図11に示すθ=30°の角度位置でのスクロール流路004の流路断面について、ディフューザ出口流れfdの質量流量分布を示す図である。 スクロール流路004におけるディフューザ出口流れfdと再循環流fcの関係を説明するための流線図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、一実施形態に係る遠心圧縮機100の軸方向に沿った概略断面図である。図2は、図1に示す遠心圧縮機100の軸方向に垂直な断面の一例を模式的に示す図である。図3は、図2に示した遠心圧縮機100の周方向における所定角度毎のスクロール流路4の形状変化を示す図である。なお、遠心圧縮機100は、例えば、自動車用又は舶用のターボチャージャや、その他産業用遠心圧縮機、送風機等に適用可能である。
 例えば図1に示すように、遠心圧縮機100は、インペラ2と、ケーシング3とを含む。ケーシング3は、インペラ2の外周側にスクロール流路4を形成するスクロール部6と、インペラ2で圧縮された圧縮空気をスクロール流路4に供給するディフューザ流路8を形成するディフューザ部10と、を備える。インペラ2の軸方向に沿った断面において、スクロール流路4は円形形状を有しており、ディフューザ流路8は直線状に形成されている。ディフューザ部10は、ディフューザ流路8をインペラ2の軸方向に挟んで設けられた一対の流路壁10a,10bによって構成される。なお、図1においては、スクロール部6とディフューザ部10に便宜的に異なるハッチングを付しているが、ケーシング3は、スクロール部6とディフューザ部10との境界位置に関わらない任意の箇所で連結された複数のケーシング部品で構成されていてもよい。また、ケーシング3は、インペラ2を収容するコンプレッサハウジングの他に、インペラ2を回転可能に支持する軸受を収容するベアリングハウジングの一部を含んでいても良い。図3に示すように、スクロール流路4は、舌部12の角度位置(スクロール部6における、スクロール流路4の巻始め4aと巻終わり4bとの接続位置)に対応する流路断面4Pから周方向下流側へ進むにつれて流路断面の面積が拡大する。
 例えば図2に示すように、ディフューザ部10は、インペラ2の周方向における角度範囲のうち、スクロール部6の舌部12の角度位置が含まれる第1角度範囲A1に属する第1ディフューザ部14と、インペラ2の周方向における角度範囲のうち、スクロール流路4での流れ方向dにおける第1角度範囲A1の下流側に隣接する第2角度範囲A2に属する第2ディフューザ部16であって、第2ディフューザ部16の外径R2がインペラ2の回転中心Oを中心とする基準円Cに沿って規定される第2ディフューザ部16と、を含む。
 例えば図2に示すように、第1角度範囲A1内における第1ディフューザ部14の外径R1は、第2角度範囲A2内における第2ディフューザ部16の外径R2より小さい。すなわち、第1角度範囲A1内におけるディフューザ流路8の出口位置Po(図1参照)とインペラ2の回転中心Oとの距離R1は、第2角度範囲A2内におけるディフューザ流路8の出口位置Po(図1参照)とインペラ2の回転中心Oとの距離R2より小さい。
 かかる構成によれば、図3に示すように、第1角度範囲A1内におけるスクロール流路4の流路断面(図3における実線で示した流路断面)の図心Iaとインペラ2の回転中心Oとの距離Raを、第2角度範囲A2内におけるスクロール流路4の流路断面(図3における一点鎖線で示した流路断面)の図心Ibとインペラの回転中心Oとの距離Rbより小さくすることが容易となる。すなわち、第1角度範囲A1におけるスクロール流路4の流路断面を、第2角度範囲A2におけるスクロール流路4の流路断面に対してインペラ2の径方向において内側にシフトさせることが容易となる。このため、図4に示すように、第1角度範囲A1におけるディフューザ流路8からスクロール流路4へのディフューザ出口流れfdを、下流側の流路断面(一点鎖線で示した流路断面)における内周側(径方向内側)の領域Diに導き易くすることができる。
 したがって、図10に示した比較形態(ディフューザ部010の外周縁010Eが軸方向視において円形形状を有しており、ディフューザ部010の外径Rが周方向位置によらず一定である遠心圧縮機)と比較して、図5及び図6に示すように、スクロール流路4の舌部12近傍の巻始め4aにおいて流路断面における内周側の領域Diにディフューザ出口流れfdが到達する角度位置(内周側の領域Diにおけるディフューザ出口流れfdの質量流量が一定程度の水準に到達する角度位置)を、舌部12の角度位置に近づけやすくなる。これにより、図10及び図11A~図11Cを用いて説明した技術的課題、すなわちスクロール流路4の巻始め4aにおける外周側の領域Doへのディフューザ出口流れfdの偏りを効果的に抑制することができる。
 したがって、上記比較形態と比較して、スクロール流路4における内周側の領域Diへ再循環流fcが入り込み難くなるため、再循環流fcの発生を抑制し、再循環流fcに伴う損失の発生を抑制することができる。また、再循環流fcの発生が抑制されることで、必要なスクロール流路4の流路断面積を減少することができ、スクロール部6を小型化することができる。
 なお、エネルギーの低い再循環流は、スクロール流路4の断面内の中心部に集積する傾向にあり、圧縮機の低風量側の作動限界を制限するサージ発生に関して、低エネルギー流体の集積したスクロール断面内中心部から逆流が発生することが知られている。この点、上記実施形態によれば、第1ディフューザ部14の外径R1を、第2ディフューザ部16の外径R2より小さくすることにより、再循環流の発生が抑制されるため、スクロール流路4の断面内におけるエネルギー分布が均一化され、サージ特性改善(ワイドレンジ化)にも寄与することができる。
 一実施形態では、図3に示すように、第2角度範囲A2内におけるスクロール流路4の流路断面の図心Ibとインペラの回転中心Oとの距離Rbは、インペラ2の周方向における角度位置によらず一定であってもよい。
 図7は、図2に示した遠心圧縮機100の周方向における角度位置とディフューザ部10の外径R(第1ディフューザ部14の外径R1及び第2ディフューザ部16の外径R2)との関係を示す図である。
 一実施形態では、例えば図7に示すように、第1角度範囲A1内における第1ディフューザ部14の外径R1は、舌部12の角度位置を0度とすると、-15度から15度(より好ましくは‐10度から10度、更に好ましくは‐5度から5度)までの角度範囲内において最小となっていてもよい。図7に示す例では、第1ディフューザ部14の外径R1は、0度より上流側の所定の角度位置θuから下流側に向かうにつれて減少して舌部12の角度位置0度付近で最小となり、さらに下流側の所定の角度位置θdに向かうにつれて増大する。所定の角度位置θdの下流側の第2角度範囲A2では第2ディフューザ部16の外径R2は一定である。
 このように、スクロール流路4における舌部12の角度位置又はそれに近い角度位置で第1ディフューザ部14の外径R1を最小とすることにより、スクロール流路4の巻始め4aにおける外周側の領域へのディフューザ出口流れfdの偏りを効果的に抑制することができる。これにより、再循環流の発生を効果的に抑制することができる。
 一実施形態では、例えば図7に示すように、インペラ2の周方向における舌部12の角度位置(0度)での第1ディフューザ部14の外径R1と、第2角度範囲A2内における第2ディフューザ部16の外径R2とは、0.8R2<R1<R2を満たしていてもよい。
 一般に、ディフューザ部の外径を小さくすると(ディフューザ流路が短くなると)、ディフューザ流路での流速の低下量が少なくなって比較的大きな流速で流体がスクロール流路に流入することになる。
 この点、上記のように0.8R2<R1<R2を満たすようにディフューザ部10を構成することにより、第1ディフューザ部14の外径R1を縮小することによるスクロール流路4への流体の流入速度の増大の影響を抑制しつつ、再循環流に伴う損失を低減することで、遠心圧縮機100の効率を効果的に高めることができる。
 図8は、図2に示すディフューザ部10の外周縁10Eの形状の第1変形例を模式的に示す図である。図9は、図2に示すディフューザ部10の外周縁10Eの形状の第2変形例を模式的に示す図である。
 幾つかの実施形態では、例えば図2、図8及び図9に示すように、インペラ2の周方向における舌部12の角度位置を0度とすると、第1角度範囲A1は、-90度から90度までの角度範囲内に含まれ、第2角度範囲A2は、インペラ2の周方向における第1角度範囲A1を除く全角度範囲であってもよい。
 かかる構成によれば、スクロール流路4における舌部12の角度位置付近の角度範囲(-90度から90度)で第1ディフューザ部14の外径R1を比較的小さくすることにより、スクロール流路4の巻始め4aにおける外周側の領域へのディフューザ出口流れfdの偏りを効果的に抑制することができる。これにより、再循環流の発生を効果的に抑制することができる。また、インペラ2の周方向における第1角度範囲A1を除く全角度範囲(ディフューザ部10の外径が再循環流の抑制に寄与しにくい角度範囲)に亘って、圧力回復を優先して比較的大きな外径R2を有する第2ディフューザ部16が設けられるため、スクロール流路4内での圧損を効果的に低減することができる。
 このように、インペラ2の周方向において、再循環流の抑制に寄与しやすい角度範囲に比較的小さな外径R1を有する第1ディフューザ部14を設けるとともに、再循環流の抑制に寄与しにくい角度範囲に圧力回復を優先した比較的大きな外径R2を有する第2ディフューザ部16を設けることで、遠心圧縮機100の効率を効果的に高めることができる。
 幾つかの実施形態では、図2及び図8に示すように、第1ディフューザ部14の外周縁14Eは、インペラ2の径方向外側に向かって凸となるように湾曲した湾曲凸形状を有していてもよい。
 かかる構成によれば、図2及び図8に示すように、第1ディフューザ部14の外径R1を周方向に沿って緩やかに変化させることができるため、スクロール流路4内の滑らかな流れを実現して圧損の増大を抑制しつつ、再循環流を抑制する上述の効果を得ることができる。
 一実施形態では、図9に示すように、第1ディフューザ部14の外周縁14Eは、インペラ2の径方向内側に向かって凹となるように湾曲した湾曲凹形状を有していてもよい。
 かかる構成によれば、図9に示すように、舌部12の角度位置近傍の比較的狭い範囲で第1ディフューザ部14の外径R1を減少させやすいため、再循環流を効果的に抑制することができる。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
2 インペラ
3 ケーシング
4 スクロール流路
 4a 巻始め
 4b 巻終わり
6 スクロール部
8 ディフューザ流路
10 ディフューザ部
 10a 流路壁
 10b 流路壁
 10E 外周縁
12 舌部
14 第1ディフューザ部
 14E 外周縁
16 第2ディフューザ部
 16E 外周縁
100 遠心圧縮機
A1 第1角度範囲
A2 第2角度範囲
C 基準円
Di,Do 領域
Ia,Ib 図心
O 回転中心
Po 出口位置
R,R1,R2 外径
Ra,Rb 距離
d 流れ方向
fc 再循環流
fd ディフューザ出口流れ

Claims (10)

  1.  インペラ及びケーシングを備える遠心圧縮機であって、
     前記ケーシングは、前記インペラの外周側にスクロール流路を形成するスクロール部と、前記インペラで圧縮された圧縮空気を前記スクロール流路に供給するディフューザ流路を形成するディフューザ部と、を備え、
     前記ディフューザ部は、
     前記インペラの周方向における角度範囲のうち、前記スクロール部の舌部の角度位置が含まれる第1角度範囲に属する第1ディフューザ部と、
     前記インペラの周方向における角度範囲のうち、前記スクロール流路での流れ方向における前記第1角度範囲の下流側の第2角度範囲に属する第2ディフューザ部であって、前記第2ディフューザ部の外径R2が前記インペラの回転中心を中心とする基準円に沿って規定される第2ディフューザ部と、を含み、
     前記第1角度範囲内における前記第1ディフューザ部の外径R1は、前記第2角度範囲内における前記第2ディフューザ部の外径R2より小さい、遠心圧縮機。
  2.  前記スクロール部は、前記第1角度範囲内における前記スクロール流路の流路断面の図心と前記インペラの回転中心との距離Raが、前記第2角度範囲内における前記スクロール流路の流路断面の図心と前記インペラの回転中心との距離Rbより小さくなるように構成された、請求項1に記載の遠心圧縮機。
  3.  前記インペラの周方向における前記舌部の角度位置での前記第1ディフューザ部の外径R1と、前記第2角度範囲内における前記第2ディフューザ部の外径R2とは、0.8R2<R1<R2を満たす、請求項1又は2に記載の遠心圧縮機。
  4.  前記インペラの周方向における前記舌部の角度位置を0度とすると、前記第1角度範囲は、-90度から90度までの角度範囲内に含まれる、請求項1乃至3の何れか1項に記載の遠心圧縮機。
  5.  前記第1角度範囲は、-45度から45度までの角度範囲内に含まれる請求項4に記載の遠心圧縮機。
  6.  前記第2角度範囲は、前記インペラの周方向における前記第1角度範囲を除く全角度範囲である、請求項1乃至5の何れか1項に記載の遠心圧縮機。
  7.  前記第1ディフューザ部の外周端は、前記インペラの径方向外側に向かって凸となるように湾曲した湾曲凸形状を有する請求項1乃至6の何れか1項に記載の遠心圧縮機。
  8.  前記第1ディフューザ部の外周縁は、前記インペラの径方向内側に向かって凹となるように湾曲した湾曲凹形状を有する請求項1乃至6の何れか1項に記載の遠心圧縮機。
  9.  前記第1角度範囲内における前記第1ディフューザ部の外径R1は、前記舌部の角度位置を0度とすると、-15度から15度までの角度範囲内において最小となる、請求項1乃至8の何れか1項に記載の遠心圧縮機。
  10.  請求項1乃至9の何れか1項に記載の遠心圧縮機を備えたターボチャージャ。
     
PCT/JP2015/086278 2015-12-25 2015-12-25 遠心圧縮機及びターボチャージャ WO2017109949A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/086278 WO2017109949A1 (ja) 2015-12-25 2015-12-25 遠心圧縮機及びターボチャージャ
EP15911386.9A EP3369939B1 (en) 2015-12-25 2015-12-25 Centrifugal compressor and turbocharger
JP2017557629A JP6470853B2 (ja) 2015-12-25 2015-12-25 遠心圧縮機及びターボチャージャ
CN201580084900.1A CN108700089B (zh) 2015-12-25 2015-12-25 离心压缩机以及涡轮增压器
US15/779,110 US10837297B2 (en) 2015-12-25 2015-12-25 Centrifugal compressor and turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086278 WO2017109949A1 (ja) 2015-12-25 2015-12-25 遠心圧縮機及びターボチャージャ

Publications (1)

Publication Number Publication Date
WO2017109949A1 true WO2017109949A1 (ja) 2017-06-29

Family

ID=59089777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086278 WO2017109949A1 (ja) 2015-12-25 2015-12-25 遠心圧縮機及びターボチャージャ

Country Status (5)

Country Link
US (1) US10837297B2 (ja)
EP (1) EP3369939B1 (ja)
JP (1) JP6470853B2 (ja)
CN (1) CN108700089B (ja)
WO (1) WO2017109949A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087385A1 (ja) 2017-11-06 2019-05-09 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
CN111989495A (zh) * 2018-04-26 2020-11-24 三菱重工压缩机有限公司 离心压缩机
JPWO2020240775A1 (ja) * 2019-05-30 2020-12-03
JPWO2021234884A1 (ja) * 2020-05-21 2021-11-25
WO2023188246A1 (ja) * 2022-03-31 2023-10-05 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサカバー、遠心圧縮機、ターボチャージャ、コンプレッサカバーの製造方法及び遠心圧縮機用のディフューザ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201813819D0 (en) * 2018-08-24 2018-10-10 Rolls Royce Plc Turbomachinery
GB2576565B (en) * 2018-08-24 2021-07-14 Rolls Royce Plc Supercritical carbon dioxide compressor
JP7413514B2 (ja) * 2020-04-17 2024-01-15 三菱重工エンジン&ターボチャージャ株式会社 スクロールケーシングおよび遠心圧縮機
CN116241508B (zh) * 2023-05-12 2023-09-15 潍柴动力股份有限公司 压气机的出气管、压气机及发动机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624229A (en) * 1993-09-17 1997-04-29 Man Gutehoffnungshutte Aktiengesellschaft Spiral housing for a turbomachine
US20050232762A1 (en) * 2004-04-20 2005-10-20 Honeywell International Inc. Turbomachine compressor scroll with load-carrying inlet vanes
JP2013204550A (ja) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd 遠心圧縮機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064994A (ja) 1998-08-21 2000-03-03 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
DE102007034236A1 (de) 2007-07-23 2009-02-05 Continental Automotive Gmbh Radialverdichter mit einem Diffusor für den Einsatz bei einem Turbolader
US8952631B2 (en) 2011-03-15 2015-02-10 Telelumen Llc Method of optimizing light output during light replication
EP3012461A4 (en) 2013-06-20 2017-02-08 Mitsubishi Heavy Industries, Ltd. Centrifugal compressor
DE102013017694A1 (de) 2013-10-24 2014-07-24 Daimler Ag Radialverdichter für einen Abgasturbolader
DE112014005001T5 (de) 2013-10-31 2016-07-14 Ihi Corporation Zentrifugalkompressor und Turbolader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624229A (en) * 1993-09-17 1997-04-29 Man Gutehoffnungshutte Aktiengesellschaft Spiral housing for a turbomachine
US20050232762A1 (en) * 2004-04-20 2005-10-20 Honeywell International Inc. Turbomachine compressor scroll with load-carrying inlet vanes
JP2013204550A (ja) * 2012-03-29 2013-10-07 Mitsubishi Heavy Ind Ltd 遠心圧縮機

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087385A1 (ja) 2017-11-06 2019-05-09 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
EP3708848A4 (en) * 2017-11-06 2021-07-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. CENTRIFUGAL COMPRESSOR AND TURBOCHARGER INCLUDING LEDIT CENTRIFUGAL COMPRESSOR
US11073164B2 (en) 2017-11-06 2021-07-27 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger including the same
CN111989495A (zh) * 2018-04-26 2020-11-24 三菱重工压缩机有限公司 离心压缩机
JPWO2020240775A1 (ja) * 2019-05-30 2020-12-03
JP7138242B2 (ja) 2019-05-30 2022-09-15 三菱重工エンジン&ターボチャージャ株式会社 遠心圧縮機及びターボチャージャ
US11795969B2 (en) 2019-05-30 2023-10-24 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Centrifugal compressor and turbocharger
JPWO2021234884A1 (ja) * 2020-05-21 2021-11-25
WO2021234884A1 (ja) * 2020-05-21 2021-11-25 三菱重工エンジン&ターボチャージャ株式会社 スクロールケーシングおよび遠心圧縮機
JP7431323B2 (ja) 2020-05-21 2024-02-14 三菱重工エンジン&ターボチャージャ株式会社 スクロールケーシングおよび遠心圧縮機
US11982292B2 (en) 2020-05-21 2024-05-14 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Scroll casing and centrifugal compressor
WO2023188246A1 (ja) * 2022-03-31 2023-10-05 三菱重工エンジン&ターボチャージャ株式会社 コンプレッサカバー、遠心圧縮機、ターボチャージャ、コンプレッサカバーの製造方法及び遠心圧縮機用のディフューザ

Also Published As

Publication number Publication date
JPWO2017109949A1 (ja) 2018-06-28
US20180347382A1 (en) 2018-12-06
EP3369939A4 (en) 2018-12-12
CN108700089B (zh) 2020-05-26
CN108700089A (zh) 2018-10-23
EP3369939A1 (en) 2018-09-05
US10837297B2 (en) 2020-11-17
JP6470853B2 (ja) 2019-02-13
EP3369939B1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6470853B2 (ja) 遠心圧縮機及びターボチャージャ
EP2821652B1 (en) Centrifugal fluid machine with air intake pipe structure
JP6347457B2 (ja) スクロールケーシング及び遠心圧縮機
WO2012090649A1 (ja) 遠心圧縮機のスクロール構造
US10273973B2 (en) Centrifugal compressor having an asymmetric self-recirculating casing treatment
WO2018105423A1 (ja) 遠心圧縮機及びターボチャージャ
US9234526B2 (en) Centrifugal compressor having an asymmetric self-recirculating casing treatment
WO2017072899A1 (ja) スクロールケーシング及び遠心圧縮機
JP2009133267A (ja) 圧縮機のインペラ
JPWO2019087385A1 (ja) 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
JP2014047750A (ja) 遠心送風機
JP6559805B2 (ja) 圧縮機インペラ及びその製造方法
JP6770917B2 (ja) 遠心圧縮機
JP2015102002A (ja) ターボファン及びこれを用いた空気調和機
US20220196031A1 (en) Centrifugal compressor and turbocharger
WO2018101021A1 (ja) ディフューザ、吐出流路、および遠心ターボ機械
US12031548B2 (en) Scroll structure of centrifugal compressor and centrifugal compressor
US9151297B2 (en) Centrifugal compressor having an asymmetric self-recirculating casing treatment
JP6876146B2 (ja) 遠心圧縮機及びこの遠心圧縮機を備えたターボチャージャ
JP2023068953A (ja) ベーンドディフューザおよび遠心圧縮機
JP2012057489A (ja) 遠心圧縮機のディフューザおよびこれを備えた遠心圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557629

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015911386

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE