WO2017056512A1 - Production method for alloy steel powder for powder metallurgy - Google Patents
Production method for alloy steel powder for powder metallurgy Download PDFInfo
- Publication number
- WO2017056512A1 WO2017056512A1 PCT/JP2016/004441 JP2016004441W WO2017056512A1 WO 2017056512 A1 WO2017056512 A1 WO 2017056512A1 JP 2016004441 W JP2016004441 W JP 2016004441W WO 2017056512 A1 WO2017056512 A1 WO 2017056512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- atomized iron
- based powder
- content
- moving bed
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2201/00—Treatment under specific atmosphere
- B22F2201/01—Reducing atmosphere
- B22F2201/013—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2203/00—Controlling
- B22F2203/11—Controlling temperature, temperature profile
Abstract
Description
1.質量%で、
C :0.8%以下、
O :1.0%以下、
S :0.3%以下、
P :0.03%以下、ならびに
合金元素として、
Mn:0.08%超1.0%以下、
Cr:0.3~3.5%、
Mo:0.1~2%、および
V :0.1~0.5%、からなる群より選択される1または2以上
を含有し、
残部Feおよび不可避不純物であるアトマイズ鉄基粉末を用意し、
前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給し、
前記移動床炉内に、不活性ガスを平均ガス流速v(mm/s)となるように供給し、
前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする、粉末冶金用合金鋼粉の製造方法であって、
前記dおよびvが、下記(1)式を満足し
前記アトマイズ鉄基粉末のC含有量[C](質量%)と前記アトマイズ鉄基粉末のO含有量[O](質量%)とが、下記(2)式を満足し、
前記アトマイズ鉄基粉末の移動床炉への供給において、前記アトマイズ鉄基粉末のC含有量[C]およびO含有量[O]が下記(3)式を満たす場合には、該アトマイズ鉄基粉末をそのまま前記移動床炉に供給し、下記(3)式を満たさない場合には、下記(4)式を満足するように該アトマイズ鉄基粉末に炭素成分をさらに混合したのち、前記移動床炉に供給する、粉末冶金用合金鋼粉の製造方法。
記
d/√v≦3.0(mm1/2・s1/2)…(1)
[O]≧4/3[C]-2/15…(2)
4/3[C]+0.28≧[O]…(3)
4/3([C]+[MXC])+0.28≧[O]…(4)
(ここで、[MXC]は、(前記アトマイズ鉄基粉末に混合される炭素成分の質量/該アトマイズ鉄基粉末の質量)×100(質量%)とする) The gist of the present invention is as follows.
1. % By mass
C: 0.8% or less,
O: 1.0% or less,
S: 0.3% or less,
P: 0.03% or less, and as an alloy element,
Mn: more than 0.08% and 1.0% or less,
Cr: 0.3 to 3.5%,
1 or 2 or more selected from the group consisting of Mo: 0.1-2% and V: 0.1-0.5%,
Prepare the remaining Fe and atomized iron-based powder which is an inevitable impurity,
Supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed of thickness d (mm);
In the moving bed furnace, an inert gas is supplied so as to have an average gas flow velocity v (mm / s),
The atomized iron-based powder is reduced by heat treatment in the moving bed furnace to obtain an alloy steel powder for powder metallurgy, a method for producing an alloy steel powder for powder metallurgy,
Said d and v satisfy | fill following (1) Formula, C content [C] (mass%) of the said atomized iron base powder, and O content [O] (mass%) of the said atomized iron base powder, The following equation (2) is satisfied,
In the supply of the atomized iron-based powder to the moving bed furnace, when the C content [C] and the O content [O] of the atomized iron-based powder satisfy the following formula (3), the atomized iron-based powder Is supplied to the moving bed furnace as it is, and if the following formula (3) is not satisfied, the atomized iron-based powder is further mixed with a carbon component so as to satisfy the following formula (4), and then the moving bed furnace A method for producing alloy steel powder for powder metallurgy, which is supplied to the company.
D / √v ≦ 3.0 (mm 1/2 · s 1/2 ) (1)
[O] ≧ 4/3 [C] -2/15 (2)
4/3 [C] + 0.28 ≧ [O] (3)
4/3 ([C] + [MXC]) + 0.28 ≧ [O] (4)
(Here, [MXC] is (mass of carbon component mixed with the atomized iron-based powder / mass of the atomized iron-based powder) × 100 (mass%))
(1)アトマイズ鉄基粉末を用意する、
(2)前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給する、
(3)前記移動床炉内に、不活性ガスを平均ガス流速v(mm/s)となるように供給する、および
(4)前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする。 Hereinafter, the present invention will be specifically described. In the present invention, alloy steel powder for powder metallurgy (hereinafter sometimes simply referred to as “alloy steel powder”) is produced by heat-treating atomized iron-based powder as a raw material using a moving bed furnace. Specifically, the production method of the present invention includes the following treatments;
(1) Prepare atomized iron-based powder.
(2) supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed having a thickness of d (mm);
(3) by supplying an inert gas in the moving bed furnace so as to have an average gas flow velocity v (mm / s); and (4) by heat-treating the atomized iron-based powder in the moving bed furnace. Reduce to alloy steel powder for powder metallurgy.
本発明においては、原料としてアトマイズ鉄基粉末を使用する。アトマイズ鉄基粉末の製造方法は特に限定されず、常法に従って製造することができる。なお、「アトマイズ鉄基粉末」とは、アトマイズ法によって製造された鉄基粉末を意味する。また、「鉄基粉末」とは、Feを50質量%以上含有する粉末を意味する。 [Atomized iron-based powder]
In the present invention, atomized iron-based powder is used as a raw material. The manufacturing method of the atomized iron-based powder is not particularly limited, and can be manufactured according to a conventional method. “Atomized iron-based powder” means an iron-based powder produced by the atomizing method. The “iron-based powder” means a powder containing 50% by mass or more of Fe.
次に、本発明においてアトマイズ鉄基粉末の成分組成を上記のように限定する理由について説明する。なお、特に断らない限り、以下の説明において「%」は「質量%」を意味するものとする。 (Component composition)
Next, the reason for limiting the component composition of the atomized iron-based powder in the present invention as described above will be described. Unless otherwise specified, “%” in the following description means “mass%”.
Cは、主にセメンタイトなどの析出物として、あるいは固溶状態でアトマイズ鉄基粉末中に存在する。アトマイズ鉄基粉末中のC含有量が0.8%を超えると、本発明の熱処理においてC含有量を0.1%以下まで下げることが困難となり、優れた圧縮性を有する合金粉末を得ることができない。そのため、アトマイズ鉄基粉末のC含有量を0.8%以下とする。一方、C含有量が低ければ低いほど、熱処理時のC含有量の低減(脱炭)が容易になる。そのため、C含有量の下限は特に限定されず、0%であって良く、工業的には0%超であってよい。 C: 0.8% or less C is present in the atomized iron-based powder mainly as a precipitate such as cementite or in a solid solution state. When the C content in the atomized iron-based powder exceeds 0.8%, it becomes difficult to lower the C content to 0.1% or less in the heat treatment of the present invention, and an alloy powder having excellent compressibility is obtained. I can't. Therefore, the C content of the atomized iron-based powder is set to 0.8% or less. On the other hand, the lower the C content, the easier the reduction (decarburization) of the C content during heat treatment. Therefore, the lower limit of the C content is not particularly limited, and may be 0% or industrially greater than 0%.
Oは、主にCr酸化物、Mn酸化物、V酸化物、およびFe酸化物として鉄基粉末表面に存在する。アトマイズ鉄基粉末中のO含有量が1.0%を超えると、熱処理においてO含有量を0.28%以下まで下げることが困難となり、優れた圧縮性を有する合金粉末を得ることができない。そのため、アトマイズ鉄基粉末のO含有量を1.0%以下とする。O含有量は、0.9%以下とすることが好ましい。一方、O含有量が低ければ低いほど、熱処理時のO含有量の低減(脱酸)が容易になる。そのため、O含有量の下限は特に限定されないが、過度の低減は製造コストの増加を招くため、O含有量は0.4%以上とすることが好ましい。 O: 1.0% or less O is mainly present on the surface of the iron-based powder as Cr oxide, Mn oxide, V oxide, and Fe oxide. If the O content in the atomized iron-based powder exceeds 1.0%, it becomes difficult to reduce the O content to 0.28% or less during heat treatment, and an alloy powder having excellent compressibility cannot be obtained. Therefore, the O content of the atomized iron-based powder is set to 1.0% or less. The O content is preferably 0.9% or less. On the other hand, the lower the O content, the easier the reduction (deoxidation) of the O content during heat treatment. Therefore, the lower limit of the O content is not particularly limited, but excessive reduction leads to an increase in manufacturing cost, so the O content is preferably 0.4% or more.
合金鋼粉に含まれるSの一部はMnと結合してMnSを形成し、焼結後の切削性を向上させる。しかし、合金鋼粉中のS含有量が0.3%を超えると固溶Sが増え、粒界強度が低下する。そのため、合金鋼粉中のS含有量を0.3%以下とするために、アトマイズ鉄基粉末の段階でのS含有量を0.3%以下とする。粒界強度の低下を確実に回避するためには、S含有量を0.25%以下とすることが好ましい。一方、S含有量の下限は特に限定されず、0%であって良いが、工業的には0%超であってよい。焼結後の切削性を改善するという観点からは、S含有量を0.05%以上とすることが好ましい。 S: 0.3% or less Part of S contained in the alloy steel powder combines with Mn to form MnS, thereby improving the machinability after sintering. However, if the S content in the alloy steel powder exceeds 0.3%, the solid solution S increases and the grain boundary strength decreases. Therefore, in order to make the S content in the alloy steel powder 0.3% or less, the S content in the atomized iron-based powder stage is made 0.3% or less. In order to reliably avoid a decrease in grain boundary strength, the S content is preferably set to 0.25% or less. On the other hand, the lower limit of the S content is not particularly limited and may be 0%, but industrially it may be more than 0%. From the viewpoint of improving the machinability after sintering, the S content is preferably 0.05% or more.
Pは不可避不純物の1つとして含まれる元素である。P含有量を0.03%以下とすることによって、粒界強度が増加し、靭性が向上する。そのため、アトマイズ鉄基粉末のP含有量を0.03%以下とする。一方、P含有量は低ければ低いほど粒界強度が増加し、靭性が向上するため好ましい。そのため、P含有量の下限は特に限定されず、0%であってよいが、工業的には0%超であってよい。しかし、過度の低減は製造コストの増加を招くため、P含有量は0.0005%以上とすることが好ましい。 P: 0.03% or less P is an element contained as one of inevitable impurities. By setting the P content to 0.03% or less, the grain boundary strength is increased and the toughness is improved. Therefore, the P content of the atomized iron-based powder is set to 0.03% or less. On the other hand, the lower the P content, the greater the grain boundary strength and the better the toughness. Therefore, the lower limit of the P content is not particularly limited and may be 0%, but industrially it may be more than 0%. However, excessive reduction leads to an increase in manufacturing cost, so the P content is preferably 0.0005% or more.
Mnは、焼入性向上、固溶強化などによって、焼結体の強度を向上させる作用を有する元素である。Mnを添加する場合は、前記効果を得るためにMn含有量を0.08%超とする。Mn含有量は0.10%以上とすることが好ましい。一方、Mn含有量が1.0%より高いと、Mn酸化物の生成量が多くなり、合金鋼粉の圧縮性が低下する。また、Mn酸化物が、焼結体内部の破壊の起点となって、疲労強度および靱性を低下させる。そのため、Mn含有量を1.0%以下とする。Mn含有量は0.95%以下とすることが好ましく、0.80%以下とすることがより好ましい。 Mn: more than 0.08% and not more than 1.0% Mn is an element having an action of improving the strength of the sintered body by improving hardenability and strengthening solid solution. When adding Mn, in order to acquire the said effect, Mn content shall be over 0.08%. The Mn content is preferably 0.10% or more. On the other hand, if the Mn content is higher than 1.0%, the amount of Mn oxide generated increases, and the compressibility of the alloy steel powder decreases. Further, the Mn oxide serves as a starting point for destruction inside the sintered body, and reduces fatigue strength and toughness. Therefore, the Mn content is 1.0% or less. The Mn content is preferably 0.95% or less, and more preferably 0.80% or less.
Crは、焼入性を向上させて、焼結体の引張強度および疲労強度を向上させる作用を有する元素である。さらにCrは、焼結体の焼入れ・焼き戻しなどの熱処理後の硬さを高め、耐摩耗性を向上させる効果を有している。Crを添加する場合は、これらの効果を得るためにCr含有量を0.3%以上とする。一方、Cr含有量が3.5%を超えると、Cr酸化物の生成量が多くなる。Cr酸化物は、焼結体内部の疲労破壊の起点となるため、焼結体の疲労強度を低下させる。したがって、Cr含有量を3.5%以下とする。 Cr: 0.3-3.5%
Cr is an element that has the effect of improving hardenability and improving the tensile strength and fatigue strength of the sintered body. Further, Cr has the effect of increasing the hardness after heat treatment such as quenching and tempering of the sintered body and improving the wear resistance. When adding Cr, in order to acquire these effects, Cr content shall be 0.3% or more. On the other hand, when the Cr content exceeds 3.5%, the amount of Cr oxide generated increases. Since the Cr oxide serves as a starting point for fatigue failure inside the sintered body, the fatigue strength of the sintered body is reduced. Therefore, the Cr content is 3.5% or less.
Moは、焼入性向上、固溶強化、析出強化などによって、焼結体の強度を向上させる作用を有する元素である。Moを添加する場合は、前記効果を得るために、Mo含有量を0.1%以上とする。一方、Moの含有量が2%を超えると、焼結体の靭性が低下する。したがって、Mo含有量を2%以下とする。 Mo: 0.1-2%
Mo is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, precipitation strengthening, and the like. When adding Mo, in order to acquire the said effect, Mo content shall be 0.1% or more. On the other hand, when the content of Mo exceeds 2%, the toughness of the sintered body decreases. Therefore, the Mo content is 2% or less.
Vは、焼入性向上、固溶強化、析出強化などによって、焼結体の強度を向上させる作用を有する元素である。Vを添加する場合は、前記効果を得るためにV含有量を0.1%以上とする。一方、V含有量が0.5%を超えると、焼結体の靭性が低下する。そのため、V含有量を0.5%以下とする。 V: 0.1-0.5%
V is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, precipitation strengthening, and the like. When adding V, in order to acquire the said effect, V content shall be 0.1% or more. On the other hand, if the V content exceeds 0.5%, the toughness of the sintered body decreases. Therefore, the V content is 0.5% or less.
[O]≧4/3[C]-2/15…(2) Furthermore, in the present invention, the C content [C] (mass%) of the atomized iron base powder and the O content [O] (mass%) of the atomized iron base powder satisfy the following formula (2). There is a need.
[O] ≧ 4/3 [C] -2/15 (2)
前記アトマイズ鉄基粉末のC含有量[C]およびO含有量[O]が下記(3)式を満たす場合には、該アトマイズ鉄基粉末をそのまま前記移動床炉に供給する。なお、「そのまま供給する」とは、炭素成分などの他の成分と混合することなく、アトマイズ鉄基粉末のみを移動床炉へ供給することを意味する。
4/3[C]+0.28≧[O]…(3) When the formula (3) is satisfied When the C content [C] and the O content [O] of the atomized iron base powder satisfy the following formula (3), the atomized iron base powder is used as it is in the moving bed furnace. To supply. “Supply as it is” means that only the atomized iron-based powder is supplied to the moving bed furnace without being mixed with other components such as a carbon component.
4/3 [C] + 0.28 ≧ [O] (3)
一方、アトマイズ鉄基粉末の[C]および[O]が(3)式の条件を満たしていない場合には、熱処理によって粉末中のO量を十分に低減することができない。そこで、下記(4)式を満足するように該アトマイズ鉄基粉末に炭素成分をさらに混合したのち、移動床炉に供給する。
4/3([C]+[MXC])+0.28≧[O]…(4)
(ここで、[MXC]は、(前記アトマイズ鉄基粉末に混合される炭素成分の質量/該アトマイズ鉄基粉末の質量)×100(質量%)とする) -When the formula (3) is not satisfied On the other hand, when [C] and [O] of the atomized iron-based powder do not satisfy the condition of the formula (3), the amount of O in the powder is sufficiently reduced by heat treatment. I can't. Therefore, the atomized iron-based powder is further mixed with a carbon component so as to satisfy the following expression (4), and then supplied to the moving bed furnace.
4/3 ([C] + [MXC]) + 0.28 ≧ [O] (4)
(Here, [MXC] is (mass of carbon component mixed with the atomized iron-based powder / mass of the atomized iron-based powder) × 100 (mass%))
[O]≧4/3([C]+[MXC])-2/15…(5) In addition, when adding a carbon component, it is more preferable that the following formula (5) is further satisfied.
[O] ≧ 4/3 ([C] + [MXC]) − 2/15 (5)
アトマイズ鉄基粉末の平均粒径は特に限定されず、アトマイズ法によって得られた鉄基粉末であれば、任意の粒径のものを用いることができる。しかし、アトマイズ鉄基粉末の平均粒径が30μmを下回ると、アトマイズ鉄基粉末の流動性が低下し、ホッパなどを用いて移動床炉へ供給することが困難となる場合がある。また、アトマイズ鉄基粉末の平均粒径が30μmを下回ると、熱処理後の合金鋼粉の流動性も低下するため、該合金鋼粉をプレス成形する際の金型への充填の作業効率が低下する場合がある。そのため、アトマイズ鉄基粉末の平均粒径を30μm以上とすることが好ましく、40μm以上とすることがより好ましく、50μm以上とすることがさらに好ましい。 (Average particle size)
The average particle size of the atomized iron-based powder is not particularly limited, and any particle size can be used as long as it is an iron-based powder obtained by the atomization method. However, when the average particle size of the atomized iron-based powder is less than 30 μm, the fluidity of the atomized iron-based powder is lowered, and it may be difficult to supply to the moving bed furnace using a hopper or the like. In addition, if the average particle size of the atomized iron-based powder is less than 30 μm, the fluidity of the alloy steel powder after heat treatment also decreases, so the work efficiency of filling the mold when the alloy steel powder is press-formed decreases. There is a case. For this reason, the average particle size of the atomized iron-based powder is preferably 30 μm or more, more preferably 40 μm or more, and even more preferably 50 μm or more.
アトマイズ鉄基粉末の見掛密度は、特に限定しないが、2.0~3.5Mg/m3とすることが好ましく、2.4~3.2Mg/m3とすることがより好ましい。 (Apparent density)
The apparent density of the atomized iron-based powder is not particularly limited, but is preferably 2.0 to 3.5 Mg / m 3 , more preferably 2.4 to 3.2 Mg / m 3 .
上記成分組成を有するアトマイズ鉄基粉末を、移動床炉に供給し、該移動床炉の移動床上に厚さd(mm)の充填層を形成する。前記移動床炉としては、アトマイズ鉄基粉末を熱処理できるものであれば任意のものを用いることができるが、搬送用のベルトを備えた移動床炉(以下、「ベルト式移動床炉」または「ベルト炉」ともいう)を用いることが好ましい。ベルト炉を用いて熱処理を行う場合には、ベルト上にアトマイズ鉄基粉末を供給して、充填層を形成することができる。アトマイズ鉄基粉末の供給は、任意の方法で行うことができるが、ホッパを用いて行うことが好ましい。また、移動床炉におけるアトマイズ鉄基粉末の搬送方向は特に限定されないが、移動床炉の入り口側から出口側へ直線的に搬送することが一般的である。なお、充填層の厚さについては後述する。 [Moving floor furnace]
Atomized iron-based powder having the above component composition is supplied to a moving bed furnace, and a packed bed having a thickness d (mm) is formed on the moving bed of the moving bed furnace. As the moving bed furnace, any one can be used as long as it can heat treat the atomized iron-based powder, but a moving bed furnace (hereinafter referred to as a “belt type moving bed furnace” or “ It is preferable to use a belt furnace). When heat treatment is performed using a belt furnace, an atomized iron-based powder can be supplied onto the belt to form a packed bed. The atomized iron-based powder can be supplied by any method, but it is preferable to use a hopper. Moreover, the conveyance direction of the atomized iron-based powder in the moving bed furnace is not particularly limited, but it is generally conveyed linearly from the inlet side to the outlet side of the moving bed furnace. The thickness of the filling layer will be described later.
脱炭ゾーン2の上流側には、雰囲気ガスの排出口6が設けられ、雰囲気ガスを装置外に排出している。なお、脱炭の反応式は、次式(I)で表される。
C(in Fe)+ H2O(g)=CO(g)+H2(g)…(I) And in the technique described in Patent Document 5, the reaction in each zone is considered as follows. In the decarburization zone 2, the ambient temperature is controlled to 600 to 1100 ° C. by the radiant tube 11, and water vapor (H 2 O gas) introduced from the water vapor inlet 12 provided on the downstream side of the decarburization zone 2 It is supposed that decarburization is performed from the crude iron-based powder while adjusting the atmospheric gas in the deoxidation zone 3 as the next zone to a dew point of 30 to 60 ° C.
At the upstream side of the decarburization zone 2, an atmospheric gas discharge port 6 is provided to discharge the atmospheric gas to the outside of the apparatus. The decarburization reaction formula is represented by the following formula (I).
C (in Fe) + H 2 O (g) = CO (g) + H 2 (g) (I)
FeO(s)+ H2(g)=Fe(s)+H2O(g)…(II) In the deoxidation zone 3, the ambient temperature is controlled to 700 to 1100 ° C. by the radiant tube 11, and deoxidation is performed from the crude iron-based powder using the atmospheric gas from the denitrification zone 4 (dew point: hydrogen gas of 40 ° C. or less). Is going to do. The reaction formula for deoxidation is represented by the following formula (II).
FeO (s) + H 2 (g) = Fe (s) + H 2 O (g) (II)
N(in Fe)+ 3/2H2(g)=NH3(g)…(III)
水封槽15は、炉外ガスの炉内ガスへの混入や炉内ガスの炉外への漏洩を遮断する働きを果たしている。 In the denitrification zone 4, the ambient temperature is controlled to 450 to 750 ° C. by the radiant tube 11, and hydrogen gas (dew point: 40 ° C.) as a reaction gas is supplied from the atmosphere gas inlet 5 provided on the downstream side of the denitrification zone 4. The following is introduced to denitrify the crude iron-based powder. The denitrification reaction formula is represented by the following formula (III).
N (in Fe) + 3 / 2H 2 (g) = NH 3 (g) (III)
The water sealing tank 15 functions to block the mixing of the outside gas into the furnace gas and the leakage of the inside gas to the outside of the furnace.
本発明において、上記不活性ガスとしては、特に限定されず、任意の不活性ガスを用いることができる。好適に用いることのできる不活性ガスの例としては、アルゴン(Ar)ガス、窒素(N2)ガス、およびそれらの混合ガスが挙げられる。 [Inert gas]
In the present invention, the inert gas is not particularly limited, and any inert gas can be used. Examples of the inert gas that can be suitably used include argon (Ar) gas, nitrogen (N 2 ) gas, and a mixed gas thereof.
上記のように不活性ガスを供給した状態で、前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することにより、粉末冶金用合金鋼粉を得ることができる。前記熱処理により、アトマイズ鉄基粉末に含まれるCおよびOは、後述する脱炭および脱酸(還元)の反応により、除去される。 [Heat treatment]
The alloy steel powder for powder metallurgy can be obtained by heat-treating the atomized iron-based powder in the moving bed furnace with the inert gas supplied as described above. By the heat treatment, C and O contained in the atomized iron-based powder are removed by a decarburization and deoxidation (reduction) reaction described later.
本発明においては、上記熱処理を行う間、前記充填層の厚さd(mm)および平均ガス流速v(mm/s)の両者を、下記(1)式を満足するように制御する。
d/√v≦3.0(mm1/2・s1/2)…(1) ・ D / √v ≦ 3.0
In the present invention, during the heat treatment, both the thickness d (mm) of the packed bed and the average gas flow velocity v (mm / s) are controlled so as to satisfy the following expression (1).
d / √v ≦ 3.0 (mm 1/2 · s 1/2 ) (1)
FeO(s)+C=Fe(s)+CO(g)…(a)
Cr2O3(s)+3C=2Cr(in Fe)+3CO(g)…(b)
MnO(s)+C=Mn(in Fe)+CO(g)…(c)
VO(s)+ H2(g)= V(in Fe)+H2O(g)…(d) The reaction (deoxidation reaction) of the oxides of Fe, Cr, Mn, and V contained in the atomized iron-based powder with carbon is represented by the following equations (a) to (d).
FeO (s) + C = Fe (s) + CO (g) (a)
Cr 2 O 3 (s) + 3C = 2Cr (in Fe) + 3CO (g) (b)
MnO (s) + C = Mn (in Fe) + CO (g) (c)
VO (s) + H 2 (g) = V (in Fe) + H 2 O (g) (d)
本発明の一実施形態においては、前記熱処理によって還元されたアトマイズ鉄基粉末を、さらに、水素ガスまたは水素含有気体を用いて冷却することが好ましい。その理由は次の通りである。 [cooling]
In one embodiment of the present invention, it is preferable that the atomized iron-based powder reduced by the heat treatment is further cooled using hydrogen gas or a hydrogen-containing gas. The reason is as follows.
2N(in Fe)+3H2(g)=2NH3(g)…(e) The reduced atomized iron-based powder may contain N as an impurity. In particular, when the above reduction is performed in an N 2 -containing atmosphere, the N content of the finally obtained alloy steel powder for powder metallurgy may be as high as exceeding 0.005% by mass. . When the alloy steel powder contains N, the compressibility is lowered. Therefore, it is preferable to reduce the N content of the alloy steel powder as much as possible. Therefore, if the reduced atomized iron-based powder is cooled using hydrogen gas or a hydrogen-containing gas, N contained in the powder can be removed by the reaction of the following formula (e). In addition, it is preferable that N content of the alloy steel powder for powder metallurgy finally obtained shall be 0.005 mass% or less.
2N (in Fe) + 3H 2 (g) = 2NH 3 (g) (e)
・不活性ガスの露点:5℃以下
炉内に導入する不活性ガスの露点を5℃以下とすることが好ましい。不活性ガスの露点があまりに高いと、脱酸反応(還元反応)が進みにくくなる。本来、上式(b)および(c)の反応においてCr2O3およびMnOの還元に使われるはずのCが雰囲気中の水蒸気と反応して消費されたり、一旦還元されたCrやMnが雰囲気の水蒸気によって再酸化されたりするためである。熱処理での還元反応を効率よく進めるためには、このようなCの無駄な消費や、CrおよびMnの再酸化を抑制することが必要である。上記観点で、本発明者らが検討を行った結果、充填層厚dと不活性ガスの平均ガス流速vが上記の条件を満足する場合においては、不活性ガスの露点を5℃以下とすることにより、還元反応を効率的に進めることができることを見出した。 (Dew point)
Inert gas dew point: 5 ° C. or less It is preferable that the dew point of the inert gas introduced into the furnace is 5 ° C. or less. If the dew point of the inert gas is too high, the deoxidation reaction (reduction reaction) is difficult to proceed. Originally, in the reaction of the above formulas (b) and (c), C that should be used for reduction of Cr 2 O 3 and MnO reacts with water vapor in the atmosphere and is consumed, or once reduced Cr and Mn are in the atmosphere This is because it is reoxidized by water vapor. In order to efficiently advance the reduction reaction in the heat treatment, it is necessary to suppress such wasteful consumption of C and reoxidation of Cr and Mn. From the above viewpoint, as a result of investigations by the present inventors, when the packed layer thickness d and the average gas flow velocity v of the inert gas satisfy the above conditions, the dew point of the inert gas is set to 5 ° C. or less. Thus, it has been found that the reduction reaction can proceed efficiently.
さらに、上記熱処理では、雰囲気温度T:1080℃以上、保持時間t:104-0.0037・T(h)以上の条件で脱酸を行うことが好ましい。言い換えれば、上記熱処理では、雰囲気温度T:1080℃以上で、保持時間t:104-0.0037・T(h)以上保持する時間を設けることが好ましい。以下、その理由について説明する。 (Atmosphere temperature, holding time)
Further, in the above heat treatment, it is preferable to perform deoxidation under conditions of an atmospheric temperature T: 1080 ° C. or more and a holding time t: 10 4−0.0037 · T (h) or more. In other words, in the heat treatment, it is preferable to provide a time for holding at an atmospheric temperature T: 1080 ° C. or more and a holding time t: 10 4−0.0037 · T (h) or more. The reason will be described below.
従来のように、Cr、Mn、Vなどの易酸化性元素を含まない鉄基粉末を還元する場合には、還元すべき酸化物はFeOのみである。そのため、特許文献5に記載されているように脱酸ゾーンにおける雰囲気温度を700℃以上とすれば、上式(2)の平衡反応から決まる平衡露点は70℃以上と高い温度になる。このとき、導入する不活性ガスの露点を特許文献5にあるように40℃以下とすれば、十分な速度で脱酸反応(還元反応)が進むために問題は発生しなかった。 -Atmospheric temperature T: 1080 degreeC or more As usual, when reducing the iron-based powder which does not contain oxidizable elements, such as Cr, Mn, and V, the oxide which should be reduced is only FeO. Therefore, as described in Patent Document 5, when the atmospheric temperature in the deoxidation zone is set to 700 ° C. or higher, the equilibrium dew point determined from the equilibrium reaction of the above formula (2) is as high as 70 ° C. or higher. At this time, if the dew point of the inert gas to be introduced was set to 40 ° C. or less as described in Patent Document 5, no problem occurred because the deoxidation reaction (reduction reaction) proceeded at a sufficient rate.
保持時間tを、雰囲気温度T(℃)に応じて、104-0.0037・T(h)以上とすれば、Oをより低減することができるため好ましい。なお、前記tおよびTの間の関係は、様々なTおよびtで合金鋼粉を製造する実験を行った結果から決定した。具体的には、得られた合金鋼粉のO含有量を、T-t図上へプロットし、同一酸素量を結ぶ曲線(等高線)を近似式として定めた。一方、保持時間の上限は特に限定されないが、脱酸反応完了に必要な時間以上に保持を行っても製造コストが増加するだけであるため、 前記保持時間は4時間以下とすることが好ましい。 Holding time t: 10 4 -0.0037 · T (h) or more If the holding time t is 10 4 -0.0037 · T (h) or more according to the ambient temperature T (° C.), O Since it can reduce more, it is preferable. In addition, the relationship between the said t and T was determined from the result of having conducted the experiment which manufactures alloy steel powder with various T and t. Specifically, the O content of the obtained alloy steel powder was plotted on a Tt diagram, and a curve (contour line) connecting the same oxygen content was determined as an approximate expression. On the other hand, the upper limit of the retention time is not particularly limited, but the retention time is preferably 4 hours or less because the production cost only increases even if the retention time is longer than the time required for completion of the deoxidation reaction.
水アトマイズ法にて、表1に示す成分組成を有するアトマイズ鉄基粉末を製造した。アトマイズ鉄基粉末記号:A、B、F、I、およびMについては、[O]≧4/3[C]-2/15を満たしているが、4/3[C]+0.28≧[O]を満たしておらずO過剰であるため、熱処理後のC量およびO量を適正範囲に調整するためには、熱処理前に、適正量の炭素成分、例えば、黒鉛粉などの炭素粉末の混合が必要である。アトマイズ鉄基粉末記号:C~E、G、H、およびJについては、[O]≧4/3[C]-2/15および4/3[C]+0.28≧[O]をともに満たしており、熱処理前での炭素粉末の混合は必要ない。アトマイズ鉄基粉末記号:KおよびLについては、[O]≧4/3[C]-2/15を満たしておらずC過剰である。アトマイズ鉄基粉末記号:LおよびMについては、C量またはO量がアトマイズ鉄基粉末での適正範囲を外れている。 Example 1
An atomized iron-based powder having the component composition shown in Table 1 was produced by the water atomization method. Atomized iron-based powder symbols: A, B, F, I, and M satisfy [O] ≧ 4/3 [C] −2/15, but 4/3 [C] + 0.28 ≧ [ O] is not satisfied, and O is excessive. Therefore, in order to adjust the C amount and O amount after heat treatment to an appropriate range, an appropriate amount of carbon component, for example, carbon powder such as graphite powder is adjusted before heat treatment. Mixing is necessary. Atomized iron-based powder symbols: C to E, G, H, and J satisfy both [O] ≧ 4/3 [C] −2/15 and 4/3 [C] + 0.28 ≧ [O] It is not necessary to mix carbon powder before heat treatment. Atomized iron-based powder symbols: K and L do not satisfy [O] ≧ 4/3 [C] −2/15 and are C-excessive. Atomized iron-based powder symbol: For L and M, the amount of C or O is outside the appropriate range for the atomized iron-based powder.
表2は、不活性ガスとしてAr含有ガスを用いた場合の例である。粉末記号:AおよびIを使用し、炭素粉末を混合していないもの(粉末記号:A10、I10)については、アトマイズ鉄基粉末がO過剰であるため、熱処理条件を適正に調整した上でもこれらを熱処理した後のO量が適正値を外れている。したがって、アトマイズ鉄基粉末記号:AおよびIについては、4/3([C]+[MXC])+0.28≧[O]を満たすような適正量の炭素粉末の混合が必要である。アトマイズ鉄基粉末記号:B、F、Mについても、アトマイズ鉄基粉末がO過剰であるため、同様である。これらについて、4/3([C]+[MXC])+0.28≧[O]を満たすように表2に示したような黒鉛粉の混合を行った例が、粉末記号:A11~A18、B11~B15、F11、I11、およびM11に示されている。 -When Ar containing gas is used Table 2 is an example at the time of using Ar containing gas as an inert gas. For powder symbols: A and I that are not mixed with carbon powder (powder symbols: A10, I10), the atomized iron-based powder is O-excess, so these can be obtained even after the heat treatment conditions are adjusted appropriately. The amount of O after heat-treating is out of the proper value. Therefore, for the atomized iron-based powder symbols: A and I, it is necessary to mix an appropriate amount of carbon powder that satisfies 4/3 ([C] + [MXC]) + 0.28 ≧ [O]. The same applies to the atomized iron-based powder symbols: B, F, and M because the atomized iron-based powder is O-excessive. Regarding these, examples of mixing graphite powder as shown in Table 2 so as to satisfy 4/3 ([C] + [MXC]) + 0.28 ≧ [O] are powder symbols: A11 to A18, B11 to B15, F11, I11, and M11.
表3は、N2含有雰囲気で熱処理を行った場合の例である。アトマイズ鉄基粉末記号:A、B、FおよびIについてはO過剰であるため、4/3([C]+[MXC])+0.28≧[O]を満たすような適正量の炭素粉末の混合が必要である。そこで、表3に示したような黒鉛粉の混合を行い、種々の熱処理条件で処理した例が、粉末記号:A21~A28、B21~B25、C21~C24、D21~D24、E21~E23、F21、G21、H21、I21、J21に示されている。 · N 2 containing case Table 3 using the gas is an example of a case of performing heat treatment in an N 2 containing atmosphere. Atomized iron-based powder symbol: A, B, F and I are O-excessive, so an appropriate amount of carbon powder satisfying 4/3 ([C] + [MXC]) + 0.28 ≧ [O] Mixing is necessary. Accordingly, examples of mixing graphite powder as shown in Table 3 and treating under various heat treatment conditions are powder symbols: A21 to A28, B21 to B25, C21 to C24, D21 to D24, E21 to E23, F21. , G21, H21, I21, J21.
表1のアトマイズ鉄基粉末のうち、AおよびJを、不活性ガスとしてN2を用いて熱処理することによって還元した。処理条件を表4に示す。その際、アトマイズ鉄基粉末Aについては、表4に示した量の黒鉛粉と混合した後に、移動床炉へ供給した。一方、アトマイズ鉄基粉末Jについては、黒鉛粉と混合することなく、そのまま(アトマイズ鉄基粉末Jのみを)移動床炉へ供給した。 (Example 2)
Of the atomized iron-based powders in Table 1, A and J were reduced by heat treatment using N 2 as an inert gas. Table 4 shows the processing conditions. At that time, the atomized iron-based powder A was mixed with the amount of graphite powder shown in Table 4 and then supplied to the moving bed furnace. On the other hand, the atomized iron-based powder J was supplied as it was (only the atomized iron-based powder J) to the moving bed furnace without being mixed with the graphite powder.
2 脱炭ゾーン
3 脱酸ゾーン
4 脱窒ゾーン
5 雰囲気ガス供給口(供給雰囲気ガス)
6 雰囲気ガス排出口(排出雰囲気ガス)
7 粗製鉄基粉末
8 ホッパ
9 ベルト
10 ホイール
11 ラジアントチューブ
12 水蒸気吹込み管
13 製品粉
14 製品タンク
15 水封槽
20 製品粉粉砕用装置
21 冷却器
22 循環ファン
30 炉体(加熱炉)
100 熱処理装置 1 Partition Wall 2 Decarburization Zone 3 Deoxidation Zone 4 Denitrification Zone 5 Atmosphere Gas Supply Port (Supply Atmosphere Gas)
6 Atmosphere gas outlet (exhaust gas)
7 Crude iron-based powder 8 Hopper 9 Belt 10 Wheel 11 Radiant tube 12 Steam blowing tube 13 Product powder 14 Product tank 15 Water seal tank 20 Product powder grinding device 21 Cooler 22 Circulating fan 30 Furnace (heating furnace)
100 Heat treatment equipment
Claims (4)
- 質量%で、
C :0.8%以下、
O :1.0%以下、
S :0.3%以下、
P :0.03%以下、ならびに
合金元素として、
Mn:0.08%超1.0%以下、
Cr:0.3~3.5%、
Mo:0.1~2%、および
V :0.1~0.5%、からなる群より選択される1または2以上
を含有し、
残部Feおよび不可避不純物であるアトマイズ鉄基粉末を用意し、
前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給し、
前記移動床炉内に、不活性ガスを平均ガス流速v(mm/s)となるように供給し、
前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする、粉末冶金用合金鋼粉の製造方法であって、
前記dおよびvが、下記(1)式を満足し
前記アトマイズ鉄基粉末のC含有量[C](質量%)と前記アトマイズ鉄基粉末のO含有量[O](質量%)とが、下記(2)式を満足し、
前記アトマイズ鉄基粉末の移動床炉への供給において、前記アトマイズ鉄基粉末のC含有量[C]およびO含有量[O]が下記(3)式を満たす場合には、該アトマイズ鉄基粉末をそのまま前記移動床炉に供給し、下記(3)式を満たさない場合には、下記(4)式を満足するように該アトマイズ鉄基粉末に炭素成分をさらに混合したのち、前記移動床炉に供給する、粉末冶金用合金鋼粉の製造方法。
記
d/√v≦3.0(mm1/2・s1/2)…(1)
[O]≧4/3[C]-2/15…(2)
4/3[C]+0.28≧[O]…(3)
4/3([C]+[MXC])+0.28≧[O]…(4)
(ここで、[MXC]は、(前記アトマイズ鉄基粉末に混合される炭素成分の質量/該アトマイズ鉄基粉末の質量)×100(質量%)とする) % By mass
C: 0.8% or less,
O: 1.0% or less,
S: 0.3% or less,
P: 0.03% or less, and as an alloy element,
Mn: more than 0.08% and 1.0% or less,
Cr: 0.3 to 3.5%,
1 or 2 or more selected from the group consisting of Mo: 0.1-2% and V: 0.1-0.5%,
Prepare the remaining Fe and atomized iron-based powder which is an inevitable impurity,
Supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed of thickness d (mm);
In the moving bed furnace, an inert gas is supplied so as to have an average gas flow velocity v (mm / s),
The atomized iron-based powder is reduced by heat treatment in the moving bed furnace to obtain an alloy steel powder for powder metallurgy, a method for producing an alloy steel powder for powder metallurgy,
Said d and v satisfy | fill following (1) Formula, C content [C] (mass%) of the said atomized iron base powder, and O content [O] (mass%) of the said atomized iron base powder, The following equation (2) is satisfied,
In the supply of the atomized iron-based powder to the moving bed furnace, when the C content [C] and the O content [O] of the atomized iron-based powder satisfy the following formula (3), the atomized iron-based powder Is supplied to the moving bed furnace as it is, and if the following formula (3) is not satisfied, the atomized iron-based powder is further mixed with a carbon component so as to satisfy the following formula (4), and then the moving bed furnace A method for producing alloy steel powder for powder metallurgy, which is supplied to the company.
D / √v ≦ 3.0 (mm 1/2 · s 1/2 ) (1)
[O] ≧ 4/3 [C] -2/15 (2)
4/3 [C] + 0.28 ≧ [O] (3)
4/3 ([C] + [MXC]) + 0.28 ≧ [O] (4)
(Here, [MXC] is (mass of carbon component mixed with the atomized iron-based powder / mass of the atomized iron-based powder) × 100 (mass%)) - 前記還元されたアトマイズ鉄基粉末を、水素ガスまたは水素含有気体を用いて冷却する、請求項1に記載の粉末冶金用合金鋼粉の製造方法。 The method for producing alloy steel powder for powder metallurgy according to claim 1, wherein the reduced atomized iron-based powder is cooled using hydrogen gas or a hydrogen-containing gas.
- 前記不活性ガスの露点を5℃以下とする、請求項1または2に記載の粉末冶金用合金鋼粉の製造方法。 The method for producing alloy steel powder for powder metallurgy according to claim 1 or 2, wherein the dew point of the inert gas is 5 ° C or lower.
- 前記熱処理において、雰囲気温度T:1080℃以上、保持時間t:104-0.0037・T(h)以上の条件で脱酸が行われる、請求項1~3のいずれか一項に記載の粉末冶金用合金鋼粉の製造方法。 The deoxidation is performed in the heat treatment under conditions of an atmospheric temperature T: 1080 ° C. or more and a holding time t: 10 4−0.0037 · T (h) or more. A method for producing alloy steel powder for powder metallurgy.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187008471A KR102090035B1 (en) | 2015-09-30 | 2016-09-30 | Method for manufacturing alloy steel powder for powder metallurgy |
JP2017500094A JP6112283B1 (en) | 2015-09-30 | 2016-09-30 | Method for producing alloy steel powder for powder metallurgy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-195156 | 2015-09-30 | ||
JP2015195156 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056512A1 true WO2017056512A1 (en) | 2017-04-06 |
Family
ID=58423042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004441 WO2017056512A1 (en) | 2015-09-30 | 2016-09-30 | Production method for alloy steel powder for powder metallurgy |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6112283B1 (en) |
KR (1) | KR102090035B1 (en) |
WO (1) | WO2017056512A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158788A1 (en) * | 2019-01-30 | 2020-08-06 | 住友電気工業株式会社 | Sintered material, gear, and method for producing sintered material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09170002A (en) * | 1995-10-19 | 1997-06-30 | Kawasaki Steel Corp | Iron powder finish heat-treating method and device therefor |
JP2006016688A (en) * | 2004-05-31 | 2006-01-19 | Jfe Steel Kk | Finish-heat treatment method for iron powder and apparatus therefor |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3616680A (en) | 1969-10-27 | 1971-11-02 | Sargent Welch Scientific Co | Leak detector |
JPS5810962B2 (en) | 1978-10-30 | 1983-02-28 | Kawasaki Steel Co | |
JPS6440881A (en) | 1987-08-07 | 1989-02-13 | Canon Kk | Hologram having protective layer |
SE9602835D0 (en) | 1996-07-22 | 1996-07-22 | Hoeganaes Ab | Process for the preparation of an iron-based powder |
SE9800153D0 (en) | 1998-01-21 | 1998-01-21 | Hoeganaes Ab | Low pressure process |
JP5731730B2 (en) | 2008-01-11 | 2015-06-10 | ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. | Semiconductor memory device and data processing system including the semiconductor memory device |
JP5389577B2 (en) | 2008-09-24 | 2014-01-15 | Jfeスチール株式会社 | Method for producing sintered body by powder metallurgy |
JP3224417U (en) | 2019-09-25 | 2019-12-19 | 株式会社モンスターズ | EMS device with simple function |
-
2016
- 2016-09-30 KR KR1020187008471A patent/KR102090035B1/en active IP Right Grant
- 2016-09-30 JP JP2017500094A patent/JP6112283B1/en active Active
- 2016-09-30 WO PCT/JP2016/004441 patent/WO2017056512A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09170002A (en) * | 1995-10-19 | 1997-06-30 | Kawasaki Steel Corp | Iron powder finish heat-treating method and device therefor |
JP2006016688A (en) * | 2004-05-31 | 2006-01-19 | Jfe Steel Kk | Finish-heat treatment method for iron powder and apparatus therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158788A1 (en) * | 2019-01-30 | 2020-08-06 | 住友電気工業株式会社 | Sintered material, gear, and method for producing sintered material |
Also Published As
Publication number | Publication date |
---|---|
JP6112283B1 (en) | 2017-04-12 |
KR20180043821A (en) | 2018-04-30 |
KR102090035B1 (en) | 2020-03-17 |
JPWO2017056512A1 (en) | 2017-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106011648A (en) | Gear steel and production method thereof | |
CN111440987B (en) | Quenching distribution steel with tensile strength of more than or equal to 980MPa produced by adopting short process and method | |
EP2653569B1 (en) | High-carbon chromium bearing steel, and process for production thereof | |
JP6112283B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
US9815115B2 (en) | Finish heat treatment method and finish heat treatment apparatus for iron powder | |
JP6112281B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
CN103614637A (en) | Rack steel coil rod for combing and production method thereof | |
JP6112280B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
CN112226676A (en) | Low-cost L320MS/X46MS hot-rolled steel strip for hydrogen sulfide corrosion resistant welded pipe and manufacturing method thereof | |
JP6112278B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
JP6112282B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
JP6112277B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
JP2716301B2 (en) | Manufacturing method of grain size stabilized case hardening steel | |
JP5515949B2 (en) | Low carbon steel production method with excellent material uniformity in the thickness direction | |
JPH09263801A (en) | Finish heat treatment of iron and steel powder and finish heat treatment furnace | |
JPH11335776A (en) | Carburizing steel excellent in grain coarsening resistance at the time of carburizing as well as in cold forgeability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017500094 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850690 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187008471 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16850690 Country of ref document: EP Kind code of ref document: A1 |