WO2017095152A1 - 이차전지용 양극활물질 및 이를 포함하는 이차전지 - Google Patents

이차전지용 양극활물질 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
WO2017095152A1
WO2017095152A1 PCT/KR2016/014003 KR2016014003W WO2017095152A1 WO 2017095152 A1 WO2017095152 A1 WO 2017095152A1 KR 2016014003 W KR2016014003 W KR 2016014003W WO 2017095152 A1 WO2017095152 A1 WO 2017095152A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
metal oxide
lithium composite
composite metal
positive electrode
Prior art date
Application number
PCT/KR2016/014003
Other languages
English (en)
French (fr)
Inventor
박병천
정왕모
최영철
신주경
박상민
이상욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018517825A priority Critical patent/JP6600087B2/ja
Priority to CN201680050913.1A priority patent/CN108028373B/zh
Priority to EP16871048.1A priority patent/EP3386014B1/en
Priority to US15/751,350 priority patent/US10763497B2/en
Priority claimed from KR1020160161895A external-priority patent/KR101989398B1/ko
Publication of WO2017095152A1 publication Critical patent/WO2017095152A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention has an interfacial stability between the electrolyte and the active material with improved surface stability and stability of the internal structure of the active material particles, including a cathode active material for a secondary battery that can exhibit excellent battery safety and life characteristics even under high temperature and high voltage conditions It relates to a secondary battery.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
  • a lithium secondary battery has a problem in that its life is rapidly decreased as charging and discharging are repeated. In particular, this problem is more serious at high temperatures. This is a phenomenon caused by decomposition of the electrolyte or deterioration of the active material due to moisture or other influences inside the battery, and increase of internal resistance of the battery.
  • LiCoO 2 having a layered structure. LiCoO 2 is most commonly used due to its excellent lifespan characteristics and charge and discharge efficiency. However, LiCoO 2 has a low structural stability and thus is not applicable to high capacity technology of batteries.
  • LiNiO 2 As a cathode active material to replace this, various lithium transition metal oxides such as LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 , Li (Ni x1 Co y1 Mn z1 ) O 2 have been developed.
  • LiNiO 2 has an advantage of exhibiting battery characteristics of high discharge capacity.
  • LiNiO 2 Simple solid phase reactions are difficult to synthesize and have low thermal stability and cycle characteristics.
  • lithium manganese oxides such as LiMnO 2 or LiMn 2 O 4 have the advantage of excellent thermal safety and low price.
  • lithium manganese oxide has a problem of low capacity and low temperature characteristics.
  • LiFePO 4 has a low price and excellent safety, and a lot of research is being conducted for hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • LiFePO 4 is difficult to apply to other fields due to the low conductivity.
  • LiCoO 2 is a lithium anode manganese cobalt oxide, Li (Ni x 2 Co y 2 Mn z 2 ) O 2 (At this time, X2, y2, and z2 are atomic fractions of independent oxide composition elements, and 0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ z2 ⁇ 1, and 0 ⁇ x2 + y2 + z2 ⁇ 1.
  • This material is less expensive than LiCoO 2 and has the advantage that it can be used for high capacity and high voltage.
  • lithium nickel manganese cobalt-based oxides have disadvantages of poor rate capability and poor life characteristics at high temperatures.
  • the lithium secondary battery using the positive electrode active material is a problem that the safety of the battery is deteriorated or the lifespan characteristics rapidly decrease due to the exothermic reaction accompanied by the deterioration of the surface structure of the active material and a sudden collapse of the structure as the charge and discharge repeatedly There is this.
  • This problem is particularly acute under conditions of high temperature and high voltage. This is because the active material deteriorates due to the decomposition of the electrolyte due to moisture or other influences inside the battery or the instability of the surface of the positive electrode, and the interface resistance between the electrode and the electrolyte including the active material is increased.
  • the first technical problem to be solved by the present invention has the surface stability of the active material particles and the stability of the internal structure, along with improved interfacial stability between the electrolyte and the active material, showing excellent battery safety and life characteristics even under high temperature and high voltage conditions It is to provide a cathode active material for a secondary battery.
  • a second technical problem to be solved by the present invention is to provide a secondary battery positive electrode, a lithium secondary battery, a battery module and a battery pack including the positive electrode active material.
  • a cathode active material for a secondary battery comprising a lithium composite metal oxide particles represented by the following formula (1).
  • M1 is -0.5 eV to more than the surface energy ( ⁇ E surf) calculated by the equation (1) metallic elements
  • M2 is -1.5 eV is more than -0.5 eV surface energy ( ⁇ E surf) calculated by the following equation (1)
  • Metal element of less than M3 is a surface element ( ⁇ E surf ) calculated by the following equation 1 is a metal element of less than -1.5 eV, 1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.05, 0.002 ⁇ w ⁇ 0.1, 0 ⁇ x + y ⁇ 0.7.
  • Equation 1 E surf2 represents the degree to which the metal element is directed to the outermost surface in the lithium composite metal oxide particles, E surf1 represents the degree to which the metal element is directed to the center of the lithium composite metal oxide particles, E slab1 Silver is the energy of the slab model of the lithium composite metal oxide particles when the metal element is in the center of the lithium composite metal oxide particles, and E slab2 is the lithium composite when the metal element is on the surface of the lithium composite metal oxide particles.
  • the energy of the slab model of the metal oxide particles, and E bulk is the energy of the bulk model corresponding to each slab model.
  • a cathode for a secondary battery a lithium secondary battery, a battery module, and a battery pack including the cathode active material.
  • the positive electrode active material for a secondary battery according to the present invention has an improved interfacial stability between the electrolyte and the active material with excellent particle surface stability and stability of the internal structure. Since the secondary battery according to the present invention includes a cathode active material having the above characteristics, it may exhibit excellent battery safety and life characteristics even under high temperature and high voltage conditions.
  • a cathode active material for a secondary battery according to an embodiment of the present invention
  • M1 is a metal element whose surface energy ( ⁇ E surf ) calculated by the following Equation 1 is -0.5 eV or more,
  • M2 is a metal element whose surface energy ( ⁇ E surf ) calculated by Equation 1 is -1.5 eV or more and less than -0.5 eV,
  • M3 is a metal element whose surface energy ( ⁇ E surf ) calculated by Equation 1 below is less than -1.5 eV.
  • E surf2 indicates the degree to which the metal element is directed to the outermost surface in the lithium composite metal oxide particles.
  • E surf1 indicates the degree to which the metal element is directed toward the center of the lithium composite metal oxide particle.
  • E slab1 is the energy of the slab model of lithium composite metal oxide particles when the metal element is in the center of the lithium composite metal oxide particles.
  • E slab2 is the energy of the slab model of lithium composite metal oxide particles when the metal element is on the outermost surface of the lithium composite metal oxide particles.
  • E bulk is the energy of the bulk model corresponding to each slab model.
  • the position preference on the cathode active material particles according to the amount of surface energy of the element is investigated, and based on this, the element has an optimized concentration profile from the surface of the cathode active material particle to the center section.
  • the surface stability and the internal structure stability of the active material particles may be improved, and thus the interface stability between the electrolyte and the active material may be improved.
  • the secondary battery, a final product can exhibit excellent battery safety and life characteristics even under high temperature and high voltage conditions.
  • the lithium composite metal oxide may include a compound of Formula 1 below.
  • M1 is a metal element whose surface energy ( ⁇ E surf ) calculated by the following Equation 1 is -0.5 eV or more,
  • M2 is a metal element whose surface energy ( ⁇ E surf ) calculated by Equation 1 is -1.5 eV or more and less than -0.5 eV,
  • M3 is a metal element whose surface energy ( ⁇ E surf ) calculated by Equation 1 below is less than -1.5 eV.
  • the surface energy calculated by Equation 1 (E surf ) May indicate the degree to which the metal element is directed toward the outermost surface or the center of the lithium composite metal oxide particles.
  • E surf2 represents the degree to which the metal element is directed toward the outermost surface in the lithium composite metal oxide particles
  • E surf1 represents the degree to which the metal element is oriented toward the center, that is, the center of gravity in the lithium composite metal oxide particles.
  • E surf1 and E surf2 represent the difference between the energy of the slab model and the energy value of the bulk model when the metal element is located at the center and the outermost surface of the lithium composite metal oxide particles.
  • E slab1 is the energy of the lithium composite metal oxide particle slab model when the metal element is in the center of the lithium composite metal oxide particle.
  • E slab2 is the energy of the lithium composite metal oxide particle slab model when the metal element is on the outermost surface of the lithium composite metal oxide particle.
  • E bulk is the energy of the bulk model corresponding to each slab model and is calculated stoichiometrically regardless of the position of the metal element in the lithium composite metal oxide.
  • the surface energy value ⁇ E surf calculated by Equation 1 indicates a positive value, it indicates that the metal element has a property of being located at the center of the lithium composite metal oxide particle.
  • a negative surface energy value indicates that the metal element has a property of being positioned on the surface side of the lithium composite metal oxide particle. Therefore, the metal element whose surface energy exhibits a positive value diffuses to the center of the lithium composite metal oxide particle.
  • the metal element having a negative surface energy penetrates into the surface of the lithium composite metal oxide particle.
  • the surface energy value of the metal element may be determined through modeling calculation by the method of the Discrete Fourier Transform DFT.
  • the concentration profile refers to the content of the metal element according to the depth of the center portion at the surface of the lithium composite metal oxide particle when the X axis represents the depth from the particle surface to the center portion and the Y axis represents the content of the metal element.
  • the mean slope of the concentration profile is positive means that the center portion of the lithium composite metal oxide particles is located relatively more than the surface portion of the particle, and that the mean slope is negative means that the center portion of the lithium composite metal oxide particles is central. More means that more metal elements are located in the particle surface portion.
  • the concentration profile is X-ray photoelectron spectroscopy (also referred to as XPS (X-ray Photoelectron Spectroscopy) or ESCA (Electron Spectroscopy for Chemical Analysis)), electron beam microanalyzer (Electron Probe Micro Analyzer, EPMA), inductively coupled plasma- It can be confirmed using methods such as Inductively Coupled Plasma-Atomic Emission Spectrometer (ICP-AES), or Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS).
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometer
  • TOF-SIMS Time of Flight Secondary Ion Mass Spectrometry
  • the active material is etched from the surface of the lithium composite metal oxide particle toward the center part, and the atomic ratio of the metal is etched by etching time. It is possible to determine the concentration profile of the metal element therefrom.
  • the surface energy (E surf ) is a metal element of -0.5 eV or more of the M 1 is a single concentration value, that is, the concentration profile of the entire lithium composite metal oxide particles
  • the slope may be included at the same concentration of 0 or the average slope of the concentration profile from the surface of the lithium composite metal oxide particles to the central section may be positive.
  • M1 may be one having a surface energy of -0.5 to 0.5eV.
  • M1 satisfying the surface energy condition may include any one or two or more selected from the group consisting of Al, Mg, Y, Zn, In, and Mn. In the case of M1 can improve the crystal stability of the active material to improve the battery life and high temperature characteristics.
  • M1 may be included in an amount corresponding to y, that is, 0 ⁇ y ⁇ 0.5. If y is 0, the improvement effect due to the inclusion of M1 cannot be obtained. If y is greater than 0.5, the output characteristics and capacity characteristics of the battery may be deteriorated. In consideration of the remarkable effect of improving the battery characteristics according to the inclusion of the M1 element, M1 may be included in a content of 0.1 ⁇ y ⁇ 0.2 more specifically.
  • M2 which is a metal element having a surface energy of -1.5 eV or more and less than -0.5 eV, more specifically, -1.5 eV to -1.0 eV, has an average slope of the concentration profile from the surface of the cathode active material particles to the center portion. It can be distributed to be negative. M2 whose surface energy meets the above conditions has surface directivity. However, compared to M3, the surface directivity and the central directivity are low, and the absolute value of the average slope of the concentration profile may be smaller than that of M3.
  • M2 satisfying the surface energy condition may be present at a position where these elements should be present by substituting a part of Ni, Co or M1 in the crystal structure of the lithium composite metal oxide. Or doped to the lithium composite metal oxide.
  • the M2 may react with lithium present on the surface of the lithium composite metal oxide to form lithium oxide.
  • M2 satisfying the surface energy condition may include any one or two or more selected from the group consisting of Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru, Gd, and Os, More specifically, it may be Ti or Zr.
  • M2 may be included in an amount corresponding to z, that is, 0 ⁇ z ⁇ 0.05.
  • the M2 content is 0 or more than 0.05, it is not easy to implement the surface stability and internal structure of the lithium composite metal oxide. As a result, the improvement of output and life characteristics may be insignificant.
  • the M2 may be included in more specifically 0 ⁇ z ⁇ 0.02.
  • M3 which is a metal element having a surface energy of less than -1.5 eV, more specifically, -1.8 eV to -4.0 eV, has large surface directivity. Therefore, the M3 is present at a high concentration on the surface side of the lithium composite metal oxide particles, thereby improving the surface stability of the lithium composite metal oxide.
  • M3 satisfying the surface energy condition is specifically an element corresponding to the Group VI (Group VIB) of the periodic table, and may be introduced on the surface side of the lithium composite metal oxide particles to rearrange the crystal structure during the production of the lithium composite metal oxide particles. have.
  • the lithium composite metal oxide may have a more stable crystal structure, and may also play a role of suppressing particle growth during the firing process.
  • M3 may be present at a position where these elements should be present by substituting a part of Ni, Co, or M1, or reacting with lithium present on the particle surface to form lithium oxide. You may. Accordingly, it is possible to control the size of the crystal grains by adjusting the content of M3 and the timing of addition.
  • the M3 may include any one or two or more selected from the group consisting of W, V, Nb, Nd, and Mo, and more specifically, may be at least one element of W and Nb.
  • W when M3 is W, it may be excellent in terms of output improvement, and in case of Nb, it may be superior in terms of high temperature durability.
  • M3 may be included in an amount corresponding to w, that is, 0.002 ⁇ w ⁇ 0.1. If the M3 content is less than 0.002 or more than 0.1, the surface stability of the lithium composite metal oxide particles may not be easily implemented, and as a result, the effect of improving output and life characteristics may be insignificant. In addition, when considering the surface stability of the lithium composite metal oxide particles according to the control of the content of M3 and the remarkable effect of improving the battery characteristics, more specifically, the M3 may be more specifically included in 0.005 ⁇ w ⁇ 0.5.
  • Li may be included in an amount corresponding to a, that is, 1.0 ⁇ a ⁇ 1.5. If a is less than 1.0, the capacity may be lowered. If a is more than 1.5, the particles may be sintered in the firing step, and thus the production of the active material may be difficult. Considering the remarkable effect of improving the capacity characteristics of the positive electrode active material according to the Li content control and the sinterability in the preparation of the active material, the Li may be more specifically included in a content of 1.0 ⁇ a ⁇ 1.15.
  • Ni may be included in an amount corresponding to 1-x-y, that is, 0.3 ⁇ 1-x-y ⁇ 1. If 1-x-y is less than 0.3, the capacity characteristics may be deteriorated, and if it is more than 1, high temperature stability may be deteriorated. In consideration of the remarkable effect of improving the capacity characteristic according to the inclusion of Ni, the Ni may be included in a content of more specifically 0.35 ⁇ 1-x-y ⁇ 0.8.
  • Co may be included in an amount corresponding to x, that is, 0 ⁇ x ⁇ 0.5. If x is 0, the capacity characteristic may be lowered, and if it is more than 0.5, there is a fear of an increase in cost. Considering the remarkable effect of improving the capacity characteristics according to the inclusion of Co, the Co may be included in a content of 0.1 ⁇ x ⁇ 0.35 more specifically.
  • the lithium composite metal oxide particles according to an embodiment of the present invention may have a structure of a core-shell including a core and a shell formed on the surface of the core.
  • the core refers to a region existing inside the lithium composite metal oxide particles and close to the particle center except for the surface of the particles.
  • the core may be a region present inside the lithium composite metal oxide particles and may maintain a regular crystal structure. Specifically, it may be an area corresponding to a distance r in from the particle center to the surface, that is, a distance of 0% or more and less than 100%, more specifically 0% or more and 70% or less from the particle center with respect to the semi-diameter of the particle.
  • the 'shell' means a region close to the surface except for the center of the particle or the inside of the particle.
  • the shell may also be an area where the regular crystal structure is not maintained due to its geometric constraints. Specifically, the shell is at a distance from the surface of the particle to the center (r sur ), i. It may be a corresponding area.
  • the lithium composite metal oxide particles having the core-shell structure may include the core and the shell in a volume ratio of 50:50 to 80:20.
  • the volume ratio of the core and the shell exceeds the above range, the effect of improving the active material stability due to the position control of the metal element may be insignificant.
  • the core and the shell can be classified using the X diffraction analysis results for the lithium composite metal oxide particles.
  • the surface energy ( ⁇ E surf ) is -0.5 eV or more, more specifically -0.5 eV to 0.5 eV metal element M1 is a lithium composite It can be included at a single concentration throughout the metal oxide particles.
  • the surface energy is a metal element of more than -1.5 eV but less than -0.5 eV, more specifically -1.5 eV to -1.0 eV M2 is in the concentration of 1 to 25 mol% in the core, 75 to 99 mol% in the shell May be included.
  • Metal elements whose surface energy satisfies the above conditions have particle surface directivity, but have a low surface directivity and a high central directivity compared to the M3. When included in the lithium composite metal oxide particles in the above content condition, it can exhibit the surface stability and internal structural stability of the lithium composite metal oxide particles.
  • M3 which is a metal element having a surface energy of less than -1.5 eV, more specifically, -1.5 eV to -4.0 eV, may be included at a concentration of 1 to 10 mol% in the core and 90 to 99 mol% in the shell.
  • M3 having a surface energy satisfying the above conditions has a large particle surface directivity, and when included in the lithium composite metal oxide particles under the above content conditions, may exhibit excellent surface stability of the lithium composite metal oxide particles.
  • At least one metal element of nickel and cobalt contained in the lithium composite metal oxide of Formula 1 may increase or decrease in the cathode active material particles.
  • the concentration gradient can be expressed.
  • At least one metal element of nickel and cobalt may have a concentration gradient in which the metal concentration continuously changes throughout the active material particles, and the metal element concentration
  • the gradient slope may represent one or more values.
  • “showing a concentration gradient in which the metal concentration continuously changes” means that the metal concentration exists in a concentration distribution that gradually changes throughout the particle.
  • the concentration distribution is 0.1 atomic% to 1 micron, more specifically, 0.1 micron, based on the total atomic weight of the metal included in the lithium composite metal oxide particles.
  • the concentration of nickel contained in the lithium composite metal oxide may decrease while having a continuous concentration gradient from the center of the lithium composite metal oxide particles toward the surface of the particles.
  • the concentration gradient slope of the nickel may be constant from the center of the lithium composite metal oxide particles to the surface.
  • the concentration of cobalt contained in the lithium composite metal oxide may increase while having a continuous concentration gradient from the center of the lithium composite metal oxide particle toward the surface of the particle.
  • the concentration gradient slope of the lithium composite metal oxide may be constant from the center of the lithium composite metal oxide particles to the surface.
  • nickel and cobalt may each independently exhibit a varying concentration gradient throughout the lithium composite metal oxide particles.
  • the concentration of nickel may decrease while having a continuous concentration gradient from the center of the lithium composite metal oxide particles toward the surface.
  • concentration of the cobalt may be independently increased while having a continuous concentration gradient from the center of the lithium composite metal oxide particles toward the surface.
  • the capacity characteristics of the lithium composite metal oxide are included by including a combined concentration gradient in which nickel concentration decreases and cobalt concentration increases toward the surface side of the lithium composite metal oxide particles throughout the lithium composite metal oxide. It can improve thermal stability while maintaining
  • the lithium composite metal oxide according to an embodiment of the present invention the surface of the lithium composite metal oxide particles by diffusion to the surface of the lithium composite metal oxide particles according to the surface directivity of the M2 and M3 in the manufacturing process On the at least one metal element selected from the group consisting of M2 and M3; Or it may include a coating layer comprising a lithium oxide produced by the reaction of at least one metal element and lithium.
  • the lithium composite metal oxide may include a lithium composite metal oxide having a composition represented by Formula 2 below:
  • M1, M2, M3, a, x, y, z, and w are as defined above,
  • M2 'and M3' are M2 and M3 respectively located on the lithium composite metal oxide surface
  • w 'and z' are the coating amounts of M3 'and M2', respectively, w 'is 0.01 to 10 atomic% based on the total amount of M3, and z' is 5 to 30 atomic% based on the total amount of M2.
  • the coating of the metal element means that the metal element is physically adsorbed or chemically bonded to the surface of the lithium composite metal oxide.
  • the coating layer comprises a lithium oxide by the reaction of a metal element of M2 or M3 and lithium
  • the lithium oxide may specifically include a compound of formula (3):
  • M2 is any one or two or more elements selected from the group consisting of Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru, Gd and Os
  • M3 is W, V, Nb, Nd and Any one or two or more elements selected from the group consisting of Mo, 2 ⁇ m ⁇ 10, n is the sum of the oxidation number of M2 and M3, 0 ⁇ p ⁇ 1.
  • the cathode active material according to an embodiment of the present invention having the structure as described above may have an average particle diameter (D 50 ) of 4 ⁇ m to 20 ⁇ m. If the average particle diameter of the positive electrode active material is less than 4 ⁇ m, the structural stability of the positive electrode active material particles may be lowered. If the average particle diameter is more than 20 ⁇ m, the output characteristics of the secondary battery may be reduced. In addition, in consideration of the remarkable effect of the improvement of the concentration distribution of the metal element in the positive electrode active material particles and the average particle diameter of the active material, the average particle diameter of the positive electrode active material may be 5 ⁇ m to 18 ⁇ m.
  • the average particle diameter (D 50 ) of the positive electrode active material may be defined as the particle size at 50% of the particle size distribution.
  • the average particle diameter (D 50 ) of the positive electrode active material particles is, for example, electrons using a scanning electron microscopy (SEM) or a field emission scanning electron microscopy (FE-SEM). It can be measured by microscopic observation or by laser diffraction method.
  • the particles of the positive electrode active material are dispersed in a dispersion medium, and then introduced into a commercially available laser diffraction particle size measuring apparatus (for example, Microtrac MT 3000) to irradiate an ultrasonic wave of about 28 kHz to an output of 60 W after that, it is possible to calculate the mean particle size (D 50) of from 50% based on the particle size distribution of the measuring device.
  • a commercially available laser diffraction particle size measuring apparatus for example, Microtrac MT 3000
  • the positive electrode active material according to an embodiment of the present invention may be one having a BET specific surface area of 0.3m 2 / g to 1.9m 2 / g.
  • the BET specific surface area of the positive electrode active material exceeds 1.9 m 2 / g, there is a fear that the dispersibility of the positive electrode active material in the active material layer and the resistance in the electrode are increased due to aggregation between the positive electrode active materials, and the BET specific surface area is 0.3 m 2 / g.
  • the specific surface area of the positive electrode active material is measured by the Brunauer-Emmett-Teller (BET) method, specifically, nitrogen gas at liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan It can calculate from adsorption amount.
  • the positive electrode active material according to an embodiment of the present invention may exhibit excellent capacity and charge and discharge characteristics by simultaneously satisfying the above average particle diameter and BET specific surface area conditions.
  • the cathode active material may have an average particle diameter (D 50 ) of 4 ⁇ m to 15 ⁇ m and a BET specific surface area of 0.5m 2 / g to 1.5m 2 / g.
  • the specific surface area of the positive electrode active material is measured by the Brunauer-Emmett-Teller (BET) method, specifically, nitrogen gas at liquid nitrogen temperature (77K) using BELSORP-mini II manufactured by BEL Japan It can calculate from adsorption amount.
  • the positive electrode active material according to an embodiment of the present invention may have a tap density of 1.7 g / cc or more, or 1.7 g / cc to 2.8 g / cc.
  • the tap density of the positive electrode active material can be measured using a conventional tap density measuring device, and specifically, can be measured using a SEISHIN Tap-tester.
  • the cathode active material according to an embodiment of the present invention having the above structure and physical properties may be prepared by wet precipitation, and in detail, may be prepared by coprecipitation according to the method of forming the precursor.
  • the method for producing a positive electrode active material by the coprecipitation method nickel raw material, cobalt raw material, and M1 raw material (wherein M1 is M1 is a metal element having a surface energy (E surf ) of -0.5 eV or more, specifically, Is an at least one selected from the group consisting of Al, Mg, Y, Zn, In, and Mn), and an ammonium cation-containing complex former and a basic compound are added to the metal-containing solution and reacted to form a precursor.
  • step 2 wherein the preparation of the metal-containing solution or the precursor and the lithium raw material M2 raw materials and M3 raw materials when mixed with materials (where M2 is a metal element with a surface energy of more than -1.5 eV and less than -0.5 eV, specifically Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru) Lines in the group consisting of, Gd and Os M3 is a metal element having a surface energy of less than -1.5 eV, and specifically, any one or two or more elements selected from the group consisting of W, V, Nb, Nd, and Mo). Can be.
  • M2 is a metal element with a surface energy of more than -1.5 eV and less than -0.5 eV, specifically Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru
  • Gd and Os M3 is a metal element having a surface energy of less than -1.5 eV, and specifically, any one or two or more elements selected from the group consisting
  • the metal-containing solution is an organic solvent (specifically, alcohol, etc.) capable of uniformly mixing nickel raw material, cobalt raw material, M1 containing raw material and optionally M2 or M3 containing raw material with a solvent, specifically water or water. It may be prepared by dissolving in a mixture of water and water, or may be prepared by preparing a solution containing a raw material of each of the metals, specifically an aqueous solution, and then mixing them. In this case, the mixing ratio of each raw material may be appropriately determined within a range to satisfy the content condition of each metal element in the final cathode active material.
  • organic solvent specifically, alcohol, etc.
  • a raw material including the metal element acetate, nitrate, sulfate, halide, sulfide, oxide, hydroxide, or oxyhydroxide may be used, and the like, and it is not particularly limited as long as it can be dissolved in water.
  • the cobalt raw material may be Co (OH) 2 , CoOOH, Co (SO 4 ) 2 , Co (OCOCH 3 ) 2 4H 2 O, Co (NO 3 ) 2 ⁇ 6H 2 O, CoCl 2 or Co ( SO 4 ) 2 .7H 2 O, and the like, and any one or a mixture of two or more thereof may be used.
  • nickel raw material is Ni (OH) 2, NiO, NiOOH, NiCO 3 and 2Ni (OH) 2 and 4H 2 O, NiC 2 O 2 and 2H 2 O, NiCl 2, Ni (NO 3) 2 and 6H 2 O, NiSO 4 , NiSO 4 .6H 2 O, fatty acid nickel salts or nickel halides, and the like, and any one or a mixture of two or more thereof may be used.
  • manganese raw material manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 ; Manganese salts such as MnCO 3 , MnCl 2 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acid, manganese citrate and fatty acid manganese; Oxy hydroxide, and manganese chloride, and the like, and any one or a mixture of two or more thereof may be used.
  • manganese oxides such as Mn 2 O 3 , MnO 2 , and Mn 3 O 4 ;
  • Manganese salts such as MnCO 3 , MnCl 2 , Mn (NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acid, manganese citrate and fatty acid manganese; Oxy hydroxide, and manganese chloride, and the like, and any one or a mixture
  • the aluminum raw material may be AlSO 4 , AlCl 3 , Al-isopropoxide (Al-isopropoxide) or AlNO 3 and the like, any one or a mixture of two or more thereof may be used.
  • M2 raw material acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing M2 may be used.
  • M 2 is Ti
  • titanium oxide may be used.
  • M3 raw material acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide containing M3 may be used.
  • M 3 is W
  • tungsten oxide may be used.
  • ammonium cation-containing complexing agent may specifically be NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , or NH 4 CO 3 , and the like. Species alone or mixtures of two or more may be used.
  • the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, and as the solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water may be used.
  • the ammonium cation-containing complex forming agent may be added in an amount such that the molar ratio of 0.5 to 1 per mole of the metal-containing solution.
  • the chelating agent reacts with the metal in a molar ratio of at least 1: 1 to form a complex, but the unreacted complex which does not react with the basic aqueous solution may be converted into an intermediate product, recovered as a chelating agent, and reused.
  • the chelating usage can be lowered than usual. As a result, the crystallinity of the positive electrode active material can be increased and stabilized.
  • the basic compound may be a hydroxide of an alkali metal or an alkaline earth metal such as NaOH, KOH, or Ca (OH) 2 , or a hydrate thereof, and one or more of these may be used.
  • the basic compound may also be used in the form of an aqueous solution, and as the solvent, a mixture of water or an organic solvent (specifically, alcohol, etc.) that can be uniformly mixed with water may be used.
  • the coprecipitation reaction for forming the precursor may be carried out under the condition that the pH is 11 to 13. If the pH is out of the above range, there is a fear to change the size of the precursor to be prepared or cause particle splitting.
  • metal ions may be eluted on the surface of the precursor to form various oxides by side reactions. More specifically, the pH of the mixed solution may be performed at 11 to 12 conditions.
  • the ammonium cation-containing complexing agent and the basic compound may be used in a molar ratio of 1:10 to 1: 2 to satisfy the above pH range.
  • the pH value means a pH value at the temperature of the liquid 25 °C.
  • the coprecipitation reaction may be performed at a temperature of 40 ° C. to 70 ° C. under an inert atmosphere such as nitrogen.
  • the stirring process may be selectively performed to increase the reaction rate during the reaction, wherein the stirring speed may be 100 rpm to 2,000 rpm.
  • the nickel, cobalt and M1-containing raw materials and, optionally, M2 and M3-containing raw materials are prepared at different concentrations from the metal-containing solution.
  • the transition metal solution such that the mixing ratio of the metal-containing solution and the second metal-containing solution is gradually changed from 100% by volume to 0% by volume to 100% by volume. It can be carried out by adding the second metal-containing solution to the reaction, and at the same time reacting by adding an ammonium cation-containing complex forming agent and a basic compound.
  • nickel, cobalt, and M1 are independently from the center of the particle to the surface in one coprecipitation reaction process.
  • Precursors with continuously varying concentration gradients can be prepared.
  • the concentration gradient of the metal in the precursor and its slope can be easily controlled by the composition and the mixed feed ratio of the metal-containing solution and the second metal-containing solution, and to make a high density state with a high concentration of a specific metal It is preferable to lengthen the reaction time and to lower the reaction rate, and to shorten the reaction time and increase the reaction rate in order to make a low density state having a low concentration of a specific metal.
  • the speed of the second metal-containing solution added to the metal-containing solution may be carried out continuously increasing in the range of 1 to 30% compared to the initial charging speed.
  • the input speed of the metal-containing solution may be 150ml / hr to 210ml / hr
  • the input speed of the second metal-containing solution may be 120ml / hr to 180ml / hr.
  • the input speed of the second metal-containing solution may be continuously increased within the range of 1% to 30% of the initial input speed.
  • the reaction may be carried out at 40 °C to 70 °C.
  • the size of the precursor particles may be adjusted by adjusting the supply amount and the reaction time of the second metal-containing solution to the metal-containing solution.
  • the precursor particles of a composite metal hydroxide are generated as a precursor and are precipitated in a reaction solution.
  • the precursor may include a compound of Formula 4 below.
  • the precipitated precursor may be selectively carried out after separation in a conventional manner.
  • the drying process may be carried out according to a conventional drying method, specifically, may be carried out for 15 to 30 hours by a method such as heat treatment or hot air injection in the temperature range of 100 °C to 200 °C.
  • step 2 is a step of preparing a positive electrode active material by mixing the precursor particles prepared in step 1 with a lithium-containing raw material and optionally M2 and M3 raw material and then calcined .
  • M2 and M3 raw materials are the same as described above.
  • lithium-containing carbonate for example, lithium carbonate
  • hydrate for example, lithium hydroxide I hydrate (LiOH, H 2 O), etc.
  • hydroxide for example, lithium hydroxide, etc.
  • Nitrates e.g., lithium nitrate (LiNO 3 ), etc.
  • chlorides e.g., lithium chloride (LiCl), etc.
  • LiCl lithium chloride
  • the amount of the lithium-containing raw material used may be determined according to the content of lithium and transition metal in the final lithium composite metal oxide, specifically, the metal element included in the lithium and precursor contained in the lithium raw material (Me ) And the molar ratio (molar ratio of lithium / metal element (Me)) can be used in an amount such that 1.0 or more.
  • the firing process may be performed at 700 °C to 1,200 °C.
  • the firing process may be performed at 800 °C to 1,000 °C.
  • the firing process may be performed in an air atmosphere or an oxygen atmosphere (for example, O 2 ), and more specifically, may be performed in an oxygen atmosphere having an oxygen partial pressure of 20% by volume or more. In addition, the firing process may be performed for 5 hours to 48 hours, or 10 hours to 20 hours under the above conditions.
  • O 2 oxygen atmosphere
  • the firing process may be performed for 5 hours to 48 hours, or 10 hours to 20 hours under the above conditions.
  • a sintering aid may optionally be further added during the firing process.
  • the sintering aid can easily grow crystals at low temperatures and minimize the heterogeneous reaction during dry mixing.
  • the sintering aid has the effect of making the rounded curved particles by dulling the corners of the lithium composite metal oxide primary particles.
  • manganese elution occurs frequently from the edges of the particles, and the manganese elution reduces characteristics of the secondary battery, particularly at high temperatures.
  • the sintering aid is used, the elution portion of manganese can be reduced by rounding the corners of the primary particles, and as a result, the stability and lifespan characteristics of the secondary battery can be improved.
  • the sintering aid is boron compounds such as boric acid, lithium tetraborate, boron oxide and ammonium borate; Cobalt compounds such as cobalt oxide (II), cobalt oxide (III), cobalt oxide (IV), and tricobalt tetraoxide; Vanadium compounds such as vanadium oxide; Lanthanum compounds such as lanthanum oxide; Zirconium compounds such as zirconium boride, calcium zirconium silicate and zirconium oxide; Yttrium compounds such as yttrium oxide; Or gallium compounds such as gallium oxide, and the like, and any one or a mixture of two or more thereof may be used.
  • boron compounds such as boric acid, lithium tetraborate, boron oxide and ammonium borate
  • Cobalt compounds such as cobalt oxide (II), cobalt oxide (III), cobalt oxide (IV), and tricobalt tetraoxide
  • Vanadium compounds such as
  • the sintering aid may be used in an amount of 0.2 to 2 parts by weight, more specifically 0.4 to 1.4 parts by weight relative to 100 parts by weight of the precursor.
  • the moisture removing agent may be optionally further added during the firing process.
  • the water removing agent may include citric acid, tartaric acid, glycolic acid or maleic acid, and any one or a mixture of two or more thereof may be used.
  • the moisture remover may be used in an amount of 0.01 to 2 parts by weight based on 100 parts by weight of the precursor.
  • the positive electrode active material prepared by the above process has an improved interfacial stability between the electrolyte and the positive electrode active material together with excellent particle surface stability and internal structure stability, and thus exhibits excellent battery safety and life characteristics even under high temperature and high voltage conditions. Can be.
  • the distribution of the transition metal in the cathode active material can be additionally controlled, as a result of which the thermal stability can be improved to minimize performance degradation at high voltage.
  • a cathode and a lithium secondary battery including the cathode active material are provided.
  • the positive electrode is formed on the positive electrode current collector and the positive electrode current collector, and includes a positive electrode active material layer containing the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical changes in the battery.
  • carbon, nickel, titanium on the surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel Surface treated with silver, silver or the like can be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material layer may include a conductive material and a binder together with the cathode active material described above.
  • the conductive material is used to impart conductivity to the electrode.
  • the conductive material may be used without particular limitation as long as it has electronic conductivity without causing chemical change. Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives. One of these alone or a mixture of two or more thereof may be used.
  • the conductive material may typically be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the binder serves to improve adhesion between the cathode active material particles and adhesion between the cathode active material and the current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive electrode active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the positive electrode active material described above.
  • the positive electrode active material and optionally, a composition for forming a positive electrode active material layer including a binder and a conductive material may be prepared by applying a positive electrode current collector, followed by drying and rolling.
  • the type and content of the cathode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, and may include dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone or acetone. Water, and the like, one of these alone or a mixture of two or more thereof may be used.
  • the amount of the solvent is sufficient to dissolve or disperse the positive electrode active material, the conductive material, and the binder in consideration of the coating thickness of the slurry and the production yield, and to have a viscosity that can exhibit excellent thickness uniformity during application for the production of the positive electrode. Do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating the film obtained by peeling from the support onto a positive electrode current collector.
  • an electrochemical device including the anode is provided.
  • the electrochemical device may be specifically a battery, a capacitor, or the like, and more specifically, a lithium secondary battery.
  • the operating voltage of the lithium secondary battery may be 2.5V to 4.6V. This is because it is possible to operate at a relatively high voltage as the safety of the battery is improved due to the structural stability of the positive electrode active material including the lithium excess composite metal oxide of the formula (1). More specifically, the lithium secondary battery according to an embodiment of the present invention may be a high voltage driving battery of 3.1V to 4.6V, and more specifically 3.4V to 4.6V or 3.5V to 4.35V high voltage driving battery Can be.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned to face the positive electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, and the positive electrode is as described above.
  • the lithium secondary battery may further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • the negative electrode current collector may be formed on a surface of copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper, or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like, aluminum-cadmium alloy and the like can be used.
  • the negative electrode current collector may have a thickness of 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to enhance the bonding force of the negative electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode active material layer optionally includes a binder and a conductive material together with the negative electrode active material.
  • the negative electrode active material layer is coated with a negative electrode active material, and optionally a composition for forming a negative electrode including a binder and a conductive material on a negative electrode current collector and dried, or casting the negative electrode forming composition on a separate support It can also be produced by laminating a film obtained by peeling from this support onto a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fibers, and amorphous carbon;
  • Metallic compounds capable of alloying with lithium such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys or Al alloys;
  • a composite including the metallic compound and the carbonaceous material such as a Si-C composite or a Sn-C composite, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the anode active material.
  • the carbon material both low crystalline carbon and high crystalline carbon can be used. Soft crystalline carbon and hard carbon are typical low crystalline carbon, and high crystalline carbon is amorphous, plate, scaly, spherical or fibrous natural graphite or artificial graphite, Kish graphite (Kish) graphite, pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, mesophase pitches, petroleum coke and coal coke High-temperature calcined carbon such as tar pitch derived cokes is typical.
  • the binder and the conductive material may be the same as described above in the positive electrode.
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, if it is usually used as a separator in a lithium secondary battery can be used without particular limitation, in particular to the ion movement of the electrolyte It is desirable to have a low resistance against the electrolyte and excellent electrolytic solution-moisture capability.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • a porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • examples of the electrolyte used in the present invention include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery. It doesn't happen.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent may be an ester solvent such as methyl acetate, ethyl acetate, ⁇ -butyrolactone or ⁇ -caprolactone; Ether solvents such as dibutyl ether or tetrahydrofuran; Ketone solvents such as cyclohexanone; Aromatic hydrocarbon solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, Carbonate solvents such as PC); Alcohol solvents such as ethyl alcohol and isopropyl alcohol; Nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, which may include a
  • carbonate-based solvents are preferable, and cyclic carbonates having high ionic conductivity and high dielectric constant (for example, ethylene carbonate or propylene carbonate) that can improve the charge and discharge performance of a battery, and low viscosity linear carbonate compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate and the like is more preferable.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN (C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB (C 2 O 4 ) 2 and the like can be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1M to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has an appropriate conductivity and viscosity, it can exhibit excellent electrolyte performance, and lithium ions can move effectively.
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included. In this case, the additive may be included in an amount of 0.1 wt% to 5 wt% based on the total weight of the electrolyte.
  • the lithium secondary battery including the cathode active material according to the present invention may exhibit excellent battery safety and life characteristics even under high temperature and high voltage conditions due to the excellent stability of the cathode active material. Accordingly, the present invention is useful for portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicle fields such as hybrid electric vehicles (HEVs).
  • portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicle fields such as hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or the battery pack is a power tool (Power Tool); Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Power Tool Electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Or it can be used as a power source for any one or more of the system for power storage.
  • Nickel sulphate, manganese sulphate and cobalt sulphate were mixed in water at a molar ratio of 0.6: 0.2: 0.2 to prepare a metal containing solution at a concentration of 1.5 M, and a separate 3 M aqueous sodium hydroxide solution was prepared.
  • the metal containing solution was pumped continuously to the tank for the wet reactor at 0.18 L / hr with a metering pump.
  • the aqueous sodium hydroxide solution was pumped variable so that the distilled water in the wet reactor tank was maintained at pH 11.5 in conjunction with the control equipment for pH control of the distilled water in the tank. At this time, 30% aqueous ammonia solution was continuously pumped into the reactor at a rate of 0.035 L / hr.
  • the average residence time of the solution in the wet reactor tank was 6 hours.
  • the metal ion and hydroxide of the metal-containing solution were A nickel-cobalt-manganese composite metal precursor prepared by continuously reacting sodium hydroxide ions of sodium and ammonia ions of an aqueous ammonia solution for 20 hours was continuously obtained through an overflow pipe installed at the top of the tank. The obtained composite metal precursor was washed with distilled water and dried in a 120 ° C. constant temperature dryer for 24 hours.
  • 0.998 mol of the composite metal precursor is 0.002 mol of Al 2 O 3 and Li 2 CO 3 Dry mixing with 1 mole and firing at 900 °C for 10 hours to prepare a cathode active material (Li (Ni 0.6 Mn 0.2 Co 0.2 ) 0.998 Al 0.002 O 2 ).
  • a positive electrode active material was prepared in the same manner as in Reference Example 1, except that each was doped with Nd.
  • E surf surface energy values
  • dopants are preferred through modeling calculations using the DFT method for the positive electrode active materials prepared in Reference Examples 1-1 to 1-21. The location was predicted. The analysis results are shown in Table 1 below.
  • Equation 1 E surf1 , E surf2 , E slab1 , E slab2 , and E bulk are as defined above.
  • the surface energy of the metal element in the positive electrode active material is positive based on 0, it means that the metal element penetrates into the center of the positive electrode active material particle. If the surface energy shows a negative value, it means that the metal element has a property to diffuse to the surface of the cathode active material particles.
  • Al, Mn, Mg, Y, Zn and In have a surface energy of -0.5 eV or more.
  • Mg, Y, Zn, and In were 0.5 to 0.5 eV, showing values close to zero. From this, it can be seen that Mg, Y, Zn, and In do not exhibit particle center or surface directivity, and it can be expected that the mean slope of the concentration profile in the positive electrode active material is zero or a value close to zero.
  • Ru, Gd, Os, V, Nb, W, Mo, and Nd exhibit negative surface energy values, specifically, surface energy values of less than -1.5 eV, indicating surface directivity of the positive electrode active material particles.
  • Ti, Hf, Sn, Cr, Zr, Sb, and Ta exhibit surface energy values of -1.5 eV or more and less than -0.5 eV, compared to Ru, Gd, Os, V, Nb, W, Mo, and Nd. It can be seen that represents a low surface directivity.
  • Nickel sulphate, manganese sulphate and cobalt sulphate were mixed in water at a molar ratio of 0.6: 0.2: 0.2 to prepare a metal containing solution at a concentration of 1.5 M, and a separate 4 M NaOH aqueous solution was prepared.
  • the metal containing solution was pumped continuously to the tank for the wet reactor at 0.18 L / hr with a metering pump.
  • the aqueous sodium hydroxide solution was pumped variable so that the distilled water in the wet reactor tank was maintained at pH 11.5 in conjunction with the control equipment for pH control of the distilled water in the tank. At this time, 30% aqueous ammonia solution was continuously pumped into the reactor at a rate of 0.035 L / hr.
  • the average residence time of the solution in the wet reactor tank was 6 hours.
  • the metal ion and hydroxide of the metal-containing solution were A nickel-cobalt-manganese composite metal precursor prepared by continuously reacting sodium hydroxide ions of sodium and ammonia ions of an aqueous ammonia solution for 20 hours was continuously obtained through an overflow pipe installed at the top of the tank. The obtained precursor was washed with distilled water and dried in a 120 ° C. constant temperature dryer for 24 hours.
  • Example 1-1 Except for using the same amount of zirconium oxide (ZrO 2 ) in place of titanium oxide (TiO 2 ) in Example 1-1 by the same method as in Example 1-1 to the positive electrode active material (Li 1.05 ( the Ni 0. 6 Mn 0. 2 Co 0. 2) 0.935 W 0. 005 Zr 0. 01 O 2) was prepared.
  • ZrO 2 zirconium oxide
  • TiO 2 titanium oxide
  • Example 1-1 Except for using niobium oxide (Nb 2 O 5 ) in the same manner as in Example 1-1 instead of tungsten oxide (WO 3 ) in the same manner as in Example 1-1 to the positive electrode active material (Li a 1.05 (Ni 0. 6 Mn 0 . 2 Co 0. 2) 0.935 Nb 0. 005 Ti 0. 01 O 2) was prepared.
  • a positive electrode active material (Li 1.05 (Ni 0.6 Al 0.2 Co 0.2 ) 0.935 was prepared in the same manner as in Example 1-1 except that aluminum sulfate was used in the same amount instead of manganese sulfate in Example 1-1. W 0.005 Ti 0.01 O 2 ) was prepared.
  • Nickel sulphate, manganese sulphate and cobalt sulphate were mixed in water at a molar ratio of 0.6: 0.2: 0.2 to prepare a metal containing solution at a concentration of 1.5 M, and a separate 4 M NaOH aqueous solution was prepared.
  • the metal containing solution was pumped continuously to the tank for the wet reactor at 0.18 L / hr with a metering pump.
  • the aqueous sodium hydroxide solution was pumped variable so that the distilled water in the wet reactor tank was maintained at pH 11.5 in conjunction with the control equipment for pH control of the distilled water in the tank. At this time, 30% aqueous ammonia solution was continuously pumped into the reactor at a rate of 0.035 L / hr.
  • the average residence time of the solution in the wet reactor tank was 6 hours.
  • the metal ion and hydroxide of the metal-containing solution were A nickel-cobalt-manganese composite metal precursor prepared by continuously reacting sodium hydroxide ions of sodium and ammonia ions of an aqueous ammonia solution for 20 hours was continuously obtained through an overflow pipe installed at the top of the tank. The obtained precursor was washed with distilled water and dried in a 120 ° C. constant temperature dryer for 24 hours.
  • Li 2 CO 3 Li 2 CO 3
  • Example molybdenum oxide instead of titanium oxide in the 1-1 (MoO 3), and a positive electrode active material is carried in the same manner as in Example 1-1 except that the same amount (Li 1.05 (Ni 0. 6 the Mn 0. 2 Co 0. 2 ) 0.935 W 0. 005 Mo 0. 01 O 2) was prepared.
  • the positive electrode active material of Reference Example 1-1 was used.
  • the positive electrode active material of Reference Example 1-7 was used.
  • a lithium secondary battery was manufactured using the cathode active materials prepared in Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-4, respectively.
  • the positive electrode active materials prepared in Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-4, carbon black as a conductive material and PVDF as a binder, N- Methyl-pyrrolidone was mixed in a weight ratio of 95: 2.5: 2.5 to prepare a composition for forming an anode (viscosity: 5,000 mPa ⁇ s), which was applied to an aluminum current collector, dried at 130 ° C., and then rolled To prepare a positive electrode.
  • natural graphite as a negative electrode active material carbon black as a conductive material and PVDF as a binder are mixed in a ratio of 85: 10: 5 by weight in N-methyl-pyrrolidone as a solvent to prepare a composition for forming a negative electrode, which is copper It was applied to the current collector to prepare a negative electrode.
  • An electrode assembly was manufactured between the positive electrode and the negative electrode prepared as described above through a separator of porous polyethylene, the electrode assembly was placed in a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery.
  • the active material is etched for various times using HCl, and ICP The amount of element elution according to the etching time or dissolution time was analyzed through the analysis, and the composition of the lithium composite metal oxide in the active material particles was confirmed from the results.
  • Table 2 and Table 3 The results are shown in Table 2 and Table 3.
  • Example 1-1 Dissolution time (minutes) division Distance from Particle Surface ( ⁇ m)
  • Example 1-1 (molar ratio) Ni Co Mn Ti W 0 Selbu 0 0.561 0.215 0.209 0.010 0.005
  • 10 0.8 0.595 0.200 0.199 0.005 0.001
  • Dissolution time minutes
  • division Distance from Particle Surface ⁇ m
  • Comparative Example 1-2 (molar ratio) Ni Co Mn Mo W 0 Shell 0 0.560 0.218 0.207 0.010 0.005
  • 10 0.8 0.597 0.201 0.196 0.005 0.001
  • Core part 1.0 0.600 0.200 0.198 0.002 0 120 3.5 0.600 0.200 0.200 0 0 240 4.8 (particle center) 0.601 0.200 0.199 0 0
  • Average particle diameter (D 50 ) 50% of the particle size distribution in the measuring device after being introduced into a laser diffraction particle size measuring device (for example, Microtrac MT 3000) and irradiating an ultrasonic wave of about 28 kHz at an output of 60 W.
  • the average particle diameter (D 50 ) at the reference was calculated.
  • BET specific surface area The specific surface area of the positive electrode active material was measured by the BET method, specifically, it was calculated from the amount of nitrogen gas adsorption under liquid nitrogen temperature (77K) using BELSORP-mino II manufactured by BEL Japan. .
  • Tap Density Tap density under 2tonf / cm 2 pressure was measured using a tap density meter (HPRM-A1, manufactured by Hantec Co.).
  • a coin cell (cathode: Li metal) prepared using the positive electrode active material prepared in Examples 1-1 to 1-4 and Comparative Examples 1-1 to 1-4 was 0.1C at 25 ° C.
  • the battery was charged until the constant current (CC) of 4.25V, then charged with a constant voltage (CV) of 4.25V, and the first charge was performed until the charging current became 0.05mAh.
  • the battery was discharged to a constant current of 0.1C until 3.0V, and the discharge capacity of the first cycle was measured. Then, the charge and discharge capacity, charge and discharge efficiency and rate characteristics were evaluated by varying the discharge conditions at 2C. The results are shown in Table 4 below.
  • Example 1-1 9.8 0.35 2.4 196.5 181.4 92.3 165.8 91.4
  • Example 1-2 9.6 0.41 2.3 195.4 179.2 91.7 164.3 91.7
  • Example 1-3 9.8 0.38 2.4 194.2 179.4 92.4 165.2 92.1
  • Example 1-4 10.2 0.31 2.4 197.6 180.8 91.5 165.6 91.6 Comparative Example 1-1 10.4 0.43 2.4 196.5 177.6 90.4 161.3 90.8 Comparative Example 1-2 9.6 0.44 2.4 195.5 177.1 90.6 159.6 90.1 Comparative Example 1-3 9.8 0.51 2.3 197.1 175.6 89.1 155.8 88.7 Comparative Example 1-4 9.
  • the coin cells containing the positive electrode active materials of Examples 1-1 to 1-4 were compared with the coin cells containing the positive electrode active materials of Comparative Examples 1-1 to 1-4. In terms of the rate characteristics and the capacity characteristics, the effect was improved.
  • Lithium secondary batteries (Examples 2-1 to 2-3, Comparative Example 2-) containing the positive electrode active materials in Examples 1-1 to 1-3 and Comparative Examples 1-1 to 1-4, respectively. 1 to Comparative Example 2-4) was evaluated for battery characteristics in the following manner.
  • the lithium secondary battery was charged / discharged 300 times at a temperature of 25 ° C. under a condition of 1 C / 2 C within a driving voltage range of 2.8 V to 4.15 V.
  • the cycle capacity maintenance ratio (CAPACITY RETENTION RATE), which is the ratio of the discharge capacity at the 300th cycle with respect to the resistance at room temperature (25 ° C.) and high temperature (60 ° C.) and the initial capacity after 300 charge / discharge cycles at room temperature. %)
  • Example 2-1 1.21 0.028 98.1
  • Example 2-2 1.14 0.021 97.4
  • Example 2-3 1.24 0.033 98.3
  • Comparative Example 2-2 1.38 0.039 94.8
  • Comparative Example 2-3 1.65 0.051 92.6
  • Comparative Example 2-4 1.53 0.045 94.3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 하기 화학식 1로 표시되는 리튬 복합금속 산화물 입자를 포함하는 이차전지용 양극활물질 및 이를 포함하는 이차전지를 제공한다. [화학식 1] LiaNi1-x-yCoxM1yM2zM3wO2 상기 화학식 1에서, M1은 하기 수학식 1에 의해 계산된 표면 에너지(△Esurf)가 -0.5 eV 이상의 금속원소, M2는 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 이상 -0.5 eV 미만의 금속원소, M3은 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 미만의 금속원소이며, 1.0≤a≤1.5, 0<x≤0.5, 0<z≤0.05, 0.002≤w≤0.1, 0<x+y≤0.7임. [수학식 1] △Esurf = Esurf2-Esurf1 = (Eslab2-Ebulk)-(Eslab1-Ebulk) 상기 수학식 1에서, Esurf2는 금속원소가 리튬 복합금속 산화물 입자에서 최외곽 표면을 지향하는 정도를 나타내고, Esurf1는 금속원소가 리튬 복합금속 산화물 입자에서 중심부를 지향하는 정도를 나타내고, Eslab1은 금속원소가 리튬 복합금속 산화물 입자의 중심부에 있을 때, 리튬 복합금속 산화물 입자의 슬래브 모델의 에너지이며, Eslab2는 금속원소가 리튬 복합금속 산화물 입자의 표면에 있을 때의 리튬 복합금속 산화물 입자의 슬래브 모델의 에너지이고, Ebulk는 각 슬래브 모델에 해당하는 벌크 모델의 에너지임.

Description

이차전지용 양극활물질 및 이를 포함하는 이차전지
[관련출원과의 상호인용]
본 출원은 2015.11.30에 출원된 한국 특허 출원 제10-2015-0168676호 및 2016.11.30에 출원된 한국 특허 출원 제10-2016-0161895호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 활물질 입자의 표면 안정성 및 내부 구조의 안정성과 함께 개선된 전해질과 활물질 사이의 계면 안정성을 가져, 고온 및 고전압 조건 하에서도 우수한 전지 안전성 및 수명 특성을 나타낼 수 있는 이차전지용 양극활물질 및 이를 포함하는 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
그러나, 리튬 이차전지는 충방전을 거듭함에 따라서 수명이 급속하게 떨어지는 문제점이 있다. 특히, 고온에서는 이러한 문제가 더욱 심각하다. 이는 전지내부의 수분이나 기타 다른 영향으로 인해 전해질이 분해되거나 활물질이 열화되고, 또한 전지의 내부저항이 증가되어 생기는 현상이다.
이에 따라 현재 활발하게 연구 개발되어 사용되고 있는 리튬 이차전지용 양극활물질은 층상구조의 LiCoO2이다. LiCoO2는 수명특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 구조적 안정성이 낮아 전지의 고용량화 기술에 적용되기에는 한계가 있다.
이를 대체하기 위한 양극활물질로서, LiNiO2, LiMnO2, LiMn2O4, LiFePO4, Li(Nix1Coy1Mnz1)O2 등의 다양한 리튬 전이금속 산화물이 개발되었다. 이중, LiNiO2의 경우 높은 방전용량의 전지 특성을 나타내는 장점이 있다. 그러나, LiNiO2 간단한 고상반응으로는 합성이 어렵고, 열적 안정성 및 사이클 특성이 낮은 문제점이 있다. 또, LiMnO2 또는 LiMn2O4 등의 리튬 망간계 산화물은 열적안전성이 우수하고, 가격이 저렴하다는 장점이 있다. 하지만, 리튬 망간계 산화물은 용량이 작고, 고온 특성이 낮은 문제점이 있다. 특히, LiMn2O4의 경우 저가격 제품에 일부 상품화가 되어 있으나, Mn3 +로 인한 구조변형(Jahn-Teller distortion) 때문에 수명특성이 좋지 않다. 또한, LiFePO4는 낮은 가격과 안전성이 우수하여 현재 하이브리드 자동차(hybrid electric vehicle, HEV)용으로 많은 연구가 이루어지고 있다. 그러나, LiFePO4는 낮은 전도도로 인해 다른 분야에 적용은 어려운 실정이다.
이 같은 사정으로 인해, LiCoO2의 대체 양극활물질로 최근 가장 각광받고 있는 물질은 리튬 니켈망간코발트계 산화물, Li(Nix2Coy2Mnz2)O2 (이때, 상기 x2, y2, z2는 각각 독립적인 산화물 조성 원소들의 원자분율로서, 0<x2≤1, 0<y2≤1, 0<z2≤1, 0<x2+y2+z2≤1임)이다. 이 재료는 LiCoO2보다 저가격이며 고용량 및 고전압에 사용될 수 있는 장점이 있다. 그러나, 리튬 니켈망간코발트계 산화물은 율 특성(rate capability) 및 고온에서의 수명특성이 좋지 않은 단점을 갖고 있다.
한편, 통상 상기한 양극활물질을 사용하는 리튬 이차전지는 충방전을 거듭함에 따라, 활물질 표면구조의 퇴화 및 급격한 구조 붕괴를 동반한 발열반응으로 전지의 안전성이 저하되거나 수명 특성이 급격하게 저하되는 문제점이 있다. 특히 고온 및 고전압의 조건에서 이러한 문제가 더욱 심각하다. 이는 전지 내부의 수분이나 기타 영향으로 인해 전해질이 분해되거나 양극 표면의 불안정성으로 인해 활물질이 열화되고, 활물질을 포함하는 전극과 전해질 사이의 계면 저항이 증가되기 때문이다.
이러한 문제점을 해결하기 하기 위해, 양극활물질을 도핑하거나 표면 처리하여 활물질 자체의 구조적 안정성 및 표면 안정성을 향상시키고, 전해질과 활물질 사이의 계면 안정성을 높이는 방법들이 제안되고 있다. 하지만, 그 효과 및 공정성 면에서 충분히 만족스럽지 못한 실정이다.
또, 최근 고용량 전지에 대한 요구가 증가함에 따라, 내부 구조 및 표면 안정성을 확보하여 전지 안전성 및 수명 특성을 향상시킬 수 있는 양극 활물질의 개발에 대한 필요성이 더욱 높아지고 있다.
본 발명이 해결하고자 하는 제1기술적 과제는, 활물질 입자의 표면 안정성 및 내부 구조의 안정성과 함께 개선된 전해질과 활물질 사이의 계면 안정성을 가져, 고온 및 고전압 조건 하에서도 우수한 전지 안전성 및 수명 특성을 나타낼 수 있는 이차전지용 양극활물질을 제공하는 것이다.
또, 본 발명이 해결하고자 하는 제2기술적 과제는, 상기 양극활물질을 포함하는 이차전지용 양극, 리튬 이차전지, 전지모듈 및 전지팩을 제공하는 것이다.
상기 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 하기 화학식 1로 표시되는 리튬 복합금속 산화물 입자를 포함하는 이차전지용 양극활물질이 제공된다.
[화학식 1]
LiaNi1-x-yCoxM1yM2zM3wO2
상기 화학식 1에서,
M1은 하기 수학식 1에 의해 계산된 표면 에너지(△Esurf)가 -0.5 eV 이상의 금속원소, M2는 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 이상 -0.5 eV 미만의 금속원소, M3은 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 미만의 금속원소이며, 1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0<z≤0.05, 0.002≤w≤0.1, 0<x+y≤0.7임.
[수학식 1]
△Esurf = Esurf2-Esurf1
= (Eslab2-Ebulk)-(Eslab1-Ebulk)
상기 수학식 1에서, Esurf2는 금속원소가 리튬 복합금속 산화물 입자에서 최외곽 표면을 지향하는 정도를 나타내고, Esurf1는 금속원소가 리튬 복합금속 산화물 입자에서 중심부를 지향하는 정도를 나타내고, Eslab1은 금속원소가 리튬 복합금속 산화물 입자의 중심부에 있을 때, 리튬 복합금속 산화물 입자의 슬래브 모델(slab model)의 에너지이며, Eslab2는 금속원소가 리튬 복합금속 산화물 입자의 표면에 있을 때의 리튬 복합금속 산화물 입자의 슬래브 모델의 에너지이고, Ebulk는 각 슬래브 모델에 해당하는 벌크 모델(bulk model)의 에너지임.
본 발명의 다른 일 실시예에 따르면, 상기한 양극활물질을 포함하는 이차전지용 양극, 리튬 이차전지, 전지모듈 및 전지팩이 제공된다.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명에 따른 이차전지용 양극활물질은 우수한 입자 표면 안정성 및 내부 구조의 안정성과 함께 개선된 전해질과 활물질 사이의 계면 안정성을 가진다. 본 발명에 따른 이차전지는 상술한 특성을 가진 양극활물질을 포함하므로, 고온 및 고전압 조건 하에서도 우수한 전지 안전성 및 수명 특성을 나타낼 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 이차전지용 양극활물질은,
하기 화학식 1로 표시되는 리튬 복합금속 산화물 입자를 포함한다.
[화학식 1]
LiaNi1 -x- yCoxM1yM2zM3wO2
상기 화학식 1에서,
M1은 하기 수학식 1에 의해 계산된 표면 에너지(△Esurf)가 -0.5 eV 이상의 금속원소,
M2는 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 이상 -0.5 eV 미만의 금속원소,
M3은 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 미만의 금속원소이며,
1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0<z≤0.05, 0.002≤w≤0.1, 0<x+y≤0.7임.
[수학식 1]
△Esurf = Esurf2-Esurf1
= (Eslab2-Ebulk)-(Eslab1-Ebulk)
상기 수학식 1에서,
Esurf2는 금속원소가 리튬 복합금속 산화물 입자에서 최외곽 표면을 지향하는 정도를 나타내고,
Esurf1는 금속원소가 리튬 복합금속 산화물 입자에서 중심부를 지향하는 정도를 나타내고,
Eslab1은 금속원소가 리튬 복합금속 산화물 입자의 중심부에 있을 때, 리튬 복합금속 산화물 입자의 슬래브 모델(slab model)의 에너지이며,
Eslab2는 금속원소가 리튬 복합금속 산화물 입자의 최외곽 표면에 있을 때의 리튬 복합금속 산화물 입자의 슬래브 모델의 에너지이고,
Ebulk는 각 slab 모델에 해당하는 벌크 모델(bulk model)의 에너지임.
본 발명은 이차전지용 양극활물질의 제조 시, 원소의 표면 에너지량에 따른 양극활물질 입자 상에서의 위치선호도를 조사하고, 이를 근거로 양극활물질 입자 표면에서 중심부 구간까지 해당 원소가 최적화된 농도 프로파일을 나타내도록 함으로써, 활물질 입자의 표면 안정성 및 내부 구조 안정성 개선과 함께 개선된 전해질과 활물질 사이의 계면 안정성을 가질 수 있도록 하였다. 그 결과로서 최종생산품인 이차전지가 고온 및 고전압 조건 하에서도 우수한 전지 안전성 및 수명 특성을 나타낼 수 있다.
본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기 리튬 복합금속 산화물은 하기 화학식 1의 화합물을 포함하는 것일 수 있다.
[화학식 1]
LiaNi1 -x- yCoxM1yM2zM3wO2
상기 화학식 1에서,
M1은 하기 수학식 1에 의해 계산된 표면 에너지(△Esurf)가 -0.5 eV 이상의 금속원소,
M2는 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 이상 -0.5 eV 미만의 금속원소,
M3은 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 미만의 금속원소이며,
1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0<z≤0.05, 0.002≤w≤0.1, 0<x+y≤0.7이다.
본 발명에 있어서, 하기 수학식 1에 의해 계산된 표면 에너지(Esurf )란, 금속원소가 리튬 복합금속 산화물 입자의 최외곽 표면 또는 중심부를 지향하는 정도를 나타내는 것일 수 있다.
[수학식 1]
△Esurf = Esurf2-Esurf1
= (Eslab2-Ebulk)-(Eslab1-Ebulk)
상기 수학식 1에서 Esurf2는 금속원소가 리튬 복합금속 산화물 입자에서 최외곽 표면을 지향하는 정도를 나타내고, Esurf1는 금속원소가 리튬 복합금속 산화물 입자에서 중심부, 즉 정중앙을 지향하는 정도를 나타낸다. Esurf1 및 Esurf2는 금속 원소가 리튬 복합금속 산화물 입자의 중심부 및 최외곽 표면에 위치할 때의 슬래브 모델(slab model)의 에너지와 벌크 모델(bulk model)의 에너지 값의 차를 나타낸다. 또, Eslab1은 금속원소가 리튬 복합금속 산화물 입자의 중심부에 있을 때, 리튬 복합금속 산화물 입자 슬래브 모델의 에너지이다. Eslab2는 금속원소가 리튬 복합금속 산화물 입자의 최외곽 표면에 있을 때의 리튬 복합금속 산화물 입자 슬래브 모델의 에너지이다. Ebulk는 각 슬래브 모델에 해당하는 벌크 모델의 에너지이고, 리튬 복합금속 산화물 내 금속원소의 위치에 상관없이 화학양론적으로 계산된다.
상기 수학식 1에 의해 계산된 표면에너지 값(△Esurf)이 양의 값을 나타낼수록 금속원소가 리튬 복합금속 산화물 입자의 중심부에 위치하고자 하는 성질을 가지고 있음을 나타낸다. 반대로 표면에너지 값이 음의 값을 나타낼수록 금속원소가 리튬 복합금속 산화물 입자의 표면 쪽에 위치하고자 하는 성질을 가지고 있음을 나타낸다. 따라서, 표면에너지가 양의 값을 나타내는 금속원소는 리튬 복합금속 산화물 입자의 중심부로 확산하게 된다. 또한, 표면에너지가 음의 값을 나타내는 금속원소는 리튬 복합금속 산화물 입자의 표면으로 침투하게 된다. 또 상기 표면에너지 값이 0에 근접할수록 표면 또는 중심부로의 지향성을 나타내지 않음을 의미한다. 즉, 표면에너지 값이 0에 근접할수록 리튬 복합금속 산화물 입자 전체에 걸쳐 일정한 농도로 균일하게 분포될 수 있다. 본 발명에 있어서, 금속원소의 표면에너지 값은 양극 이산푸리에변환(Discrete Fourier Transform DFT) 방법에 의한 모델링 계산을 통해 결정될 수 있다.
또, 본 발명에 있어서, 농도 프로파일이란 X축이 입자표면에서 중심부까지의 깊이를 나타내고, Y축이 금속원소의 함유량을 나타낼 때, 리튬 복합금속 산화물 입자 표면에서 중심부의 깊이에 따른 금속원소의 함유량을 나타내는 그래프를 의미한다. 일례로, 농도 프로파일의 평균 기울기가 양이라는 것은 리튬 복합금속 산화물 입자 중심부 구간이 입자 표면 부분 보다 해당 금속원소가 상대적으로 많이 위치하는 것을 의미하고, 평균 기울기가 음이라는 것은 리튬 복합금속 산화물 입자 중심부 구간 보다 입자 표면 부분에 금속원소가 상대적으로 많이 위치하고 있는 것을 의미한다. 본 발명에 있어서, 농도 프로파일은 X선 광전자 분광법(XPS(X-ray Photoelectron Spectroscopy) 또는 ESCA(Electron Spectroscopy for Chemical Analysis)라고도 함), 전자선 마이크로 애널라이저(Electron Probe Micro Analyzer, EPMA), 유도결합 플라스마-원자 방출 분광법(Inductively Coupled Plasma - Atomic Emission Spectrometer, ICP-AES), 또는 비행 시간형 2차 이온 질량분석기(Time of Flight Secondary Ion Mass Spectrometry, ToF-SIMS) 등의 방법을 이용하여 확인할 수 있다. 구체적으로는 XPS를 이용하여 리튬 복합금속 산화물 내 금속원소의 프로파일을 확인하는 경우, 리튬 복합금속 산화물 입자 표면에서 중심부 방향으로 활물질을 에칭하면서, 에칭 시간(etching time) 별로 금속원소비(atomic ratio)를 측정하고, 이로부터 금속원소의 농도 프로파일을 확인할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 표면 에너지(Esurf)가 -0.5 eV 이상의 금속원소인 상기 M1가 리튬 복합금속 산화물 입자 전체에 걸쳐 단일 농도값, 즉 농도프로파일의 기울기가 0인 동일한 농도로 포함되거나 또는 리튬 복합금속 산화물 입자의 표면에서 중심부 구간까지 농도 프로파일의 평균 기울기가 양(+)이 되도록 될 수 있다. 보다 구체적으로 상기 M1은 -0.5 내지 0.5eV의 표면에너지를 갖는 것일 수 있다. 이에 따라 입자 표면 또는 중심에 대한 지향성을 거의 갖지 않고, 리튬 복합금속 산화물 입자 전체에 걸쳐 균일한 함량으로 포함됨으로써 보다 우수한 리튬 복합금속 산화물 입자의 내부 구조 안정성을 나타낼 수 있다.
상기 표면에너지 조건을 충족하는 M1은 구체적으로 Al, Mg, Y, Zn, In 및 Mn으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있다. 상기 M1의 경우 활물질의 결정안정성을 개선하여 전지의 수명 및 고온 특성을 향상시킬 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, 상기 M1은 y에 해당하는 함량, 즉 0<y≤0.5의 함량으로 포함될 수 있다. y가 0이면 M1 포함에 따른 개선효과를 얻을 수 없고, 0.5를 초과하면 오히려 전지의 출력 특성 및 용량 특성이 저하될 우려가 있다. M1 원소의 포함에 따른 전지 특성 개선 효과의 현저함을 고려할 때, 상기 M1은 보다 구체적으로 0.1<y≤0.2의 함량으로 포함될 수 있다.
또, 상기 양극활물질에 있어서, 표면에너지가 -1.5 eV 이상 -0.5 eV 미만, 보다 구체적으로 -1.5 eV 내지 -1.0 eV의 금속원소인 M2는 양극활물질 입자의 표면에서부터 중심부까지 농도 프로파일의 평균 기울기가 음(-)이 되도록 분포될 수 있다. 표면에너지가 상기한 조건을 충족하는 M2는 표면 지향성을 가진다. 그러나, 상기 M3에 비해서는 낮은 표면 지향성 및 높은 중심 지향성을 갖는 것으로, 상기 M3에 비해 농도 프로파일의 평균 기울기의 절대값이 더 작을 수 있다.
상기 표면에너지 조건을 충족하는 M2는 리튬 복합금속 산화물의 결정 구조에 있어서, Ni, Co 또는 M1의 일부를 치환하여 이들 원소가 존재해야 할 위치에 존재할 수도 있다. 또는 리튬 복합금속 산화물에 도핑될 수도 있다. 또, 상기 M2는 리튬 복합금속 산화물 표면에 존재하는 리튬과 반응하여 리튬 산화물을 형성할 수도 있다. 보다 구체적으로, 상기한 표면에너지 조건을 충족하는 M2는 Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru, Gd 및 Os로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있으며, 보다 구체적으로는 Ti 또는 Zr일 수 있다.
상기 화학식 1의 리튬 복합금속 산화물 입자에 있어서, 상기 M2은 z에 해당하는 함량, 즉 0<z≤0.05의 함량으로 포함될 수 있다. 상기 M2의 함량이 0이거나 또는 0.05를 초과할 경우 리튬 복합금속 산화물 표면 및 내부구조 안정성 구현이 용이하지 않다. 그 결과 출력 및 수명 특성 개선효과가 미미할 수 있다. 또, 상기 M2의 함량 제어에 따른 리튬 복합금속 산화물 입자의 표면 안정성 및 그에 따른 전지 특성 개선효과의 현저함을 고려할 때 보다 구체적으로, 상기 M2은 보다 구체적으로 0<z≤0.02로 포함될 수 있다.
또, 상기 양극활물질에 있어서, 표면에너지가 -1.5 eV 미만, 보다 구체적으로는 -1.8 eV 내지 -4.0 eV의 금속원소인 M3는 큰 표면 지향성을 가진다. 이로 인해 상기 M3은 리튬 복합금속 산화물 입자의 표면 측에 높은 농도로 존재함으로써, 리튬 복합금속 산화물 표면 안정성을 향상시킬 수 있다.
상기 표면에너지 조건을 충족하는 M3은 구체적으로 주기율표 6족(VIB족)에 해당하는 원소로서, 리튬 복합금속 산화물 입자의 제조시 리튬 복합금속 산화물 입자의 표면 측에 도입되어 결정 구조를 재배열할 수 있다. 이에 따라 리튬 복합금속 산화물이 보다 안정한 결정구조를 갖도록 하는 동시에, 또 소성 공정 중 입자 성장을 억제하는 역할을 할 수 있다. 상기 M3은 리튬 복합금속 산화물 입자의 결정 구조에 있어서, Ni, Co 또는 M1의 일부를 치환하여 이들 원소가 존재해야 할 위치에 존재할 수도 있고, 또는 입자 표면에 존재하는 리튬과 반응하여 리튬 산화물을 형성할 수도 있다. 이에 따라 상기 M3의 함량 및 투입 시기의 조절을 통해 결정립의 크기를 제어할 수 있다. 보다 구체적으로, 상기 M3은 W, V, Nb, Nd 및 Mo로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함할 수 있으며, 보다 구체적으로는 W 및 Nb 중 적어도 어느 하나의 원소일 수 있다. 이중에서도 상기 M3이 W인 경우에는 출력 향상 면에서 우수하고, Nb인 경우에는 고온 내구성 면에서 보다 우수할 수 있다.
상기 화학식 1의 리튬 복합금속 산화물 입자에 있어서, 상기 M3은 w에 해당하는 함량, 즉 0.002≤w≤0.1의 함량으로 포함될 수 있다. 상기 M3의 함량이 0.002 미만이거나 또는 0.1를 초과할 경우 리튬 복합금속 산화물 입자의 표면 안정성 구현이 용이하지 않고, 그 결과 출력 및 수명 특성 개선효과가 미미할 수 있다. 또, 상기 M3의 함량 제어에 따른 리튬 복합금속 산화물 입자의 표면 안정성 및 그에 따른 전지 특성 개선효과의 현저함을 고려할 때 보다 구체적으로, 상기 M3은 보다 구체적으로 0.005<w≤0.5로 포함될 수 있다.
상기 화학식 1의 리튬 복합금속 산화물 입자에 있어서, Li은 a에 해당하는 함량, 즉 1.0≤a≤1.5으로 포함될 수 있다. a가 1.0 미만이면 용량이 저하될 우려가 있고, 1.5를 초과하면 소성 공정에서 입자가 소결되어 버려, 활물질 제조가 어려울 수 있다. Li 함량 제어에 따른 양극활물질의 용량 특성 개선 효과의 현저함 및 활물질 제조시의 소결성이 발란스를 고려할 때 상기 Li는 보다 구체적으로 1.0≤a≤1.15의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Ni는 1-x-y에 해당하는 함량, 즉 0.3≤1-x-y<1의 함량으로 포함될 수 있다. 1-x-y가 0.3 미만일 경우 용량 특성이 저하될 우려가 있고, 또 1을 초과할 경우 고온안정성 저하의 우려가 있다. Ni 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Ni는 보다 구체적으로 0.35≤1-x-y<0.8의 함량으로 포함될 수 있다.
또, 상기 화학식 1의 리튬 복합금속 산화물에 있어서, Co는 x에 해당하는 함량, 즉 0<x≤0.5의 함량으로 포함될 수 있다. x가 0일 경우 용량 특성이 저하될 우려가 있고, 또 0.5를 초과할 경우 비용 증가의 우려가 있다. Co 포함에 따른 용량 특성 개선 효과의 현저함을 고려할 때, 상기 Co는 보다 구체적으로 0.1≤x≤0.35의 함량으로 포함될 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 리튬 복합금속 산화물 입자는 코어 및 상기 코어의 표면 상에 형성된 쉘을 포함하는 코어-쉘의 구조를 가질 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 리튬 복합금속 산화물 입자에 있어서, 코어는 상기 리튬 복합금속 산화물 입자의 내측에 존재하며 입자의 표면을 제외한 입자 중심에 근접한 영역을 의미한다. 또, 상기 코어는 상기 리튬 복합금속 산화물 입자의 내측에 존재하며 규칙적인 결정 구조를 유지할 수 있는 영역일 수 있다. 구체적으로는 입자 중심에서부터 표면까지의 거리(rin), 즉 입자의 반직경에 대해 입자 중심에서부터 0% 이상 100% 미만, 보다 구체적으로 0% 이상 70% 이하의 거리에 해당하는 영역일 수 있다. 또 본 발명에 있어서, '쉘'은 입자의 중심 또는 입자 내부를 제외한, 표면에 근접한 영역을 의미한다. 또 상기 쉘은 규칙적인 결정 구조가 그 기하학적 제약으로 인해 유지되지 않는 영역일 수 있다. 구체적으로는 상기 쉘은 입자의 표면에서부터 중심까지의 거리(rsur), 즉 입자의 반직경에 대해 입자 표면에서부터 0% 이상이고 100% 미만, 보다 구체적으로는 0% 이상 30% 이하의 거리에 해당하는 영역일 수 있다.
보다 구체적으로, 상기 코어-쉘 구조를 갖는 리튬 복합금속 산화물 입자는 상기 코어 및 쉘을 50:50 내지 80:20의 부피비로 포함할 수 있다. 코어 및 쉘의 부피비가 상기 범위를 초과할 경우, 금속원소의 위치 제어에 따른 활물질 안정성 개선효과가 미미할 수 있다.
본 발명에 있어서, 코어 및 쉘은 리튬 복합금속 산화물 입자에 대한 X회절 분석 결과를 이용하여 구분할 수 있다.
보다 구체적으로는 상기 코어-쉘 구조를 갖는 리튬 복합금속 산화물 입자에 있어서, 표면 에너지(△Esurf)가 -0.5 eV 이상, 보다 구체적으로 -0.5 eV 내지 0.5 eV의 금속원소인 상기 M1은 리튬 복합금속 산화물 입자 전체에 걸쳐 단일 농도로 포함될 수 있다.
또, 표면에너지가 -1.5 eV 이상 -0.5 eV 미만, 보다 구체적으로 -1.5 eV 내지 -1.0 eV의 금속원소인 상기 M2는 상기 코어에 1 내지 25몰%, 쉘에 75 내지 99몰%의 농도로 포함될 수 있다. 표면에너지가 상기한 조건을 충족하는 금속원소는 입자 표면 지향성을 가지나, 상기 M3에 비해서는 낮은 표면 지향성 및 높은 중심 지향성을 갖다. 상기한 함량 조건으로 리튬 복합금속 산화물 입자 내에 포함될 때, 리튬 복합금속 산화물 입자의 표면 안정성 및 내부 구조 안정성을 나타낼 수 있다.
또, 표면에너지가 -1.5 eV 미만, 보다 구체적으로는 -1.5 eV 내지 -4.0 eV의 금속원소인 M3은 상기 코어에 1 내지 10몰%, 쉘에 90 내지 99몰%의 농도로 포함될 수 있다. 표면에너지가 상기한 조건을 충족하는 M3은 입자 표면 지향성이 큰 것으로, 상기한 함량 조건으로 리튬 복합금속 산화물 입자 내에 포함될 때, 우수한 리튬 복합금속 산화물 입자의 표면 안정성을 나타낼 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질에 있어서, 상기한 화학식 1의 리튬 복합금속 산화물 내 포함되는 니켈 및 코발트 중 적어도 어느 하나의 금속원소는, 상기 양극활물질 입자 내에서 증가하거나 또는 감소하는 농도구배를 나타낼 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 양극활물질에 있어서, 니켈 및 코발트 중 적어도 하나의 금속원소는 활물질 입자 전체에 걸쳐 금속의 농도가 연속적으로 변화하는 농도구배를 가질 수 있으며, 금속원소의 농도구배 기울기는 하나 이상의 값을 나타낼 수 있다. 이와 같이 연속적인 농도구배를 가짐으로써, 중심으로부터 표면에 이르기까지 급격한 상 경계 영역이 존재하지 않아 결정 구조가 안정화되고 열 안정성이 증가하게 된다. 또, 금속의 농도구배 기울기가 일정할 경우, 구조 안정성 개선효과가 더욱 향상될 수 있다. 또, 농도구배를 통해 활물질 입자 내에서의 각 금속의 농도를 달리함으로써, 해당 금속의 특성을 용이하게 활용하여 양극활물질의 전지성능 개선효과를 더욱 향상시킬 수 있다.
본 발명에 있어서 "금속의 농도가 연속적으로 변화하는 농도구배를 나타낸다"란, 금속의 농도가 입자 전체에 걸쳐 점진적으로 변화하는 농도 분포로 존재한다는 것을 의미한다. 구체적으로, 상기 농도 분포는 입자 내에서 1㎛당, 보다 구체적으로는 0.1㎛당 금속 농도의 변화가, 상기 리튬 복합금속 산화물 입자 내 포함되는 해당 금속의 총 원자량을 기준으로, 각각 0.1원자% 내지 30원자%, 보다 구체적으로는 0.1원자% 내지 20원자%, 보다 더 구체적으로는 1원자% 내지 10원자%로 변화하는 농도구배, 즉 농도 차이가 있는 것일 수 있다.
보다 구체적으로는, 상기 리튬 복합금속 산화물에 있어서, 상기 리튬 복합금속 산화물 내 포함된 니켈의 농도는 상기 리튬 복합금속 산화물 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 감소할 수 있다. 이때 상기 니켈의 농도구배 기울기는 상기 리튬 복합금속 산화물 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이 상기 리튬 복합금속 산화물 입자 내 입자 중심에서 니켈의 농도가 고농도를 유지하고, 입자 표면 측으로 갈수록 농도가 감소하는 농도구배를 포함하는 경우, 상기 리튬 복합금속 산화물의 열안정성을 개선시킬 수 있다.
또, 상기 리튬 복합금속 산화물에 있어서, 상기 리튬 복합금속 산화물 내 포함된 코발트의 농도는 상기 리튬 복합금속 산화물 입자의 중심에서부터 입자의 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이때 상기 리튬 복합금속 산화물의 농도구배 기울기는 상기 리튬 복합금속 산화물 입자의 중심에서부터 표면까지 일정할 수 있다. 이와 같이 상기 리튬 복합금속 산화물 입자 내에 입자 중심에서 코발트의 농도가 저농도를 유지하고, 표면측으로 갈수록 농도가 증가하는 농도구배를 가질 경우, 코발트의 사용량을 감소시키면서도 양극활물질의 용량 및 출력 특성을 개선시킬 수 있다.
또, 상기 리튬 복합금속 산화물에 있어서, 니켈 및 코발트는 상기 리튬 복합금속 산화물 입자 전체에 걸쳐 각각 독립적으로, 변화하는 농도구배를 나타낼 수 있다. 상기 니켈의 농도는 상기 리튬 복합금속 산화물 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 감소할 수 있다. 그리고 상기 코발트의 농도는 각각 독립적으로 상기 리튬 복합금속 산화물 입자의 중심에서부터 표면 방향으로 연속적인 농도구배를 가지면서 증가할 수 있다. 이와 같이, 상기 리튬 복합금속 산화물 전체에 걸쳐 상기 리튬 복합금속 산화물 입자의 표면측으로 갈수록 니켈의 농도는 감소하고, 코발트의 농도는 증가하는 조합된 농도구배를 포함함으로써, 상기 리튬 복합금속 산화물의 용량 특성을 유지하면서도 열안정성을 개선시킬 수 있다.
또, 본 발명의 일 실시예에 따른 상기 리튬 복합금속 산화물은, 그 제조과정에서 상기 M2 및 M3의 표면 지향성에 따른 상기 리튬 복합금속 산화물 입자 표면으로의 확산에 의해 상기 리튬 복합금속 산화물 입자의 표면 상에, 상기 M2 및 M3으로 이루어진 군에서 선택되는 적어도 어느 하나의 금속원소; 또는 상기 적어도 어느 하나의 금속원소와 리튬의 반응으로 생성된 리튬 산화물을 포함하는 코팅층을 포함할 수 있다.
상기 리튬 복합금속 산화물이 표면으로 확산된 M2 또는 M3 포함 코팅층을 더 포함하는 경우, 상기 리튬 복합금속 산화물은 하기 화학식 2로 표현되는 조성을 갖는 리튬 복합금속 산화물을 포함할 수 있다:
[화학식 2]
LiaNi1 -x- yCoxM1yM2zM3wO2 ·M2'z'M3'w '
상기 화학식 2에서, M1, M2, M3, a, x, y, z, 및 w는 앞서 정의한 바와 같고,
M2' 및 M3'은 각각 상기 리튬 복합금속 산화물 표면 상에 위치하는 M2 및 M3이고,
w'및 z'은 각각 M3' 및 M2'의 코팅량으로서, w'은 M3 전체량을 기준으로 0.01 내지 10원자%이고, z'은 M2 전체량을 기준으로 5 내지 30원자%이다.
코팅량이 지나치게 적을 경우 코팅으로 인한 개선 효과가 미미하고, 코팅량이 지나치게 많을 경우, 상대적으로 상기 리튬 복합금속 산화물 입자 내부에 분포하는 양의 감소로 구조 안정성이 저하될 우려가 있다. 또, 본 발명에 있어서, 상기 금속원소의 코팅은 금속원소가 리튬 복합금속 산화물의 표면에 물리적으로 흡착되거나 또는 화학적으로 결합되어 있는 것을 의미한다.
또, 상기 코팅층이 M2 또는 M3의 금속원소와 리튬의 반응에 의한 리튬 산화물을 포함하는 경우, 상기 리튬 산화물은 구체적으로 하기 화학식 3의 화합물을 포함할 수 있다:
[화학식 3]
Lim(M2pM31-p)O(m+n)/2
상기 화학식 3에서, M2는 Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru, Gd 및 Os로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이고, M3은 W, V, Nb, Nd 및 Mo로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이며, 2≤m≤10, n은 M2와 M3의 산화수의 합이며, 0≤p≤1이다.
상기와 같은 구조를 갖는 본 발명의 일 실시예에 따른 상기 양극활물질은 평균 입자 직경(D50)이 4㎛ 내지 20㎛일 수 있다. 상기 양극활물질의 평균 입자 직경이 4㎛ 미만이면 양극활물질 입자의 구조 안정성이 저하될 우려가 있고, 20㎛를 초과하면 이차전지의 출력특성이 저하될 우려가 있다. 또, 상기 양극활물질 입자 내 금속원소의 농도 분포와 활물질의 평균 입자 직경의 동시 제어에 따른 개선 효과의 현저함을 고려할 때, 상기 양극활물질의 평균 입자 직경은 5㎛ 내지 18㎛일 수 있다. 본 발명에 있어서, 상기 양극활물질의 평균 입자 직경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명에 있어서 양극활물질 입자의 평균 입자 직경(D50)은 예를 들어, 주사전자 현미경(scanning electron microscopy, SEM) 또는 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM) 등을 이용한 전자 현미경 관찰이나, 또는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 레이저 회절법에 의해 측정시, 보다 구체적으로는, 양극활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예: Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 BET 비표면적이 0.3m2/g 내지 1.9m2/g인 것일 수 있다.
상기 양극활물질의 BET 비표면적이 1.9m2/g를 초과하면 양극활물질 간 응집으로 인한 활물질층 내 양극활물질의 분산성 저하 및 전극 내 저항 증가의 우려가 있고, 또 BET 비표면적이 0.3m2/g 미만일 경우, 양극활물질 자체의 분산성 저하 및 용량 저하의 우려가 있다. 본 발명에 있어서, 양극활물질의 비표면적은 BET(Brunauer-Emmett-Teller) 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 상기한 평균 입자 직경 및 BET 비표면적 조건을 동시에 충족함으로써 우수한 용량 및 충방전 특성을 나타낼 수 있다. 보다 구체적으로, 상기 양극활물질은 4㎛ 내지 15㎛의 평균 입자 직경(D50) 및 0.5m2/g 내지 1.5m2/g의 BET 비표면적을 가질 수 있다. 본 발명에 있어서, 양극활물질의 비표면적은 BET(Brunauer-Emmett-Teller) 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mini II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출할 수 있다.
또, 본 발명의 일 실시예에 따른 상기 양극활물질은 1.7g/cc 이상, 혹은 1.7g/cc 내지 2.8g/cc의 탭밀도를 가질 수 있다. 상기한 범위의 높은 탭밀도를 가짐으로써, 고용량 특성을 나타낼 수 있다. 본 발명에 있어서, 양극활물질의 탭밀도는 통상의 탭밀도 측정기를 이용하여 측정할 수 있으며, 구체적으로는 SEISHIN사 Tap-tester를 이용하여 측정할 수 있다.
상기와 같은 구조 및 물성적 특성을 갖는 본 발명의 일 실시예에 따른 양극활물질은, 습식 침전법에 의해 제조될 수 있으며, 상세하게는 전구체의 형성방법에 따라 공침법으로 제조될 수 있다.
구체적으로, 공침법에 의한 양극활물질의 제조방법은, 니켈 원료물질, 코발트 원료물질, 및 M1 원료물질(이때, M1은 M1은 표면 에너지(Esurf)가 -0.5 eV 이상인 금속원소로서, 구체적으로는 Al, Mg, Y, Zn, In 및 Mn으로 이루어진 군에서 선택되는 어느 하나 적어도 어느 하나임)을 혼합하여 제조한 금속 함유 용액에, 암모늄 양이온 함유 착물 형성제 및 염기성 화합물을 첨가하고 반응시켜, 전구체를 준비하는 단계(단계 1), 및 상기 전구체를 리튬 원료물질과 혼합한 후 700℃ 내지 1,200℃에서 소성하는 단계(단계 2)를 포함하며, 이때 상기 금속 함유 용액의 제조시 또는 전구체와 리튬 원료물질과의 혼합시 M2 원료물질 및 M3 원료물질(이때, M2는 표면에너지가 -1.5 eV 이상 -0.5 eV 미만인 금속원소이며, 구체적으로는 Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru, Gd 및 Os로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소이고, M3은 표면에너지가 -1.5 eV 미만인 금속원소이며, 구체적으로는 W, V, Nb, Nd 및 Mo로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 원소임)이 첨가될 수 있다.
상기 금속 함유 용액은 니켈 원료물질, 코발트 원료물질, M1 함유 원료물질 및 선택적으로 M2 또는 M3 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물에 용해시킴으로써 제조될 수 있고, 또는 상기 각각의 금속의 원료물질을 포함하는 용액, 구체적으로는 수용액을 제조한 후 이를 혼합함으로써 제조될 수도 있다. 이때 각 원료물질의 혼합비는 최종 제조되는 양극활물질에서의 각 금속원소의 함량 조건을 충족하도록 하는 범위 내에서 적절히 결정될 수 있다.
상기한 금속원소를 포함하는 원료물질로는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 산화물, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다.
일례로 상기 코발트 원료물질로는 Co(OH)2, CoOOH, Co(SO4)2 , Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoCl2 또는 Co(SO4)2ㆍ7H2O 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 니켈 원료물질로는 Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, NiCl2, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염 또는 니켈 할로겐화물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 망간 원료물질로는 Mn2O3, MnO2, 및 Mn3O4 등의 망간산화물; MnCO3, MnCl2, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간 및 지방산 망간염과 같은 망간염; 옥시 수산화물, 그리고 염화 망간 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 알루미늄 원료물질로는 AlSO4, AlCl3, Al-이소프로폭사이드(Al-isopropoxide) 또는 AlNO3 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또, 상기 M2 원료물질로는 상기 M2를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로 M2이 Ti인 경우, 산화티타늄이 사용될 수 있다.
또, 상기 M3 원료물질로는 상기 M3를 포함하는 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등이 사용될 수 있다. 일례로 M3이 W인 경우, 텅스텐 산화물이 사용될 수 있다.
또, 상기 암모늄 양이온 함유 착물 형성제는 구체적으로 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, 또는 NH4CO3 등일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 암모늄 양이온 함유 착물 형성제는 상기 금속 함유 용액 1몰에 대하여 0.5 내지 1의 몰비가 되도록 하는 양으로 첨가될 수 있다. 일반적으로 킬레이팅제는 금속과 1:1 몰비 이상으로 반응하여 착제를 형성하지만, 형성된 착체 중 염기성 수용액과 반응하지 않은 미반응 착체가 중간 생성물로 변하여 킬레이팅제로 회수되어 재사용될 수 있기 때문에 본 발명에서는 통상에 비해 킬레이팅 사용량을 낮출 수 있다. 그 결과, 양극활물질의 결정성을 높이고, 안정화할 수 있다.
또, 상기 염기성 화합물은 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물 또는 이들의 수화물일 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 염기성 화합물 역시 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
또, 상기 전구체 형성을 위한 공침반응은, pH가 11 내지 13인 조건에서 수행될 수 있다. pH가 상기한 범위를 벗어날 경우, 제조되는 전구체의 크기를 변화시키거나 입자 쪼개짐을 유발할 우려가 있다. 또 전구체 표면에 금속 이온이 용출되어 부반응에 의해 각종 산화물을 형성할 우려가 있다. 보다 구체적으로는 혼합용액의 pH가 11 내지 12인 조건에서 수행될 수 있다.
또, 상기한 pH 범위를 충족하도록 하기 위해 상기 암모늄 양이온 함유 착물 형성제와 염기성 화합물은 1:10 내지 1:2의 몰비로 사용될 수 있다. 이때 상기 pH값은 액체의 온도 25℃에서의 pH값을 의미한다.
또, 상기 공침반응은 질소 등의 비활성 분위기하에서, 40℃ 내지 70℃의 온도에서 수행될 수 있다. 또, 상기 반응시 반응 속도를 증가시키기 위하여 교반 공정이 선택적으로 수행될 수 있으며, 이때 교반 속도는 100 rpm 내지 2,000 rpm일 수 있다.
또, 최종 제조되는 양극활물질 내 금속원소의 농도구배를 형성하고자 하는 경우에는, 상기한 금속 함유 용액과는 서로 다른 농도로 니켈, 코발트 및 M1 함유 원료물질과, 선택적으로 M2 및 M3 함유 원료물질을 포함하는 제2 금속 함유 용액을 준비한 후, 상기 금속 함유 용액과 상기 제2 금속 함유 용액의 혼합비율이 100부피%:0부피%에서 0부피%:100부피%까지 점진적으로 변화되도록 상기 전이금속 용액에 상기 제2 금속 함유 용액을 첨가하는 동시에, 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 반응시킴으로써 수행될 수 있다.
이와 같이 상기 금속 함유 용액에 대한 제2 금속 함유 용액의 투입량을 연속적으로 증가시키며 반응속도 및 반응시간을 제어함으로써, 하나의 공침 반응 공정으로 니켈, 코발트 및 M1이 각각 독립적으로 입자의 중심에서부터 표면까지 연속적으로 변화하는 농도구배를 나타내는 전구체를 제조할 수 있다. 이때 생성되는 전구체 내에서의 금속의 농도구배와 그 기울기는 금속 함유 용액 및 제2 금속 함유 용액의 조성과 혼합 공급 비율에 의해 용이하게 조절될 수 있으며, 특정 금속의 농도가 높은 고밀도 상태를 만들기 위해서는 반응시간을 길게 하고, 반응속도를 낮추는 것이 바람직하고, 특정 금속의 농도가 낮은 저밀도 상태를 만들기 위해서는 반응시간을 짧게 하고, 반응속도를 증가시키는 것이 바람직하다.
구체적으로, 상기 금속 함유 용액에 첨가되는 제2 금속 함유 용액의 속도는 초기 투입속도 대비 1 내지 30%의 범위 내에서 연속적으로 증가시키며 수행될 수 있다. 구체적으로, 금속 함유 용액의 투입속도는 150ml/hr 내지 210ml/hr일 수 있고, 상기 제2 금속 함유 용액의 투입속도는 120ml/hr 내지 180ml/hr일 수 있다. 상기 투입 속도 범위 내에서 초기 투입속도 대비 1% 내지 30%의 범위 내에서 제2 금속 함유 용액의 투입속도가 연속적으로 증가될 수 있다. 이때 상기 반응은 40℃ 내지 70℃에서 수행될 수 있다. 또, 상기 금속 함유 용액에 대한 제2 금속 함유 용액의 공급량 및 반응시간을 조절함으로써 전구체 입자의 크기를 조절할 수 있다.
상기와 같은 공정에 의해 전구체로서, 복합금속 수산화물의 입자가 생성되어 반응용액 중에 석출되게 된다. 구체적으로 상기 전구체는 하기 화학식 4의 화합물을 포함할 수 있다.
[화학식 4]
Ni1 -x- yCoxM1yM2zM3w(OH1-a)2
(상기 화학식 4에서, M1, M2, M3, x, y, z 및 w는 앞서 정의한 바와 같으며, 0≤a≤0.5이다)
또, 침전된 전구체에 대해서는 통상의 방법에 따라 분리 후, 건조 공정이 선택적으로 수행될 수 있다.
상기 건조공정은 통상의 건조 방법에 따라 실시될 수 있으며, 구체적으로는 100℃ 내지 200℃의 온도범위에서의 가열처리 또는 열풍주입 등의 방법으로 15 내지 30시간 수행될 수 있다.
상기 양극활물질의 제조를 위한 제조방법에 있어서 단계 2는, 상기 단계 1에서 제조한 전구체 입자를 리튬 함유 원료물질 및 선택적으로 M2 및 M3 원료물질과 혼합한 후 소성 처리함으로써 양극활물질을 제조하는 단계이다. 이때 M2 및 M3 원료물질은 앞서 설명한 바와 동일하다.
또, 상기 리튬 함유 원료물질로는 리튬 함유 탄산염(예를 들어, 탄산리튬 등), 수화물(예를 들어 수산화리튬 I수화물(LiOHㆍH2O) 등), 수산화물(예를 들어 수산화리튬 등), 질산염(예를 들어, 질산리튬(LiNO3) 등), 염화물(예를 들어, 염화리튬(LiCl) 등) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 또, 상기 리튬 함유 원료물질의 사용량은 최종 제조되는 리튬 복합금속 산화물에서의 리튬과 전이금속의 함량에 따라 결정될 수 있으며, 구체적으로는 리튬 원료물질 내 포함되는 리튬과 전구체 내 포함되는 금속원소(Me)와 몰비(리튬/금속원소(Me)의 몰비)가 1.0 이상이 되도록 하는 양으로 사용될 수 있다.
한편, 상기 소성 공정은 700℃ 내지 1,200℃에서 수행될 수 있다.
만약 소성시 온도가 700℃ 미만이면 소성율 저하의 우려가 있고, 1,200℃를 초과하면 과소결에 따른 부반응물 생성의 우려가 있다. 보다 구체적으로, 상기 소성 공정은 800℃ 내지 1,000℃에서 수행될 수 있다.
또, 상기 소성 공정은 공기 분위기 또는 산소 분위기(예를 들면, O2 등)에서 가능하며, 보다 구체적으로는 산소 분압 20부피% 이상의 산소 분위기 하에서 수행될 수 있다. 또, 상기 소성 공정은 상기한 조건에서 5시간 내지 48시간, 혹은 10시간 내지 20시간 실시될 수 있다.
또, 상기 소성 공정시 소결 보조제가 선택적으로 더 첨가될 수 있다.
소결 보조제의 첨가시 저온에서 결정을 쉽게 성장시킬 수 있고, 또 건식 혼합시 불균일 반응을 최소화할 수 있다. 또 상기 소결 보조제는 리튬 복합금속 산화물 1차 입자의 모서리 부분을 둔하게 하여 둥근 곡선 형태의 입자로 만드는 효과가 있다. 일반적으로 망간을 포함하는 리튬 산화물계 양극활물질에서는 입자의 모서리로부터 망간의 용출이 빈번히 발생하며, 이러한 망간 용출로 인해 이차전지의 특성, 특히 고온시의 수명특성이 감소된다. 이에 대해 소결보조제를 사용할 경우, 1차 입자의 모서리를 둥글게 함으로써 망간의 용출 부위를 감소시킬 수 있고, 그 결과 이차전지의 안정성 및 수명특성을 향상시킬 수 있다.
구체적으로, 상기 소결보조제는, 붕산, 사붕산리튬, 산화붕소 및 붕산암모늄 등의 붕소 화합물; 산화코발트(Ⅱ), 산화코발트(Ⅲ), 산화코발트(Ⅳ) 및 사산화삼코발트 등의 코발트 화합물; 산화 바나듐 등의 바나듐 화합물; 산화 란타늄 등의 란타늄 화합물; 붕화 지르코늄, 규산칼슘 지르코늄 및 산화 지르코늄 등의 지르코늄 화합물; 산화이트륨 등의 이트륨 화합물; 또는 산화 갈륨 등의 갈륨 화합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 소결 보조제는 전구체의 100 중량부 대비 0.2 중량부 내지 2 중량부, 보다 구체적으로는 0.4 중량부 내지 1.4 중량부의 양으로 사용될 수 있다.
또, 상기 소성 공정시 수분제거제가 선택적으로 더 첨가될 수도 있다. 구체적으로 상기 수분제거제로는 구연산, 주석산, 글리콜산 또는 말레인산 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 상기 수분제거제는 전구체 100 중량부에 대하여 0.01 내지 2 중량부의 함량으로 사용될 수 있다.
상기와 같은 공정에 의해 제조되는 양극활물질은, 우수한 입자 표면 안정성 및 내부 구조의 안정성과 함께 개선된 전해질과 양극활물질 사이의 계면 안정성을 가져, 고온 및 고전압 조건 하에서도 우수한 전지 안전성 및 수명 특성을 나타낼 수 있다. 또, 상기 양극활물질 내 전이금속의 분포가 추가적으로 제어될 수 있으며, 그 결과로서 열안정성이 개선되어 고전압시 성능 열화를 최소화할 수 있다.
이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 양극활물질을 포함하는 양극 및 리튬 이차전지를 제공한다.
구체적으로, 상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상기한 양극 활물질을 포함하는 양극활물질층을 포함한다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또, 상기 양극활물질층은 앞서 설명한 양극활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
이때, 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있다. 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
또, 상기 바인더는 양극활물질 입자들 간의 부착 및 양극활물질과 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있다. 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극활물질층 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상기한 양극활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극활물질층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸설폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 양극을 포함하는 전기화학소자가 제공된다. 상기 전기화학소자는 구체적으로 전지, 커패시터 등일 수 있으며, 보다 구체적으로는 리튬 이차전지일 수 있다.
이때 상기 리튬 이차전지의 작동 전압은 2.5V 내지 4.6V일 수 있다. 이는 상기 화학식 1의 리튬 과량의 복합금속 산화물을 포함하는 양극활물질의 구조적 안정성으로 인해 전지의 안전성이 향상됨에 따라 상대적으로 고전압에서 작동할 수 있기 때문이다. 보다 구체적으로, 본 발명의 일 실시예에 따른 리튬 이차전지는 3.1V 내지 4.6V의 높은 고전압 구동 전지일 수 있으며, 보다 더 구체적으로는 3.4V 내지 4.6V 혹은 3.5V 내지 4.35V의 고전압 구동 전지일 수 있다.
상기 리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극활물질층은 음극활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극활물질층은 일례로서 음극 집전체 상에 음극활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOx(0<x<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches), 석유계 코크스 및 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 중량% 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극활물질을 포함하는 리튬 이차전지는 양극활물질의 우수한 안정성으로 인해 고온 및 고전압 조건 하에서도 우수한 전지 안전성 및 수명 특성을 나타낼 수 있다. 이에 따라 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[ 참고예 1-1: 양극활물질의 제조]
3L 습식 반응기용 탱크에 증류수 2L를 채운 후 질소가스를 탱크에 1L/min의 속도로 투입하여 용존 산소를 제거하였다. 이때 탱크 안의 증류수 온도를 온도 유지 장치를 이용하여 45℃로 유지하였다. 또한 탱크 외부에 설치되어 있는 모터와 연결되어 있는 임펠러를 이용하여 탱크 내부의 증류수를 1,200rpm의 속도로 교반하였다.
니켈 황산염, 망간 황산염 및 코발트 황산염을 물 중에서 0.6:0.2:0.2의 몰비로 혼합하여 1.5M 농도의 금속 함유 용액을 준비하고, 별도로 3M 수산화나트륨 수용액을 준비하였다. 상기 금속 함유 용액은 0.18L/hr로 습식 반응기용 탱크에 정량 펌프로 연속적으로 펌핑하였다. 상기 수산화 나트륨 수용액은 탱크 내부의 증류수 pH 조절을 위해 컨트롤 장비와 연동시켜 습식 반응기 탱크 내부의 증류수를 pH 11.5가 유지되도록 가변식 펌핑하였다. 이때 30% 농도의 암모니아 수용액을 0.035L/hr의 속도로 반응기에 연속적으로 펌핑하였다.
금속 함유 용액, 수산화나트륨 수용액 및 암모니아 수용액의 유량을 조절하여 용액의 습식 반응기 탱크 내의 평균 체류시간이 6시간이 되도록 하였으며, 탱크 내의 반응이 정상상태에 도달한 후, 금속 함유 용액의 금속 이온, 수산화나트륨의 수산화 이온 및 암모니아 수용액의 암모니아 이온이 20시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합금속 전구체를 탱크 옆 상단에 설치되어 있는 오버플로우 파이프를 통해 연속 수득하였다. 수득한 복합금속 전구체를 증류수로 세척하고 120℃ 항온 건조기에서 24시간 건조시켰다.
이후, 상기 복합금속 전구체 0.998몰을 Al2O3 0.002몰 및 Li2CO3 1몰과 함께 건식혼합하고, 900℃에서 10시간 동안 소성하여 양극활물질(Li(Ni0.6Mn0.2Co0.2)0.998Al0.002O2)을 제조하였다.
[ 참고예 1-2 내지 1-21: 양극활물질의 제조]
상기 참고예 1-1에서 도펀트 Al 대신에 Mn, Mg, Y, Zn, In, Ti, Hf, Sn, Cr, Zr, Sb, Ta, Ru, Gd, Os, V, Nb, W, Mo, 또는 Nd로 각각 도핑하는 것을 제외하고는 상기 참고예 1에서와 동일한 방법으로 실시하여 양극활물질을 제조하였다.
[ 실험예 1]
양극활물질 내 금속원소의 위치지향성을 예측하기 위하여, 상기 참고예 1-1 내지 1-21에서 제조한 양극활물질에 대해 DFT 방법을 이용한 모델링 계산을 통해 표면에너지 값(Esurf) 및 도펀트가 선호하는 위치를 예측하였다. 분석결과를 하기 표 1에 나타내었다.
[수학식 1]
△Esurf = Esurf2-Esurf1
= (Eslab2-Ebulk)-(Eslab1-Ebulk)
(상기 수학식 1에서 Esurf1, Esurf2, Eslab1, Eslab2, 및 Ebulk은 앞서 정의한 바와 같다)
구분 도펀트 종류 △Esurf 구분 도펀트 종류 △Esurf 구분 도펀트 종류 △Esurf
참고예 1-1 Al 0.720 참고예 1-8 Hf -0.673 참고예 1-15 Gd -1.171
참고예 1-2 Mn 0.420 참고예 1-9 Sn -0.906 참고예 1-16 Os -1.497
참고예 1-3 Mg 0.384 참고예 1-10 Cr -0.913 참고예 1-17 V -1.505
참고예 1-4 Y 0.223 참고예 1-11 Zr -1.074 참고예 1-18 Nb -1.531
참고예 1-5 Zn -0.052 참고예 1-12 Sb -1.083 참고예 1-19 W -2.072
참고예 1-6 In -0.164 참고예 1-13 Ta -1.137 참고예 1-20 Mo -2.273
참고예 1-7 Ti -0.633 참고예 1-14 Ru -1.155 참고예 1-21 Nd -2.566
양극활물질 내 금속원소의 표면 에너지가 0을 기준으로 양의 값을 나타내는 경우에는 금속원소가 양극활물질 입자의 중심부로 침투하는 성질을 가지고 있음을 의미한다. 표면 에너지가 음의 값을 나타내는 경우에는 금속원소가 양극활물질 입자의 표면으로 확산되고자 하는 성질을 가지고 있음을 의미한다.
표 1의 금속원소의 표면 에너지 변화량 값으로부터 상기 수학식 1에 의해 표면에너지 값(△Esurf)을 계산한 결과, Al, Mn, Mg, Y, Zn 및 In은 표면 에너지가 -0.5 eV 이상이며, 특히 Mg, Y, Zn, In은 0.5 내지 0.5eV로 거의 0에 근접한 값을 나타내었다. 이로부터 Mg, Y, Zn, In은 입자 중심 또는 표면 지향성을 나타내지 않음을 확인할 수 있으며, 양극활물질 내 농도 프로파일의 평균기울기가 0이거나, 또는 0에 근접한 양의 값을 나타냄을 예상할 수 있다. 또, Ru, Gd, Os, V, Nb, W, Mo, 및 Nd는 음의 표면에너지 값, 구체적으로는 -1.5 eV 미만의 표면에너지 값을 나타내어 양극활물질 입자 표면 지향성을 나타냄을 확인할 수 있고, 또, Ti, Hf, Sn, Cr, Zr, Sb 및 Ta는 -1.5 eV 이상 -0.5 eV 미만의 표면에너지 값을 나타내어, 상기 Ru, Gd, Os, V, Nb, W, Mo, 및 Nd에 비해서는 낮은 표면 지향성을 나타냄을 확인할 수 있다.
[ 실시예 1-1: 양극활물질의 제조]
3L 습식 반응기용 탱크에 증류수 2L를 채운 후 질소가스를 탱크에 1L/min의 속도로 투입하여 용존 산소를 제거하였다. 이때 탱크 안의 증류수 온도를 온도 유지 장치를 이용하여 45℃로 유지하였다. 또한 탱크 외부에 설치되어 있는 모터와 연결되어 있는 임펠러를 이용하여 탱크 내부의 증류수를 1,200rpm의 속도로 교반하였다.
니켈 황산염, 망간 황산염 및 코발트 황산염을 물 중에서 0.6:0.2:0.2의 몰비로 혼합하여 1.5M 농도의 금속 함유 용액을 준비하고, 별도로 4M NaOH 수용액을 준비하였다. 상기 금속 함유 용액은 0.18L/hr로 습식 반응기용 탱크에 정량 펌프로 연속적으로 펌핑하였다. 상기 수산화 나트륨 수용액은 탱크 내부의 증류수 pH 조절을 위해 컨트롤 장비와 연동시켜 습식 반응기 탱크 내부의 증류수를 pH 11.5가 유지되도록 가변식 펌핑하였다. 이때 30% 농도의 암모니아 수용액을 0.035L/hr의 속도로 반응기에 연속적으로 펌핑하였다.
금속 함유 용액, 수산화나트륨 수용액 및 암모니아 수용액의 유량을 조절하여 용액의 습식 반응기 탱크 내의 평균 체류시간이 6시간이 되도록 하였으며, 탱크 내의 반응이 정상상태에 도달한 후, 금속 함유 용액의 금속 이온, 수산화나트륨의 수산화 이온 및 암모니아 수용액의 암모니아 이온이 20시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합금속 전구체를 탱크 옆 상단에 설치되어 있는 오버플로우 파이프를 통해 연속 수득하였다. 수득한 전구체를 증류수로 세척하고 120℃ 항온 건조기에서 24시간 건조시켰다.
이후, 상기 전구체 0.935몰에 Li2CO3, 텅스텐 산화물(WO3) 및 티타늄 산화물(TiO2)을 각각 1.05몰, 0.005몰 및 0.01몰로 함께 건식혼합하고, 산소분위기(산소 분압 20%)하에서, 850℃에서 10시간 동안 소성하여 양극활물질(Li1.05(Ni0.6Mn0.2Co0.2)0.935W0.005Ti0.01O2)을 제조하였다.
[ 실시예 1-2: 양극활물질의 제조]
상기 실시예 1-1에서 티타늄 산화물(TiO2) 대신에 지르코늄 산화물(ZrO2)을 동일 함량으로 사용하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 양극활물질(Li1.05(Ni0 . 6Mn0 . 2Co0 . 2)0.935W0 . 005Zr0 . 01O2)을 제조하였다.
[ 실시예 1-3: 양극활물질의 제조]
상기 실시예 1-1에서 텅스텐 산화물(WO3) 대신에 니오븀 산화물(Nb2O5)을 동일 함량으로 사용하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 양극활물질(Li1.05(Ni0 . 6Mn0 . 2Co0 . 2)0.935Nb0 . 005Ti0 . 01O2)을 제조하였다.
[ 실시예 1-4: 양극활물질의 제조]
상기 실시예 1-1에서 망간 설페이트 대신에 알루미늄 설페이트를 동일 함량으로 사용하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 양극활물질(Li1.05(Ni0.6Al0.2Co0.2)0.935W0.005Ti0.01O2)을 제조하였다.
[ 비교예 1-1: 양극활물질의 제조]
3L 습식 반응기용 탱크에 증류수 2L를 채운 후 질소가스를 탱크에 1L/min의 속도로 투입하여 용존 산소를 제거하였다. 이때 탱크 안의 증류수 온도를 온도 유지 장치를 이용하여 45℃로 유지하였다. 또한 탱크 외부에 설치되어 있는 모터와 연결되어 있는 임펠러를 이용하여 탱크 내부의 증류수를 1,200rpm의 속도로 교반하였다.
니켈 황산염, 망간 황산염 및 코발트 황산염을 물 중에서 0.6:0.2:0.2의 몰비로 혼합하여 1.5M 농도의 금속 함유 용액을 준비하고, 별도로 4M NaOH 수용액을 준비하였다. 상기 금속 함유 용액은 0.18L/hr로 습식 반응기용 탱크에 정량 펌프로 연속적으로 펌핑하였다. 상기 수산화 나트륨 수용액은 탱크 내부의 증류수 pH 조절을 위해 컨트롤 장비와 연동시켜 습식 반응기 탱크 내부의 증류수를 pH 11.5가 유지되도록 가변식 펌핑하였다. 이때 30% 농도의 암모니아 수용액을 0.035L/hr의 속도로 반응기에 연속적으로 펌핑하였다.
금속 함유 용액, 수산화나트륨 수용액 및 암모니아 수용액의 유량을 조절하여 용액의 습식 반응기 탱크 내의 평균 체류시간이 6시간이 되도록 하였으며, 탱크 내의 반응이 정상상태에 도달한 후, 금속 함유 용액의 금속 이온, 수산화나트륨의 수산화 이온 및 암모니아 수용액의 암모니아 이온이 20시간 동안 지속적으로 반응하여 제조된 니켈-코발트-망간 복합금속 전구체를 탱크 옆 상단에 설치되어 있는 오버플로우 파이프를 통해 연속 수득하였다. 수득한 전구체를 증류수로 세척하고 120℃ 항온 건조기에서 24시간 건조시켰다.
이후, 상기 전구체 1몰을 Li2CO3을 1.05몰로 함께 건식혼합하고, 산소분위기(산소 분압 20%)하에서, 850℃에서 10시간 동안 소성하여 양극활물질(Lia(Ni0.6Co0.2Mn0.2)O2 )을 제조하였다.
[ 비교예 1-2: 양극활물질의 제조]
상기 실시예 1-1에서 티타늄 산화물 대신에 몰리브덴 산화물(MoO3)을 동일 함량으로 사용하는 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 양극활물질(Li1.05(Ni0 . 6Mn0 . 2Co0 . 2)0.935W0 . 005Mo0 . 01O2)을 제조하였다.
[ 비교예 1-3: 양극활물질의 제조]
참고예 1-1의 양극활물질을 이용하였다.
[ 비교예 1-4: 양극활물질의 제조]
참고예 1-7의 양극활물질을 이용하였다.
[ 실시예 2-1 내지 실시예 2-4, 비교예 2-1 내지 비교예 2-4: 리튬 이차전지의 제조]
상기 실시예 1-1 내지 실시예 1-4, 비교예 1-1 내지 비교예 1-4에서 제조한 양극활물질을 각각 이용하여 리튬 이차전지를 제조하였다.
상세하게는, 상기 실시예 1-1 내지 실시예 1-4, 비교예 1-1 내지 비교예 1-4에서 제조한 각각의 양극활물질, 도전재로서 카본블랙 및 바인더로서 PVDF를 용매로서 N-메틸-피롤리돈 중에서 중량비로 95:2.5:2.5의 비율로 혼합하여 양극 형성용 조성물(점도: 5,000mPa·s)을 제조하고, 이를 알루미늄 집전체에 도포한 후, 130℃에서 건조 후, 압연하여 양극을 제조하였다.
또, 음극활물질로서 천연흑연, 도전재로서 카본블랙 및 바인더로서 PVDF를 용매로서 N-메틸-피롤리돈 중에서 중량비로 85:10:5의 비율로 혼합하여 음극 형성용 조성물을 제조하고, 이를 구리 집전체에 도포하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지를 제조하였다. 이때 전해액은 에틸렌카보네이트/디메틸카보네이트/에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[ 실험예 2]
상기 실시예 1-1 및 비교예 1-2에 따른 양극활물질 입자에 대하여 리튬 복합금속 산화물 내 포함된 금속원소의 분포를 확인하기 위하여, 활물질을 HCl을 이용하여 다양한 시간 동안에 에칭을 실시하고, ICP 분석을 통해 에칭시간 또는 용해시간에 따른 원소용출량을 분석하고, 그 결과로부터 활물질 입자 내 리튬 복합금속 산화물의 조성을 확인하였다. 그 결과를 표 2 및 표 3에 나타내었다.
용해시간 (분) 구분 입자 표면으로부터의 거리(㎛) 실시예 1-1(몰비)
Ni Co Mn Ti W
0 셀부 0 0.561 0.215 0.209 0.010 0.005
1 0.1 0.575 0.208 0.205 0.008 0.004
5 0.3 0.593 0.201 0.197 0.006 0.003
10 0.8 0.595 0.200 0.199 0.005 0.001
30 코어부 1.1 0.599 0.200 0.199 0.002 0
120 3.6 0.600 0.200 0.200 0 0
240 4.9(입자중심) 0.600 0.200 0.200 0 0
용해시간 (분) 구분 입자 표면으로부터의 거리(㎛) 비교예 1-2(몰비)
Ni Co Mn Mo W
0 쉘부 0 0.560 0.218 0.207 0.010 0.005
1 0.1 0.575 0.212 0.201 0.008 0.004
5 0.3 0.592 0.202 0.197 0.006 0.003
10 0.8 0.597 0.201 0.196 0.005 0.001
30 코어부 1.0 0.600 0.200 0.198 0.002 0
120 3.5 0.600 0.200 0.200 0 0
240 4.8(입자 중심) 0.601 0.200 0.199 0 0
[ 실험예 4: 양극 활물질의 평가]
상기 실시예 1-1 내지 실시예 1-4, 비교예 1-1 내지 비교예 1-4에서 제조한 양극활물질에 대해 평균 입자 직경, 비표면적 및 탭 밀도를 측정하고, 그 결과를 하기 표 4에 나타내었다.
(1) 평균 입자 직경(D50): 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 약 28 kHz의 초음파를 출력 60 W로 조사한 후, 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출하였다.
(2) BET 비표면적: 양극활물질의 비표면적은 BET 법에 의해 측정한 것으로서, 구체적으로는 BEL Japan 사 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출하였다.
(3) 탭 밀도: 탭 밀도 측정기(HPRM-A1, 한테크사제)를 이용하여 2tonf/cm2 압력하에서의 탭 밀도를 측정하였다.
또, 상기 실시예 1-1 내지 실시예 1-4, 비교예 1-1 내지 비교예 1-4에서 제조한 양극활물질을 이용하여 제조한 코인셀(음극: Li 금속)을 25℃에서 0.1C의 정전류(CC) 4.25V가 될 때까지 충전하고, 이후 4.25V의 정전압(CV)으로 충전하여 충전 전류가 0.05mAh가 될 때까지 1회째 충전을 행하였다. 이후 20분간 방치한 다음 0.1C의 정전류로 3.0V가 될 때까지 방전하여 1사이클째의 방전 용량을 측정하였다. 이후 2C로 방전 조건을 달리하여 충/방전 용량, 충방전 효율 및 율 특성을 각각 평가하였다. 그 결과를 하기 표 4에 나타내었다.
구분 평균입자직경(D50)(㎛) BET 비표면적(m2/g) 탭밀도(g/cc) 제1충방전 2C rate
충전용량 (mAh/g) 방전용량 (mAh/g) 충방전 효율(%) 용량 (mAh/g) 2.0C/0.1C (%)
실시예 1-1 9.8 0.35 2.4 196.5 181.4 92.3 165.8 91.4
실시예 1-2 9.6 0.41 2.3 195.4 179.2 91.7 164.3 91.7
실시예 1-3 9.8 0.38 2.4 194.2 179.4 92.4 165.2 92.1
실시예 1-4 10.2 0.31 2.4 197.6 180.8 91.5 165.6 91.6
비교예 1-1 10.4 0.43 2.4 196.5 177.6 90.4 161.3 90.8
비교예 1-2 9.6 0.44 2.4 195.5 177.1 90.6 159.6 90.1
비교예 1-3 9.8 0.51 2.3 197.1 175.6 89.1 155.8 88.7
비교예 1-4 9.9 0.47 2.2 195.3 176.2 90.2 157.2 89.2
실험결과, 실시예 1-1 내지 실시예 1-4의 양극활물질을 포함하는 코인셀은, 비교예 1-1 내지 비교예 1-4의 양극활물질을 포함하는 코인셀과 비교하여 충방전 효율 및 율특성, 그리고 용량 특성 면에서는 보다 개선된 효과를 나타내었다.
[ 실험예 5: 리튬 이차전지의 전지 특성 평가]
상기 실시예 1-1 내지 실시예 1-3, 비교예 1-1 내지 비교예 1-4에서의 양극활물질을 각각 포함하는 리튬 이차전지(실시예 2-1 내지 2-3, 비교예 2-1 내지 비교예 2-4)에 대해 하기와 같은 방법으로 전지 특성을 평가하였다.
상세하게는, 상기 리튬 이차전지에 대해 25℃의 온도에서 2.8V 내지 4.15V 구동전압 범위 내에서 1C/2C의 조건으로 충/방전을 300회 실시하였다.
또, 출력 특성을 평가하기 위하여 상온(25℃)에서 충방전한 전지를 SOC 50%를 기준으로 충전하여 저항을 측정하였으며, 고온(60℃)에서는 SOC 50%를 기준으로 전류 인가시 전압이 강하되는 폭을 측정하였다.
그 결과로서, 상온(25℃) 및 고온(60℃)에서의 저항, 그리고 상온에서의 충방전 300회 실시 후의 초기용량에 대한 300 사이클째의 방전용량의 비율인 사이클 용량유지율(CAPACITY RETENTION RATE(%))을 각각 측정하고, 하기 표 5에 나타내었다.
구분 상온(25℃) 저항(mohm) 고온(60℃) 전압강하(V) 상온(25℃)에서의 300회 사이클 용량유지율 (%)
실시예 2-1 1.21 0.028 98.1
실시예 2-2 1.14 0.021 97.4
실시예 2-3 1.24 0.033 98.3
비교예 2-1 1.42 0.038 96.4
비교예 2-2 1.38 0.039 94.8
비교예 2-3 1.65 0.051 92.6
비교예 2-4 1.53 0.045 94.3
상기 실시예 1-1 내지 1-3에서의 양극활물질을 각각 포함하는 리튬 이차전지(실시예 2-1 내지 2-3)는, 비교예 1-1 내지 1-4에서의 양극활물질을 각각 포함하는 리튬 이차전지(비교예 2-1 내지 2-4)에 비해 상온에서 현저히 감소된 전지 저항 및 우수한 수명 특성을 나타내었다. 또 고온에서의 출력 특성면에서도 실시예 1-1 내지 1-3에서의 양극활물질을 각각 포함하는 리튬 이차전지(실시예 2-1 내지 2-3)가 비교예 2-1 내지 비교예 2-4에 비해 현저히 감소된 전압 강하를 나타내어 보다 우수한 출력특성을 가짐을 알 수 있다.

Claims (15)

  1. 하기 화학식 1로 표시되는 리튬 복합금속 산화물 입자를 포함하는 이차전지용 양극활물질.
    [화학식 1]
    LiaNi1 -x- yCoxM1yM2zM3wO2
    상기 화학식 1에서,
    M1은 하기 수학식 1에 의해 계산된 표면 에너지(△Esurf)가 -0.5 eV 이상의 금속원소,
    M2는 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 이상 -0.5 eV 미만의 금속원소,
    M3은 하기 수학식 1에 의해 계산된 표면에너지(△Esurf)가 -1.5 eV 미만의 금속원소이며,
    1.0≤a≤1.5, 0<x≤0.5, 0<y≤0.5, 0.002≤w≤0.1, 0<z≤0.05, 0<x+y≤0.7임.
    [수학식 1]
    △Esurf = Esurf2-Esurf1
    = (Eslab2-Ebulk)-(Eslab1-Ebulk)
    상기 수학식 1에서,
    Esurf2는 금속원소가 리튬 복합금속 산화물 입자에서 최외곽 표면을 지향하는 정도를 나타내고,
    Esurf1는 금속원소가 리튬 복합금속 산화물 입자에서 중심부를 지향하는 정도를 나타내고,
    Eslab1은 금속원소가 리튬 복합금속 산화물 입자의 중심부에 있을 때, 리튬 복합금속 산화물 입자의 슬래브 모델(slab model)의 에너지이며,
    Eslab2는 금속원소가 리튬 복합금속 산화물의 최외곽 표면에 있을 때의 리튬 복합금속 산화물의 슬래브 모델의 에너지이고,
    Ebulk는 각 슬래브 모델에 해당하는 벌크 모델(bulk model)의 에너지임.
  2. 제1항에 있어서,
    상기 M1은 리튬 복합금속 산화물 입자 표면에서 중심부 구간까지의 농도 프로파일의 평균 기울기가 0 또는 양(+)이 되도록 분포되어 있고,
    상기 M2 및 M3은 각각 독립적으로 리튬 복합금속 산화물 입자 표면에서 중심부 구간까지의 농도 프로파일의 평균 기울기가 음(-)이 되도록 분포되어 있는 것인 이차전지용 양극활물질.
  3. 제1항에 있어서,
    상기 M1은 Al, Mg, Y, Zn, In 및 Mn으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 이차전지용 양극활물질.
  4. 제1항에 있어서,
    상기 M2는 Zr, Ti, Ta, Hf, Sn, Cr, Sb, Ru, Gd 및 Os로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 이차전지용 양극활물질.
  5. 제1항에 있어서,
    상기 M3은 W, V, Nb, Nd, 및 Mo로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상을 포함하는 것인 이차전지용 양극활물질.
  6. 제1항에 있어서,
    상기 리튬 복합금속 산화물 입자는 코어; 및 상기 코어의 표면 상에 위치하는 쉘을 포함하는 코어-쉘 구조를 가지며,
    상기 M1은 리튬 복합금속 산화물 입자 표면에서 중심부 구간까지의 농도 프로파일의 평균 기울기가 0이 되도록 포함되고,
    상기 M2는 상기 코어에 1 내지 25몰%, 쉘에 75 내지 99몰%의 농도로 포함되고,
    상기 M3은 상기 코어에 1 내지 10몰%, 쉘에 90 내지 99몰%의 농도로 포함되는 것인 이차전지용 양극활물질.
  7. 제6항에 있어서,
    상기 코어 및 쉘은 50:50 내지 80:20의 부피비로 포함되는 것인 이차전지용 양극활물질.
  8. 제1항에 있어서,
    상기 화학식 1에서 니켈 및 코발트 중 적어도 어느 하나의 금속원소는, 상기 리튬 복합금속 산화물 입자 내에서 변화하는 농도구배를 나타내는 것인 이차전지용 양극활물질.
  9. 제1항에 있어서,
    상기 화학식 1에서 니켈 및 코발트는 리튬 복합금속 산화물 입자 전체에 걸쳐 각각 독립적으로 변화하는 농도구배를 나타내고,
    상기 니켈의 농도는 리튬 복합금속 산화물 입자의 중심에서부터 표면 방향으로 농도구배를 가지면서 감소하고, 그리고
    상기 코발트의 농도는 리튬 복합금속 산화물 입자의 중심에서부터 표면 방향으로 농도구배를 가지면서 증가하는 것인 이차전지용 양극활물질.
  10. 제1항에 있어서,
    상기 양극활물질 입자의 표면 상에, 상기 M2 및 M3으로 이루어진 군에서 선택되는 적어도 어느 하나의 금속원소; 또는 상기 적어도 어느 하나의 금속원소를 포함하는 리튬 산화물을 포함하는 코팅층을 더 포함하는 것인 이차전지용 양극활물질.
  11. 제1항에 있어서,
    상기 양극활물질은 평균 입자 직경(D50)이 4㎛ 내지 20㎛인 이차전지용 양극활물질.
  12. 제1항에 있어서,
    상기 양극활물질은 BET 비표면적이 0.3m2/g 내지 1.9m2/g인 이차전지용 양극활물질.
  13. 제1항에 있어서,
    상기 양극활물질은 1.7g/cc 내지 2.8g/cc의 탭밀도를 갖는 것인 이차전지용 양극활물질.
  14. 제1항 내지 제13항 중 어느 한 항에 따른 양극활물질을 포함하는 이차전지용 양극.
  15. 제14항에 따른 양극을 포함하는 리튬 이차전지.
PCT/KR2016/014003 2015-11-30 2016-11-30 이차전지용 양극활물질 및 이를 포함하는 이차전지 WO2017095152A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018517825A JP6600087B2 (ja) 2015-11-30 2016-11-30 二次電池用正極活物質およびこれを含む二次電池
CN201680050913.1A CN108028373B (zh) 2015-11-30 2016-11-30 二次电池用正极活性材料和包含其的二次电池
EP16871048.1A EP3386014B1 (en) 2015-11-30 2016-11-30 Cathode active material for secondary battery, and secondary battery comprising same
US15/751,350 US10763497B2 (en) 2015-11-30 2016-11-30 Positive electrode active material for secondary battery, and secondary battery comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0168676 2015-11-30
KR20150168676 2015-11-30
KR10-2016-0161895 2016-11-30
KR1020160161895A KR101989398B1 (ko) 2015-11-30 2016-11-30 이차전지용 양극활물질 및 이를 포함하는 이차전지

Publications (1)

Publication Number Publication Date
WO2017095152A1 true WO2017095152A1 (ko) 2017-06-08

Family

ID=58797355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014003 WO2017095152A1 (ko) 2015-11-30 2016-11-30 이차전지용 양극활물질 및 이를 포함하는 이차전지

Country Status (1)

Country Link
WO (1) WO2017095152A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020004537A (ja) * 2018-06-26 2020-01-09 日亜化学工業株式会社 非水電解質二次電池用正極活物質
CN112154557A (zh) * 2018-06-20 2020-12-29 株式会社Lg化学 锂二次电池用正极活性材料和锂二次电池
JP2021527920A (ja) * 2018-06-20 2021-10-14 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びリチウム二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070495A (ko) * 2000-11-20 2002-09-09 쥬오 덴끼 고교 가부시키가이샤 비수성 전해질 2차 전지와 그 양극활성 물질
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
KR20140044594A (ko) * 2012-10-05 2014-04-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질층 조성물 및 이를 이용한 리튬 이차 전지
KR20150016129A (ko) * 2013-07-31 2015-02-11 주식회사 포스코 리튬 복합 산화물, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020070495A (ko) * 2000-11-20 2002-09-09 쥬오 덴끼 고교 가부시키가이샤 비수성 전해질 2차 전지와 그 양극활성 물질
KR20110083383A (ko) * 2010-01-14 2011-07-20 주식회사 에코프로 회분식 반응기(batch reactor)를 사용하여 농도구배층을 가지는 리튬 이차 전지용 양극활물질 전구체, 양극활물질을 제조하는 방법, 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질 전구체, 양극활물질
JP2013051172A (ja) * 2011-08-31 2013-03-14 Toyota Motor Corp リチウム二次電池
KR20140044594A (ko) * 2012-10-05 2014-04-15 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질층 조성물 및 이를 이용한 리튬 이차 전지
KR20150016129A (ko) * 2013-07-31 2015-02-11 주식회사 포스코 리튬 복합 산화물, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112154557A (zh) * 2018-06-20 2020-12-29 株式会社Lg化学 锂二次电池用正极活性材料和锂二次电池
JP2021525449A (ja) * 2018-06-20 2021-09-24 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びリチウム二次電池
JP2021527920A (ja) * 2018-06-20 2021-10-14 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びリチウム二次電池
JP7134552B2 (ja) 2018-06-20 2022-09-12 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びリチウム二次電池
JP7357991B2 (ja) 2018-06-20 2023-10-10 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びリチウム二次電池
CN112154557B (zh) * 2018-06-20 2024-03-22 株式会社Lg化学 锂二次电池用正极活性材料和锂二次电池
JP2020004537A (ja) * 2018-06-26 2020-01-09 日亜化学工業株式会社 非水電解質二次電池用正極活物質
JP2021132042A (ja) * 2018-06-26 2021-09-09 日亜化学工業株式会社 非水電解質二次電池用正極活物質
US11264608B2 (en) 2018-06-26 2022-03-01 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery
JP7212289B2 (ja) 2018-06-26 2023-01-25 日亜化学工業株式会社 非水電解質二次電池用正極活物質

Similar Documents

Publication Publication Date Title
WO2016068594A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019216694A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019078503A1 (ko) 리튬 이차전지용 양극재, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2017095134A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2017095133A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2021080374A1 (ko) 양극 활물질 전구체의 제조 방법 및 양극 활물질 전구체
WO2021154026A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021187963A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법, 양극 활물질 전구체, 이를 이용하여 제조된 양극 활물질, 양극 및 리튬 이차전지
WO2017095153A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022031116A1 (ko) 양극 활물질 전구체 및 그 제조 방법
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2020111898A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2017095152A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
WO2020180160A1 (ko) 리튬 이차전지
WO2022119313A1 (ko) 양극 활물질 전구체, 이의 제조방법 및 양극 활물질
WO2022240129A1 (ko) 양극 활물질 및 이의 제조 방법
WO2022119158A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022103105A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022182162A1 (ko) 양극 활물질, 이를 포함하는 양극 및 이차 전지
WO2022098136A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021251786A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021256794A1 (ko) 양극 활물질의 제조방법
WO2017095139A1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871048

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15751350

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018517825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE