WO2017086309A1 - 集合電線およびその製造方法並びに電気機器 - Google Patents

集合電線およびその製造方法並びに電気機器 Download PDF

Info

Publication number
WO2017086309A1
WO2017086309A1 PCT/JP2016/083815 JP2016083815W WO2017086309A1 WO 2017086309 A1 WO2017086309 A1 WO 2017086309A1 JP 2016083815 W JP2016083815 W JP 2016083815W WO 2017086309 A1 WO2017086309 A1 WO 2017086309A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
insulating layer
adhesive layer
layer
thermoplastic resin
Prior art date
Application number
PCT/JP2016/083815
Other languages
English (en)
French (fr)
Inventor
佳祐 池田
秀雄 福田
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020187013615A priority Critical patent/KR102202812B1/ko
Priority to EP16866310.2A priority patent/EP3379545B1/en
Priority to CN201680066119.6A priority patent/CN108292542A/zh
Publication of WO2017086309A1 publication Critical patent/WO2017086309A1/ja
Priority to US15/982,751 priority patent/US10991483B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/30Insulated conductors or cables characterised by their form with arrangements for reducing conductor losses when carrying alternating current, e.g. due to skin effect
    • H01B7/303Conductors comprising interwire insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0013Apparatus or processes specially adapted for manufacturing conductors or cables for embedding wires in plastic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/02Soldered or welded connections
    • H01R4/023Soldered or welded connections between cables or wires and terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/70Insulation of connections

Definitions

  • the present invention relates to a collective electric wire mainly for a high frequency constituted by laminating a plurality of flat metal bodies, a method for manufacturing the same, and an electric device.
  • high-frequency rectangular electric wires are used for coils of AC motors and high-frequency electric devices.
  • motors for hybrid vehicles (HV) and electric vehicles (EV) they are also used as motors for high-speed railway vehicles.
  • a conventional flat electric wire is formed by laminating a rectangular metal body having a square cross section in which an enamel film for insulation or an oxide film is formed on the outer periphery.
  • a laminated rectangular metal body having a rectangular cross section in which an adhesive thermosetting resin film or an oxide film is formed on the outer periphery is known as a rectangular electric wire that does not use an enamel film.
  • an assembly conductor having an adhesive layer of an insulating thermosetting resin between conductor wires is disclosed (for example, see Patent Document 1).
  • a rectangular electric wire is disclosed in which a rectangular metal conductor having an oxide film formed on the outer periphery is laminated and the laminated conductor portion is covered with an insulating layer. (For example, refer to Patent Document 2).
  • An assembly conductor in which a plurality of conductor wires having a rectangular cross section are disposed with an interlayer insulation layer interposed therebetween, and an outer insulation layer that covers the assembly conductor including the interlayer insulation layer, and the assembly conductor
  • An assembled electric wire having an adhesive layer made of a thermoplastic resin having a thickness of 3 ⁇ m or more and 10 ⁇ m or less between the outer insulating layer.
  • the adhesive layer is made of an amorphous resin having a glass transition temperature of 200 ° C. or higher and 300 ° C.
  • the adhesive layer comprises a resin selected from the group consisting of polyetherimide (PEI), polyethersulfone (PES), and polyphenylsulfone (PPSU) (1) to (3) The collective electric wire of any one of Claims.
  • PEI polyetherimide
  • PES polyethersulfone
  • PPSU polyphenylsulfone
  • the interlayer insulating layer is made of a resin selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyamide 6T (PA6T), and polyamide 9T (PA9T) (1) to (6) The collective electric wire of any one of these.
  • the outer insulating layer is made of a resin selected from the group consisting of polyphenylene sulfide (PPS), polyether ether ketone (PEEK), modified polyether ether ketone (modified PEEK), and thermoplastic polyimide.
  • a step of forming an assembly conductor, a step of coating an adhesive layer of a thermoplastic resin on an outer periphery of the assembly conductor, and a step of coating an outer layer insulation layer on the outer periphery of the adhesion layer, and covering the outer layer insulation layer A method of manufacturing an aggregated wire, in which an adhesive layer having a thickness of 3 ⁇ m or more and 10 ⁇ m or less is formed on the outer periphery of the aggregated conductor before performing.
  • An electric device having a wiring, wherein at least a part of the wiring includes an assembly conductor in which a plurality of conductor wires having a rectangular cross section are arranged with an interlayer insulating layer interposed therebetween, and the interlayer insulating layer
  • An electrical device having an outer insulating layer covering the aggregated conductor, and having an adhesive layer made of a thermoplastic resin having a thickness of 3 ⁇ m or more and 10 ⁇ m or less between the aggregated conductor and the outer insulating layer.
  • the collective electric wire of the present invention has an interlayer insulating layer between laminated conductor wires, and an outer insulating layer is formed on the outer periphery via an adhesive layer of a thermoplastic resin.
  • the adhesive layer enhances the adhesion between the exterior insulating layer and the collective conductor, and improves the bending workability of the collective wire.
  • the electrical equipment of the present invention has a high reliability of wire connection and excellent high-frequency characteristics because the assembled wire is excellent in weldability and bending workability.
  • the collective wire 1 has a collective conductor 10 in which a plurality of conductor wires 11 having a rectangular cross section are arranged in a stacked manner.
  • a collective electric wire 1 in which conductor wires 11 are laminated in two layers is shown.
  • An interlayer insulating layer 12 made of thermoplastic resin is disposed between the conductor wires 11 and 11.
  • the assembly conductor 10 is covered with an outer insulating layer 14 through an adhesive layer 13 of thermoplastic resin.
  • the conductor strand 11 in the said assembled electric wire 1 has a rectangular cross section, and what is used with the conventional assembled electric wire (flat electric wire) can be used.
  • the rectangular cross section means a rectangular cross section, and includes those having round corners of the rectangle.
  • the conductor strand 11 is preferably a low oxygen copper or oxygen free copper conductor having an oxygen content of 30 ppm or less. If the oxygen content of the conductor wire 11 is small, when the conductor wire 11 is melted with heat in order to weld it, there is no generation of voids due to the contained oxygen in the welded portion. Further, it is possible to prevent the electrical resistance of the welded portion from deteriorating and maintain the strength of the welded portion.
  • thermoplastic resin having a melting point of 250 ° C. or higher and 350 ° C. or lower is used for the interlayer insulating layer 12 between the conductor wires 11 and 11. If the melting point of the interlayer insulating layer 12 is too low, the electrical characteristics will deteriorate in the heat resistance test. On the other hand, if the melting point of the interlayer insulating layer 12 is too high, it may not be completely melted during welding, and the weldability may be deteriorated.
  • the interlayer insulating layer 12 is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polyamide 6T, and polyamide 9T.
  • the melting point of polyethylene terephthalate (PET) is 252 ° C.
  • the melting point of polyethylene naphthalate (PEN) is 265 ° C.
  • the melting point of polyamide 6T (PA6T) is 320 ° C.
  • the melting point of polyamide 9T (PA9T) is 300 ° C.
  • the interlayer insulating layer 12 is an insulating layer for preventing the conductor strands 11 and 11 from contacting each other, and is formed between opposing sides of the conductor strands 11 and 11.
  • the adhesive layer 13 has a tensile elastic modulus so that the laminated state of the conductor wires 11 can be maintained without shifting when the assembled wire 1 is bent.
  • the tensile elastic modulus at 250 ° C. of the adhesive layer 13 is 10 MPa or more and 1000 MPa or less, preferably 50 MPa or more and 500 MPa or less, and more preferably 100 MPa or more and 200 MPa or less.
  • the tensile modulus is a value obtained by dividing the tensile stress received by the material within the elastic limit by the strain generated in the material. The larger this value, the smaller the deformation of the collective wire 1 with respect to the load applied to the collective wire 1.
  • the thickness of the adhesive layer 13 is 3 ⁇ m or more and 10 ⁇ m or less, preferably 3 ⁇ m or more and 8 ⁇ m or less, and more preferably 4 ⁇ m or more and 7 ⁇ m or less. If the thickness of the adhesive layer 13 is too thin, the deviation of the laminated state of the conductor wires 11 becomes large when the assembled wire 1 is bent.
  • the adhesive layer 13 is a thermoplastic resin, and examples thereof include an amorphous resin having a glass transition temperature of 200 ° C. or higher and 300 ° C. or lower. If the glass transition temperature is too low, the electrical characteristics may be deteriorated in the heat resistance test. On the other hand, if the glass transition temperature is too high, it remains without being completely melted during welding, and the weldability may be deteriorated.
  • Amorphous resins include resins selected from the group consisting of polyetherimide, polyethersulfone, polyphenylsulfone, and phenylsulfone.
  • Polyetherimide has a tensile modulus of 100 MPa and a glass transition temperature of 217 ° C.
  • Polyethersulfone has a tensile modulus of 200 MPa and a glass transition temperature of 225 ° C.
  • Polyphenylsulfone has a tensile modulus of 200 MPa and a glass transition temperature of 220 ° C.
  • the tensile modulus of phenylsulfone (PSU) is 30 MPa, and the glass transition temperature is 185 ° C.
  • the adhesive layer 13 includes a thermoplastic resin having a melting point of 250 ° C. or higher and 350 ° C.
  • the glass transition temperature of the adhesive layer 13 is preferably not higher than the melting point of the interlayer insulating layer 12 in order to suppress deformation of the interlayer insulating layer 12.
  • a resin selected from the group consisting of PEI, PES, and PPSU.
  • the adhesive layer 13 may be formed in a plurality of layers.
  • the assembly conductor 10 with the interlayer insulating layer 12 sandwiched between the conductor wires 11 may be covered with two layers of an adhesive layer 13A and an adhesive layer 13B.
  • a thermoplastic resin excellent in adhesiveness with the assembly conductor 10 is used.
  • a thermoplastic resin having excellent adhesion to the outer insulating layer 14 for the adhesive layer 13B for example, polyamide 9T (PA9T), polyetherimide (PEI), etc. are mentioned as the adhesive layer 13A.
  • the adhesive layer 13B include PEI, polyphenylsulfone (PPSU), and polyethersulfone (PES).
  • These resins are also excellent in adhesion between the adhesive layer 13A and the adhesive layer 13B.
  • a stronger adhesion can be obtained. That is, it is possible to achieve strong adhesion by selecting the resin of the adhesive layer 13A excellent in adhesiveness with the collective conductor 10 and the resin of the adhesive layer 13B excellent in adhesiveness with the outer insulating layer 14. .
  • the outer insulating layer 14 is a thermoplastic resin having a melting point of 270 ° C. or higher.
  • the melting point is preferably lower than the melting points of the interlayer insulating layer 12 and the adhesive layer 13 so as not to change the quality.
  • examples thereof include resins selected from the group consisting of polyphenylene sulfide, polyether ether ketone, modified polyether ether ketone, and thermoplastic polyimide.
  • Polyphenylene sulfide (PPS) has a melting point of 280 ° C.
  • Polyetheretherketone (PEEK) has a melting point of 343 ° C.
  • Modified polyetheretherketone (modified PEEK) has a melting point of 345 ° C.
  • Thermoplastic polyimide has a melting point of 388 ° C.
  • the thickness of the outer insulating layer 14 is preferably 30 ⁇ m or more and 250 ⁇ m or less. If the thickness is too thick, the outer insulating layer 14 itself has rigidity, so that the flexibility of the collecting wire 1 is lowered. On the other hand, the thickness of the outer insulating layer 14 is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, and even more preferably 50 ⁇ m or more, from the viewpoint that insulation failure can be prevented. In this way, even if the outer insulating layer 14 has a certain thickness, it is made of a thermoplastic resin, so that generation of soot is suppressed during welding, for example, arc welding, and the weldability of the soot is reduced. A decrease can be prevented.
  • the number of conductor wires 11 on which the assembly conductor 10 is laminated is from 2 layers to 6 layers. If the number of stacked layers is two, the loss amount at a sufficiently high frequency can be expected, and the loss amount is further reduced as the number of layers increases. If the number of layers is one, the amount of loss at high frequencies becomes excessive. On the other hand, when the number of laminated layers is 7 or more, the number of layers of the interlayer insulating layer 12 becomes too large to bend and formability (workability) is deteriorated. That is, the laminated conductor wires 11 are likely to be displaced. From the above, it can be said that the number of laminated layers is realistic up to 6 layers or less, and preferably 3 layers or less.
  • the longer side of the conductor wire 11 is the width and the shorter side is the thickness, there is no problem whether the direction is laminated in either the width or thickness direction.
  • the longer side of the conductor wire 11 is brought into contact with each other and laminated in the thickness direction.
  • the assembled wire 1 of the present invention has an interlayer insulating layer 12, an adhesive layer 13, and an outer peripheral insulating layer 14 made of a thermoplastic resin. For this reason, it becomes easy to weld by suppressing generation
  • a resin varnish containing a thermoplastic resin to be the interlayer insulating layer 12 is applied onto the conductor wire 11 and baked.
  • This baking layer of the thermoplastic resin can be formed by applying and baking a resin varnish containing a thermoplastic resin on only one of the four outer peripheral surfaces of the conductor wire 11 having a rectangular cross section. In this case, it is possible to obtain a desired configuration by masking the surfaces other than those necessary for coating and coating the varnish only on one necessary surface.
  • Specific baking conditions depend on the shape of the furnace used. For example, a natural convection type vertical furnace of about 5 m can be achieved by setting the passage time at 400 to 500 ° C. to 10 to 90 seconds.
  • the adhesive layer 13 can be formed by preferably applying and baking a resin varnish containing a thermoplastic resin on the outer periphery of the collective conductor 10.
  • the method of applying the resin varnish may be a conventional method, for example, a method of using a varnish application die having a shape similar to the shape of the assembly conductor 10.
  • a method using a die called a “universal die” formed in a cross beam shape may be used.
  • the collective conductor 10 coated with these resin varnishes is baked in a baking furnace by a conventional method. Specific baking conditions depend on the shape of the furnace used. For example, in the case of a natural convection type vertical furnace of about 5 m, this can be achieved by setting the passage time from 400 ° C. to 500 ° C. to 10 seconds to 90 seconds.
  • the outer peripheral insulating layer 14 is provided with at least one layer or a plurality of layers outside the adhesive layer 13.
  • the outer peripheral insulating layer 14 has a high adhesion strength to the assembly conductor 10 due to the adhesive layer 13.
  • the method of forming the outer peripheral insulating layer 14 is, for example, by extrusion using a thermoplastic resin that can be extruded.
  • the thermoplastic resin has a melting point of 270 ° C. or higher, preferably 300 ° C. or higher, more preferably 330 ° C. or higher.
  • the upper limit of this melting point is 450 ° C. or lower, preferably 420 ° C. or lower, more preferably 400 ° C. or lower. This melting point can be measured by differential scanning calorimetry (DSC).
  • the outer peripheral insulating layer 14 has a relative dielectric constant of 4.5 or less, preferably 4.0 or less, and more preferably 3.8 or less in that the partial discharge start voltage can be further increased.
  • This relative dielectric constant can be measured with a commercially available dielectric constant measuring apparatus. About measurement temperature and a frequency, it changes as needed. In this specification, unless otherwise specified, it is a value measured at 25 ° C. and 50 Hz.
  • thermoplastic resin having a dielectric constant of 4.5 or less examples include polyether ether ketone, modified polyether ether ketone, and thermoplastic polyimide.
  • the outer insulating layer 14 it is particularly preferable to use a thermoplastic resin having a melting point of 270 ° C. or higher and 450 ° C. or lower and a relative dielectric constant of 4.5 or lower.
  • One thermoplastic resin may be used alone, or two or more thermoplastic resins may be used. When two or more kinds are mixed and two or more melting points exist, it is preferable to include a resin having a melting point of 270 ° C. or more.
  • polyaryletherketone (PAEK: melting point 343 ° C.) containing an aromatic ring represented by polyetheretherketone, an ether bond and a ketone bond is used.
  • modified PEEK (melting point: 345 ° C.) obtained by mixing PEEK with another thermoplastic resin is used.
  • at least one thermoplastic resin selected from the group consisting of PAEK, modified PEEK, and thermoplastic polyimide (TPI: melting point 388 ° C.) is used.
  • the modified PEEK is, for example, a mixture obtained by adding polyphenylsulfone (PPSU) to PEEK, and PPSU has a lower mixing ratio than PEEK.
  • the extrusion temperature condition for extruding the outer insulating layer 14 is appropriately set according to the thermoplastic resin used.
  • the extrusion temperature is set to a temperature about 40 ° C. to 60 ° C. higher than the melting point in order to obtain a melt viscosity suitable for extrusion coating.
  • the outer insulating layer 14 of thermoplastic resin is formed by extrusion molding at a set temperature.
  • the thickness of the outer insulating layer 14 can be increased because it is not necessary to pass through a baking furnace when forming the outer insulating layer in the manufacturing process.
  • the assembled wire 1 has the assembled conductor 10 and the outer peripheral adhesive layer 13 in close contact with each other with high adhesive strength. Further, the adhesive layer 13 and the outer insulating layer 14 are in close contact with each other with high adhesive strength.
  • the adhesive strength between the collective conductor 10 and the outer peripheral adhesive layer 13 and the adhesive strength between the adhesive layer 13 and the outer insulating layer 14 are, for example, JIS C 3216-3 Winding Test Method-Part 3 Mechanical Properties 5 .2 Can be examined in the same manner as the extension test. Then, the stretched test piece is examined visually for floating.
  • the assembly wire 1 of the present invention may have a configuration in which the assembly conductors 10 are horizontally arranged in a plurality of rows and the whole is covered with the adhesive layer 13 and the outer insulating layer 14. Even in a multi-row configuration, the same characteristics as in the case of a single row can be obtained.
  • the collective electric wire (flat electric wire) 1 of the present invention described above is preferably applied to a coil constituting a motor of a hybrid vehicle or an electric vehicle as an example of an electric device.
  • a coil constituting a motor of a hybrid vehicle or an electric vehicle as an example of an electric device.
  • it can be used for a winding forming a stator coil of a rotating electrical machine (motor) as described in JP-A-2007-259555.
  • the configuration in which the collecting wires are laminated as in the present invention has an advantage that current loss is small even in a high frequency region.
  • a polyethylene terephthalate (PET) film serving as a thermoplastic resin layer used for the interlayer insulating layer 12 was sandwiched only on one surface in the width direction of the conductor strand 11 to obtain a conductor strand 11.
  • the obtained conductor wires 11 were laminated in two layers in the thickness direction to obtain an aggregate conductor 10 (see FIG. 1).
  • Lumirror registered trademark manufactured by Toray Industries, Inc. was used for the PET film.
  • the adhesive layer 13 was formed by coating the aggregate conductor 10 with polyetherimide (PEI) varnish using a die similar in shape to the aggregate conductor 10.
  • PEI polyetherimide
  • the polyetherimide varnish was prepared by dissolving polyetherimide in N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a polyetherimide layer having a thickness of 3 ⁇ m was formed by this single baking process. By adjusting the varnish concentration, a polyetherimide layer having a thickness of 3 ⁇ m was formed, and an adhesive layer 13 having a thickness of 3 ⁇ m was obtained.
  • thermoplastic resin layer (see FIG. 1) serving as the outer insulating layer 14 was formed on the outer periphery by extrusion molding.
  • L / D 20
  • a compression ratio of 3 were used as the screw of the extruder.
  • Polyetheretherketone (PEEK) was used as the thermoplastic resin, and the extrusion temperature conditions were as shown in Table 1.
  • PEEK Solvay Specialty Polymers, trade name: KetaSpire KT-820, relative dielectric constant 3.1, melting point 343 ° C. was used.
  • the cylinder temperature in the extruder was set to the temperature of three zones, 300 ° C., 380 ° C., 380 ° C. in order from the resin charging side, the head portion temperature was 390 ° C., and the die portion temperature was 400 ° C.
  • the polyether ether ketone was extrusion coated using an extrusion die, it was left for 10 seconds and then cooled with water. Then, an outer insulating layer 14 of a thermoplastic resin having a thickness of 50 ⁇ m was formed on the outer periphery of the assembly conductor 10 on which the adhesive layer 13 was formed on the outer periphery, and the assembly wire 1 (see FIG. 1) was produced.
  • Example 2 The film thicknesses of the interlayer insulating layer 12 and the outer insulating layer 14 were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 3 The number of laminated conductor wires 11 was six, and the film thicknesses of the interlayer insulating layer 12 and the outer insulating layer 14 were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 5 The film thicknesses of the interlayer insulating layer 12, the adhesive layer 13, and the outer insulating layer 14 were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 6 The interlayer insulating layer 12 was changed to polyethylene naphthalate (PEN), and the film thicknesses of the interlayer insulating layer 12, the adhesive layer 13, and the outer insulating layer 14 were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • PEN polyethylene naphthalate
  • Example 7 The interlayer insulating layer 12 was changed to polyetherimide (PEI), and the outer insulating layer 14 was changed to polyphenylene sulfide (PPS). Further, the adhesive layer 13 was changed to polyphenylsulfone (PPSU). The film thicknesses of the interlayer insulating layer 12, the adhesive layer 13, and the outer insulating layer 14 were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • PPSU polyphenylsulfone
  • Example 8 The number of laminated conductor wires 11 was changed to six.
  • the interlayer insulating layer 12 was changed to polyamide 6T (PA6T), and the film thickness of the interlayer insulating layer 12 was changed to the thickness shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 7.
  • Example 9 The interlayer insulating layer 12 was changed to polyamide 9T (PA9T), and the adhesive layer 13 was changed to polyethersulfone (PES). Furthermore, the film thicknesses of the adhesive layer 13 and the outer insulating layer 14 were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • PA9T polyamide 9T
  • PES polyethersulfone
  • Example 10 The interlayer insulating layer 12 was changed to modified polyetheretherketone (modified PEEK). Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 11 The number of laminated conductor wires 11 was changed to four. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 12 The adhesive layer 13 was changed to phenyl sulfone (PSU). Otherwise, the assembled wire 1 was produced in the same manner as in Example 7.
  • PSU phenyl sulfone
  • Example 13 The adhesive layer 13 was changed to polypropylene (PP). Furthermore, the film thicknesses of the interlayer insulating layer 12 and the outer insulating layer 14 were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • PP polypropylene
  • Example 14 The interlayer insulating layer 12 was changed to thermoplastic polyimide. Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 15 The interlayer insulating layer 12 was changed to polypropylene (PP). Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 16 The outer insulating layer 14 was changed to polyamide 66 (PA66). Otherwise, the assembled wire 1 was produced in the same manner as in Example 1.
  • Example 17 The adhesive layer 13 was changed to two layers, the adhesive layer on the conductor element 11 side was made of polyamide 9T (PA9T), and the adhesive layer on the outer insulating layer 14 side was made of polyetherimide (PEI). Furthermore, the film thickness of the two bonding layers was changed to the thickness shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 3.
  • PA9T polyamide 9T
  • PEI polyetherimide
  • Example 18 The adhesive layer 13 was changed to two layers, the adhesive layer on the conductor element 11 side was made of polyamide 9T (PA9T), and the adhesive layer on the outer insulating layer 14 side was made of polyetherimide (PEI). Furthermore, the film thickness of the two bonding layers was changed to the thickness shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 2.
  • PA9T polyamide 9T
  • PEI polyetherimide
  • Example 19 The interlayer insulating layer 12 was changed to polyamide 6T (PA6T). Further, the adhesive layer 13 was changed to two layers, the adhesive layer on the conductor element 11 side was made of polyamide 9T (PA9T), and the adhesive layer on the outer insulating layer 14 side was made of polyetherimide (PEI). The film thicknesses of the interlayer insulating layer 12 and the two bonding layers were changed to those shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 3.
  • PA6T polyamide 6T
  • PA9T polyamide 9T
  • PEI polyetherimide
  • Example 20 The adhesive layer 13 was changed to two layers, the adhesive layer on the conductor element 11 side was polyetherimide (PEI), and the adhesive layer on the outer insulating layer 14 side was polyethersulfone (PES). Furthermore, the film thicknesses of the interlayer insulating layer 12, the outer insulating layer 14, and the two bonding layers were changed to the thicknesses shown in Table 1. Otherwise, the assembled wire 1 was produced in the same manner as in Example 3.
  • PEI polyetherimide
  • PES polyethersulfone
  • Comparative Example 1-5 In Comparative Example 1, a collective electric wire was produced in the same manner as in Example 1 except that the interlayer insulating layer 12 was not used. In Comparative Example 2, the number of conductor strands 11 laminated was seven. Otherwise, a rectangular electric wire was produced in the same manner as in Example 1. In Comparative Example 3, the interlayer insulating layer was changed to polyamideimide (PAI), and the adhesive layer 13 was changed to polyphenylsulfone (PPSU). Furthermore, the film thicknesses of the interlayer insulating layer 12 and the adhesive layer 13 were changed to the thicknesses shown in Table 1. Other than that was carried out similarly to Example 1, and produced the assembled wire.
  • PAI polyamideimide
  • PPSU polyphenylsulfone
  • Comparative Example 4 the adhesive layer 13 was not used, and other than that was the same as in Example 1, and an assembled wire was produced.
  • Comparative Example 5 the thickness of the adhesive layer 13 was 15 ⁇ m. Other than that was carried out similarly to Example 1, and produced the assembled wire.
  • the electric wire terminal was welded by generating arc discharge under the conditions of a welding current of 30 A and a welding time of 0.1 second. It was determined that welding was possible when a welding ball was formed at the end of the electric wire, and welding was impossible when the welding ball was not able to flow. Moreover, when black soot generate
  • a case where such an inclination or deviation is less than 1 / 3n of the width is indicated as “A”, “B” or “C” as being within the allowable range.
  • “D” is indicated as being inferior.
  • FIG. 4A when the conductor wires 11 constituting the assembly conductor 10 are laminated in the thickness direction, the displacement in the width direction of the conductor wire 11 having the largest deviation is 1/10 of the width W.
  • the length was less than “A”, it was evaluated as “A”.
  • FIG. 4B when the conductor wires 11 constituting the assembled wire 10 are laminated in the thickness direction, the displacement in the width direction of the conductor wire 11 having the largest deviation is 1/10 of the width W.
  • the adhesion between the assembly conductor 10 and the outer insulating layer 14 in the assembly wire 1 was evaluated by the following bending workability test.
  • a straight test piece having a length of 300 mm was cut out from each assembled electric wire 1 manufactured.
  • a scratch (notch) having a depth of about 5 ⁇ m and a length of 50 ⁇ m is used in each of two directions, the longitudinal direction and the vertical direction, using a dedicated jig. Wearing.
  • the outer insulating layer 14 and the collective conductor 10 are in close contact via the adhesive layer 13 and are not peeled off.
  • the edge surface is formed in such a manner that side edges (thickness, sides along the vertical direction on the drawings in FIGS. 1 and 2) are continuously formed in the axial direction in the cross-sectional shape of the rectangular assembled wire 1.
  • the scratch is applied to either one of the left and right side surfaces of the assembled wire 1 shown in FIG.
  • a straight test piece was bent at 180 ° (U-shape) with an iron core having a diameter of 1.0 mm as an axis, and this state was maintained for 5 minutes.
  • the progress of peeling between the collective conductor 10 and the outer insulating layer 14 generated near the apex of the straight test piece was visually observed.
  • Examples 1 to 20 were all excellent in weldability, high frequency characteristics, formability, and bending workability.
  • the evaluation of weldability was “B”.
  • the evaluation of weldability was “A” or “B”.
  • the evaluation of the high frequency characteristics was “B” when the number of the conductor wires 11 was two, and “A” when the number of the conductor wires 11 was three or more.
  • the thickness of the adhesive layer was 3 ⁇ m or more and 10 ⁇ m or less, the deviation in the width direction of the conductor wire 11 was small, and the evaluation of formability was “A” or “B”. Furthermore, the evaluation of bending workability was “A” in all examples having an adhesive layer.
  • Comparative Example 1 in which the number of conductor wires 11 laminated was one, the evaluation of the high frequency characteristics was “D”. In Comparative Example 2 in which the number of laminated conductor wires 11 was too large, the evaluation of formability was “D”.
  • Comparative Example 3 in which the interlayer insulating layer was not a thermoplastic resin but a thermosetting resin polyamide imide (PAI), a weld ball was not formed, and soot was generated around the welded portion. Therefore, the evaluation of weldability was “D”. Furthermore, in Comparative Examples 4 and 5 in which the adhesive layer was not present or the joining layer was too thick, the deviation in the width direction of the conductor wire 11 was large, and the evaluation of the moldability was “D”. Furthermore, in Comparative Examples 1 to 3 and 5 having an adhesive layer, the evaluation of bending workability was “A”, but in Comparative Example 4 having no adhesive layer, the outer insulating layer was peeled off from the conductor wire. The evaluation of bending workability was “D”.
  • PAI thermosetting resin polyamide imide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Insulated Conductors (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

断面矩形の導体素線が層間絶縁層を挟んで複数本積層配置された集合導体と、前記層間絶縁層を含む前記集合導体を被覆する外層絶縁層とを有し、前記集合導体と前記外層絶縁層との間に、厚さ3μm以上10μm以下の熱可塑性樹脂からなる接着層を有する集合電線である。

Description

集合電線およびその製造方法並びに電気機器
 本発明は、複数の平角金属体を積層して構成された主に高周波用の集合電線およびその製造方法並びに電気機器に関するものである。
 一般に、高周波用の平角電線は、交流モータや高周波電気機器のコイル等に用いられている。ハイブリッド自動車(HV)、電気自動車(EV)用モータのほか高速鉄道車両用モータとしても用いられている。従来の平角電線は、外周に絶縁用のエナメル皮膜や酸化膜が形成された断面方形の平角金属体を積層して構成されている。また、エナメル皮膜を用いない平角電線として、接着用の熱硬化性樹脂膜や酸化膜が外周に形成された断面矩形の平角金属体を積層したものが知られている。例えば、導体線間に絶縁性の熱硬化性樹脂の接着層を有する集合導体が開示されている(例えば、特許文献1参照。)。また、外周に酸化皮膜を形成した平角金属導体を積層して、その積層導体部を絶縁層で被覆した平角電線が開示されている。(例えば、特許文献2参照。)。
特開2008-186724号公報 特開2009-245666号公報
 複数の平角金属体を積層して、その外周に絶縁用のエナメル皮膜を形成した高周波用の従来の平角電線では、平角金属体を積層することで高周波用として特性を発現している。しかし、モータを組み立てる際の溶接の工程において、エナメル皮膜がススとなって残存してしまい、強固な溶接は困難であった。また、エナメル皮膜を用いない平角電線では、良好な溶接性は得られるが、曲げ加工時の各平角金属導体間の密着性に改善の余地があった。
 本発明は、高周波特性を満足しながら、強固な溶接を可能にすることおよび積層した導体素線と外層絶縁層との間の密着性を確保することを課題とする。そして曲げ加工性を高めた集合電線およびその製造方法並びに電気機器を提供することにある。
 上記課題は以下の手段により解決される。
(1)断面矩形の導体素線が層間絶縁層を挟んで複数本積層配置された集合導体と、前記層間絶縁層を含む前記集合導体を被覆する外層絶縁層とを有し、前記集合導体と前記外層絶縁層との間に、厚さ3μm以上10μm以下の熱可塑性樹脂からなる接着層を有する集合電線。
(2)前記接着層が、250℃における引張弾性率が10MPa以上1000MPa以下の熱可塑性樹脂からなる(1)に記載の集合電線。
(3)前記接着層が、ガラス転移温度が200℃以上300℃以下である非晶性樹脂、もしくは融点が250℃以上350℃以下の熱可塑性樹脂からなる(1)または(2)に記載の集合電線。
(4)前記接着層が、ポリエーテルイミド(PEI)、ポリエーテルサルホン(PES)、ポリフェニルサルホン(PPSU)からなる群より選択される樹脂を含んでなる(1)~(3)のいずれか1項に記載の集合電線。
(5)前記接着層が、単層または複数層からなる(1)~(4)のいずれか1項に記載の集合電線。
(6)前記層間絶縁層が、融点250℃以上350℃以下の熱可塑性樹脂からなる(1)~(5)のいずれか1項に記載の集合電線。
(7)前記層間絶縁層が、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリアミド6T(PA6T)、ポリアミド9T(PA9T)からなる群より選択される樹脂からなる(1)~(6)のいずれか1項に記載の集合電線。
(8)前記外層絶縁層が、融点270℃以上の熱可塑性樹脂からなる(1)~(7)のずれか1項に記載の集合電線。
(9)前記外層絶縁層が、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、変性ポリエーテルエーテルケトン(変性PEEK)、熱可塑性ポリイミドからなる群より選択される樹脂からなる(1)~(8)のいずれか1項に記載の集合電線。
(10)前記導体素線の積層数が2層以上から6層以下である(1)~(9)のいずれか1項に記載の集合電線。
(11)融点を持たない非晶性樹脂もしくはアミド結合を持つ結晶性樹脂である熱可塑性樹脂の層間絶縁層を焼き付け塗装により一面に形成した断面矩形の導体素線を厚さ方向に積層して集合導体を形成する工程と、前記集合導体の外周に熱可塑性樹脂の接着層を被覆する工程と、前記接着層の外周に外層絶縁層を被覆する工程とを有し、前記外層絶縁層を被覆する前に前記集合導体の外周に厚さを3μm以上10μm以下の接着層を形成する集合電線の製造方法。
(12)配線を有する電気機器であって、前記配線の少なくとも一部は、断面矩形の導体素線が層間絶縁層を挟んで複数本積層配置された集合導体と、前記層間絶縁層を含む前記集合導体を被覆する外層絶縁層とを有し、前記集合導体と前記外層絶縁層との間に、厚さ3μm以上10μm以下の熱可塑性樹脂からなる接着層を有する電気機器。
 本発明の集合電線は、積層された導体素線間に層間絶縁層を有するとともに外周に熱可塑性樹脂の接着層を介して外層絶縁層が形成されている。これにより、高周波における損失量を抑制できる。それとともに、溶接した際にススを発生させることがないため、強固な溶接を可能としかつ溶接しやすさを兼ね備えることができる。さらに、接着層により外装絶縁層と集合導体との密着力が強化されて、集合電線の曲げ加工性が高められる。
 本発明の集合電線の製造方法によれば、上記の高周波特性、溶接性および曲げ加工性に優れた集合電線を製造できる。
 本発明の電気機器は、集合電線が溶接性、曲げ加工性に優れていることから電線接続の信頼性が高く、高周波特性に優れる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の集合電線に係る好ましい一実施形態を示した断面図である。 本発明の集合電線に係る好ましい別の一実施形態を示した断面図である。 溶接性の評価を示した図面である。(a)は溶接性に優れた例を示した斜視図である。(b)は溶接が可能な例を示した斜視図である。(c)は溶接性に劣る例を示した斜視図である。(d)は溶接が不可となった例を示した斜視図である。 成形性の評価を示した図面である。(a)は成形性が優れている例を示した断面図である。(b)は成形性が良である例を示した断面図である。(c)は成形性が許容範囲内である例を示した断面図である。(d)は成形性が劣る例を示した断面図である。なお、断面を示すハッチングの記載は省略した。
 本発明の集合電線について、好ましい一実施形態を図1によって説明する。
 図1に示すように、集合電線1は、断面矩形の導体素線11が複数本積層配置された集合導体10を有する。図面では、一例として導体素線11を2層に積層した集合電線1を示した。上記導体素線11、11間には熱可塑性樹脂の層間絶縁層12が配されている。集合導体10は熱可塑性樹脂の接着層13を介して外層絶縁層14で被覆されている。
 (導体素線)
 上記集合電線1における導体素線11は、矩形断面を有し、従来の集合電線(平角電線)で用いられているものを使用できる。上記矩形断面とは長方形断面を意味し、その長方形の角部に丸みを有するものも含めていう。導体素線11として、好ましくは、酸素含有量が30ppm以下の低酸素銅または無酸素銅の導体が挙げられる。導体素線11の酸素含有量が少なければ、導体素線11を溶接するために熱で溶融させた場合、溶接部分に含有酸素に起因するボイドの発生がない。さらに溶接部分の電気抵抗が悪化することを防止するとともに溶接部分の強度を保持することができる。
 (導体素線間の層間絶縁層)
 導体素線11、11間の層間絶縁層12には、融点250℃以上350℃以下である熱可塑性樹脂が用いられる。層間絶縁層12の融点が低すぎると、耐熱性試験において電気特性が低下してしまう。一方、層間絶縁層12の融点が高すぎると溶接時に完全に溶融せずに残存し、溶接性が悪化する恐れがある。層間絶縁層12は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド6T、ポリアミド9Tからなる群より選択される。ポリエチレンテレフタレート(PET)の融点は252℃であり、ポリエチレンナフタレート(PEN)の融点は265℃である。さらにポリアミド6T(PA6T)の融点は320℃であり、ポリアミド9T(PA9T)の融点は300℃である。
 層間絶縁層12は、導体素線11、11同士が接触しないための絶縁層であり、導体素線11、11の対向する辺の間に形成される。
 (集合導体の外周の接着層)
 接着層13は、集合電線1を曲げ加工を施したときに、導体素線11の積層状態がずれることなく維持できるような引張弾性率を有する。接着層13の250℃における引張弾性率は、10MPa以上1000MPa以下であり、好ましくは50MPa以上500MPa以下であり、さらに好ましくは100MPa以上200MPa以下である。引張弾性率とは、弾性限度内において材料が受けた引張応力を材料に生じたひずみで除した値である。この値が大きいほど集合電線1にかかる荷重に対する集合電線1の変形が小さくなる。引張弾性率が低すぎると、集合電線1を曲げ加工したときに導体素線11の積層状態のずれが大きくなる。一方、引張弾性率が高すぎると、集合電線1を曲げ加工したときに曲げにくくなる。
 また接着層13は、導体素線11と外層絶縁層14とに対して密着性が得られればよい。そのため、接着層13の厚さは、3μm以上10μm以下であり、好ましくは3μm以上8μm以下であり、さらに好ましくは4μm以上7μm以下である。接着層13の厚さが薄すぎると、集合電線1を曲げ加工したときに導体素線11の積層状態のずれが大きくなる。また接着層13の厚さが厚すぎると、集合電線1を曲げ加工したときに曲げにくくなる。
 上記接着層13は、熱可塑性樹脂であり、ガラス転移温度が200℃以上300℃以下の非晶性樹脂が挙げられる。ガラス転移温度が低すぎると耐熱性試験において電気特性が低下する恐れがある。一方、ガラス転移温度が高すぎると溶接時に完全に溶融せずに残存し、溶接性が悪化する恐れがある。
 非晶質樹脂には、ポリエーテルイミド、ポリエーテルサルホン、ポリフェニルサルホン、フェニルサルホンからなる群より選択される樹脂が挙げられる。ポリエーテルイミド(PEI)の引張弾性率は100MPa、ガラス転移温度は217℃である。ポリエーテルサルホン(PES)の引張弾性率は200MPa、ガラス転移温度は225℃である。ポリフェニルサルホン(PPSU)の引張弾性率は200MPa、ガラス転移温度は220℃である。そしてフェニルサルホン(PSU)の引張弾性率は30MPa、ガラス転移温度は185℃である。
 または、接着層13には、層間絶縁層12を変形させないように、融点が250℃以上350℃以下の熱可塑性樹脂が挙げられる。融点が低すぎると耐熱性試験において電気特性が低下する恐れがある。一方、融点が高すぎると溶融時に完全に溶融せずに残存し、溶接性が悪化する恐れがある。またこの接着層13のガラス転移温度は上記層間絶縁層12の変形を抑制するために層間絶縁層12の融点以下のものが好ましい。このような樹脂としては、PEI、PES、PPSUからなる群より選択される樹脂が挙げられる。
 上記接着層13は複数層に形成されていてもよい。例えば、図2に示すように、導体素線11間に層間絶縁層12を挟んだ集合導体10を接着層13Aと接着層13Bの2層で被覆されていてもよい。接着層13Aには、集合導体10との密着性に優れた熱可塑性樹脂を用いる。また接着層13Bには外層絶縁層14との密着性に優れた熱可塑性樹脂を用いることが好ましい。例えば、接着層13Aには、ポリアミド9T(PA9T)、ポリエーテルイミド(PEI)、等が挙げられる。接着層13Bには、PEI、ポリフェニルサルホン(PPSU)、ポリエーテルサルホン(PES)、等が挙げられる。これらの樹脂は、接着層13Aと接着層13Bとの密着性にも優れている。このように、接着層13を2層にすることで、より強固な密着力を得ることができる。すなわち、集合導体10との密着性に優れた接着層13Aの上記樹脂と、外層絶縁層14にとの密着性に優れた接着層13Bの上記樹脂を選択することで強固な密着が可能になる。
 (外層絶縁層)
 外層絶縁層14は、融点270℃以上の熱可塑性樹脂である。この融点は、上記層間絶縁層12や接着層13を変質させないために、それらの融点よりも低いことが好ましい。例えば、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、変性ポリエーテルエーテルケトン、熱可塑性ポリイミドからなる群より選択される樹脂が挙げられる。ポリフェニレンスルフィド(PPS)は融点が280℃である。ポリエーテルエーテルケトン(PEEK)は融点が343℃)である。変性ポリエーテルエーテルケトン(変性PEEK)は融点が345℃である。熱可塑性ポリイミドは融点が388℃である。
 外層絶縁層14の厚さは、30μm以上250μm以下であることが好ましい。その厚さが厚すぎると、外層絶縁層14自体に剛性があるため集合電線1としての可撓性が低下する。一方、外層絶縁層14の厚さは、絶縁不良を防止できる点で、30μm以上が好ましく、40μm以上がより好ましく、50μm以上がさらに好ましい。このように、外層絶縁層14がある程度の厚さを有していても、熱可塑性樹脂からなるので、溶接時、例えばアーク溶接時に、ススを発生することが抑制され、該ススによる溶接性の低下を防止することができる。
 (導体素線の積層数)
 集合導体10の積層する導体素線11の数が2層以上から6層以下である。積層数が2層で十分高周波における損失量の低減が見込め、層数が増えるほど損失量がさらに低減される。積層数が1層であると、高周波における損失量が多くなり過ぎる。一方、積層数が7層以上であると、層間絶縁層12の層数が多くなり過ぎて曲げが行いにくくなり成形性(加工性)が低下する。すなわち、積層されている導体素線11がずれやすくなる。以上のことから、積層数は6層以下までが現実的であり、3層以下が好ましいと言える。
 また、積層する方向は、導体素線11の辺の長い方を幅、辺の短い方を厚さとすると、幅、厚さのどちら方向に積層しても問題はない。好ましくは導体素線11の辺の長い方を接触させ、厚さ方向に積層させる。
 本発明の集合電線1は、熱可塑性樹脂からなる、層間絶縁層12、接着層13および外周絶縁層14を有する。このため、溶接工程においてススの発生を抑えたことにより溶接がしやすくなり、強固な溶接ができる。また、導体素線間に層間絶縁層を有することから、高周波における損失量が抑制できる。さらに接着層13により集合導体10と外周絶縁層14との密着性が高められていることから、集合電線1が成形性に優れる。そのため、集合電線1を曲げても導体素線11のずれが抑えられる。すなわち、曲げ加工性を高めることができる。
 上記層間絶縁層12を形成するには、層間絶縁層12となる熱可塑性樹脂を含む樹脂ワニスを導体素線11上に塗布、焼付する。
 この熱可塑性樹脂の焼付層は、断面矩形の導体素線11の外周4面のうち1面のみに、熱可塑性樹脂を含む樹脂ワニスを塗布、焼付して形成することができる。この場合、塗布に必要な面以外をマスキングし、その必要な1面のみにワニスを塗布することで、所望の構成を得ることができる。具体的な焼付条件はその使用される炉の形状などに左右される。例えば、およそ5mの自然対流式の竪型炉であれば、400~500℃にて通過時間を10~90秒に設定することにより達成することができる。
 接着層13を形成するには、集合導体10の外周に熱可塑性樹脂を含む樹脂ワニスを好ましくは塗布、焼付して形成することができる。樹脂ワニスを塗布する方法は、常法でよく、例えば、集合導体10の形状の相似形としたワニス塗布用ダイスを用いる方法がある。または集合導体10の断面形状が四角形であるならば井桁状に形成された「ユニバーサルダイス」と呼ばれるダイスを用いる方法が挙げられる。これらの樹脂ワニスを塗布した集合導体10は常法にて焼付炉で焼き付けされる。具体的な焼付条件はその使用される炉の形状などに左右される。例えば、およそ5mの自然対流式の竪型炉であれば、400℃~500℃にて通過時間を10秒~90秒に設定することにより達成することができる。
 外周絶縁層14は、接着層13の外側に少なくとも1層または複数層が設けられる。外周絶縁層14は接着層13により集合導体10との密着強度が高くなるものである。
 このような外周絶縁層14の形成方法は、例えば、押出成形可能な熱可塑性樹脂を用いた押出成形による。この点で、熱可塑性樹脂は、融点が270℃以上、好ましくは300℃以上、さらに好ましくは330℃以上のものである。この融点の上限は、450℃以下であり、好ましくは420℃以下であり、さらに好ましくは400℃以下である。この融点は示差走査熱量分析(DSC)により測定することができる。また、このような熱可塑性樹脂は、耐熱老化特性に加えて、積層導体部と積層導体部の外周の層との接着強度および耐溶剤性にも優れる。
 さらに外周絶縁層14は、部分放電開始電圧をより一層高くできる点で、比誘電率が4.5以下であり、好ましくは4.0以下であり、さらに好ましくは3.8以下である。この比誘電率は市販の誘電率測定装置で測定することができる。測定温度、周波数については、必要に応じて変更するものである。本明細書においては、特に記載の無い限り、25℃、50Hzにおいて測定した値である。
 上記押出成形可能な比誘電率が4.5以下の熱可塑性樹脂としては、ポリエーテルエーテルケトン、変性ポリエーテルエーテルケトン、熱可塑性ポリイミド等が挙げられる。
 上記外層絶縁層14には、融点が270℃以上450℃以下で、比誘電率が4.5以下である熱可塑性樹脂を用いることが特に好ましい。熱可塑性樹脂は1種単独でもよく、2種以上を用いてもよい。2種以上混合の場合で融点が2種類以上存在する場合は270℃以上の融点を有する樹脂を含めるとよい。例えば、ポリエーテルエーテルケトンに代表される芳香環、エーテル結合、ケトン結合を含むポリアリールエーテルケトン(PAEK:融点343℃)を用いる。もしくは、PEEKに他の熱可塑性樹脂を混合した変性PEEK(融点345℃)を用いる。または、PAEK、変性PEEK、熱可塑性ポリイミド(TPI:融点388℃)からなる群より選択される少なくとも1種の熱可塑性樹脂を用いる。また、上記変性PEEKは、例えば、PEEKにポリフェニルサルホン(PPSU)を添加した混合物であり、PPSUはPEEKより混合率が低い。
 上記外層絶縁層14を押出成形する際の押出温度条件は、用いる熱可塑性樹脂に応じて適宜に設定される。好ましい押出温度の一例を挙げると、具体的には、押出被覆に適した溶融粘度にするために融点よりも約40℃から60℃高い温度に押出温度を設定する。このように、温度設定された押出成形によって熱可塑性樹脂の外層絶縁層14を形成する。この場合、製造工程にて外層絶縁層を形成する際に焼付炉を通す必要がないため、外層絶縁層14の厚さを厚くできるという利点がある。
 この好適な実施態様における集合電線1は、集合導体10とその外周の接着層13とが高い接着強度で密着している。さらに接着層13と外層絶縁層14とが高い接着強度で密着している。集合導体10とその外周の接着層13との接着強度および接着層13と外層絶縁層14との接着強度は、例えば、JIS C 3216-3 巻線試験方法-第3部機械的特性の、5.2伸長試験と同じ要領で調べることができる。そして、伸張後の試験片に浮きがないか目視で調べる。
 本発明の集合電線1は、上記集合導体10を横に複数列に配列して、全体を接着層13および外層絶縁層14で被覆した構成であってもよい。複数列の構成でも単列の場合と同様の特性を得ることができる。
 上記説明した本発明の集合電線(平角電線)1は、電気機器の一例として、ハイブリッド自動車もしくは電気自動車のモータを構成するコイルに適用することが好適である。例えば、特開2007-259555号公報に記載されているような回転電機(モータ)の固定子のコイルを形成する巻線に用いることができる。本発明のような集合電線を積層した構成では、高周波領域においても電流損失が小さいという利点がある。
 以下に本発明を実施例に基づいてさらに詳細に説明する。本発明はこれらに限定されるものではない。
 (実施例1)
 0.85×3.2mm(厚さ×幅)で四隅の面取り半径r=0.3mmの酸素含有量15ppmの銅からなる導体素線11(図1参照)を準備した。
 導体素線11の幅方向の1面のみに、上記層間絶縁層12に用いる熱可塑性樹脂の層となるポリエチレンテレフタレート(PET)フィルムを挟み、導体素線11を得た。得られた導体素線11を厚さ方向に2層積層して集合導体10(図1参照)を得た。PETフィルムには東レ社製ルミラー(登録商標)を使用した。
 接着層13の形成は、集合導体10の形状と相似形のダイスを使用して、ポリエーテルイミド(PEI)ワニスを集合導体10へコーティングした。PEIにはサビックイノベーティブプラスチックス社製、商品名:ウルテム1010を用いた。そして、450℃に設定した炉長8mの焼付炉内を、焼き付け時間15秒となる速度で通過させた。ポリエーテルイミドワニスは、N-メチル-2-ピロリドン(NMP)にポリエーテルイミドを溶解させた。この1回の焼き付け工程で厚さ3μmのポリエーテルイミド層を形成した。ワニス濃度を調整することで厚さ3μmのポリエーテルイミド層を形成し、被膜厚さ3μmの接着層13を得た。
 さらに接着層13を形成した集合導体10を得て、押出成形によりその外周に上記外層絶縁層14となる熱可塑性樹脂の層(図1参照)を形成した。押出機のスクリューは、30mmフルフライト、L/D=20、圧縮比3を用いた。熱可塑性樹脂としてはポリエーテルエーテルケトン(PEEK)を用い、押出温度条件は表1に従って行った。PEEKには、ソルベイスペシャリティポリマーズ製、商品名:キータスパイアKT-820、比誘電率3.1、融点343℃を用いた。押出機内のシリンダー温度を、樹脂投入側から順に3ゾーンの温度、300℃、380℃、380℃とした、またヘッド部の温度を390℃、ダイス部の温度を400℃とした。押出ダイを用いてポリエーテルエーテルケトンの押出被覆を行った後、10秒間、放置してから水冷した。そして、外周に接着層13を形成した集合導体10のさらに外周に、厚さ50μmの熱可塑性樹脂の外層絶縁層14を形成し、集合電線1(図1参照)を作製した。
 (実施例2、4)
 層間絶縁層12および外層絶縁層14のそれぞれの皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例3)
 導体素線11の積層数を6層とし、層間絶縁層12および外層絶縁層14のそれぞれの皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例5)
 層間絶縁層12、接着層13および外層絶縁層14のそれぞれの皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例6)
 層間絶縁層12をポリエチレンナフタレート(PEN)に変更し、さらに層間絶縁層12、接着層13および外層絶縁層14のそれぞれの皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例7)
 層間絶縁層12をポリエーテルイミド(PEI)に変更し、外層絶縁層14をポリフェニレンスルフィド(PPS)に変更した。さらに接着層13をポリフェニルサルホン(PPSU)に変更した。そして層間絶縁層12、接着層13および外層絶縁層14のそれぞれの皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例8)
 導体素線11の積層数を6層に変更した。また層間絶縁層12をポリアミド6T(PA6T)に変更し、さらに層間絶縁層12の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例7と同様にして、集合電線1を作製した。
 (実施例9)
 層間絶縁層12をポリアミド9T(PA9T)に変更し、接着層13をポリエーテルサルホン(PES)に変更した。さらに接着層13および外層絶縁層14の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例10)
 層間絶縁層12を変性ポリエーテルエーテルケトン(変性PEEK)に変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例11)
 導体素線11の積層数を4層に変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例12)
 接着層13をフェニルサルホン(PSU)に変更した。それ以外は、実施例7と同様にして、集合電線1を作製した。
 (実施例13)
 接着層13をポリプロピレン(PP)に変更した。さらに層間絶縁層12および外層絶縁層14の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例14)
 層間絶縁層12を熱可塑性ポリイミドに変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例15)
 層間絶縁層12をポリプロピレン(PP)に変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例16)
 外層絶縁層14をポリアミド66(PA66)に変更した。それ以外は、実施例1と同様にして、集合電線1を作製した。
 (実施例17)
 接着層13を2層に変更し、導体素線11側の接着層をポリアミド9T(PA9T)とし、外層絶縁層14側の接着層をポリエーテルイミド(PEI)とした。さらに2層の接合層の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例3と同様にして、集合電線1を作製した。
 (実施例18)
 接着層13を2層に変更し、導体素線11側の接着層をポリアミド9T(PA9T)とし、外層絶縁層14側の接着層をポリエーテルイミド(PEI)とした。さらに2層の接合層の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例2と同様にして、集合電線1を作製した。
 (実施例19)
 層間絶縁層12をポリアミド6T(PA6T)に変更した。さらに接着層13を2層に変更して、導体素線11側の接着層をポリアミド9T(PA9T)とし、外層絶縁層14側の接着層をポリエーテルイミド(PEI)とした。そして層間絶縁層12および2層の接合層の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例3と同様にして、集合電線1を作製した。
 (実施例20)
 接着層13を2層に変更して、導体素線11側の接着層をポリエーテルイミド(PEI)とし、外層絶縁層14側の接着層をポリエーテルサルホン(PES)とした。さらに層間絶縁層12、外層絶縁層14、および2層の接合層の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例3と同様にして、集合電線1を作製した。
 (比較例1-5)
 比較例1は、層間絶縁層12を用いず、それ以外は、実施例1と同様にして、集合電線を作製した。
 比較例2は、導体素線11の積層数を7層とした。それ以外は、実施例1と同様にして平角電線を作製した。
 比較例3は、層間絶縁層をポリアミドイミド(PAI)に変更し、接着層13をポリフェニルサルホン(PPSU)に変更した。さらに、層間絶縁層12と接着層13の皮膜厚さを表1に示す厚さに変更した。それ以外は、実施例1と同様にして、集合電線を作製した。
 比較例4は、接着層13を用いず、それ以外は、実施例1と同様にして、集合電線を作製し。
 比較例5は、接着層13の厚さを15μmとした。それ以外は、実施例1と同様にして、集合電線を作製した。
 このようにして製造した、実施例1~20、比較例1~5の集合電線について以下の評価を行った。その評価結果を表1に示す。
(溶接性)
 電線端末に対して、溶接電流を30A、溶接時間を0.1秒の条件で、アーク放電を発生させて溶接を行った。電線端末に溶接玉ができあがると溶接可能、溶接玉ができずに流れてしまうと溶接不可と判定した。また、溶接した箇所周辺に黒色のススが発生した場合も溶接不可と判定した。つまり
図3(a)に示すように、集合電線1の溶接した箇所周辺の色目の変化がなくかつ集合電線1の端末に溶接玉5が出来上がった場合に優れているとして「A」と評価した。
図3(b)に示すように、集合電線1の溶接した箇所周辺にスス6が発生するものの集合電線1の端末に溶接玉5は出来上がった場合に、良として「B」と評価した。
図3(c)に示すように、集合電線1の溶接した箇所周辺の色目の変化がなく集合電線1の端末に溶接玉が出来ない場合に、劣るとして「C」と評価した。
図3(d)に示すように、集合電線1の溶接した箇所周辺にスス6が発生し、集合電線1の端末に溶接玉が出来ない場合に、不可として「D」と評価した。
 合格の基準は「A」及び「B」判定とした。
 なお、上記溶接した箇所の周辺とは、溶接した端末から線方向5mm程度の範囲をいう。
 (高周波特性)
 1000Hz、2.16A、138Vrmsの条件において、交流磁界発生装置を作動させ、50mTの交流磁界を発生させた。試料を磁界中にセットすると渦電流による発熱が生じる。この時の発熱量を測定し、電流損失(W)とした。積層なしの導体上にポリエーテルエーテルケトン樹脂を押出被覆した集合電線の電流損失量Wを上記の通り計算した。
 各試料の電流損失量WとWとの比率が0.8以下(損失量の抑制率が20%以上)の場合に良好と評価して「B」と表した。さらに上記の比率が0.4以下(損失量の抑制率が60%以上)の場合に優れていると評価して「A」と表した。一方、上記の比率が0.8より大きい(損失量の抑制率が20パッド未満)の場合に劣ると評価して「D」と表した。
 P=EIcosΦ  ただし、Φ=tan-1(Ls・2πf/Rs)
  E(V):入力時電圧実測値
  Ls(H):インダクタンス実測値
  I(A):入力時電流実測値
  Rs(Ω):抵抗実測値
である。
 (成形性)
 集合導体10の上に接着層13、外層絶縁層14等を押出被覆して形成した集合電線1について、断面をカットし観察した。傾きやズレなく積層できているかを確認した。傾きについては積層させる方向に対して角度がついていないことを確認した。また、ズレについては、図4に示した評価基準により評価した。導体素線11を厚さ方向に積層させる場合は、幅の長さの1/3の長さ以上のズレが、隣り合う導体だけでなく最もズレが大きい導体同士についても、ないことを確認した。このような傾きやズレが幅の長さの1/3n長さ未満の場合を許容範囲内であるとして「A」、「B」または「C」と表した。また上記のような傾きやズレがある場合には劣っているとして「D」と表した。
図4(a)に示すように、集合導体10を構成する導体素線11を厚さ方向に積層させる場合、最もズレの大きい導体素線11の幅方向のズレが、幅Wの1/10未満の長さである場合に、優れているとして「A」と評価した。
図4(b)に示すように、集合電線10を構成する導体素線11を厚さ方向に積層させる場合、最もズレの大きい導体素線11の幅方向のズレが、幅Wの1/10以上1/5未満の長さである場合に、良として「B」と評価した。
図4(c)に示すように、積層導体部3を構成する平角線4を厚さ方向に積層させる場合、最もズレの大きい平角線4の幅方向のズレが、幅Wの1/5以上1/3未満の長さである場合に、許容範囲内であるとして「C」と評価した。
図4(d)に示すように、集合電線10を構成する導体素線11を厚さ方向に積層させる場合、最もズレの大きい導体素線11の幅方向のズレが、幅Wの1/3以上の長さである場合に、劣るとして「D」と評価した。
 合格は「A」、「B」及び「C」評価である。
 なお、図4では、層間絶縁層12の図示は省略した。
 (曲げ加工性試験(密着性試験))
 集合電線1における集合導体10と外側絶縁層14との密着性を、下記曲げ加工性試験により、評価した。
 製造した各集合電線1から長さ300mmの直状試験片を切り出した。この直状試験片のエッジ面の外側絶縁層14の中央部に、専用冶具を用いて、長手方向と垂直方向との2方向それぞれに、深さ約5μmで長さ50μmのキズ(切り込み)をつけた。このとき、外側絶縁層14と集合導体10とは接着層13を介して密着しており、剥離していない。ここで、エッジ面とは、平角形状の集合電線1の断面形状において、側辺(厚さ、図1および図2の図面上で、上下方向に沿う辺)が軸線方向に連続して形成する面をいう。したがって、上記キズは、図1または2に示される集合電線1の左右側面のいずれか一方の側面につけられている。
 このキズを頂点とし、直径1.0mmの鉄芯を軸として直状試験片を180°(U字状)に曲げ、この状態を5分間維持した。直状試験片の頂点付近に発生する集合導体10と外側絶縁層14との剥離の進行を目視で観察した。
 本試験において、外側絶縁層14に形成した、いずれのキズも拡張せず、外側絶縁層14が集合導体10から剥離していなかった場合を「合格」として「A」と表した。外側絶縁層14に形成したキズの少なくとも1本が拡張して、外側絶縁層14の全体が集合導体10等から剥離した場合を「不合格」として、「D」と表した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~20は、いずれも、溶接性、高周波特性、成形性、曲げ加工性のいずれにも優れることが分かった。これらの実施例1~20では、層間絶縁層の厚さが50μmを超え100μm以下では溶接性の評価が「B」になった。層間絶縁層の厚さが10μm以上50μm以下では溶接性の評価が「A」または「B」になった。また、導体素線11の積層数が2層では高周波特性の評価が「B」になり、導体素線11の積層数が3層以上では「A」になった。さらに接着層の厚さが3μm以上10μm以下では、導体素線11の幅方向のずれが小さく、成形性の評価が「A」または「B」となった。またさらに、接着層を有するすべての実施例で曲げ加工性の評価が「A」となった。
 これに対し、導体素線11の積層数が1層の比較例1では、高周波特性の評価が「D」であった。導体素線11の積層数が多すぎる比較例2では、成形性の評価が「D」であった。また、層間絶縁層が熱可塑性樹脂ではなく熱硬化性樹脂のポリアミドイミド(PAI)を用いた比較例3では、溶接玉ができず、溶接した箇所の周辺にススが発生した。そのため、溶接性の評価が「D」であった。さらに、接着層が無いまたは接合層が厚すぎる比較例4、5では、導体素線11の幅方向のずれが大きくなり成形性の評価が「D」であった。またさらに、接着層を有する比較例1~3、5では曲げ加工性の評価が「A」と優れていたが、接着層を有さない比較例4では導体素線から外層絶縁層が剥離したため、曲げ加工性の評価が「D」となった。
 本発明をその実施形態および実施例とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2015年11月20日に日本国で特許出願された特願2015-227868に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
 1 集合電線
 10 集合導体
 11 導体素線
 12 層間絶縁層
 13,13A,13B 接着層
 14 外層絶縁層

Claims (12)

  1.  断面矩形の導体素線が層間絶縁層を挟んで複数本積層配置された集合導体と、前記層間絶縁層を含む前記集合導体を被覆する外層絶縁層とを有し、
     前記集合導体と前記外層絶縁層との間に、厚さ3μm以上10μm以下の熱可塑性樹脂からなる接着層を有する集合電線。
  2.  前記接着層が、250℃における引張弾性率が10MPa以上1000MPa以下の熱可塑性樹脂からなる請求項1に記載の集合電線。
  3.  前記接着層が、ガラス転移温度が200℃以上300℃以下である非晶性樹脂、もしくは融点が250℃以上350℃以下の熱可塑性樹脂からなる請求項1または2に記載の集合電線。
  4.  前記接着層が、ポリエーテルイミド、ポリエーテルサルホン、ポリフェニルサルホンからなる群より選択される樹脂からなる請求項1~3のいずれか1項に記載の集合電線。
  5.  前記接着層が、単層または複数層からなる請求項1~4のいずれか1項に記載の集合電線。
  6.  前記層間絶縁層が、融点250℃以上350℃以下である熱可塑性樹脂からなる請求項1~5のいずれか1項に記載の集合電線。
  7.  前記層間絶縁層が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルイミド、ポリアミド6T、ポリアミド9Tからなる群より選択される樹脂からなる請求項1~6のいずれか1項に記載の集合電線。
  8.  前記外層絶縁層が、融点270℃以上である熱可塑性樹脂からなる請求項1~7のずれか1項に記載の集合電線。
  9.  前記外層絶縁層が、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、変性ポリエーテルエーテルケトン、熱可塑性ポリイミドからなる群より選択される樹脂からなる請求項1~8のいずれか1項に記載の集合電線。
  10.  前記導体素線の積層数が2層以上から6層以下である請求項1~9のいずれか1項に記載の集合電線。
  11.  融点を持たない非晶性樹脂もしくはアミド結合を持つ結晶性樹脂である熱可塑性樹脂の層間絶縁層を焼き付け塗装により一面に形成した断面矩形の導体素線を厚さ方向に積層して集合導体を形成する工程と、前記集合導体の外周に熱可塑性樹脂の接着層を被覆する工程と、前記接着層の外周に外層絶縁層を被覆する工程とを有し、
     前記外層絶縁層を被覆する前に前記集合導体の外周に厚さを3μm以上10μm以下の接着層を形成する集合電線の製造方法。
  12.  配線を有する電気機器であって、前記配線の少なくとも一部は、断面矩形の導体素線が層間絶縁層を挟んで複数本積層配置された集合導体と、前記層間絶縁層を含む前記集合導体を被覆する外層絶縁層とを有し、前記集合導体と前記外層絶縁層との間に、厚さ3μm以上10μm以下の熱可塑性樹脂からなる接着層を有する電気機器。
PCT/JP2016/083815 2015-11-20 2016-11-15 集合電線およびその製造方法並びに電気機器 WO2017086309A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187013615A KR102202812B1 (ko) 2015-11-20 2016-11-15 집합 전선 및 그 제조 방법 및 전기 기기
EP16866310.2A EP3379545B1 (en) 2015-11-20 2016-11-15 Collective electric wire, method for manufacturing same, and electric device
CN201680066119.6A CN108292542A (zh) 2015-11-20 2016-11-15 集合电线及其制造方法以及电气设备
US15/982,751 US10991483B2 (en) 2015-11-20 2018-05-17 Assembled wire, method of producing the same, and electrical equipment using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015227868A JP6200480B2 (ja) 2015-11-20 2015-11-20 集合電線およびその製造方法並びに電気機器
JP2015-227868 2015-11-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/982,751 Continuation US10991483B2 (en) 2015-11-20 2018-05-17 Assembled wire, method of producing the same, and electrical equipment using the same

Publications (1)

Publication Number Publication Date
WO2017086309A1 true WO2017086309A1 (ja) 2017-05-26

Family

ID=58718840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083815 WO2017086309A1 (ja) 2015-11-20 2016-11-15 集合電線およびその製造方法並びに電気機器

Country Status (7)

Country Link
US (1) US10991483B2 (ja)
EP (1) EP3379545B1 (ja)
JP (1) JP6200480B2 (ja)
KR (1) KR102202812B1 (ja)
CN (1) CN108292542A (ja)
MY (1) MY177617A (ja)
WO (1) WO2017086309A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418029A (zh) * 2018-03-12 2020-07-14 古河电气工业株式会社 集合导线、分割导体、使用其的分段线圈和马达

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6887967B2 (ja) * 2018-03-12 2021-06-16 エセックス古河マグネットワイヤジャパン株式会社 絶縁電線、その製造方法、コイル、電気・電子機器および電気・電子機器の製造方法
WO2019188776A1 (ja) 2018-03-30 2019-10-03 古河電気工業株式会社 絶縁電線材及びその製造方法、並びに、コイル及び電気・電子機器
JP7105777B2 (ja) 2018-03-30 2022-07-25 古河電気工業株式会社 絶縁電線材及びその製造方法、並びに、コイル及び電気・電子機器
JP7452019B2 (ja) * 2020-01-14 2024-03-19 株式会社デンソー 電機子、及び電機子の製造方法
US11688527B2 (en) * 2020-08-07 2023-06-27 Essex Furukawa Magnet Wire Usa Llc Magnet wire with thermoplastic insulation
CN114334289B (zh) * 2021-02-24 2023-03-10 佳腾电业(赣州)有限公司 一种绝缘电线制备方法、绝缘电线和电子/电气设备
AT524754A1 (de) * 2021-03-12 2022-09-15 Miba Emobility Gmbh Maschinenbauteil
WO2024120990A1 (en) * 2022-12-05 2024-06-13 Nv Bekaert Sa Method to produce an insulated metal element and insulated metal element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018732A (ja) * 2005-06-07 2007-01-25 Mosutetsuku:Kk 線材、コイル、ステータコイル、ロータコイル、変成器、及び線材の製造方法
JP2008193860A (ja) * 2007-02-07 2008-08-21 Mitsubishi Cable Ind Ltd 集合導体及びその製造方法
WO2015033821A1 (ja) * 2013-09-06 2015-03-12 古河電気工業株式会社 平角電線およびその製造方法並びに電気機器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3202558A (en) * 1960-12-23 1965-08-24 Gen Electric Process for insulating an electric coil
SE341742B (ja) * 1970-02-24 1972-01-10 Asea Ab
US4204087A (en) * 1976-11-22 1980-05-20 Westinghouse Electric Corp. Adhesive coated electrical conductors
US4321426A (en) * 1978-06-09 1982-03-23 General Electric Company Bonded transposed transformer winding cable strands having improved short circuit withstand
DE3070426D1 (en) * 1979-12-11 1985-05-09 Asea Ab Insulated electric conductor for windings of transformers and reactive coils
CH677565A5 (ja) * 1988-11-10 1991-05-31 Asea Brown Boveri
US5393933A (en) * 1993-03-15 1995-02-28 Goertz; Ole S. Characteristic impedance corrected audio signal cable
WO1998014964A1 (de) * 1996-09-30 1998-04-09 Asta Elektrodraht Gmbh Mehrfachparallelleiter für wicklungen elektrischer maschinen und geräte
US7582692B2 (en) * 2004-04-01 2009-09-01 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic composition and articles comprising the same
CA2594951A1 (en) * 2005-01-26 2006-08-03 Chong Kun Dang Pharmaceutical Corp. Fumagillol derivatives or method for preparation of fumagillol derivatives, and pharmaceutical compositions comprising the same
JP4878002B2 (ja) * 2006-07-06 2012-02-15 株式会社日本自動車部品総合研究所 電磁機器
JP2008186724A (ja) 2007-01-30 2008-08-14 Mitsubishi Cable Ind Ltd 集合導体及びその製造方法
JP5379393B2 (ja) 2008-03-28 2013-12-25 古河電気工業株式会社 平角電線及びその製造方法並びにその製造装置
JP5306742B2 (ja) * 2008-08-28 2013-10-02 古河電気工業株式会社 絶縁ワイヤ
CN201307453Y (zh) * 2008-11-20 2009-09-09 南京绿安智能装饰布线集成有限公司 室内阻燃同轴射频电视电缆
KR101073698B1 (ko) * 2009-09-07 2011-10-14 도레이첨단소재 주식회사 점착테이프와 리드프레임의 라미네이션 방법
JP5166495B2 (ja) * 2010-08-11 2013-03-21 株式会社日立製作所 ドライマイカテープ及びこれを用いた電気絶縁線輪
CN201984898U (zh) * 2010-12-23 2011-09-21 吴江奇才电子科技有限公司 极细音视频线
CN104185879A (zh) * 2012-12-28 2014-12-03 古河电气工业株式会社 绝缘电线、电气设备及绝缘电线的制造方法
JP5391341B1 (ja) * 2013-02-05 2014-01-15 古河電気工業株式会社 耐インバータサージ絶縁ワイヤ
WO2015033820A1 (ja) * 2013-09-06 2015-03-12 古河電気工業株式会社 平角電線およびその製造方法並びに電気機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018732A (ja) * 2005-06-07 2007-01-25 Mosutetsuku:Kk 線材、コイル、ステータコイル、ロータコイル、変成器、及び線材の製造方法
JP2008193860A (ja) * 2007-02-07 2008-08-21 Mitsubishi Cable Ind Ltd 集合導体及びその製造方法
WO2015033821A1 (ja) * 2013-09-06 2015-03-12 古河電気工業株式会社 平角電線およびその製造方法並びに電気機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379545A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418029A (zh) * 2018-03-12 2020-07-14 古河电气工业株式会社 集合导线、分割导体、使用其的分段线圈和马达
CN111418029B (zh) * 2018-03-12 2022-04-29 埃赛克斯古河电磁线日本有限公司 集合导线、分割导体、使用其的分段线圈和马达

Also Published As

Publication number Publication date
US20180268962A1 (en) 2018-09-20
EP3379545A1 (en) 2018-09-26
KR102202812B1 (ko) 2021-01-15
JP6200480B2 (ja) 2017-09-20
EP3379545A4 (en) 2019-07-10
US10991483B2 (en) 2021-04-27
KR20180084781A (ko) 2018-07-25
CN108292542A (zh) 2018-07-17
EP3379545B1 (en) 2023-07-19
JP2017098030A (ja) 2017-06-01
MY177617A (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6200480B2 (ja) 集合電線およびその製造方法並びに電気機器
JP6325550B2 (ja) 平角電線およびその製造方法並びに電気機器
US9691521B2 (en) Rectangular insulated wire and electric generator coil
JP6325549B2 (ja) 平角電線およびその製造方法並びに電気機器
US9536636B2 (en) Insulated wire, coil, and electric/electronic equipments as well as method of producing a film delamination-resistant insulated wire
JP6407168B2 (ja) 絶縁ワイヤ、モーターコイル、電気・電子機器および絶縁ワイヤの製造方法
US11217364B2 (en) Insulated wire, coil, and electric/electronic equipments
US20160322126A1 (en) Insulated wire, coil, and electrical/electronic equipment, and method of preventing cracking of insulated wire
JP6974330B2 (ja) 絶縁電線、コイルおよび電気・電子機器
US9892819B2 (en) Insulated wire, coil, and electronic/electrical equipment
JPWO2019188777A1 (ja) 絶縁電線材及びその製造方法、並びに、コイル及び電気・電子機器
JPWO2019188776A1 (ja) 絶縁電線材及びその製造方法、並びに、コイル及び電気・電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187013615

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016866310

Country of ref document: EP