WO2017079976A1 - Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same - Google Patents

Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same Download PDF

Info

Publication number
WO2017079976A1
WO2017079976A1 PCT/CN2015/094586 CN2015094586W WO2017079976A1 WO 2017079976 A1 WO2017079976 A1 WO 2017079976A1 CN 2015094586 W CN2015094586 W CN 2015094586W WO 2017079976 A1 WO2017079976 A1 WO 2017079976A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
sulfur
composite
graphitic
transition metal
Prior art date
Application number
PCT/CN2015/094586
Other languages
French (fr)
Inventor
Yuguo GUO
Juan Zhang
Yaxia YIN
Yunhua Chen
Nahong ZHAO
Original Assignee
Robert Bosch Gmbh
Institute Of Chemistry, Chinese Academy Of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Institute Of Chemistry, Chinese Academy Of Sciences filed Critical Robert Bosch Gmbh
Priority to JP2018524341A priority Critical patent/JP6726279B2/en
Priority to KR1020187016484A priority patent/KR20180080316A/en
Priority to US15/771,498 priority patent/US10586979B2/en
Priority to CN201580084451.0A priority patent/CN108352514A/en
Priority to EP15908106.6A priority patent/EP3377444A4/en
Priority to PCT/CN2015/094586 priority patent/WO2017079976A1/en
Publication of WO2017079976A1 publication Critical patent/WO2017079976A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries, an electrode and a lithium-sulfur battery comprising said composite as well as a process for preparing said sulfur-carbon composite.
  • Lithium-Sulfur batteries are nowadays undergoing a tremendous number of investigations due to the highly theoretical energy density of 2600 Wh kg -1 .
  • Li-S batteries are still suffer from poor cycling life and rate performance due to the intrinsic insulate sulfur/lithium sulfides and dissolution of intermediate polysulfide species for irreversible loss.
  • Porous carbon is proven as an effective matrix in trapping polysulfides within pore structures, hence enhancing the capacity retention capability.
  • Highly graphitic carbon materials which always require an intense preparation condition, benefit for enhancing electro-activity of sulfur, and facilitating transportation of electrons and ions.
  • Different porous carbon had been designed to accommodate sulfur, however, integrating all the structural benefits such as ample space, highly graphitic domains, interconnected ion channels, and confined nanospace with a facile approach to utilize and immobilize sulfur has still not been fully demonstrated.
  • porous carbon framework with a certain degree of graphitization has been used as an effective matrix to immobilize sulfur.
  • current synthetic methods are usually complex, and the degree of graphitization of these porous carbon materials is very low, which lies as big obstacle for achieving highly cycling stability and highly-rate capability.
  • an object of the present invention to provide a highly graphitic carbon material (also referred to as “highly graphitic carbon (s) ” , and abbreviated as “HGC” or “HGCs” ) characterized by its high graphitization degree, which is suitable to be used in Li-S batteries. Also, an object of the present invention is to provide a simple and facile method to synthesize said highly graphitic carbon material by co-pyrolyzing carbon-containing raw materials with transition metal-containing salts, which makes it possible to solve the above problems.
  • the present invention provides a sulfur-carbon composite comprising a highly graphitic carbon material and sulfur, wherein the highly graphitic carbon material has a high graphitization degree characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0, and wherein sulfur is encapsulated into the porous structure of the highly graphitic carbon material.
  • Said highly graphitic carbon material can be either a graphitic microporous carbon substrate, or a core-shell material with a conductive core coated by a graphitic microporous carbon layer.
  • a graphitic microporous carbon layer in the core-shell structure indicates that a microporous carbon layer has been graphitized.
  • the conductive core either has microporous structure itself, or has non-microporous structure which is coated by a microporous graphitic carbon layer.
  • the present invention provides an electrode, which comprises the sulfur-carbon composite of the present invention.
  • the present invention further provides a lithium-sulfur battery, which comprises the sulfur-carbon composite of the present invention.
  • the present invention also provides a process for preparing the above sulfur-carbon composite, and the process will be discussed in the following description in more details.
  • CNT carbon nanotubes
  • GN graphene nanosheets
  • MPCS microporous carbon spheres
  • HGCS highly graphitic carbon spheres.
  • the symbol “@” denotes that the substance used before the symbol is stacked or coated by the substance used after the symbol. Accordingly, the expression “CNT@HGC” , indicates that the carbon nanotubes are stacked or coated by the highly graphitic carbon, and furthermore, the abbreviation “CNT@HGC-S” or “S/ (CNT@HGC) ” indicates that CNT@HGC is loaded with sulfur. Similarly, the expression “GN@HGC” , indicates that the graphene nanosheets are stacked or coated by the highly graphitic carbon, and moreover, the abbreviation “GN@HGC-S” or “S/ (GN@HGC) ” indicates that GN@HGC is further loaded with sulfur.
  • a “CNT@MO” (M stands for the transition metal and MO stands for transition metal oxide) may be formed first since the CNT is mixed with an aqueous solution of transition metal-containing salt and kept at 60-120°C until the CNT is stacked or coated by the transition metal oxide. Then, the formed “CNT@MO” is mixed with carbon source to carry out a hydrothermal reaction, and accordingly a “CNT@MO@HGC” will be prepared by pyrolysis. MO in the “CNT@MO@HGC” can be easily removed by an acid solution so as to obtain CNT@HGC.
  • these highly graphitic carbon materials exhibit three-dimensional porous framework of macropores together with mesopores and micropores, not only providing host for sulfur but also rendering easy access for facile Li+ migration.
  • the nanostructure and highly electrical conductivity of the sp2 carbon create short diffusion path for fast lithium ion diffusion, thus facilitate highly capacity and rate performance.
  • the ample pores serve as reservoirs for the sulfur storage, to confine polysulfide anions dissolution, which is beneficial for cycling stability.
  • HGCs could act as promising hosts for confining sulfur for highly performance Li-S batteries showing highly specific capacity, low resistance, excellent rate performance, and favorable cyclic stability.
  • Figure 1 is a Transmission Electron Microscopy (TEM) image of CNT@Fe x O y @C (C stands for carbon source) (before pyrolysis) (a) ; CNT@Fe x O y @HGC (after pyrolysis, but before acid etching of Fe x O y nanoparticles) (b) ; CNT@HGC (after acid etching of Fe x O y nanoparticles) (c) ; and Scanning Electron Microscopy (SEM) image of S/ (CNT@HGC) (d) obtained in Example 1 of the present invention.
  • TEM Transmission Electron Microscopy
  • Figure 2 shows the Raman spectra of CNT@HGC with transition metal containing salt and CNT@C without transition metal containing salt, respectively obtained in Example 1 and Comparative Example 1 of the present invention.
  • Figure 3 shows the first three discharge/charge curves at C/10 of S/ (CNT@HGC) (sulfur content 65wt%) (a) and S/ (CNT@C) (b) ; cycling comparison of S/ (CNT@HGC) and S/ (CNT@C) cycled at C/10 for 200 cycles (c) ; and the rate performance of S/ (CNT@HGC) cathode and S/ (CNT@C) cathode at rate of 0.1C, 0.2C, 0.4C, 1C, 2C and 5C obtained in Example 1 and Comparative Example 1 of the present invention.
  • Figure 4 is a Transmission Electron Microscopy (TEM) image of GN@Fe x O y @C (before pyrolysis) (a) ; GN@Fe x O y @HGC (after pyrolysis, but before acid etching of Fe x O y nanoparticles) (b) ; GN@HGC (after acid etching of Fe x O y nanoparticles) (c) ; and S/ (GN@HGC) (d) obtained in Example 2 of the present invention.
  • TEM Transmission Electron Microscopy
  • Figure 5 shows the Raman spectra of GN@HGC with transition metal containing salt, and GN@C without transition metal containing salt, respectively obtained in Example 2 and Comparative Example 2 of the present invention.
  • Figure 6 shows the first three discharge/charge curves at C/10 of S/ (GN@HGC) (sulfur content 65wt%) (a) and S/ (GN@C) (b) ; cycling comparison of S/ (GN@HGC) and S/ (GN@C) cycled at C/10 for 200 cycles (c) ; and the rate performance of S/ (GN@HGC) cathode and S/ (GN@C) cathode at rate of 0.1C, 0.2C, 0.5C, 1C, 2C and 5C obtained in Example 2 and Comparative Example 2 of the present invention.
  • Figure 7 shows the TEM images of MPCS precursors (a) ; MPCS@Fe x O y composite (before pyrolysis) (b) ; HGCS obtained from MPCS (c) , and HGCS-S (d) obtained in Example 3 of the present invention.
  • Figure 8 shows the Raman spectra of HGCS obtained from MPCS, and MPCS respectively obtained in Example 3 and Comparative Example 3 of the present invention.
  • Figure 9 shows the first three discharge/charge curves at C/10 of HGCS-S (sulfur content 65wt%) (a) and MPCS-S (b) ; cycling comparison of HGCS-S and MPCS-S cycled at C/10 for 200 cycles (c) ; and the rate performance of HGCS-S cathode and MPCS-S cathode at rate of 0.1C, 0.2C, 0.5C, 1C, and 2C obtained in Example 3 and Comparative Example 3 of the present invention.
  • the present invention relates to novel sulfur-carbon cathode composite, as well as their structural design, and corresponding preparation method.
  • the present invention also provides lithium-sulfur batteries assembled from said cathode composite.
  • the battery testing system and the electrolytes employed are also described.
  • a sulfur-carbon composite comprising a highly graphitic carbon material and sulfur
  • the highly graphitic carbon material is a graphitic microporous carbon substrate
  • the graphitization degree of the highly graphitic carbon material is characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0
  • sulfur is encapsulated into the porous structure of the highly graphitic carbon material.
  • the graphitic microporous carbon substrate prior to graphitization can be selected from the group consisting of carbon spheres, carbon nanosheets, carbon fibers, carbon nanotubes, carbon molecular sieve, and zeolite-templated carbon, and combinations, composites, derivatives and doped system thereof.
  • a sulfur-carbon composite comprising a highly graphitic carbon material and sulfur
  • the highly graphitic carbon material is a core-shell material with a conductive core coated by a graphitic microporous carbon layer
  • the graphitization degree of the highly graphitic carbon material is characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0
  • sulfur is encapsulated into the porous structure of the highly graphitic carbon material.
  • the conductive core can be selected from the group consisting of carbon-based material, non-carbon material, and a combination or composite of carbon-based material and non-carbon material.
  • any commonly used carbon-based material in the art can be applied in the present invention and the non-limiting examples include one or more selected from the group consisting of amorphous carbon, graphitized carbon, hard carbon, soft carbon, activated carbon, carbon aerogels, carbon nanotubes, expanded graphite, graphene oxide nanosheets, graphene nanosheets, carbide-derived carbon and zeolite-templated carbon, carbon molecular sieve and combinations, composites, derivatives and doped system thereof.
  • the carbon-based material is carbon nanotubes or graphene nanosheets.
  • the “doped system” in the context of the present invention means that the system can be doped with any suitable heteroatoms or combinations of them, such as N, P, B and so on.
  • any commonly used non-carbon material in the art can be applied in the present invention and the non-limiting examples include one or more selected from the group consisting of conductive polymers, semi-conductive ceramic, metal-organic frameworks (MOFs) , non-carbon molecular sieves and combinations, composites, derivatives thereof.
  • conductive polymers semi-conductive ceramic, metal-organic frameworks (MOFs) , non-carbon molecular sieves and combinations, composites, derivatives thereof.
  • MOFs metal-organic frameworks
  • the highly graphitic carbon material has a porous structure with pore diameter being 0.4 nm-100 nm, preferably 0.4-50 nm.
  • the highly graphitic carbon material has a BET specific surface area ranging from 100-4500 m 2 /g, preferably from 500-1500 m 2 /g.
  • the highly graphitic carbon material has a pore volume of 0.1-3.0 cm 3 /g, preferably 0.3-1.5 cm 3 /g.
  • the sulfur-carbon composite has sulfur content of 20-90 wt%, preferably 50-85 wt%based on the total weight of the sulfur-carbon composite.
  • the highly graphitic carbon material is carbon nanotube coated by a graphitic microporous carbon layer.
  • Fe x O y nanoparticles (briefed as Fe x O y NPs) (NP stands for nanoparticles) grow on the surface of carbon and the thickness of the coating layer outside the CNT before pyrolysis is about 20 nm.
  • Figure 1b after pyrolysis at 800°C, lots of graphitic domains can be clearly observed.
  • the Fe x O y NPs got completely removed to yield CNT@HGC as shown in Figure 1c.
  • no bulk sulfur particles can be observed in the CNT@HGC-S composite, implying the good dispersion of sulfur within the highly graphitic carbon layer, as shown in Figure 1d.
  • the Raman spectra of CNT@HGC substrate in Figure 2 exhibits a greatly sharpened G band compared to CNT@C (the carbon layer outside the CNT is not graphitized) , confirming the enhanced graphitization degree.
  • the mean I G /I D ratios of CNT@HGC (1.04) were larger than that of CNT@C (0.63) , demonstrating the increased graphitic degree of CNT@HGC.
  • the highly graphitic carbon material is graphene nanosheet coated by a graphitic carbon layer.
  • the thickness of the amorphous carbon layer outside the graphene nanosheet is about 20 nm.
  • GN@HGC was yield as shown in Figure 4b.
  • the highly-resolution TEM image as shown in Figure 4c gives an evident observation of the activated graphitic domains.
  • no bulk sulfur particle can be observed from the GN@HGC-S composite as shown in Figure 4d, implying the good dispersion of sulfur within the highly graphitic carbon layer.
  • GN@C substrate is prepared without Fe x O y NPs, which possesses a low degree of graphitization.
  • a clear Raman band at 1343 and 1574 cm -1 corresponds to D and G bands of carbon respectively.
  • GN@C substrate only exhibits the conventional D band and G band at 1339 and 1596 cm -1 respectively.
  • the obviously sharpened G band shows an increase of the ordered graphitic domains in GN@HGC.
  • the mean I G /I D ratios of GN@HGC (1.23) were larger than that of GN@C (0.82) , reaffirming the increased graphitic degree of GN@HGC.
  • the highly graphitic carbon material is graphitic microporous carbon spheres.
  • the spherical structure of MPCS has a particle size of about 200 nm.
  • HGCS highly graphitic carbon spheres
  • Fe x O y NPs embedded inside, as shown in Figure 7b.
  • these Fe x O y NPs can be completely removed through acid etching process.
  • no bulk sulfur particles can be observed from the S/HGCS composite, as shown in Figure 7c, implying the good dispersion of sulfur within the highly graphitic carbon substrate.
  • MPCS substrate without Fe x O y NPs is prepared, possessing a low degree of graphitization.
  • Raman spectra in Figure 8 exhibits the significantly decreased I G /I D (0.74) for MPCS substrate compared to HGCS (1.28) , exhibiting the distinct improvement of the graphitization degree of HGCS.
  • the present invention further relates to an electrode, which comprises the sulfur-carbon composite according to the present invention.
  • the present invention further relates to a lithium-sulfur battery, which comprises the sulfur-carbon composite according to the present invention.
  • a process for preparing the above sulfur-carbon composite wherein the highly graphitic carbon material is a conductive core coated by a graphitic microporous carbon layer, said process comprises the steps of: mixing an aqueous solution of the conductive core with an aqueous solution of transition metal-containing salt, keeping at 60-120°C for 2-12 h to obtain the conductive core coated by transition metal oxide layer; then carrying out a hydrothermal reaction (for example, in an sealed autoclave at 150-200°C for 5h-20h) by adding carbon source to the above resulting material, followed by centrifuging, washing and drying; pyrolyzing the above obtained material at a temperature of 500-900°C for 1-12 h; removing the transition metal oxide by an acid solution; and loading of sulfur.
  • a hydrothermal reaction for example, in an sealed autoclave at 150-200°C for 5h-20h
  • the above process may be carried out by the following steps of: mixing an aqueous solution of the conductive core with an aqueous solution of transition metal-containing salt and carbon source at the same time; then carrying out a hydrothermal reaction (for example, in an sealed autoclave at 150-200°C for 5h-20h) , followed by centrifuging, washing and drying; pyrolyzing the above obtained material at a temperature of 500-900°C for 1-12 h; removing the transition metal oxide by an acid solution; and loading of sulfur.
  • a hydrothermal reaction for example, in an sealed autoclave at 150-200°C for 5h-20h
  • pyrolyzing the above obtained material at a temperature of 500-900°C for 1-12 h
  • removing the transition metal oxide by an acid solution and loading of sulfur.
  • a hydrothermal reaction intends to mean that during the reaction in aqueous solutions occurred at high vapor pressures and high temperature, a carbonaceous layer is formed on a MO coated substrate materials, or during the reaction, both a MO layer and a carbonaceous layer are formed simultaneously on the core materials.
  • a process for preparing the above sulfur-carbon composite wherein the highly graphitic carbon material is a graphitic microporous carbon substrate, said process comprises the steps of: dispersing a microporous carbon substrate in an aqueous solution of transition metal-containing salt, stirring and heating at 60-120°C for 2-12 h; pyrolyzing the obtained material at a temperature of 500-900°C for 1-12 h to carbonize and graphitize the microporous carbon substrate; removing the transition metal oxide by an acid solution, and loading of sulfur.
  • said carbon source is one or more selected from the group consisting of sucrose, D-glucose, fructose, polyaniline, polyacetylene, polythiophene, dopamine and sodium alginate.
  • the transition metal-containing salt is selected from the group consisting of chloride, sulfate, nitrate, acetate, carbonate and phosphate of Fe, Co and Ni.
  • the carbon source is for example sucrose
  • the transition metal-containing salt is Fe-containing salt
  • the molar ratio of Fe-containing salt to sucrose is preferably ranging from 0.2 to 2.5.
  • the microporous carbon substrate is microporous carbon spheres
  • the transition metal-containing salt is FeSO 4
  • the weight ratio of FeSO 4 to microporous carbon spheres is preferably ranging from 0.2 to 10.
  • the step of loading of sulfur comprises dissolving elemental sulfur, which is nonpolar, in one nonpolar solvent for example, dimethyl sulfoxide (DMSO) or dimethylformamide (DMF) with intense ultrasonication.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • the ratios of sulfur in the mixture can be adjusted from 50%to 80%.
  • the HGC substrate was dispersed in the sulfur/DMSO (for example) solution by ultrasonication.
  • another polar solvent deionized water or ethonal for example
  • the highly graphitic carbon substrate according to the present invention has favorable electric conductivity, thus is very promising in use as the substrate material for sulfur to form the sulfur-carbon composite for Li-S battery. Moreover, the preparation process is simple to implement, and all raw materials are low in price, all these merits make the composite very promising for Li-S batteries.
  • Potential applications of the composite according to the present invention include highly-energy-density lithium ion batteries with acceptable highly power density for energy storage applications, such as power tools, photovoltaic cells and electric vehicles.
  • Method 1 Firstly, commercial CNT was pretreated with nitric acid to grow more oxygen-containing functional groups. 200 mL of CNT (0.50 mg/mL) was ultrasonicated for 50 min to form a homogeneous suspension. Fe x O y nanoparticles (Fe x O y NPs) were grown via the in situ hydrolysis of Fe-containing salts on the pretreated CNTs. Typically, for the synthesis of CNTs@Fe x O y , 48 mg of FeCl 3 and 760 mg of FeCl 2 were first dissolved in 100 mL of H 2 O and then added to 160 mL of CNT suspension (0.50 mg/mL) and kept at 90°C for 4h.
  • the dried precursor was calcined under argon at 800°C for 3 h, with a heating rate of 3°C/min and a flow rate of 50 mL min -1 .
  • the composite was stirred in HCl solution at room temperature for 48 h to obtain the CNT@HGC.
  • Method 2 Firstly, commercial CNT was pretreated with nitric acid to grow more oxygen-containing functional groups. Then 100 mg of as-prepared CNTs, 1 g of sucrose, and 500 mg of ferric nitrate were added into 40 mL of water, and sonicated for 1 h, to form a homogenous black suspension. The suspension was then sealed in a 70mL Parr autoclave with a quartz linear and was heated at 180°C for 15 h to yield a dark brown precursor. After the hydrothermal reaction, a uniform carbon precursor layer was formed on the CNT with Fe x O y nanoparticles embedded inside. The precursor was collected by centrifugation, washed with de-ionized water for four times, and then dried at 60°C overnight.
  • the dried precursor was calcined under argon at 800°C for 3 h, with a heating rate of 3°C/min and a flow rate of 50 mL min -1 .
  • the composite was stirred in HCl solution at room temperature for 48 h to obtain the CNT@HGC.
  • Electrochemical measurements were performed with coin cells assembled in an argon-filled glovebox.
  • a mixture of active material, carbon black, and poly- (vinyl difluoride) (PVDF) at a weight ratio of 80: 10: 10 was pasted on a Al foil.
  • Lithium foil was used as the counter electrode.
  • a glass fiber (GF/D) from Whatman was used as a separator.
  • the electrolyte consisted of a solution of 1 M LiTFSI salt in a mixture of DOL and DME (1: 1, v/v) (1: 1 in wt %) (Zhangjiagang Guotai Huarong New Chemical Materials Co., Ltd. ) .
  • Galvanostatic cycling of the assembled cells was carried out using a battery testing system in the voltage range of 1-3 V (vs Li + /Li) .
  • Example 1 The steps in Example 1 were repeated in Comparative Example 1 except that no transition metal-containing salt was added and the carbon source added was not graphitized.
  • the obtained CNT@HGC-S cathode composite exhibits discharge capacity of 1260 mAh/g at C/10, and retains at 892 mAh/g after 200 cycles. Moreover, it shows an excellent rate performance.
  • the CNT@HGC-S cathode composite still achieves capacities of 926 mAh/g and 696 mAh/g. The specific capacity is calculated based on the mass of S.
  • Method 1 Firstly, GO (graphene oxide) was pretreated through Hummer’s method. Then 200 mL of GO solution (0.50 mg/mL) was ultrasonicated for 50 min to form a homogeneous suspension. Fe x O y nanoparticles (Fe x O y NPs) was grown via the in situ hydrolysis of Fe-containing salts on the pretreated GO. Typically, for the synthesis of GO@Fe x O y , 48 mg of FeCl 3 and 760 mg of FeCl 2 were first dissolved in 100 mL of H 2 O and then added to 160 mL of GO suspension (0.50 mg/mL) and kept at 90°C for 4h.
  • the dried precursor was calcined under argon at 800°C for 3 h, with a heating rate of 3°C/min and a flow rate of 50 mL min -1 .
  • the composite was stirred in HCl solution at room temperature for 48 h to obtain the GO@HGC.
  • Method 2 Firstly, GO (graphene oxide) was pretreated through Hummer’s method. Then 100 mg of as-prepared GO, 1 g of sucrose, and 500 mg of ferric nitrate were added into 40 mL of water, and sonicated for 1 h, to form a homogenous black suspension. The suspension was then sealed in a 70mL Parr autoclave with a quartz linear and was heated at 180°C for 15 h to yield a dark brown precursor. After the hydrothermal reaction, a uniform carbon precursor layer was formed on the CNTs with Fe x O y nanoparticles embedded inside. The precursor was collected by centrifugation, washed with de-ionized water for four times, and then dried at 60°C overnight.
  • GO graphene oxide
  • the dried precursor was calcined under argon at 800°C for 3 h, with a heating rate of 3°C/min and a flow rate of 50 mL min -1 .
  • the composite was stirred in HCl solution at room temperature for 48 h to obtain the GO@HGC.
  • Example 2 The steps in Example 2 were repeated in Comparative Example 2 except that no transition metal-containing salt was added and the carbon source added was not graphitized.
  • the obtained GN@HGC-S cathode composite exhibits discharge capacity of 1375 mAh/g at C/10, and retains at 943 mAh/g after 200 cycles. Moreover, the GN@HGC-S cathode composite shows an excellent rate performance compared to GN@C-S in Comparative Example 2. When increasing the current rates to 1C and 5C, the GN@HGC-S cathode composite still achieves capacities of 900 mAh/g and 765 mAh/g in the initial cycle. However, for the GN@C-S cathode composite, the capacity decreased drastically with less than 300 mAh/g at 2C, implying its slow kinetics property.
  • HGCS precursor in which 4.5 g of D-glucose was dissolved in 30 mL of water, the solution was then sealed in an autoclave and reacted at 180°C for 4 h to yield the MPCS.
  • the products were centrifuged and washed with water and ethanol for several times before being further dried at 50°C in an oven.
  • 50 mg of as-obtained MPCS was dispersed in 20 mL of aqueous solution of ferric sulfate (FeSO 4 ) of 100 mg. The suspension then experienced a vigorous stirring of 2 h, and then heated to 90°C for 1 h to gradually vaporize solvent.
  • FeSO 4 ferric sulfate
  • the obtained mixture was further dried at 50°C in an oven and then annealed at 800°C in an inert gas (such as nitrogen, argon, etc. ) for 2 h to 4 h with a heating rate of 5°C/min to carbonize and graphitize the MPCS.
  • an inert gas such as nitrogen, argon, etc.
  • Example 3 The steps in Example 3 were repeated in Comparative Example 3 except that no transition metal-containing salt was added and MPCS was not graphitized.
  • the obtained HGCS-S cathode composite exhibits discharge capacity of 1325 mAh/g at C/10, and retains at 861 mAh/g after 200 cycles. Moreover, the HGCS-S cathode composite shows an excellent rate performance. When increasing the current rates to 1C and 2C, the HGCS-S cathode composite still achieves capacities of 845 mAh/g and 770 mAh/g in the initial cycle.

Abstract

Provided is a sulfur-carbon composite comprising a highly graphitic carbon material and sulfur, wherein the carbon material has a high graphitization degree characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0, the material is either a graphitic microporous carbon substrate, or a core-shell material with a conductive core coated by a graphitic microporous carbon layer, and wherein sulfur is encapsulated into the porous structure of the carbon material. Also provided are an electrode and a lithium-sulfur battery comprising the sulfur-carbon composite, and a process for preparing the sulfur-carbon composite.

Description

Sulfur-Carbon Composite Comprising a Highly Graphitic Carbon Material For Lithium-Sulfur Batteries And Process For Preparing The Same Technical field
The present invention relates to a sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries, an electrode and a lithium-sulfur battery comprising said composite as well as a process for preparing said sulfur-carbon composite.
Background Art
Lithium-Sulfur batteries are nowadays undergoing a tremendous number of investigations due to the highly theoretical energy density of 2600 Wh kg-1. However, Li-S batteries are still suffer from poor cycling life and rate performance due to the intrinsic insulate sulfur/lithium sulfides and dissolution of intermediate polysulfide species for irreversible loss. Porous carbon is proven as an effective matrix in trapping polysulfides within pore structures, hence enhancing the capacity retention capability. Highly graphitic carbon materials, which always require an intense preparation condition, benefit for enhancing electro-activity of sulfur, and facilitating transportation of electrons and ions. Different porous carbon had been designed to accommodate sulfur, however, integrating all the structural benefits such as ample space, highly graphitic domains, interconnected ion channels, and confined nanospace with a facile approach to utilize and immobilize sulfur has still not been fully demonstrated.
To provide good electronic conductive network and confine polysulfide intermediates, porous carbon framework with a certain degree of graphitization has been used as an effective matrix to immobilize sulfur. However, current synthetic methods are usually complex, and the degree of graphitization of these porous carbon materials is very low, which lies as big obstacle for achieving highly cycling stability and highly-rate capability.
Summary of Invention
It is therefore an object of the present invention to provide a highly graphitic carbon material (also referred to as “highly graphitic carbon (s) ” , and abbreviated as “HGC” or “HGCs” ) characterized by its high graphitization degree, which is suitable to be used in Li-S batteries. Also, an object of the present invention is to provide a simple and facile method to synthesize said highly graphitic carbon material by co-pyrolyzing carbon-containing raw materials with transition metal-containing salts,  which makes it possible to solve the above problems.
To be more specific, the present invention provides a sulfur-carbon composite comprising a highly graphitic carbon material and sulfur, wherein the highly graphitic carbon material has a high graphitization degree characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0, and wherein sulfur is encapsulated into the porous structure of the highly graphitic carbon material.
Said highly graphitic carbon material can be either a graphitic microporous carbon substrate, or a core-shell material with a conductive core coated by a graphitic microporous carbon layer. In the context of the present invention, “a graphitic microporous carbon layer” in the core-shell structure indicates that a microporous carbon layer has been graphitized. The conductive core either has microporous structure itself, or has non-microporous structure which is coated by a microporous graphitic carbon layer.
The present invention provides an electrode, which comprises the sulfur-carbon composite of the present invention.
The present invention further provides a lithium-sulfur battery, which comprises the sulfur-carbon composite of the present invention.
The present invention also provides a process for preparing the above sulfur-carbon composite, and the process will be discussed in the following description in more details.
In the context of the present specification, abbreviations for the used materials will be adopted, for example, CNT stands for carbon nanotubes, GN stands for graphene nanosheets, MPCS stands for microporous carbon spheres and HGCS stands for highly graphitic carbon spheres.
The symbol “@” denotes that the substance used before the symbol is stacked or coated by the substance used after the symbol. Accordingly, the expression “CNT@HGC” , indicates that the carbon nanotubes are stacked or coated by the highly graphitic carbon, and furthermore, the abbreviation “CNT@HGC-S” or “S/ (CNT@HGC) ” indicates that CNT@HGC is loaded with sulfur. Similarly, the expression “GN@HGC” , indicates that the graphene nanosheets are stacked or coated by the highly graphitic carbon, and moreover, the abbreviation “GN@HGC-S” or “S/ (GN@HGC) ” indicates that GN@HGC is further loaded with sulfur.
Further, in certain steps of the inventive process for preparing the sulfur-carbon composite, a “CNT@MO” (M stands for the transition metal and MO stands for transition metal oxide) may be formed first since the CNT is mixed with an aqueous  solution of transition metal-containing salt and kept at 60-120℃ until the CNT is stacked or coated by the transition metal oxide. Then, the formed “CNT@MO” is mixed with carbon source to carry out a hydrothermal reaction, and accordingly a “CNT@MO@HGC” will be prepared by pyrolysis. MO in the “CNT@MO@HGC” can be easily removed by an acid solution so as to obtain CNT@HGC.
According to the present invention, these highly graphitic carbon materials exhibit three-dimensional porous framework of macropores together with mesopores and micropores, not only providing host for sulfur but also rendering easy access for facile Li+ migration. On one hand, the nanostructure and highly electrical conductivity of the sp2 carbon create short diffusion path for fast lithium ion diffusion, thus facilitate highly capacity and rate performance. On the other hand, the ample pores serve as reservoirs for the sulfur storage, to confine polysulfide anions dissolution, which is beneficial for cycling stability.
These unique characteristics permit that HGCs could act as promising hosts for confining sulfur for highly performance Li-S batteries showing highly specific capacity, low resistance, excellent rate performance, and favorable cyclic stability.
Brief Description of Drawings
Figure 1 is a Transmission Electron Microscopy (TEM) image of CNT@FexOy@C (C stands for carbon source) (before pyrolysis) (a) ; CNT@FexOy@HGC (after pyrolysis, but before acid etching of FexOy nanoparticles) (b) ; CNT@HGC (after acid etching of FexOy nanoparticles) (c) ; and Scanning Electron Microscopy (SEM) image of S/ (CNT@HGC) (d) obtained in Example 1 of the present invention. Hereinafter, “FexOy” stands for any possible iron oxide existed in the inventive process.
Figure 2 shows the Raman spectra of CNT@HGC with transition metal containing salt and CNT@C without transition metal containing salt, respectively obtained in Example 1 and Comparative Example 1 of the present invention.
Figure 3 shows the first three discharge/charge curves at C/10 of S/ (CNT@HGC) (sulfur content 65wt%) (a) and S/ (CNT@C) (b) ; cycling comparison of S/ (CNT@HGC) and S/ (CNT@C) cycled at C/10 for 200 cycles (c) ; and the rate performance of S/ (CNT@HGC) cathode and S/ (CNT@C) cathode at rate of 0.1C, 0.2C, 0.4C, 1C, 2C and 5C obtained in Example 1 and Comparative Example 1 of the present invention.
Figure 4 is a Transmission Electron Microscopy (TEM) image of GN@FexOy@C (before pyrolysis) (a) ; GN@FexOy@HGC (after pyrolysis, but before acid etching of FexOy nanoparticles) (b) ; GN@HGC (after acid etching of FexOy nanoparticles) (c) ; and S/ (GN@HGC) (d) obtained in Example 2 of the present invention.
Figure 5 shows the Raman spectra of GN@HGC with transition metal containing salt, and GN@C without transition metal containing salt, respectively obtained in Example 2 and Comparative Example 2 of the present invention.
Figure 6 shows the first three discharge/charge curves at C/10 of S/ (GN@HGC) (sulfur content 65wt%) (a) and S/ (GN@C) (b) ; cycling comparison of S/ (GN@HGC) and S/ (GN@C) cycled at C/10 for 200 cycles (c) ; and the rate performance of S/ (GN@HGC) cathode and S/ (GN@C) cathode at rate of 0.1C, 0.2C, 0.5C, 1C, 2C and 5C obtained in Example 2 and Comparative Example 2 of the present invention.
Figure 7 shows the TEM images of MPCS precursors (a) ; MPCS@FexOy composite (before pyrolysis) (b) ; HGCS obtained from MPCS (c) , and HGCS-S (d) obtained in Example 3 of the present invention.
Figure 8 shows the Raman spectra of HGCS obtained from MPCS, and MPCS respectively obtained in Example 3 and Comparative Example 3 of the present invention.
Figure 9 shows the first three discharge/charge curves at C/10 of HGCS-S (sulfur content 65wt%) (a) and MPCS-S (b) ; cycling comparison of HGCS-S and MPCS-S cycled at C/10 for 200 cycles (c) ; and the rate performance of HGCS-S cathode and MPCS-S cathode at rate of 0.1C, 0.2C, 0.5C, 1C, and 2C obtained in Example 3 and Comparative Example 3 of the present invention.
Detailed Description
The present invention relates to novel sulfur-carbon cathode composite, as well as their structural design, and corresponding preparation method. The present invention also provides lithium-sulfur batteries assembled from said cathode composite. The battery testing system and the electrolytes employed are also described.
In an embodiment of the present invention, a sulfur-carbon composite comprising a highly graphitic carbon material and sulfur is provided, wherein the highly graphitic carbon material is a graphitic microporous carbon substrate, the graphitization degree of the highly graphitic carbon material is characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0, and wherein sulfur is encapsulated into the porous structure of the highly graphitic carbon material.
In a further embodiment of the present invention, the graphitic microporous carbon substrate prior to graphitization can be selected from the group consisting of carbon spheres, carbon nanosheets, carbon fibers, carbon nanotubes, carbon molecular sieve, and zeolite-templated carbon, and combinations, composites, derivatives and doped  system thereof.
In another embodiment of the present invention, a sulfur-carbon composite comprising a highly graphitic carbon material and sulfur is provided, wherein the highly graphitic carbon material is a core-shell material with a conductive core coated by a graphitic microporous carbon layer, the graphitization degree of the highly graphitic carbon material is characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0, and wherein sulfur is encapsulated into the porous structure of the highly graphitic carbon material.
In a further embodiment of the present invention, the conductive core can be selected from the group consisting of carbon-based material, non-carbon material, and a combination or composite of carbon-based material and non-carbon material.
With respect to the carbon-based material, any commonly used carbon-based material in the art can be applied in the present invention and the non-limiting examples include one or more selected from the group consisting of amorphous carbon, graphitized carbon, hard carbon, soft carbon, activated carbon, carbon aerogels, carbon nanotubes, expanded graphite, graphene oxide nanosheets, graphene nanosheets, carbide-derived carbon and zeolite-templated carbon, carbon molecular sieve and combinations, composites, derivatives and doped system thereof. Preferably, the carbon-based material is carbon nanotubes or graphene nanosheets. The “doped system” in the context of the present invention means that the system can be doped with any suitable heteroatoms or combinations of them, such as N, P, B and so on.
With respect to the non-carbon material, any commonly used non-carbon material in the art can be applied in the present invention and the non-limiting examples include one or more selected from the group consisting of conductive polymers, semi-conductive ceramic, metal-organic frameworks (MOFs) , non-carbon molecular sieves and combinations, composites, derivatives thereof.
In a still further embodiment of the present invention, the highly graphitic carbon material has a porous structure with pore diameter being 0.4 nm-100 nm, preferably 0.4-50 nm.
In another embodiment of the present invention, the highly graphitic carbon material has a BET specific surface area ranging from 100-4500 m2/g, preferably from 500-1500 m2/g.
In another embodiment of the present invention, the highly graphitic carbon material has a pore volume of 0.1-3.0 cm3/g, preferably 0.3-1.5 cm3/g.
In another embodiment of the present invention, the sulfur-carbon composite has sulfur content of 20-90 wt%, preferably 50-85 wt%based on the total weight of the  sulfur-carbon composite.
In a specific embodiment of the sulfur-carbon composite according to the present invention, the highly graphitic carbon material is carbon nanotube coated by a graphitic microporous carbon layer. As shown in Figure 1a, FexOy nanoparticles (briefed as FexOy NPs) (NP stands for nanoparticles) grow on the surface of carbon and the thickness of the coating layer outside the CNT before pyrolysis is about 20 nm. In Figure 1b, after pyrolysis at 800℃, lots of graphitic domains can be clearly observed. Through the acid etching treatment, the FexOy NPs got completely removed to yield CNT@HGC as shown in Figure 1c. After sulfur loading process, no bulk sulfur particles can be observed in the CNT@HGC-S composite, implying the good dispersion of sulfur within the highly graphitic carbon layer, as shown in Figure 1d.
The Raman spectra of CNT@HGC substrate in Figure 2 exhibits a greatly sharpened G band compared to CNT@C (the carbon layer outside the CNT is not graphitized) , confirming the enhanced graphitization degree. The mean IG/ID ratios of CNT@HGC (1.04) were larger than that of CNT@C (0.63) , demonstrating the increased graphitic degree of CNT@HGC.
In another embodiment of the sulfur-carbon composite according to the present invention, the highly graphitic carbon material is graphene nanosheet coated by a graphitic carbon layer. As shown in Figure 4a, the thickness of the amorphous carbon layer outside the graphene nanosheet is about 20 nm. Through acid etch treatment, GN@HGC was yield as shown in Figure 4b. The highly-resolution TEM image as shown in Figure 4c gives an evident observation of the activated graphitic domains. After sulfur-loading process, no bulk sulfur particle can be observed from the GN@HGC-S composite as shown in Figure 4d, implying the good dispersion of sulfur within the highly graphitic carbon layer. For comparison, GN@C substrate is prepared without FexOy NPs, which possesses a low degree of graphitization.
In Figure 5, for GN@HGC, a clear Raman band at 1343 and 1574 cm-1 corresponds to D and G bands of carbon respectively. Whereas, GN@C substrate only exhibits the conventional D band and G band at 1339 and 1596 cm-1 respectively. The obviously sharpened G band shows an increase of the ordered graphitic domains in GN@HGC. Meanwhile, the mean IG/ID ratios of GN@HGC (1.23) were larger than that of GN@C (0.82) , reaffirming the increased graphitic degree of GN@HGC.
In a further embodiment of the sulfur-carbon composite according to the present invention, the highly graphitic carbon material is graphitic microporous carbon spheres. As shown in TEM of Figure 7a, the spherical structure of MPCS has a particle size of about 200 nm. Upon pyrolysis with ferric sulphates, HGCS (highly graphitic carbon spheres) is obtained with FexOy NPs embedded inside, as shown in Figure 7b. And then, these FexOy NPs can be completely removed through acid etching process. After sulfur-loading process, no bulk sulfur particles can be observed  from the S/HGCS composite, as shown in Figure 7c, implying the good dispersion of sulfur within the highly graphitic carbon substrate. For comparison, MPCS substrate without FexOy NPs is prepared, possessing a low degree of graphitization.
Raman spectra in Figure 8 exhibits the significantly decreased IG/ID (0.74) for MPCS substrate compared to HGCS (1.28) , exhibiting the distinct improvement of the graphitization degree of HGCS.
The present invention further relates to an electrode, which comprises the sulfur-carbon composite according to the present invention.
The present invention further relates to a lithium-sulfur battery, which comprises the sulfur-carbon composite according to the present invention.
In one embodiment of the present invention, a process for preparing the above sulfur-carbon composite is provided, wherein the highly graphitic carbon material is a conductive core coated by a graphitic microporous carbon layer, said process comprises the steps of: mixing an aqueous solution of the conductive core with an aqueous solution of transition metal-containing salt, keeping at 60-120℃ for 2-12 h to obtain the conductive core coated by transition metal oxide layer; then carrying out a hydrothermal reaction (for example, in an sealed autoclave at 150-200℃ for 5h-20h) by adding carbon source to the above resulting material, followed by centrifuging, washing and drying; pyrolyzing the above obtained material at a temperature of 500-900℃ for 1-12 h; removing the transition metal oxide by an acid solution; and loading of sulfur.
Alternatively, the above process may be carried out by the following steps of: mixing an aqueous solution of the conductive core with an aqueous solution of transition metal-containing salt and carbon source at the same time; then carrying out a hydrothermal reaction (for example, in an sealed autoclave at 150-200℃ for 5h-20h) , followed by centrifuging, washing and drying; pyrolyzing the above obtained material at a temperature of 500-900℃ for 1-12 h; removing the transition metal oxide by an acid solution; and loading of sulfur.
In the context of the present invention, “a hydrothermal reaction” intends to mean that during the reaction in aqueous solutions occurred at high vapor pressures and high temperature, a carbonaceous layer is formed on a MO coated substrate materials, or during the reaction, both a MO layer and a carbonaceous layer are formed simultaneously on the core materials.
In another embodiment of the present invention, a process for preparing the above sulfur-carbon composite is provided, wherein the highly graphitic carbon material is a graphitic microporous carbon substrate, said process comprises the steps of: dispersing a microporous carbon substrate in an aqueous solution of transition  metal-containing salt, stirring and heating at 60-120℃ for 2-12 h; pyrolyzing the obtained material at a temperature of 500-900℃ for 1-12 h to carbonize and graphitize the microporous carbon substrate; removing the transition metal oxide by an acid solution, and loading of sulfur.
In a further embodiment of the present invention, said carbon source is one or more selected from the group consisting of sucrose, D-glucose, fructose, polyaniline, polyacetylene, polythiophene, dopamine and sodium alginate.
In a further embodiment of the present invention, the transition metal-containing salt is selected from the group consisting of chloride, sulfate, nitrate, acetate, carbonate and phosphate of Fe, Co and Ni.
In a specific embodiment of the present invention, the carbon source is for example sucrose, the transition metal-containing salt is Fe-containing salt, and the molar ratio of Fe-containing salt to sucrose is preferably ranging from 0.2 to 2.5.
In a further specific embodiment of the present invention, the microporous carbon substrate is microporous carbon spheres, the transition metal-containing salt is FeSO4, and the weight ratio of FeSO4 to microporous carbon spheres is preferably ranging from 0.2 to 10.
In another embodiment of the present invention, the step of loading of sulfur comprises dissolving elemental sulfur, which is nonpolar, in one nonpolar solvent for example, dimethyl sulfoxide (DMSO) or dimethylformamide (DMF) with intense ultrasonication. The ratios of sulfur in the mixture can be adjusted from 50%to 80%. Then, the HGC substrate was dispersed in the sulfur/DMSO (for example) solution by ultrasonication. With the addition of another polar solvent (deionized water or ethonal for example) , sulfur particles precipitated from the solution and deposited on the well-dispersed HGC substrate that provides abundant adhesion points for sulfur deposition. After dried at 80℃ overnight, the final product HGC-S was obtained.
The highly graphitic carbon substrate according to the present invention has favorable electric conductivity, thus is very promising in use as the substrate material for sulfur to form the sulfur-carbon composite for Li-S battery. Moreover, the preparation process is simple to implement, and all raw materials are low in price, all these merits make the composite very promising for Li-S batteries.
Potential applications of the composite according to the present invention include highly-energy-density lithium ion batteries with acceptable highly power density for energy storage applications, such as power tools, photovoltaic cells and electric vehicles.
Examples
The following non-limiting examples illustrate various features and characteristics of the present invention, which is not to be construed as limited thereto:
Example 1
1) Preparation of CNT@HGC
Method 1: Firstly, commercial CNT was pretreated with nitric acid to grow more oxygen-containing functional groups. 200 mL of CNT (0.50 mg/mL) was ultrasonicated for 50 min to form a homogeneous suspension. FexOy nanoparticles (FexOy NPs) were grown via the in situ hydrolysis of Fe-containing salts on the pretreated CNTs. Typically, for the synthesis of CNTs@FexOy, 48 mg of FeCl3 and 760 mg of FeCl2 were first dissolved in 100 mL of H2O and then added to 160 mL of CNT suspension (0.50 mg/mL) and kept at 90℃ for 4h. Then 80 mg of as-prepared CNT@FexOy composite and 2 g of sucrose were added into 40 mL of water, and sonicated for 1 h, to form a homogenous black suspension. The suspension was then sealed in a 70 mL Parr autoclave with a quartz linear and was heated at 180℃ for 15 h to yield a dark brown precursor. After the hydrothermal reaction, a uniform carbon precursor layer was formed on the CNT@FexOy composite. The precursor was collected by centrifugation, washed with de-ionized water for four times, and then dried at 60℃ overnight. The dried precursor was calcined under argon at 800℃ for 3 h, with a heating rate of 3℃/min and a flow rate of 50 mL min-1. To remove the FexOy NPs, the composite was stirred in HCl solution at room temperature for 48 h to obtain the CNT@HGC.
Method 2: Firstly, commercial CNT was pretreated with nitric acid to grow more oxygen-containing functional groups. Then 100 mg of as-prepared CNTs, 1 g of sucrose, and 500 mg of ferric nitrate were added into 40 mL of water, and sonicated for 1 h, to form a homogenous black suspension. The suspension was then sealed in a 70mL Parr autoclave with a quartz linear and was heated at 180℃ for 15 h to yield a dark brown precursor. After the hydrothermal reaction, a uniform carbon precursor layer was formed on the CNT with FexOy nanoparticles embedded inside. The precursor was collected by centrifugation, washed with de-ionized water for four times, and then dried at 60℃ overnight. The dried precursor was calcined under argon at 800℃ for 3 h, with a heating rate of 3℃/min and a flow rate of 50 mL min-1. To remove the FexOy NPs, the composite was stirred in HCl solution at room temperature for 48 h to obtain the CNT@HGC.
2) Preparation of CNT@HGC-S
Elemental sulfur, which is nonpolar, was dissolved in nonpolar DMSO solvent with intensive ultrasonication. The ratio of sulfur in the mixture was 80%. Then, the above obtained CNT@HGC in Method 1 was dispersed in the sulfur/DMSO solution by ultrasonication. With the addition of the other polar deionized water solvent, sulfur particles precipitated from the solution and deposited on the well-dispersed  CNT@HGC that provides abundant adhesion points for sulfur deposition. After dried at 80℃ overnight, the final product CNT@HGC-S was obtained.
Electrochemical test
Electrochemical measurements were performed with coin cells assembled in an argon-filled glovebox. For preparing working electrodes, a mixture of active material, carbon black, and poly- (vinyl difluoride) (PVDF) at a weight ratio of 80: 10: 10 was pasted on a Al foil. Lithium foil was used as the counter electrode. A glass fiber (GF/D) from Whatman was used as a separator. The electrolyte consisted of a solution of 1 M LiTFSI salt in a mixture of DOL and DME (1: 1, v/v) (1: 1 in wt %) (Zhangjiagang Guotai Huarong New Chemical Materials Co., Ltd. ) . Galvanostatic cycling of the assembled cells was carried out using a battery testing system in the voltage range of 1-3 V (vs Li+/Li) .
Comparative Example 1
The steps in Example 1 were repeated in Comparative Example 1 except that no transition metal-containing salt was added and the carbon source added was not graphitized.
In Figure 3, the obtained CNT@HGC-S cathode composite exhibits discharge capacity of 1260 mAh/g at C/10, and retains at 892 mAh/g after 200 cycles. Moreover, it shows an excellent rate performance. When increasing the current rates to 1C and 5C, the CNT@HGC-S cathode composite still achieves capacities of 926 mAh/g and 696 mAh/g. The specific capacity is calculated based on the mass of S.
Example 2
1) Preparation of GN@HGC
Method 1: Firstly, GO (graphene oxide) was pretreated through Hummer’s method. Then 200 mL of GO solution (0.50 mg/mL) was ultrasonicated for 50 min to form a homogeneous suspension. FexOy nanoparticles (FexOy NPs) was grown via the in situ hydrolysis of Fe-containing salts on the pretreated GO. Typically, for the synthesis of GO@FexOy, 48 mg of FeCl3 and 760 mg of FeCl2 were first dissolved in 100 mL of H2O and then added to 160 mL of GO suspension (0.50 mg/mL) and kept at 90℃ for 4h. Then 80 mg of as-prepared GO@FexOy composite and 2 g of sucrose were added into 40 mL of water, and sonicated for 1 h, to form a homogenous black suspension. The suspension was then sealed in a 70 mL Parr autoclave with a quartz linear and was heated at 180℃ for 15 h to yield a dark brown precursor. After the hydrothermal reaction, a uniform carbon precursor layer was formed on the GO@FexOy composite. The precursor was collected by centrifugation, washed with de-ionized water for four times, and then dried at 60℃ overnight. The dried precursor was calcined under argon at 800℃ for 3 h, with a heating rate of 3℃/min and a flow rate of 50 mL min-1. To remove the FexOy NPs, the composite was stirred in HCl solution at room temperature for 48 h to obtain the GO@HGC.
Method 2: Firstly, GO (graphene oxide) was pretreated through Hummer’s method. Then 100 mg of as-prepared GO, 1 g of sucrose, and 500 mg of ferric nitrate were added into 40 mL of water, and sonicated for 1 h, to form a homogenous black suspension. The suspension was then sealed in a 70mL Parr autoclave with a quartz linear and was heated at 180℃ for 15 h to yield a dark brown precursor. After the hydrothermal reaction, a uniform carbon precursor layer was formed on the CNTs with FexOy nanoparticles embedded inside. The precursor was collected by centrifugation, washed with de-ionized water for four times, and then dried at 60℃ overnight. The dried precursor was calcined under argon at 800℃ for 3 h, with a heating rate of 3℃/min and a flow rate of 50 mL min-1. To remove the FexOy NPs, the composite was stirred in HCl solution at room temperature for 48 h to obtain the GO@HGC.
2) Preparation of GN@HGC-S
The sulfur loading process into GN@HGC obtained in Method 2 was the same as in the above Example 1.
Electrochemical test
The electrochemical measurements were carried out in the same way as in the above Example 1.
Comparative Example 2
The steps in Example 2 were repeated in Comparative Example 2 except that no transition metal-containing salt was added and the carbon source added was not graphitized.
In Figure 6, the obtained GN@HGC-S cathode composite exhibits discharge capacity of 1375 mAh/g at C/10, and retains at 943 mAh/g after 200 cycles. Moreover, the GN@HGC-S cathode composite shows an excellent rate performance compared to GN@C-S in Comparative Example 2. When increasing the current rates to 1C and 5C, the GN@HGC-S cathode composite still achieves capacities of 900 mAh/g and 765 mAh/g in the initial cycle. However, for the GN@C-S cathode composite, the capacity decreased drastically with less than 300 mAh/g at 2C, implying its slow kinetics property.
Example 3
1) Preparation of HGCS:
A hydrothermal method was employed to prepare HGCS precursor, in which 4.5 g of D-glucose was dissolved in 30 mL of water, the solution was then sealed in an autoclave and reacted at 180℃ for 4 h to yield the MPCS. The products were centrifuged and washed with water and ethanol for several times before being further dried at 50℃ in an oven. 50 mg of as-obtained MPCS was dispersed in 20 mL of aqueous solution of ferric sulfate (FeSO4) of 100 mg. The suspension then experienced a vigorous stirring of 2 h, and then heated to 90℃ for 1 h to gradually  vaporize solvent. The obtained mixture was further dried at 50℃ in an oven and then annealed at 800℃ in an inert gas (such as nitrogen, argon, etc. ) for 2 h to 4 h with a heating rate of 5℃/min to carbonize and graphitize the MPCS. To ensure a complete removal of FexOy NPs, the resulting sample after carbonization was washed continuously with HCl solution and de-ionized water until the pH of the filtrate becomes 7.
2) Preparation of HGCS-S
The sulfur loading process into HGCS was the same as in the above Example 1.
Electrochemical test
The electrochemical measurements were carried out in the same way as in the above Example 1.
Comparative Example 3
The steps in Example 3 were repeated in Comparative Example 3 except that no transition metal-containing salt was added and MPCS was not graphitized.
In Figure 9, the obtained HGCS-S cathode composite exhibits discharge capacity of 1325 mAh/g at C/10, and retains at 861 mAh/g after 200 cycles. Moreover, the HGCS-S cathode composite shows an excellent rate performance. When increasing the current rates to 1C and 2C, the HGCS-S cathode composite still achieves capacities of 845 mAh/g and 770 mAh/g in the initial cycle.
In addition, the ratio of IG/ID in Raman spectrum of the above Examples 1-3 and Comparative Examples 1-3 was summarized in the following Table 1.
Table 1
Figure PCTCN2015094586-appb-000001

Claims (14)

  1. A sulfur-carbon composite, comprising a highly graphitic carbon material and sulfur, wherein the highly graphitic carbon material has a high graphitization degree characterized by a ratio of the intensity of G band to the intensity of D band in Raman spectrum being more than 1.0, said material is either a graphitic microporous carbon substrate, or a core-shell material with a conductive core coated by a graphitic microporous carbon layer, and wherein sulfur is encapsulated into the porous structure of the highly graphitic carbon material.
  2. A sulfur-carbon composite according to claim 1, wherein the conductive core for the core-shell material is selected from the group consisting of carbon-based material, non-carbon material, and a combination or composite of carbon-based material and non-carbon material.
  3. A sulfur-carbon composite according to claim 2, wherein the carbon-based material is selected from the group consisting of amorphous carbon, graphitized carbon, hard carbon, soft carbon, activated carbon, carbon aerogels, carbon nanotubes, expanded graphite, graphene oxide nanosheets, graphene nanosheets, carbide-derived carbon and zeolite-templated carbon, carbon molecular sieve and combinations, composites, derivatives and doped system thereof, preferably carbon nanotubes and graphene nanosheets.
  4. A sulfur-carbon composite according to claim 2, wherein the non-carbon material is selected from the group consisting of conductive polymers, semi-conductive ceramic, metal-organic frameworks (MOFs) , non-carbon molecular sieves and combinations, composites, derivatives thereof.
  5. A sulfur-carbon composite according to claim 1, wherein the microporous carbon substrate prior to graphitization is selected from the group consisting of carbon spheres, carbon nanosheets, carbon fibers, carbon nanotubes, carbon molecular sieve, and zeolite-templated carbon, and combinations, composites, derivatives and doped system thereof.
  6. A sulfur-carbon composite according to any one of claims 1 to 5, wherein the highly graphitic carbon material has a porous structure with pore diameter being 0.4 nm to 100 nm, preferably 0.4 nm to 50 nm.
  7. A sulfur-carbon composite according to any one of claims 1 to 6, wherein the sulfur-carbon composite has sulfur content of 20 to 90 wt%, preferably 50 to 85 wt% based on the total weight of the sulfur-carbon composite.
  8. An electrode, comprising the sulfur-carbon composite of any one of claims 1 to 7.
  9. A lithium-sulfur battery, comprising the sulfur-carbon composite of any one of claims 1 to 7.
  10. A process for preparing the sulfur-carbon composite of any one of claims 1 to 7, wherein the highly graphitic carbon material is the core-shell material, comprising:
    mixing an aqueous suspension of the conductive core with an aqueous solution of transition metal-containing salt, keeping at 60-120℃ for 2-12 h, carrying out a hydrothermal reaction by adding carbon source to the obtained product, followed by centrifuging, washing and drying; or alternatively, mixing an aqueous suspension of the conductive core with an aqueous solution of transition metal-containing salt and carbon source at the same time, then carrying out a hydrothermal reaction, followed by centrifuging, washing and drying,
    pyrolyzing the obtained material at a temperature of 500-900℃ for 1-12 h;
    removing the transition metal oxide by an acid solution; and
    loading of sulfur.
  11. A process for preparing the sulfur-carbon composite of any one of claims 1 to 7, wherein the highly graphitic material is a graphitic microporous carbon substrate, comprising the steps of:
    dispersing microporous carbon substrate in an aqueous solution of transition metal-containing salt, stirring and heating at 60-120℃ for 2-12 h;
    pyrolyzing the obtained material at a temperature of 500-900℃ for 1-12 h to carbonize and graphitize the microporous carbon substrate;
    removing the transition metal oxide by an acid solution; and
    loading of sulfur.
  12. The process according to claim 10, wherein said carbon source is one or more selected from the group consisting of sucrose, D-glucose, fructose, polyaniline, polyacetylene, polythiophene, dopamine and sodium alginate.
  13. The process according to any one of claims 10 to 12, wherein the transition metal-containing salt is selected from the group consisting of chloride, sulfate, nitrate, acetate, carbonate and phosphate of Fe, Co and Ni.
  14. The process according to any one of claims 10 to 13, wherein the sulfur loading comprises mixing homogeneously the carbon material obtained after removing the transition metal oxide with a solution of sulfur dissolved in a non-polar solvent by ultrasonication, and then adding a polar solvent to precipitate sulfur particles from the solution and deposite into the carbon material, followed by drying.
PCT/CN2015/094586 2015-11-13 2015-11-13 Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same WO2017079976A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018524341A JP6726279B2 (en) 2015-11-13 2015-11-13 Sulfur-carbon composite containing high graphitic carbon material for lithium-sulfur battery and its fabrication process
KR1020187016484A KR20180080316A (en) 2015-11-13 2015-11-13 Sulfur-carbon composite comprising a highly graphitic carbonaceous material for a lithium-sulfur battery and process for its production
US15/771,498 US10586979B2 (en) 2015-11-13 2015-11-13 Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same
CN201580084451.0A CN108352514A (en) 2015-11-13 2015-11-13 Sulphur-carbon composite of the carbon material containing high graphitization and preparation method thereof for lithium-sulfur cell
EP15908106.6A EP3377444A4 (en) 2015-11-13 2015-11-13 Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same
PCT/CN2015/094586 WO2017079976A1 (en) 2015-11-13 2015-11-13 Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/094586 WO2017079976A1 (en) 2015-11-13 2015-11-13 Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same

Publications (1)

Publication Number Publication Date
WO2017079976A1 true WO2017079976A1 (en) 2017-05-18

Family

ID=58694636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094586 WO2017079976A1 (en) 2015-11-13 2015-11-13 Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same

Country Status (6)

Country Link
US (1) US10586979B2 (en)
EP (1) EP3377444A4 (en)
JP (1) JP6726279B2 (en)
KR (1) KR20180080316A (en)
CN (1) CN108352514A (en)
WO (1) WO2017079976A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598390A (en) * 2018-03-29 2018-09-28 武汉新能源研究院有限公司 A kind of preparation method and lithium-sulfur cell of positive material for lithium-sulfur battery
CN108751169A (en) * 2018-06-08 2018-11-06 天津大学 Preparation method for in-situ synthesis of three-dimensional nano-porous graphene-coated metal oxide/hydroxide/sulfide composite material
CN109216691A (en) * 2018-11-06 2019-01-15 桑德集团有限公司 A kind of positive electrode active materials and preparation method thereof and lithium battery
EP3432388A1 (en) 2017-07-17 2019-01-23 Acondicionamiento Tarrasense Cathode for lithium sulfur batteries
CN109546107A (en) * 2018-11-07 2019-03-29 河南师范大学 A kind of preparation method of graphene/dimensional Co-Zn dinuclear metal frame construction composite material
CN109592661A (en) * 2018-11-30 2019-04-09 陕西科技大学 A kind of method of corn stigma preparation biological carbon
KR20190060262A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 A carbon -surfur complex, manufacturing method thereof and lithium secondary battery comprising the same
CN109850865A (en) * 2019-01-29 2019-06-07 河北省科学院能源研究所 A kind of preparation method and applications of the sodium alginate carbon aerogels of iron load
CN110229383A (en) * 2019-06-19 2019-09-13 安徽农业大学 Based on the magnetic aeroge of diamine oxime cellulose/sodium alginate and its preparation and application
CN110604132A (en) * 2019-09-26 2019-12-24 吉林大学 Preparation method of hollow core-satellite-shaped poly-dopamine silver-loaded antibacterial nanocapsule
WO2020058404A1 (en) 2018-09-21 2020-03-26 Technische Universität Bergakademie Freiberg Linker molecule and sulfur-rich polymers
WO2020060084A1 (en) * 2018-09-20 2020-03-26 주식회사 엘지화학 Sulfur-carbon composite, preparation method thereof, positive electrode for lithium secondary battery and lithium secondary battery comprising same
CN111740091A (en) * 2020-07-08 2020-10-02 中国科学院山西煤炭化学研究所 Carbon aerogel @ sulfur composite material for lithium-sulfur battery positive electrode and preparation method thereof
CN112204770A (en) * 2018-07-03 2021-01-08 株式会社Lg化学 Sulfur-carbon composite, method for producing same, and positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising sulfur-carbon composite

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515519B2 (en) * 2017-10-17 2022-11-29 VoltaXplore Inc Graphene-polymer porous scaffold for stable lithium-sulfur batteries
CN108821279B (en) * 2018-08-17 2020-10-13 中国人民解放军国防科技大学 Preparation method of three-dimensional porous carbon
KR102182065B1 (en) * 2018-11-23 2020-11-23 한국과학기술연구원 Sulfur doping reduced graphene oxide, preparing method thereof and polyimide nanocomposite including the same
CN109576528B (en) * 2018-12-21 2020-09-18 华北电力大学(保定) Copper-based composite material with SiC-CDCs @ TiC as reinforcing phase and preparation method thereof
KR102651786B1 (en) 2019-02-13 2024-03-26 주식회사 엘지에너지솔루션 Cathode active material for lithium secondary battery
CN109880142A (en) * 2019-03-08 2019-06-14 浙江大学 A kind of preparation method of transparent conductive metal organic framework film
CN110404567B (en) * 2019-08-27 2022-04-22 中国人民解放军国防科技大学 Photocatalytic energy conversion material and preparation method and application thereof
CN110931752B (en) * 2019-12-09 2021-05-28 华南师范大学 Nitrogen-doped porous carbon loaded metal nickel lithium-sulfur battery positive electrode material and preparation method and application thereof
JP7400532B2 (en) 2020-02-26 2023-12-19 株式会社村田製作所 Composite carbon material and its manufacturing method, negative electrode active material for lithium ion secondary batteries, and lithium ion secondary batteries
JP7400533B2 (en) 2020-02-26 2023-12-19 株式会社村田製作所 Composite carbon material and its manufacturing method, slurry for electrode production, electrode coating film, and lithium ion secondary battery
CN111575087A (en) 2020-06-04 2020-08-25 青岛理工大学 Super-lubricating water lubricating additive, super-lubricating water lubricant, preparation method and application
CN112331850A (en) * 2020-09-24 2021-02-05 厦门大学 Battery self-supporting hierarchical structure material and preparation method and application thereof
KR20220054049A (en) * 2020-10-23 2022-05-02 주식회사 엘지에너지솔루션 Core-shell structured porous carbon material, method for manufacturing the same, sulfur-carbon composite including the same, and lithium secondary battery
CN113130882B (en) * 2021-04-12 2023-02-10 肇庆市华师大光电产业研究院 Preparation method of sodium-sulfur battery positive electrode material
WO2023085197A1 (en) * 2021-11-15 2023-05-19 株式会社村田製作所 Carbon material, electrode provided with carbon material, secondary battery, and method for producing carbon material
CN114622242B (en) * 2022-02-15 2023-01-06 苏州大学 Ni/NiO nano heterojunction porous graphite carbon composite material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958402A (en) * 2011-11-29 2014-07-30 中国科学院化学研究所 Sulfur-carbon composite for lithium-sulfur battery, the method for preparing said composite, and the electrode material and lithium-sulfur battery comprising said composite
CN103959517A (en) * 2011-11-29 2014-07-30 中国科学院化学研究所 Sulfur-carbon composite for lithium-sulfur battery, the method for preparing said composite, and the electrode material and lithium-sulfur battery comprising said composite
CN104272506A (en) * 2012-02-16 2015-01-07 罗伯特·博世有限公司 Sulfur-containing composite for lithium-sulfur battery, the electrode material and lithium-sulfur battery comprising said composite
US20150246816A1 (en) * 2014-02-28 2015-09-03 GM Global Technology Operations LLC Methods for making hollow carbon materials and active materials for electrodes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748572B2 (en) * 2012-06-18 2017-08-29 Uchicago Argonne, Llc Ultrasound assisted in-situ formation of carbon/sulfur cathodes
CN105047861A (en) * 2014-12-31 2015-11-11 山东玉皇新能源科技有限公司 Sulfur-carbon composite material and preparation method thereof
CN104733695A (en) * 2015-03-27 2015-06-24 浙江大学 Carbon/sulfur composite material for lithium-sulfur battery cathode as well as preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958402A (en) * 2011-11-29 2014-07-30 中国科学院化学研究所 Sulfur-carbon composite for lithium-sulfur battery, the method for preparing said composite, and the electrode material and lithium-sulfur battery comprising said composite
CN103959517A (en) * 2011-11-29 2014-07-30 中国科学院化学研究所 Sulfur-carbon composite for lithium-sulfur battery, the method for preparing said composite, and the electrode material and lithium-sulfur battery comprising said composite
CN104272506A (en) * 2012-02-16 2015-01-07 罗伯特·博世有限公司 Sulfur-containing composite for lithium-sulfur battery, the electrode material and lithium-sulfur battery comprising said composite
US20150246816A1 (en) * 2014-02-28 2015-09-03 GM Global Technology Operations LLC Methods for making hollow carbon materials and active materials for electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3377444A4 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432388A1 (en) 2017-07-17 2019-01-23 Acondicionamiento Tarrasense Cathode for lithium sulfur batteries
US11695111B2 (en) 2017-11-24 2023-07-04 Lg Energy Solution, Ltd. Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
CN111066181B (en) * 2017-11-24 2022-07-19 株式会社Lg新能源 Sulfur-carbon composite, method for producing same, and lithium secondary battery comprising sulfur-carbon composite
KR20190060262A (en) * 2017-11-24 2019-06-03 주식회사 엘지화학 A carbon -surfur complex, manufacturing method thereof and lithium secondary battery comprising the same
WO2019103326A3 (en) * 2017-11-24 2019-07-18 주식회사 엘지화학 Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
KR102229453B1 (en) * 2017-11-24 2021-03-17 주식회사 엘지화학 A carbon -surfur complex, manufacturing method thereof and lithium secondary battery comprising the same
CN111066181A (en) * 2017-11-24 2020-04-24 株式会社Lg化学 Sulfur-carbon composite, method for producing same, and lithium secondary battery comprising sulfur-carbon composite
CN108598390A (en) * 2018-03-29 2018-09-28 武汉新能源研究院有限公司 A kind of preparation method and lithium-sulfur cell of positive material for lithium-sulfur battery
CN108751169A (en) * 2018-06-08 2018-11-06 天津大学 Preparation method for in-situ synthesis of three-dimensional nano-porous graphene-coated metal oxide/hydroxide/sulfide composite material
CN108751169B (en) * 2018-06-08 2021-12-28 天津大学 Preparation method for in-situ synthesis of three-dimensional nano-porous graphene-coated metal oxide/hydroxide/sulfide composite material
EP3783703A4 (en) * 2018-07-03 2021-07-28 Lg Chem, Ltd. Sulfur-carbon composite, method for producing same, and positive electrode for lithium-sulfur battery and lithium-sulfur battery which comprise same
CN112204770A (en) * 2018-07-03 2021-01-08 株式会社Lg化学 Sulfur-carbon composite, method for producing same, and positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising sulfur-carbon composite
WO2020060084A1 (en) * 2018-09-20 2020-03-26 주식회사 엘지화학 Sulfur-carbon composite, preparation method thereof, positive electrode for lithium secondary battery and lithium secondary battery comprising same
WO2020058404A1 (en) 2018-09-21 2020-03-26 Technische Universität Bergakademie Freiberg Linker molecule and sulfur-rich polymers
DE102018123332B4 (en) 2018-09-21 2022-01-13 Technische Universität Bergakademie Freiberg Sulfur rich polymers
CN109216691A (en) * 2018-11-06 2019-01-15 桑德集团有限公司 A kind of positive electrode active materials and preparation method thereof and lithium battery
CN109216691B (en) * 2018-11-06 2021-08-17 桑德新能源技术开发有限公司 Positive active material, preparation method thereof and lithium battery
CN109546107B (en) * 2018-11-07 2021-12-24 河南师范大学 Preparation method of graphene/two-dimensional Co-Zn dual-core metal frame structure composite material
CN109546107A (en) * 2018-11-07 2019-03-29 河南师范大学 A kind of preparation method of graphene/dimensional Co-Zn dinuclear metal frame construction composite material
CN109592661A (en) * 2018-11-30 2019-04-09 陕西科技大学 A kind of method of corn stigma preparation biological carbon
CN109850865A (en) * 2019-01-29 2019-06-07 河北省科学院能源研究所 A kind of preparation method and applications of the sodium alginate carbon aerogels of iron load
CN110229383A (en) * 2019-06-19 2019-09-13 安徽农业大学 Based on the magnetic aeroge of diamine oxime cellulose/sodium alginate and its preparation and application
CN110229383B (en) * 2019-06-19 2021-10-22 安徽农业大学 Magnetic aerogel based on bisamidoxime cellulose/sodium alginate and preparation and application thereof
CN110604132B (en) * 2019-09-26 2021-10-08 吉林大学 Preparation method of hollow core-satellite-shaped poly-dopamine silver-loaded antibacterial nanocapsule
CN110604132A (en) * 2019-09-26 2019-12-24 吉林大学 Preparation method of hollow core-satellite-shaped poly-dopamine silver-loaded antibacterial nanocapsule
CN111740091A (en) * 2020-07-08 2020-10-02 中国科学院山西煤炭化学研究所 Carbon aerogel @ sulfur composite material for lithium-sulfur battery positive electrode and preparation method thereof

Also Published As

Publication number Publication date
EP3377444A1 (en) 2018-09-26
JP6726279B2 (en) 2020-07-22
EP3377444A4 (en) 2019-04-03
JP2018535915A (en) 2018-12-06
US10586979B2 (en) 2020-03-10
KR20180080316A (en) 2018-07-11
CN108352514A (en) 2018-07-31
US20180351166A1 (en) 2018-12-06

Similar Documents

Publication Publication Date Title
US10586979B2 (en) Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same
Wang et al. Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries
Xie et al. Sn@ CNT nanopillars grown perpendicularly on carbon paper: a novel free-standing anode for sodium ion batteries
Xu et al. Binder-free Ti3C2Tx MXene electrode film for supercapacitor produced by electrophoretic deposition method
Wang et al. Core shell MoS2/C nanospheres embedded in foam-like carbon sheets composite with an interconnected macroporous structure as stable and high-capacity anodes for sodium ion batteries
Bhattacharya et al. Carambola-shaped SnO2 wrapped in carbon nanotube network for high volumetric capacity and improved rate and cycle stability of lithium ion battery
Qin et al. A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for Lithium ion batteries
Li et al. Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance
Yin et al. Self-assembly of disordered hard carbon/graphene hybrid for sodium-ion batteries
Wang et al. Onion-like carbon matrix supported Co 3 O 4 nanocomposites: a highly reversible anode material for lithium ion batteries with excellent cycling stability
Jiang et al. A carbon coated NASICON structure material embedded in porous carbon enabling superior sodium storage performance: NaTi 2 (PO 4) 3 as an example
Yu et al. Nodes-connected silicon-carbon nanofibrous hybrids anodes for lithium-ion batteries
Ding et al. Octagonal prism shaped lithium iron phosphate composite particles as positive electrode materials for rechargeable lithium-ion battery
Jiang et al. Enhanced performance of LiFePO4 originating from the synergistic effect of graphene modification and carbon coating
Zhang et al. A novel MoS2@ C framework architecture composites with three-dimensional cross-linked porous carbon supporting MoS2 nanosheets for sodium storage
Yang et al. Excellent cycling stability and superior rate capability of a graphene–amorphous FePO 4 porous nanowire hybrid as a cathode material for sodium ion batteries
Zhai et al. Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium-ion batteries
Wu et al. Porous hollow carbon nanospheres embedded with well-dispersed cobalt monoxide nanocrystals as effective polysulfide reservoirs for high-rate and long-cycle lithium–sulfur batteries
Tu et al. Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries
Liu et al. 1d mesoporous NaTi2 (PO4) 3/carbon nanofiber: the promising anode material for sodium-ion batteries
Yang et al. High-performance lithium− sulfur batteries fabricated from a three-dimensional porous reduced graphene oxide/La2O3 microboards/sulfur aerogel
Wang et al. Carbon encapsulated maricite NaFePO4 nanoparticles as cathode material for sodium-ion batteries
Fu et al. Engineering MnO/C microsphere for enhanced lithium storage
Li et al. Carbon coated porous tin peroxide/carbon composite electrode for lithium-ion batteries with excellent electrochemical properties
Zhang et al. Facile synthesis and electrochemical properties of MoO2/reduced graphene oxide hybrid for efficient anode of lithium-ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15908106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018524341

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187016484

Country of ref document: KR

Kind code of ref document: A