WO2017057237A1 - 熱電変換材料及びその製造方法 - Google Patents

熱電変換材料及びその製造方法 Download PDF

Info

Publication number
WO2017057237A1
WO2017057237A1 PCT/JP2016/078191 JP2016078191W WO2017057237A1 WO 2017057237 A1 WO2017057237 A1 WO 2017057237A1 JP 2016078191 W JP2016078191 W JP 2016078191W WO 2017057237 A1 WO2017057237 A1 WO 2017057237A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
silicon
conversion material
particles
nanodots
Prior art date
Application number
PCT/JP2016/078191
Other languages
English (en)
French (fr)
Inventor
亜紀応 菊池
章史 八尾
誠二 寒川
崇人 小野
Original Assignee
セントラル硝子株式会社
株式会社 東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社, 株式会社 東北テクノアーチ filed Critical セントラル硝子株式会社
Priority to CN201680056060.2A priority Critical patent/CN108028307B/zh
Priority to JP2017543238A priority patent/JP6470422B2/ja
Priority to EP16851408.1A priority patent/EP3343651B1/en
Publication of WO2017057237A1 publication Critical patent/WO2017057237A1/ja
Priority to US15/934,937 priority patent/US20180212131A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • C01B33/039Purification by conversion of the silicon into a compound, optional purification of the compound, and reconversion into silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a silicon-based thermoelectric conversion material used for a thermoelectric conversion element.
  • thermoelectric conversion elements can directly convert thermal energy into electrical energy, and there are no movable members compared to conventional power generation technology. For this reason, the thermoelectric conversion element has many advantages that it does not require maintenance, has a long life, does not generate noise, and can use low-temperature waste heat.
  • thermoelectric conversion material The performance of a thermoelectric conversion material is generally expressed by a dimensionless figure of merit (ZT). That is, a material having a high ZT is a material having a high Seebeck coefficient and electrical conductivity and a low thermal conductivity.
  • S Seebeck coefficient (V / K) ⁇ : Electric conductivity (S / m) ⁇ e : carrier thermal conductivity (W / m ⁇ K) ⁇ ph : lattice thermal conductivity (W / m ⁇ K)
  • T Absolute temperature (T)
  • thermoelectric conversion materials are mainly composed of rare metals such as Bi, Sb, Te, and Pb. The reserves of these resources are small and the material costs are high.
  • these thermoelectric conversion materials are easily oxidized at a high temperature range of 300 to 400 ° C., so that their lifetime as an element is short, and there is a concern about toxicity.
  • a ZT equivalent to the BiTe-based material can be obtained by a Si-based material that is low-cost and low-toxic to the BiTe-based material. Since the Si-based material has a lattice thermal conductivity that is about 100 times higher than that of BiTe, ZT is significantly lower than that of the BiTe-based material. For this reason, the Si-based material is considered difficult to use as a thermoelectric conversion material. However, in recent years, it has been discovered that a Si-based material in which phonon scattering is caused by nanostructuring of the material can reduce lattice thermal conductivity as compared with a bulk body of the Si-based material. For this reason, thermoelectric conversion elements using nanostructured Si have attracted attention.
  • thermoelectric performance can also be improved by embedding another semiconductor or metal inside the fine holes.
  • an electrochemical reaction for example, an anodic reaction
  • another semiconductor or metal is embedded by using a method of impregnating a molten semiconductor or metal.
  • Non-Patent Document 1 attempts have been made to form Si nanostructures by a top-down technique using electron beam lithography, and a structure in which Si nanowires with a diameter of several tens of nanometers and an outer peripheral portion thereof are covered with SiO 2 .
  • a method of forming a thermoelectric conversion element is disclosed.
  • Patent Document 2 discloses a method for forming quantum dots by a biotemplate technique and a neutral particle beam etching technique. As its application development, solar cells, lasers and the like are described. Si and GaAs are disclosed as quantum dots to be formed, and SiC, SiO 2 , (Si 3 N 4 ), and the like are disclosed as embedding materials.
  • the silicon substrate is made porous, and an effect of reducing the thermal conductivity can be expected, but at the same time, the Seebeck coefficient is significantly reduced due to a decrease in electron mobility. For this reason, it is necessary to control the porous diameter, the density, and the like.
  • the disclosed methods make it difficult to control them, and thus there is a limit to improvement of thermoelectric characteristics.
  • a technique for improving ZT a technique of embedding BiTe-based material in a porous (hole) is also disclosed, but a material having a melting point equivalent to that of a silicon substrate forming a pore is embedded in the pore. It is difficult. Therefore, the method of the invention described in Patent Document 1 cannot solve the problem of using rare metals.
  • Non-Patent Document 1 uses a method combining the current lithography technique (electron beam drawing) and top-down (ICP plasma etching). With this method, it is possible to control the porous diameter and density, which are problems in Patent Document 1.
  • the current lithography technology is limited to the formation of nanostructures of several tens of nanometers, it is difficult to form a structure of 20 nm or less, which is considered necessary for reducing the lattice thermal conductivity of silicon. There was a problem.
  • the value of SiC or SiN disclosed as the embedded material is different from that of Si used as the dot forming material.
  • Energy difference between electron bands or conduction bands ie, energy difference between the valence band of the dot-forming material and the embedment material, or energy difference between the conduction band of the dot-forming material and the conduction band
  • III-V semiconductors such as GaAs have problems such as high toxicity.
  • the present invention has been made to solve such problems of the prior art, and an object thereof is to obtain a thermoelectric conversion material exhibiting good thermoelectric conversion performance using a silicon-based material.
  • the inventors have made silicon-based materials into nanodots of 20 nm or less, the difference in energy between the valence band of the silicon-based material constituting the nanodot and the valence band of the embedded material, and the silicon constituting the nanodot.
  • a silicon-based material was used by embedding a material in which either or both of the energy differences between the conduction band of the system material and the conduction band of the embedded material are in the range of 0.1 eV or more and 0.3 eV or less between the dots.
  • the inventors have found that a high-performance thermoelectric conversion material can be obtained, and have completed the present invention.
  • the present invention provides the following.
  • invention 1 Columnar or spherical nanodots having a diameter of 20 nm or less are embedded in the buried layer at a surface density of 5 ⁇ 10 10 pieces / cm 2 or more, and an interval between the nanodots of 0.5 nm to 30.0 nm.
  • One or both of the difference between the energy of the electron band and the difference between the conduction band of the first material and the conduction band of the second material is in the range of 0.1 eV or more and 0.3 eV or less.
  • Thermoelectric conversion material is in the range of 0.1 eV or more and 0.3 eV or less.
  • thermoelectric conversion according to claim 1 wherein the first material is silicon, and the second material is silicon germanium having a molar ratio of silicon to germanium of 20:80 to 80:20. material.
  • thermoelectric conversion material A method for producing a thermoelectric conversion material according to the first aspect of the present invention, comprising a step of arranging nanoparticles having a diameter of 1 nm or more and 20 nm or less on a semiconductor layer, and etching the semiconductor layer using the nanoparticles as a mask to obtain a diameter of 20 nm or less.
  • a method for producing a thermoelectric conversion material comprising: forming a columnar or spherical nanodot, and forming an embedded layer so as to embed the nanodot.
  • thermoelectric conversion material according to invention 3, wherein the nanoparticles are at least one selected from the group consisting of polystyrene particles, latex particles, and self-assembled polymers.
  • thermoelectric conversion material according to invention 3, wherein the nanoparticles are at least one selected from the group consisting of silica particles and metal compound particles.
  • thermoelectric conversion material of Claim 1 It is a manufacturing method of the thermoelectric conversion material of Claim 1, Comprising: The process of arranging the protein particle which included the metal on a semiconductor layer, The process of removing protein from the said protein particle, and producing
  • thermoelectric conversion material according to invention 6, wherein the protein particles are at least one selected from the group consisting of ferritin and Listeria Dps.
  • thermoelectric conversion material according to invention 6, wherein the protein particles have a surface modified with a polyethylene glycol chain.
  • invention 9 The first material constituting the semiconductor layer is silicon, and the second material constituting the buried layer is silicon germanium having a molar ratio of silicon to germanium of 20:80 to 80:20.
  • the present invention makes it possible to solve the decrease in the Seebeck coefficient that occurs when a silicon-based material, which is a current problem, is made into a nanostructure, so that a high-performance thermoelectric conversion material can be formed using a silicon-based material. It becomes.
  • thermoelectric conversion material 5 which concerns on this invention.
  • 2 is a scanning electron microscope image of the thermoelectric conversion material according to Example 1.
  • FIG. 2 is a scanning electron microscope image of the thermoelectric conversion material according to Example 1.
  • FIG. The figure which shows the thermoelectric conversion characteristic of an Example and a comparative example.
  • thermoelectric conversion material In the thermoelectric conversion material of the present invention, as shown in FIG. 1 (a), columnar or spherical nanodots 1 having a diameter of 20 nm or less are included in the buried layer 3, and the surface density is 5 ⁇ 10 10 pieces / cm 2 or more. The interval is embedded in the range of 0.5 nm to 30.0 nm.
  • the nanodot has a diameter of 20 nm or less in the two-dimensional direction in which the embedded layer spreads. When measuring the diameter of each nanodot with an electron microscope or the like and obtaining the distribution, it is preferable that 90% or more of nanodots are included in the range of 8 ⁇ 5 nm in diameter on the basis of the number.
  • the nanodot has a thickness of several nanometers to several tens of nanometers, and may be columnar or spherical, and may be conical depending on the case.
  • the interval between nanodots is 0.5 nm or more and 30.0 nm or less, and preferably 0.5 nm or more and 7.0 nm or less.
  • the interval between nanodots means the distance between the outermost surface of a certain nanodot and the outermost surface of the next adjacent nanodot.
  • the surface density of the nanodots is determined by the diameter of the nanodots and the interval between the dots, but is 5 ⁇ 10 10 pieces / cm 2 or more, preferably 1 ⁇ 10 11 pieces / cm 2 or more, and 5 ⁇ 10 5. More preferably, it is 11 pieces / cm 2 or more and 8 ⁇ 10 11 pieces / cm 2 or less.
  • the upper limit of the surface density is approximately 90% when the coverage is calculated in the closest packing (for example, when the dot size is 13 nm, the coverage of 90% corresponds to 8.1 ⁇ 10 11 pieces / cm 2 . ).
  • the buried layer includes one nanodot periodic structure, but the buried layer may include a plurality of nanodot periodic structures stacked.
  • the surface density of the nanodots is obtained by paying attention to the nanodots arranged two-dimensionally in the buried layer, and when a plurality of arrays in which the nanodots are arranged are stacked in the buried layer, one layer thereof is obtained.
  • the surface density is obtained by paying attention to.
  • thermoelectric conversion material By having a nanodot periodic structure in the buried layer, phonon scattering occurs at the interface between the nanodot and the buried layer, and the lattice thermal conductivity of the thermoelectric conversion material can be reduced.
  • the first material constituting the nanodot is a material containing 30 atomic% or more of silicon, and the valence band of the first material and the valence band of the second material with respect to the second material constituting the buried layer. Or the difference in energy between the conduction band of the first material and the conduction band of the second material is in the range of 0.1 eV to 0.3 eV. This makes it possible to form an intermediate band between the nanodot and the buried layer, and when the carriers accumulated in the buried layer are transported through the nanodot array, the nanodot array structure becomes a potential barrier, and the low energy component of the carrier An energy filtering effect that prevents conduction occurs. This can control the spectral conductivity near the band gap and improve the Seebeck coefficient.
  • the combination of the first material and the second material is preferably a combination of silicon and silicon germanium.
  • the first material can be etched without being damaged by neutral beam etching, and the first material and the second material have an appropriate band gap difference.
  • An intermediate band can be formed in the buried layer.
  • the first material and the second material are inexpensive and easily available, and a film forming method has been established.
  • the silicon may be single crystal silicon or polycrystalline silicon, and may or may not be doped.
  • Silicon germanium is a semiconductor in which germanium is added to silicon.
  • the germanium content in silicon germanium is 20 mol% or more and 80 mol% or less, that is, the molar ratio of silicon to germanium is 20:80. ⁇ 80: 20.
  • Silicon germanium has a melting point of 1139-738x + 263x 2 (x: Si molar concentration, 0.2 ⁇ x ⁇ 0.8) K, and is known as a thermoelectric conversion material having high conversion efficiency in a high temperature environment (around 600 to 800 K). It has been.
  • the band gap of silicon is about 1.1 eV for single crystal and about 1.5 eV for polycrystal, while the band gap of silicon germanium (for example, Si 0.7 Ge 0.3 ) is 1.12 ⁇ 0.41x + 0. 0008x 2 (x: Si molar concentration, 0.2 ⁇ x ⁇ 0.8) eV, when silicon is used as a dot forming material and silicon germanium (for example, Si 0.7 Ge 0.3 ) is used as an embedding material
  • thermoelectric conversion material of the present invention uses a silicon-based material, the thermoelectric conversion material is cheaper than the conventional BiTe-based material, has no resource restrictions, and has low toxicity. Further, the thermoelectric conversion material of the present invention has a good thermoelectric performance index because a nanostructured silicon-based material is embedded with a predetermined material.
  • thermoelectric conversion material of this invention ⁇ Method for producing thermoelectric conversion material> Next, the manufacturing process of the thermoelectric conversion material of this invention is demonstrated.
  • the semiconductor layer 13 can be etched using the periodic structure of the nanoparticles 9 as a mask to obtain the periodic structure of the nanodots 1.
  • it demonstrates using drawing.
  • the nanoparticles 9 are arranged on the semiconductor layer 13. Since the semiconductor layer 13 is a member that will later become nanodots, it is preferable that the semiconductor layer 13 is made of a material containing 30 atomic% or more of silicon, particularly silicon. In order to arrange the nanoparticles 9 on the semiconductor layer 13, the dispersion liquid of the nanoparticles 9 dispersed in a liquid can be uniformly arranged by applying and drying on the semiconductor layer 13.
  • the nanoparticle 9 is not particularly limited as long as it serves as an etching mask for the semiconductor layer 13, but an organic substance such as polystyrene particles, latex particles, self-assembled polymer (DSA (Directed Self-Assembly) polymer), silica particles, Inorganic materials such as metal compound particles can be used.
  • the diameter of the nanoparticles 9 is preferably 1 nm or more and 20 nm or less, that is, when the particle size distribution of the nanoparticles 9 is evaluated, 99% is preferably in the range of 1 nm or more and 20 nm or less on the number basis. Further, the average particle diameter based on the number of nanoparticles 9 is preferably 5 nm or more and 10 nm or less.
  • the dispersion medium of the nanoparticles 9 can be appropriately selected. For example, water, a water / alcohol mixed solution, an organic solvent, or the like can be used.
  • the concentration of the dispersion liquid in which the nanoparticles 9 are dispersed varies depending on the material of the nanoparticles and the kind of the dispersion medium. For example, when polystyrene particles are used as the nanoparticles 9, the concentration ranges from 100 mg / ml to 1 g / ml. And more preferably 300 mg / ml to 500 mg / ml. Furthermore, in order to control the Debye length of the nanoparticles, it is possible to add a salt to the dispersion medium.
  • the coating method of the dispersion liquid in which the nanoparticles 9 are dispersed can be selected from general coating methods such as a spin coating method, a Langmuir-Blodgett (LB) method, and a casting method.
  • the semiconductor layer 13 is etched using the periodic structure of the nanoparticles 9 as a mask to form columnar or spherical nanodots 1.
  • the etching method is not particularly limited as long as the material constituting the semiconductor layer 13 is selectively etched with respect to the material constituting the nanoparticle 9, but the film is less damaged and has a high aspect ratio anisotropy. It is possible to select from neutral beam (NB) etching, fast atom beam etching (FAB), remote plasma etching, etc. that can be etched.
  • neutral particle etching absorbs ultraviolet light by passing charged particles generated in plasma through a carbon aperture having an opening, and further neutralizes the beam energy of neutral particles obtained by neutralization to 100 eV. Since it can be controlled as follows, the impact of plasma and ions is small, which is most preferable.
  • a plasma chamber for generating charged particles is connected to a processing chamber having a stage on which a processing target is placed.
  • a cathode electrode is provided between the processing chamber and the plasma chamber for exchanging charges of positively charged particles and converting them into neutral particles.
  • the cathode electrode is the carbon aperture described above, and supplies neutral particles to the processing chamber, but blocks the UV and VUV generated in the plasma chamber and does not pass through the processing chamber.
  • the pressure in the plasma chamber is sufficiently higher than the pressure in the processing chamber, and the pressure in the processing chamber is such that the mean free path of the gas is equal to or greater than the distance between the cathode electrode and the stage.
  • the nanoparticles 9 that have finished their role as a mask are removed.
  • the removal method of the nanoparticles 9 is not particularly limited as long as the nanoparticles 9 can be selectively etched with respect to the material constituting the semiconductor layer 13, but the nanoparticles 9 are polystyrene particles, latex particles, DSA polymers, and the like.
  • the nanoparticles 9 are polystyrene particles, latex particles, DSA polymers, and the like.
  • annealing in air or ozone, or treatment using oxygen or hydrogen plasma can be used.
  • an inorganic substance such as silica particles or metal compound particles
  • wet etching using an inorganic acid such as hydrofluoric acid, nitric acid, hydrochloric acid, or dry etching using hydrogen plasma can be used.
  • the buried layer 3 is formed so as to fill the space between the nanodot 1 and the nanodot 1.
  • the buried layer 3 is formed on the periodic structure of the nanodot 1 by a technique such as CVD (chemical vapor deposition), PVD (physical vapor deposition), or MBE (molecular beam epitaxy).
  • the buried layer 3 is formed so as to fill the gap between the nanodots 1.
  • the buried layer 3 does not necessarily need to be formed beyond the thickness of the periodic structure of the nanodot 1, but may be thicker than the periodic structure of the nanodot 1.
  • the semiconductor layer 13 is protected when the semiconductor layer 13 is etched and a film defect or the like is not generated, the semiconductor layer 13 is compared with an etching target film such as silicon dioxide, silicon nitride, or metal oxide on the semiconductor layer 13.
  • an etching target film such as silicon dioxide, silicon nitride, or metal oxide on the semiconductor layer 13.
  • a film that is difficult to etch may be formed as a protective layer.
  • the periodic structure of the nanodot 1 can be formed at a density of 5 ⁇ 10 10 / cm 2 or more, and a material having a melting point equivalent to the material constituting the nanodot 1 in the gap of the periodic structure Can be embedded.
  • thermoelectric conversion material As a method of periodically arranging nanoparticles, a method of obtaining metal compound particles by removing proteins after arranging protein particles containing metal can also be used. The method will be specifically described below.
  • protein particles 11 containing metal are arranged on a semiconductor layer 13. Since the size of the nanodot is determined by the size of the metal compound particle 15 generated from the metal included in the protein particle 11, the protein particle 11 including metal is used so that the metal compound particle 15 having a diameter of 20 nm or less can be obtained.
  • ferritin which is a spherical protein having iron oxide particles having a diameter of 7 nm inside a protein outer shell having an outer diameter of 13 nm, and Listeria Dps having iron oxide particles having a diameter of 5 nm inside an outer protein shell having an outer diameter of 9 nm. Etc. can also be used.
  • the surface of the protein particle 11 may be modified with a polyethylene glycol chain in order to prevent particle aggregation and control the particle interval to facilitate the arrangement.
  • the concentration of the dispersion liquid in which the protein particles 11 are dispersed varies depending on the material of the protein particles 11 and the dispersion medium.
  • the ferritin concentration is preferably in the range of 1 mg / ml to 500 mg / ml, and more preferably 1 mg / ml to 50 mg / ml. More preferred.
  • the dispersion medium of the protein particle 11 can be selected suitably, for example, water, a water / alcohol mixed solution, an organic solvent, or the like can be used.
  • a salt can be added to the dispersion medium in order to control the Debye length of the nanoparticles.
  • regulation in the salt to be used it is preferable that it is a salt which does not contain the element (an alkali metal, alkaline-earth metal) which causes a malfunction as a semiconductor doping material.
  • the protein is removed from the protein particles 11 to expose the metal compound particles.
  • the protein removal method include heating in an oxygen or hydrogen atmosphere.
  • metal compound particles 15 derived from the protein particles 11 are generated.
  • the metal compound particles 15 are formed as they are where the protein particles 11 exist.
  • the diameter of the metal compound particles is preferably 1 nm or more and 20 nm or less, that is, when the particle size distribution of the metal compound particles is evaluated, 99% is preferably in the range of 1 nm or more and 20 nm or less based on the number. Further, the average particle diameter based on the number of metal compound particles is preferably 5 nm or more and 10 nm or less.
  • the semiconductor layer 13 is etched using the periodic metal compound particles 15 as a mask to form columnar or spherical nanodots 1 having a periodic structure and a diameter of 20 nm or less.
  • the metal compound particles 15 that have finished their role as a mask are removed.
  • the method for removing the metal compound particles 15 is not particularly limited. For example, wet etching using dilute hydrochloric acid aqueous solution can be used.
  • the buried layer 3 is formed so as to fill the space between the nanodots 1 and 1.
  • Example 1 A 10 nm-thick amorphous Si was deposited on an Si substrate with an oxide film by an electron beam evaporation method. Next, poly Si was obtained by annealing in a nitrogen atmosphere.
  • B Poly-Si was oxidized by a neutral particle beam apparatus, and a surface oxide film (SiO 2 ) having a thickness of 3.8 nm was deposited thereon.
  • the periodic structure composed of these iron oxide cores serves as an etching mask for the next step.
  • E Using the iron oxide core as a mask, the surface side SiO 2 was first etched to remove the surface SiO 2 .
  • the poly-Si was removed by neutral particle beam etching using the iron oxide core as a mask.
  • F The iron oxide core was removed by wet etching with HCl.
  • FIG. 4 is a scanning electron microscope image of the thermoelectric conversion material according to Example 1, and shows the surface of the thermoelectric conversion material after step (f), that is, before etching and formation of a buried layer.
  • FIG. 4B shows an image obtained by tilting the fracture surface of FIG.
  • FIG. 5 shows the surface of the thermoelectric conversion material after step (g), that is, after formation of the buried layer.
  • FIG. 5B shows an image obtained by tilting the fracture surface of FIG. From FIG. 4, in the thermoelectric conversion material, the diameter of each nanodot was uniform, 10 ⁇ 1 nm, and the surface density of the nanodot was 7 ⁇ 10 11 pieces / cm 2 .
  • FIG. 5 shows that the buried layer 3 covers the Si nanodots.
  • thermoelectric conversion material was formed in the same manner as in Example 1 except that silicon was used as the first material constituting the nanodot and silicon carbide was used as the second material constituting the buried layer.
  • thermoelectric conversion materials of the produced Example 1 and Comparative Example 1 and the simple thermoelectric conversion characteristics of Silicon as Comparative Example 2 were measured at different measurement temperatures.
  • TCN-2 ⁇ Advanced Riko Co., Ltd.
  • ZEM-3 Advanced Riko Co., Ltd.
  • Fig. 6 shows the thermoelectric conversion characteristics of the examples and comparative examples.
  • thermoelectric conversion material of Example 1 is As compared with the thermoelectric conversion material of Comparative Example 1 and the silicon single phase of Comparative Example 2 having the same measurement temperature, it can be seen that the thermal conductivity is lowered and the electrical conductivity is increased, so that it has a high dimensionless figure of merit.
  • the dimensionless figure of merit reached 1.3, and a value higher than the dimensionless figure of merit in the optimum temperature range of the BiTe-based material currently in practical use could be obtained.
  • FIG. 7 shows the band structure of the joint surfaces of Si and Si 0.7 Ge 0.3 and Si and SiC.
  • the band gap energy E G is the difference between the energy level E C at the bottom of the conduction band and the energy level E V at the top of the valence band.
  • the Si and Si 0.7 Ge 0.3 the Delta] E V is the difference in energy level of the valence band at 0.26 eV, is the difference in energy level of the conduction band ⁇ E C is 0.16 eV, both of which are between 0.1 and 0.3 eV. Meanwhile, as shown in FIG.
  • the Si and SiC are the Si and SiC, the Delta] E V is the difference in energy level of the valence band at 0.8 eV, the Delta] E C is the difference between the energy level of the conduction band 1. 4 eV, both greater than 0.3 eV.
  • thermoelectric conversion material of Example 1 since silicon was converted into nanodots of 20 nm or less, phonon scattering is likely to occur at the nanodot interface, and the lattice thermal conductivity, which is a major problem with conventional silicon-based thermoelectric conversion elements, can be reduced. It is thought that it was made. Furthermore, by embedding silicon germanium between the nanodots, it is considered that energy filtering due to the potential barrier of the periodically arranged nanodot structure appears, and the reduction of the Seebeck coefficient can be suppressed. That is, it is considered that a high-performance thermoelectric conversion material could be realized by simultaneously expressing the phonon scattering at the silicon nanodot interface and the energy filtering effect due to the potential barrier due to the periodic dot structure.

Abstract

シリコン系材料を用いて、良好な熱電変換性能を発揮可能な熱電変換材料を得る。埋込層3に、直径20nm以下の柱状又は球状のナノドット1が、面密度5×1010個/cm以上、前記ナノドット間の間隔が0.5nm以上30.0nm以下で埋め込まれており、ナノドット1を構成する第1の材料は、シリコンを30原子%以上含む材料であり、埋込層3を構成する第2の材料に対して、第1の材料の価電子帯と第2の材料の価電子帯のエネルギーの差、及び第1の材料の伝導帯と第2の材料の伝導帯のエネルギー差のうちいずれか又は両方が0.1eV以上 0.3eV以下の範囲にあることを特徴とする熱電変換材料を用いる。

Description

熱電変換材料及びその製造方法
 本発明は、熱電変換素子に用いられるシリコン系の熱電変換材料に関するものである。
 熱電変換素子は、熱エネルギーを電気エネルギーに直接変換可能であり、従来の発電技術に比べて、可動部材も存在しない。このため、熱電変換素子は、メンテナンス不要で寿命が長く、騒音も発生せず、さらに低温の廃熱も利用可能であるという多くの利点がある。
 熱電変換材料の性能は一般的に無次元性能指数(ZT)によって表記される。すなわち、ZTが高い材料は、ゼーベック係数と電気伝導度が高く、熱伝導率が低い材料である。
Figure JPOXMLDOC01-appb-M000001
 
S:ゼーベック係数(V/K)
σ:電気伝導率(S/m)
κe:キャリア熱伝導率(W/m・K)
κph:格子熱伝導率(W/m・K)
T:絶対温度(T)
 また、前記ZTの値は材料や温度によって異なる。現在、熱電変換材料として使用されているBiTeは、100~300℃の比較的低温の領域で、ZT=0.8程度という無次元性能指数を有している。しかし、現在使用されている熱電変換材料は、レアメタルであるBi、Sb、Te、Pbなどが主成分となっている。これらの資源の埋蔵量は少なく、材料コストが高い。また、これらの熱電変換材料は、300~400℃の高温域で酸化されやすいため素子としての寿命が短く、さらに毒性に対する懸念もある。
 そのため、BiTe系材料に対して低コストで、低毒性であるSi系材料によって、BiTe系材料と同等のZTが得られないか検討されている。Si系材料は、格子熱伝導率がBiTeと比較して100倍程度高いため、BiTe系材料と比較してZTが著しく低くなる。このため、Si系材料は、熱電変換材料としての使用が困難と考えられている。しかし、近年、材料のナノ構造化によりフォノン散乱を生じさせたSi系材料は、Si系材料のバルク体と比較して格子熱伝導率を低減可能であることが発見された。このため、ナノ構造化したSiを用いた熱電変換素子が注目されている。
 例えば、特許文献1には、材料をナノ構造化するために、半導体材料内部に電子とフォノンの平均自由行程と同程度、又はそれ以下の間隔で分散した非常に微細な空孔を多数導入し、熱伝導率の低減及び、それに伴う熱電変換素子の特性(熱電性能指数)を向上させる技術が開示されている。さらに、微細な空孔の内部に別の半導体や金属を埋め込むことで、熱電性能を向上させることもできる。また、前記微細な空孔の形成方法としては電気化学反応(例えば、陽極反応)が用いられ、別の半導体や金属の埋め込みは、溶融した半導体や金属に含浸させる方法を用いている。
 また、非特許文献1では、電子線リソグラフィーを用いたトップダウンの手法によるSiのナノ構造化が試みられており、直径数十nmのSiナノワイヤーとその外周部分をSiOで被覆した構造の熱電変換素子を形成する方法が開示されている。
 他に、特許文献2には、バイオテンプレート技術、中性粒子ビームエッチング技術による量子ドットの形成方法が開示されている。その用途展開として、太陽電池、レーザーなどについて記載されている。形成する量子ドットはSi、GaAsが開示され、埋込み材料はSiC、SiO、(Si)等が開示されている。
特開平11-317547号公報 国際公開第2012/173162号
Benjamin. M. C. et al., Nano let. 13(2013) 5503
 しかしながら、特許文献1に記載の発明の方法ではシリコン基板をポーラス化しており、熱伝導率の低減効果は期待できるが、同時に電子移動度の低下によるゼーベック係数の低下が顕著となる。そのため、ポーラス径や密度等の制御が必要であるが、開示されている手法(陽極酸化など)ではそれらの制御が困難となるため、熱電特性の改善に限界がある。また、ZTを向上させる手法としてポーラス(空孔)にBiTe系材料を埋めこむ手法なども開示されているが、細孔を形成するシリコン基板と同等の融点を有する材料を細孔内に埋め込むことは困難である。したがって、特許文献1に記載の発明の方法では、レアメタルを使用する問題は解決できなかった。
 また、非特許文献1に記載の方法では現状のリソグラフィー技術(電子線描画)とトップダウン(ICPプラズマエッチング)を組合せた手法を用いている。本手法では特許文献1で課題となっているポーラス径や密度の制御は可能となる。しかし、現状のリソグラフィー技術では数十nm程度のナノ構造の形成が限界であるため、シリコンの格子熱伝導率を低減するのに必要と考えられる、20nm以下の構造体を形成することが難しいという問題点があった。
 さらに、特許文献2に記載の量子ドットの材料と埋め込み材料を用いた二次元量子ナノドットアレイでは、ドット形成材料として用いているSiに対して、埋込み材料として開示されているSiCやSiNの、価電子帯同士又は伝導帯同士のエネルギーの差(すなわち、ドット形成材料の価電子帯と埋込み材料の価電子帯のエネルギーの差、又はドット形成材料の伝導帯と埋込み材料の伝導帯のエネルギーの差)が大きいため、良好な熱電変換性能を発現できない。また、GaAsなどのIII-V族半導体については毒性が高いなどの問題点があった。
 本発明は、このような従来技術の問題点を解決するためになされたものであり、シリコン系材料を用いて、良好な熱電変換性能を発揮する熱電変換材料を得ることを目的とする。
 本発明者らは、鋭意検討の結果、シリコン系材料を20nm以下のナノドット化し、ナノドットを構成するシリコン系材料の価電子帯と埋込み材料の価電子帯のエネルギーの差と、ナノドットを構成するシリコン系材料の伝導帯と埋込み材料の伝導帯のエネルギーの差のうちいずれか又は両方が0.1eV以上0.3eV以下の範囲にある材料をドット間に埋込むことで、シリコン系材料を用いた高性能な熱電変換材料が得られることを見出し、本発明を完成させるに至った。
 具体的には、本発明は以下のものを提供する。
 「発明1」
 埋込層に、直径20nm以下の柱状又は球状のナノドットが、面密度5×1010個/cm以上、前記ナノドット間の間隔が0.5nm以上30.0nm以下で埋め込まれており、前記ナノドットを構成する第1の材料は、シリコンを30原子%以上含む材料であり、前記埋込層を構成する第2の材料に対して、第1の材料の価電子帯と第2の材料の価電子帯のエネルギーの差、及び第1の材料の伝導帯と第2の材料の伝導帯のエネルギーの差のうちいずれか又は両方が0.1eV以上0.3eV以下の範囲にあることを特徴とする熱電変換材料。
 「発明2」
 前記第1の材料が、シリコンであり、前記第2の材料が、シリコンとゲルマニウムのモル比が20:80~80:20であるシリコンゲルマニウムであることを特徴とする発明1に記載の熱電変換材料。
 「発明3」
 発明1に記載の熱電変換材料の製造方法であって、直径1nm以上20nm以下のナノ粒子を半導体層上に配列する工程と、前記ナノ粒子をマスクとして前記半導体層をエッチングして、直径20nm以下の柱状又は球状のナノドットを形成する工程と、前記ナノドットを埋め込むように埋込層を形成する工程と、を含むことを特徴とする熱電変換材料の製造方法。
 「発明4」
 前記ナノ粒子が、ポリスチレン粒子、ラテックス粒子、及び、自己組織化ポリマーからなる群から選ばれる少なくとも一つであることを特徴とする発明3に記載の熱電変換材料の製造方法。
 「発明5」
 前記ナノ粒子が、シリカ粒子、及び、金属化合物粒子からなる群から選ばれる少なくとも一つであることを特徴とする発明3に記載の熱電変換材料の製造方法。
 「発明6」
 請求項1に記載の熱電変換材料の製造方法であって、金属を内包したタンパク質粒子を、半導体層上に配列する工程と、前記タンパク質粒子からタンパク質を除去し、金属化合物粒子を生成する工程と、前記金属化合物粒子をマスクとして前記半導体層をエッチングして、直径20nm以下の柱状又は球状のナノドットを形成する工程と、前記金属化合物粒子を除去する工程と、前記ナノドットを埋め込むように埋込層を形成する工程と、を含むことを特徴とする熱電変換材料の製造方法。
 「発明7」
 前記タンパク質粒子が、フェリチン、及び、リステリアDpsからなる群から選ばれる少なくとも一つであることを特徴とする発明6に記載の熱電変換材料の製造方法。
 [発明8]
 前記タンパク質粒子の表面がポリエチレングリコール鎖で修飾されていることを特徴とする発明6に記載の熱電変換材料の製造方法。
 「発明9」
 前記半導体層を構成する第1の材料がシリコンで、前記埋込層を構成する第2の材料がシリコンとゲルマニウムのモル比が20:80~80:20であるシリコンゲルマニウムであることを特徴とする発明3乃至8のいずれか1に記載の熱電変換材料の製造方法。
 本発明により、現状問題となっているシリコン系材料をナノ構造化した際に生じるゼーベック係数の低下を解決可能となるため、シリコン系材料を用いて高性能な熱電変換材料を形成することが可能となる。
本発明に係る熱電変換材料5の模式図。 本発明に係る熱電変換材料の製造方法を示す図。 本発明に係る熱電変換材料の製造方法の他の例を示す図。 実施例1に係る熱電変換材料の走査型電子顕微鏡像。 実施例1に係る熱電変換材料の走査型電子顕微鏡像。 実施例及び比較例の熱電変換特性を示す図。 (a)SiとSi0.7Ge0.3、(b)SiとSiCの接合面のバンド構造を示す図。
 以下、本発明を説明する。
<熱電変換材料>
 本発明の熱電変換材料は、図1(a)に示すとおり、埋込層3に、直径20nm以下の柱状又は球状のナノドット1が、面密度5×1010個/cm以上、ナノドット間の間隔が0.5nm以上30.0nm以下で埋め込まれて構成されている。
 ナノドットは、埋込層が広がる二次元方向における直径が20nm以下の大きさである。それぞれのナノドットの直径を電子顕微鏡などで測定し、分布を求める場合、個数基準で90%以上のナノドットが直径8±5nmの範囲内に含まれていることが好ましい。なお、ナノドットは、厚さが数nm~数十nmであり、柱状であっても球状であってもよく、場合によっては、錐状となってもよい。
 また、ナノドット間の間隔は、0.5nm以上30.0nm以下であり、0.5nm以上7.0nm以下であることが好ましい。ナノドット間の間隔とは、あるナノドットの最表面と、最も近くにある隣のナノドットの最表面との距離を意味する。
 ナノドットの面密度は、ナノドットの直径、ドット間の間隔で決定されるが、5×1010個/cm以上であり、1×1011個/cm以上であることが好ましく、5×1011個/cm以上8×1011個/cm以下であることがより好ましい。面密度の上限は最密充填された場合、被覆率を算出すると90%程度となる(例えば、ドットサイズが13nmの場合、被覆率90%は8.1×1011個/cmに相当する)。なお、図1では、埋込層にナノドットの周期構造が1層含まれているが、埋込層にはナノドットの周期構造が複数積層して含まれていてもよい。その場合、ナノドットの面密度とは、埋込層において、二次元に配列したナノドットに着目して求めており、埋込層にナノドットが配列するアレイが複数積層している場合は、その1層に着目して、面密度を求める。
 埋込層中にナノドットの周期構造を持つことで、ナノドットと埋込層の界面でのフォノン散乱が生じ、熱電変換材料の格子熱伝導率を低減することが可能となる。
 ナノドットを構成する第1の材料は、シリコンを30原子%以上含む材料であり、埋込層を構成する第2の材料に対して、第1材料の価電子帯と第2材料の価電子帯のエネルギーの差、又は第1材料の伝導帯と第2材料の伝導帯のエネルギーの差が0.1eV以上0.3eV以下の範囲にある。
 このことにより、ナノドットと埋込層は中間バンドを形成することが可能となり、埋込層に蓄積したキャリアがナノドットアレイ内を輸送される際にナノドットアレイ構造がポテンシャル障壁となり、キャリアの低エネルギー成分が伝導しなくなるエネルギーフィルタリング効果が起こる。このことによりバンドギャップ近傍のスペクトル伝導度を制御し、ゼーベック係数を向上させることができる。
 また、第1の材料と前記第2の材料の組み合わせが、シリコンとシリコンゲルマニウムの組み合わせであることが好ましい。これらの材料の組み合わせでは、第1の材料を中性粒子ビームエッチングによりダメージを与えずにエッチング可能であり、第1の材料と第2の材料が適切なバンドギャップの差を持つため、ナノドットと埋込層で、中間バンドを形成可能である。また、第1の材料と第2の材料がそれぞれ安価で入手が容易で、成膜法も確立している。
 ここで、シリコンは、単結晶シリコンでも多結晶シリコンでもよく、ドープされていてもいなくてもよい。
 また、シリコンゲルマニウムは、シリコンにゲルマニウムが添加された半導体で、本発明では、シリコンゲルマニウム中のゲルマニウムの含有量は20モル%以上80モル%以下、即ち、シリコンとゲルマニウムのモル比が20:80~80:20である。シリコンゲルマニウムの融点は1139-738x+263x2(x:Siモル濃度、0.2≦x≦0.8)Kであり、高温環境下(600~800K付近)で高い変換効率を有する熱電変換材料として知られている。
 シリコンのバンドギャップは単結晶で1.1eV、多結晶で1.5eV程度であり、一方、シリコンゲルマニウム(例としてSi0.7Ge0.3)のバンドギャップは1.12-0.41x+0.0008x(x:Siモル濃度、0.2≦x≦0.8)eVであり、シリコンをドット形成材料、シリコンゲルマニウム(例としてSi0.7Ge0.3)を埋込み材料として用いた際、価電子帯側にΔEv=0.26eVのバンドオフセットが生じる。すなわち、シリコンの価電子帯とSi0.7Ge0.3の価電子帯とのエネルギーの差は0.26eVである。
 本発明の熱電変換材料は、シリコン系材料を用いているため、従来のBiTe系材料と比較して安価で、資源的制約もなく、毒性も低い。また、本発明の熱電変換材料は、ナノ構造化したシリコン系材料を、所定の材料で埋め込んでいるため、良好な熱電性能指数を有する。
<熱電変換材料の製造方法>
 次に、本発明の熱電変換材料の製造工程を説明する。本発明では、ナノ粒子9の周期構造をマスクとして、半導体層13をエッチングして、ナノドット1の周期構造を得ることができる。以下、図面を用いて説明する。
 まず、図2(a)に示すように、半導体層13上にナノ粒子9を配列する。半導体層13は、後にナノドットとなる部材なので、シリコンを30原子%以上含む材料、特にシリコンからなることが好ましい。半導体層13上にナノ粒子9を配列させるには、液体に分散させたナノ粒子9の分散液を、半導体層13上に塗布・乾燥することにより均一に配列させることができる。ナノ粒子9としては、半導体層13のエッチングマスクとなるものであれば特に限定されないが、ポリスチレン粒子、ラテックス粒子、自己組織化ポリマー(DSA(Directed Self-Assembly)ポリマー)などの有機物、シリカ粒子、金属化合物粒子などの無機物を用いることができる。ナノ粒子9の直径は1nm以上20nm以下であること、すなわち、ナノ粒子9の粒度分布を評価した際に、個数基準で99%が1nm以上20nm以下の範囲にあることが好ましい。また、ナノ粒子9の個数基準での平均粒径は5nm以上10nm以下が好ましい。ナノ粒子9の分散媒は、適宜選択できるが、例えば、水や水・アルコール混合液、有機溶媒などを使用できる。
 ナノ粒子9を分散させた分散液の濃度としては、ナノ粒子の材料、および分散媒の種類によって異なるが、例えば、ナノ粒子9にポリスチレン粒子を用いた場合、100mg/ml~1g/mlの範囲であることが好ましく、更に300mg/ml~500mg/mlであることがより好ましい。更に、ナノ粒子の持つデバイ長をコントロールするため、分散媒中に塩を加えることも可能である。また用いる塩に規定は無いが、半導体のドーピング材料として不具合を生じるような元素(アルカリ金属、アルカリ土類金属)を含まない塩であることが好ましい。
 更にナノ粒子9を分散させた分散液の塗布方法としてはスピンコート法、Langmuir-Blodgett(LB)法、キャスト法など一般的な塗布方法から選択することが可能である。
 その後、図2(b)に示すように、ナノ粒子9の周期構造をマスクとして、半導体層13をエッチングし、柱状又は球状のナノドット1を形成する。エッチング方法は、ナノ粒子9を構成する材料に対して、半導体層13を構成する材料を選択的にエッチングする方法であれば特に限定されないが、膜へのダメージが少なく高アスペクト比の異方性エッチングが可能な、中性粒子ビーム(NB)エッチング、高速原子線エッチング(FAB)、リモートプラズマエッチングなどから選択することができる。しかし、その中でも中性粒子エッチングは、プラズマで発生した荷電粒子を開口部のある炭素アパーチャーを通過させることで紫外光を吸収させ、さらに中性化して得られた中性粒子のビームエネルギーを100eV以下にコントロール可能であるため、プラズマやイオンの衝撃が少なく、最も好ましい。
 中性粒子エッチング装置では、処理対象が置かれるステージを有する加工室に、荷電粒子を生成するプラズマ室が接続している。加工室とプラズマ室の間には、正の荷電粒子を電荷交換し、中性粒子に変換するためのカソード電極を設ける。カソード電極は、前述の炭素アパーチャーであり、中性粒子を加工室に供給するが、プラズマ室で発生したUVやVUVを遮断し、加工室に通さない。なお、プラズマ室の圧力は加工室の圧力より十分に大きく、さらに、加工室の圧力は、ガスの平均自由行程がカソード電極とステージ間距離以上となるような圧力になっている。
 その後、図2(c)に示すように、マスクとしての役割を終了したナノ粒子9を除去する。ナノ粒子9の除去方法は、半導体層13を構成する材料に対してナノ粒子9を選択的にエッチングできる方法であれば特に限定されないが、ナノ粒子9がポリスチレン粒子やラテックス粒子、DSAポリマーなどの有機物である場合、空気やオゾン中でのアニール、酸素や水素プラズマを用いた処理が挙げられる。また、シリカ粒子や金属化合物粒子などの無機物である場合、弗酸、硝酸、塩酸などの無機酸を使用したウェットエッチングや水素プラズマなどを用いたドライエッチングが挙げられる。
 その後、図2(d)に示すように、ナノドット1とナノドット1の間を埋めるように、埋込層3を形成する。埋込層3は、CVD(化学気相成長法)、PVD(物理気相成長法)、MBE(分子線エピタキシー法)などの手法によりナノドット1の周期構造の上に形成する。埋込層3は、ナノドット1の間隙を埋めるように形成される。埋込層3はナノドット1の周期構造の厚さを超えて形成する必要は必ずしもないが、ナノドット1の周期構造より厚くなってもよい。
 なお、半導体層13をエッチングする際に半導体層13を保護し、膜欠陥等を生じさせないため、半導体層13の上に、二酸化シリコンや窒化シリコン、又は金属酸化物などエッチング対象膜と比較してエッチングされにくい膜を保護層として形成してもよい。
 本製造方法では、5×1010/cm以上の密度でナノドット1の周期構造を形成することができ、さらに、その周期構造の隙間に、ナノドット1を構成する材料と同等の融点を有する材料を埋めこむことが可能となる。
<熱電変換材料のその他の製造方法>
 ナノ粒子を周期配列する方法として、金属を内包するタンパク質粒子を配列させた後に、タンパク質を除去し、金属化合物粒子を得る方法を用いることもできる。以下、その方法を具体的に説明する。
 まず、図3(a)に示すように、金属を内包したタンパク質粒子11を、半導体層13上に配列する。ナノドットの寸法はタンパク質粒子11に内包される金属から生成する金属化合物粒子15の寸法で決まるため、直径20nm以下の金属化合物粒子15を得られるような、金属を内包したタンパク質粒子11を使用する。
 タンパク質粒子11として、外径13nmのタンパク質外殻の内部に直径7nmの酸化鉄粒子を有する球状の蛋白質であるフェリチンや外径9nmのタンパク質外殻の内部に直径5nmの酸化鉄粒子を有するリステリアDpsなども用いることができる。なお、粒子の凝集を防ぎ、粒子の間隔を制御して配列を容易にするため、タンパク質粒子11の表面を、ポリエチレングリコール鎖で修飾してもよい。
 半導体層13上にタンパク質粒子11を配列させるには、液体に分散させたタンパク質粒子11の分散液を、半導体層13上に塗布することにより均一に配列させることができる。
 タンパク質粒子11を分散させた分散液の濃度としては、タンパク質粒子11の材料や分散媒によって異なる。例えば、タンパク質粒子11にフェリチン、分散媒に40mMの硫酸アンモニウム水溶液を用いた場合、フェリチン濃度が1mg/ml~500mg/mlの範囲であることが好ましく、更に1mg/ml~50mg/mlであることがより好ましい。タンパク質粒子11の分散媒は、適宜選択できるが、例えば、水や水・アルコール混合液、有機溶媒などを使用できる。更に、ナノ粒子の持つデバイ長をコントロールするため分散媒中に塩を加えることも可能である。また用いる塩に規定は無いが、半導体のドーピング材料として不具合を生じるような元素(アルカリ金属、アルカリ土類金属)を含まない塩であることが好ましい。
 続いて、図3(b)に示すように、タンパク質粒子11からタンパク質を除去し、金属化合物粒子を露出させる。タンパク質の除去方法は、酸素、水素雰囲気下で加熱する方法が挙げられる。半導体層13上には、タンパク質粒子11に由来する金属化合物粒子15が生成する。この金属化合物粒子15は、タンパク質粒子11が存在した場所にそのまま形成する。金属化合物粒子の直径は1nm以上20nm以下であること、すなわち、金属化合物粒子の粒度分布を評価した際に、個数基準で99%が1nm以上20nm以下の範囲にあることが好ましい。また、金属化合物粒子の個数基準での平均粒径は5nm以上10nm以下が好ましい。
 さらに、図3(c)に示すように、周期的な金属化合物粒子15をマスクとして半導体層13をエッチングすることで、周期構造を持つ直径20nm以下の柱状又は球状のナノドット1を形成する。
 その後、図3(d)に示すように、マスクとしての役割を終えた金属化合物粒子15を除去する。金属化合物粒子15の除去方法は特に限定されないが、例えば、希塩酸水溶液を用いたウェットエッチングを用いることができる。
 さらに、図3(e)に示すように、ナノドット1とナノドット1の間を埋めるように埋込層3を形成する。
 本発明を実施例・比較例を用いてさらに説明する。
(実施例1)
 (a)酸化膜付きSi基板に厚さ10nmのアモルファスSiを、電子ビーム蒸着法によって堆積した。次に、窒素雰囲気中でアニールすることでポリSiとした。
 (b)中性粒子ビーム装置によって、ポリSiを酸化し、上に厚さが3.8nmの表面酸化膜(SiO)を堆積した。
 (c)次に、フェリチンを分散させた分散液(分散媒:40mMの硫酸アンモニウム水溶液、フェリチン濃度:2.5mg/ml)を基板に塗布・乾燥し、表面酸化膜(SiO)上にフェリチンの周期構造を堆積した。上記分散液のpHはSiO上に塗布する際は8程度が好ましいが、塗布する材料の表面電位によって適宜決めることができる。
 (d)フェリチンのシェルを、酸素雰囲気中400℃でアニールして除去した。SiO上には、粒子状の酸化鉄コアが配列した周期構造が堆積した状態となる。これらの酸化鉄コアからなる周期構造が次の工程のエッチング用マスクとなる。
 (e)酸化鉄コアをマスクとして、最初に、表面側のSiOのエッチングを行い、表面のSiOを除去した。次に、酸化鉄コアをマスクとして、ポリSiを中性粒子ビームエッチングで除去した。
 (f)酸化鉄コアをHClのウェットエッチングで除去した。
 (g)表面SiO層を除去した後、10nmの厚さのシリコンゲルマニウム(Si0.7Ge0.3)を、MBEを用いて、Siのナノドット上に堆積した。
 図4は、実施例1に係る熱電変換材料の走査型電子顕微鏡像の図で、工程(f)の後、即ちエッチングと埋込層形成前の熱電変換材料の表面を示している。図4(b)は、図4(a)の破断面を25°傾けた像を示している。図5は工程(g)の後、即ち埋込層形成後の熱電変換材料の表面を示している。図5(b)は、図5(a)の破断面を25°傾けた像を示している。
 図4から、熱電変換材料において、各ナノドットの直径は均一で、10±1nmであり、ナノドットの面密度は7×1011個/cmであった。
 図5から、埋込層3がSiナノドットを覆っていることがわかる。
(比較例1)
 ナノドットを構成する第1の材料としてシリコンを用い、埋込層を構成する第2の材料としてシリコンカーバイドを用いる点以外は、実施例1と同様にして熱電変換材料を形成した。
(熱電変換特性の測定)
 次に、作製した実施例1、比較例1の熱電変換材料と、比較例2として単なるシリコンの熱電変換特性を、測定温度を変えて測定した。熱伝導率の測定についてはTCN-2ω(アドバンス理工社)、電気伝導率・ゼーベック係数についてはZEM-3(アドバンス理工社)を利用した。
 実施例と比較例の熱電変換特性を図6に示す。
 図6に示すように、実施例1-1と比較例1-1と比較例2の比較、また、実施例1-2と比較例1-2の比較から、実施例1の熱電変換材料は、同じ測定温度の比較例1の熱電変換材料、比較例2のシリコン単相に比べて、熱伝導率が低下し、導電率が上昇しため、高い無次元性能指数を有することが分かる。特に、実施例1-3では、無次元性能指数が1.3に達し、現在実用化されているBiTe系材料の最適温度範囲における無次元性能指数より高い数値を得ることができた。
 図7に、SiとSi0.7Ge0.3、及びSiとSiCの接合面のバンド構造を示す。図7において、バンドギャップのエネルギーEは、伝導帯の底のエネルギー準位Eと、価電子帯の頂上のエネルギー準位Eの差である。図7(a)に示すとおり、SiとSi0.7Ge0.3では、価電子帯のエネルギー準位の差であるΔEは0.26eVで、伝導帯のエネルギー準位の差であるΔEは0.16eVであり、いずれも0.1~0.3eVの間にある。一方、図7(b)に示すとおり、SiとSiCでは、価電子帯のエネルギー準位の差であるΔEは0.8eVで、伝導帯のエネルギー準位の差であるΔEは1.4eVであり、いずれも0.3eVより大きい。
 実施例1の熱電変換材料は、シリコンを20nm以下のナノドット化したため、ナノドット界面でのフォノン散乱が起こりやすくなり、従来のシリコン系熱電変換素子で大きな問題となる格子熱伝導率の低減することができたと考えられる。さらに、シリコンゲルマニウムをナノドット間に埋め込むことで、周期配列したナノドット構造のポテンシャル障壁によるエネルギーフィルタリングが発現し、ゼーベック係数の低減を抑制可能となったと考えられる。すなわち、シリコンナノドット界面のフォノン散乱と、周期的なドット構造によるポテンシャル障壁によるエネルギーフィルタリング効果を同時に発現させることで高性能な熱電変換材料を実現できたと考えられる。
 1  ナノドット
 3  埋込層
 5  熱電変換材料
 9  ナノ粒子
11  タンパク質粒子
13  半導体層
15  金属化合物粒子

Claims (9)

  1.  埋込層に、直径20nm以下の柱状又は球状のナノドットが、面密度5×1010個/cm以上、前記ナノドット間の間隔が0.5nm以上30.0nm以下で埋め込まれており、
     前記ナノドットを構成する第1の材料は、シリコンを30原子%以上含む材料であり、前記埋込層を構成する第2の材料に対して、第1の材料の価電子帯と第2の材料の価電子帯のエネルギーの差、及び第1の材料の伝導帯と第2の材料の伝導帯のエネルギーの差のうちいずれか又は両方が0.1eV以上0.3eV以下の範囲にあることを特徴とする熱電変換材料。
  2.  前記第1の材料が、シリコンであり、
     前記第2の材料が、シリコンとゲルマニウムのモル比が20:80~80:20であるシリコンゲルマニウムであることを特徴とする請求項1に記載の熱電変換材料。
  3.  請求項1に記載の熱電変換材料の製造方法であって、
     直径1nm以上20nm以下のナノ粒子を半導体層上に配列する工程と、
     前記ナノ粒子をマスクとして前記半導体層をエッチングして、直径20nm以下の柱状又は球状のナノドットを形成する工程と、
     前記ナノドットを埋め込むように埋込層を形成する工程と、
     を含むことを特徴とする熱電変換材料の製造方法。
  4.  前記ナノ粒子が、ポリスチレン粒子、ラテックス粒子、及び、自己組織化ポリマーからなる群から選ばれる少なくとも一つであることを特徴とする請求項3に記載の熱電変換材料の製造方法。
  5.  前記ナノ粒子が、シリカ粒子、及び、金属化合物粒子からなる群から選ばれる少なくとも一つであることを特徴とする請求項3に記載の熱電変換材料の製造方法。
  6.  請求項1に記載の熱電変換材料の製造方法であって、
     金属を内包したタンパク質粒子を、半導体層上に配列する工程と、
     前記タンパク質粒子からタンパク質を除去し、金属化合物粒子を生成する工程と、
     前記金属化合物粒子をマスクとして前記半導体層をエッチングして、直径20nm以下の柱状又は球状のナノドットを形成する工程と、
     前記金属化合物粒子を除去する工程と、
     前記ナノドットを埋め込むように埋込層を形成する工程と、
     を含むことを特徴とする熱電変換材料の製造方法。
  7.  前記タンパク質粒子が、フェリチン、及び、リステリアDpsからなる群から選ばれる少なくとも一つであることを特徴とする請求項6に記載の熱電変換材料の製造方法。
  8.  前記タンパク質粒子の表面がポリエチレングリコール鎖で修飾されていることを特徴とする請求項6に記載の熱電変換材料の製造方法。
  9.  前記半導体層を構成する第1の材料がシリコンで、前記埋込層を構成する第2の材料がシリコンとゲルマニウムのモル比が20:80~80:20であるシリコンゲルマニウムであることを特徴とする請求項3乃至8のいずれか1項に記載の熱電変換材料の製造方法。
PCT/JP2016/078191 2015-10-02 2016-09-26 熱電変換材料及びその製造方法 WO2017057237A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680056060.2A CN108028307B (zh) 2015-10-02 2016-09-26 热电转换材料及其制造方法
JP2017543238A JP6470422B2 (ja) 2015-10-02 2016-09-26 熱電変換材料及びその製造方法
EP16851408.1A EP3343651B1 (en) 2015-10-02 2016-09-26 Thermoelectric conversion material and method for producing same
US15/934,937 US20180212131A1 (en) 2015-10-02 2018-03-23 Thermoelectric conversion material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015196414 2015-10-02
JP2015-196414 2015-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/934,937 Continuation US20180212131A1 (en) 2015-10-02 2018-03-23 Thermoelectric conversion material and method for producing same

Publications (1)

Publication Number Publication Date
WO2017057237A1 true WO2017057237A1 (ja) 2017-04-06

Family

ID=58427444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078191 WO2017057237A1 (ja) 2015-10-02 2016-09-26 熱電変換材料及びその製造方法

Country Status (5)

Country Link
US (1) US20180212131A1 (ja)
EP (1) EP3343651B1 (ja)
JP (1) JP6470422B2 (ja)
CN (1) CN108028307B (ja)
WO (1) WO2017057237A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212297A1 (ja) * 2017-05-19 2018-11-22 日東電工株式会社 半導体焼結体、電気・電子部材、及び半導体焼結体の製造方法
WO2019131795A1 (ja) * 2017-12-26 2019-07-04 国立研究開発法人科学技術振興機構 シリコンバルク熱電変換材料
WO2019244428A1 (ja) * 2018-06-18 2019-12-26 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュール、光センサおよび熱電変換材料の製造方法
WO2020174733A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 積層体及び結晶体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110729392B (zh) * 2019-10-23 2023-09-29 华北电力大学(保定) 一种层状硅锗热电材料
CN117156941B (zh) * 2023-11-01 2024-02-02 无锡芯感智半导体有限公司 一种具有六方密排微孔实心衬底结构流量芯片的制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251338A (ja) * 1991-08-02 1993-09-28 Sony Corp 量子箱列の作製方法
JP2003218346A (ja) * 2001-12-20 2003-07-31 Hewlett Packard Co <Hp> 分子エレクトロニクス用に分子を整列させるために1つまたは複数のナノポアを形成する方法
JP2004193526A (ja) * 2002-12-13 2004-07-08 Canon Inc 熱電変換素子及びその製造方法
JP2005022077A (ja) * 2003-06-12 2005-01-27 Matsushita Electric Ind Co Ltd ナノ粒子分散複合材料の製造方法
JP2008523579A (ja) * 2004-10-29 2008-07-03 マサチューセッツ・インスティチュート・オブ・テクノロジー(エムアイティー) 高い熱電性能指数を備えたナノ複合材料
JP2013545102A (ja) * 2010-11-15 2013-12-19 アメリカ合衆国 垂直ナノワイヤアレイ上の穿孔コンタクト電極
JP2015103609A (ja) * 2013-11-22 2015-06-04 国立大学法人 奈良先端科学技術大学院大学 基板上へのナノ粒子の配列方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559962B2 (ja) * 2000-09-04 2004-09-02 日本航空電子工業株式会社 熱電変換材料及びその製造方法
US7829938B2 (en) * 2005-07-14 2010-11-09 Micron Technology, Inc. High density NAND non-volatile memory device
EP2154736B1 (en) * 2007-06-05 2017-01-18 Toyota Jidosha Kabushiki Kaisha Process for producing a thermoelectric conversion element
US8237213B2 (en) * 2010-07-15 2012-08-07 Micron Technology, Inc. Memory arrays having substantially vertical, adjacent semiconductor structures and the formation thereof
KR101310145B1 (ko) * 2012-02-29 2013-09-23 전북대학교산학협력단 반도체 나노선의 제조방법 및 이로써 제조된 반도체 나노선을 구비한 열전소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05251338A (ja) * 1991-08-02 1993-09-28 Sony Corp 量子箱列の作製方法
JP2003218346A (ja) * 2001-12-20 2003-07-31 Hewlett Packard Co <Hp> 分子エレクトロニクス用に分子を整列させるために1つまたは複数のナノポアを形成する方法
JP2004193526A (ja) * 2002-12-13 2004-07-08 Canon Inc 熱電変換素子及びその製造方法
JP2005022077A (ja) * 2003-06-12 2005-01-27 Matsushita Electric Ind Co Ltd ナノ粒子分散複合材料の製造方法
JP2008523579A (ja) * 2004-10-29 2008-07-03 マサチューセッツ・インスティチュート・オブ・テクノロジー(エムアイティー) 高い熱電性能指数を備えたナノ複合材料
JP2013545102A (ja) * 2010-11-15 2013-12-19 アメリカ合衆国 垂直ナノワイヤアレイ上の穿孔コンタクト電極
JP2015103609A (ja) * 2013-11-22 2015-06-04 国立大学法人 奈良先端科学技術大学院大学 基板上へのナノ粒子の配列方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3343651A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622327A (zh) * 2017-05-19 2019-12-27 日东电工株式会社 半导体烧结体、电气电子部件、以及半导体烧结体的制造方法
WO2018212297A1 (ja) * 2017-05-19 2018-11-22 日東電工株式会社 半導体焼結体、電気・電子部材、及び半導体焼結体の製造方法
US11616182B2 (en) 2017-05-19 2023-03-28 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member, and semiconductor sintered body
JP2019068037A (ja) * 2017-05-19 2019-04-25 日東電工株式会社 半導体焼結体、電気・電子部材、及び半導体焼結体の製造方法
US11508893B2 (en) 2017-05-19 2022-11-22 Nitto Denko Corporation Method of producing semiconductor sintered body
WO2018212295A1 (ja) * 2017-05-19 2018-11-22 日東電工株式会社 半導体焼結体、電気・電子部材、及び半導体焼結体の製造方法
CN110622327B (zh) * 2017-05-19 2024-03-12 日东电工株式会社 半导体烧结体、电气电子部件、以及半导体烧结体的制造方法
CN110622326B (zh) * 2017-05-19 2023-12-12 日东电工株式会社 半导体烧结体、电气电子部件及半导体烧结体的制造方法
WO2018212296A1 (ja) * 2017-05-19 2018-11-22 日東電工株式会社 半導体焼結体、電気・電子部材、及び半導体焼結体の製造方法
JP2019068038A (ja) * 2017-05-19 2019-04-25 日東電工株式会社 半導体焼結体、電気・電子部材、及び半導体焼結体の製造方法
CN110622326A (zh) * 2017-05-19 2019-12-27 日东电工株式会社 半导体烧结体、电气电子部件及半导体烧结体的制造方法
US11404620B2 (en) 2017-05-19 2022-08-02 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member, and semiconductor sintered body
WO2019131795A1 (ja) * 2017-12-26 2019-07-04 国立研究開発法人科学技術振興機構 シリコンバルク熱電変換材料
CN111527613B (zh) * 2017-12-26 2023-12-05 国立研究开发法人科学技术振兴机构 硅体热电转换材料
JPWO2019131795A1 (ja) * 2017-12-26 2021-01-14 国立研究開発法人科学技術振興機構 シリコンバルク熱電変換材料
US11456406B2 (en) 2017-12-26 2022-09-27 Japan Science And Technology Agency Silicon bulk thermoelectric conversion material
CN111527613A (zh) * 2017-12-26 2020-08-11 国立研究开发法人科学技术振兴机构 硅体热电转换材料
JPWO2019244428A1 (ja) * 2018-06-18 2021-07-15 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュール、光センサおよび熱電変換材料の製造方法
JP7296377B2 (ja) 2018-06-18 2023-06-22 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュール、光センサおよび熱電変換材料の製造方法
US11758813B2 (en) 2018-06-18 2023-09-12 Sumitomo Electric Industries, Ltd. Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, optical sensor, and method for manufacturing thermoelectric conversion material
WO2019244428A1 (ja) * 2018-06-18 2019-12-26 住友電気工業株式会社 熱電変換材料、熱電変換素子、熱電変換モジュール、光センサおよび熱電変換材料の製造方法
JP7253715B2 (ja) 2019-02-28 2023-04-07 パナソニックIpマネジメント株式会社 積層体及び結晶体
JPWO2020174733A1 (ja) * 2019-02-28 2021-12-23 パナソニックIpマネジメント株式会社 積層体及び結晶体
WO2020174733A1 (ja) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 積層体及び結晶体

Also Published As

Publication number Publication date
JPWO2017057237A1 (ja) 2018-08-30
EP3343651A1 (en) 2018-07-04
CN108028307B (zh) 2021-05-07
JP6470422B2 (ja) 2019-02-13
EP3343651A4 (en) 2019-01-02
EP3343651B1 (en) 2019-09-18
US20180212131A1 (en) 2018-07-26
CN108028307A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
JP6470422B2 (ja) 熱電変換材料及びその製造方法
US10749094B2 (en) Thermoelectric devices, systems and methods
Fan et al. Controllable epitaxial growth of core–shell PbSe@ CsPbBr3 wire heterostructures
US8865577B2 (en) Method for making epitaxial structure
US9076925B2 (en) Thermoelectric material, method for producing the same, and thermoelectric conversion module using the same
Li et al. Semiconductor nanowires for thermoelectrics
US20060032526A1 (en) Thermoelectric conversion material, thermoelectric conversion device and manufacturing method thereof
Qi et al. Thermoelectric devices based on one-dimensional nanostructures
Z Pei et al. A review on germanium nanowires
KR20110064702A (ko) 요철 구조를 지닌 코어-쉘 나노 와이어 및 이를 이용한 열전 소자
JP2004193523A (ja) ナノ構造体、電子デバイス、及びその製造方法
US20130285212A1 (en) Epitaxial structure
US20130285016A1 (en) Epitaxial structure
Zou et al. Fabrication, optoelectronic and photocatalytic properties of some composite oxide nanostructures
Matsumoto et al. Si nanoparticles fabricated from Si swarf by photochemical etching method
Xing et al. Preparation, properties and applications of two-dimensional superlattices
US20140352748A1 (en) Thermoelectric material, thermoelectric element, and module including the same, and preparation method thereof
KR20110064703A (ko) 다공성 나노 구조체 및 그 제조 방법
WO2006104150A1 (ja) 半導体装置の製造方法および半導体装置
US7781317B2 (en) Method of non-catalytic formation and growth of nanowires
JP2011159791A (ja) 熱電変換素子及びその製造方法
JP6772192B2 (ja) ナノ構造体を製造する方法
Kikuchi et al. Thermal conductivity of 10 nm-diameter silicon nanowires array fabricated by bio-template and neutral beam etching
Lin et al. Fabrication, structure, and transport properties of nanowires
Samukawa Fabrication of 3D quantum dot array by fusion of bio-template and neutral beam etching I: Basic technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017543238

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016851408

Country of ref document: EP