WO2017056511A1 - 粉末冶金用合金鋼粉の製造方法 - Google Patents
粉末冶金用合金鋼粉の製造方法 Download PDFInfo
- Publication number
- WO2017056511A1 WO2017056511A1 PCT/JP2016/004440 JP2016004440W WO2017056511A1 WO 2017056511 A1 WO2017056511 A1 WO 2017056511A1 JP 2016004440 W JP2016004440 W JP 2016004440W WO 2017056511 A1 WO2017056511 A1 WO 2017056511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- gas
- alloy steel
- iron
- based powder
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 181
- 229910000851 Alloy steel Inorganic materials 0.000 title claims abstract description 48
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 235
- 239000007789 gas Substances 0.000 claims abstract description 109
- 229910052742 iron Inorganic materials 0.000 claims abstract description 109
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 42
- 239000001257 hydrogen Substances 0.000 claims abstract description 41
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims description 60
- 229910045601 alloy Inorganic materials 0.000 claims description 14
- 239000000956 alloy Substances 0.000 claims description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 30
- 229910052748 manganese Inorganic materials 0.000 abstract description 19
- 229910052804 chromium Inorganic materials 0.000 abstract description 18
- 239000000203 mixture Substances 0.000 abstract description 7
- 238000012423 maintenance Methods 0.000 abstract description 5
- 238000004868 gas analysis Methods 0.000 abstract description 4
- 238000011049 filling Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000005261 decarburization Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 238000006722 reduction reaction Methods 0.000 description 14
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 238000009692 water atomization Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000009689 gas atomisation Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- 238000000889 atomisation Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000756 V alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
Definitions
- the present invention relates to a method for producing an alloy steel powder for powder metallurgy by reducing atomized iron base powder to produce an alloy steel powder for powder metallurgy, and in particular, the atomized iron base powder contains an easily oxidizable alloy element such as Cr.
- the present invention relates to a method for producing alloy steel powder for powder metallurgy that can effectively reduce the C (carbon) content and the O (oxygen) content in the alloy steel powder even if contained.
- Powder metallurgy technology allows parts with complex shapes to be manufactured in a shape very close to the product shape (so-called near net shape) and with high dimensional accuracy. Therefore, if a part is produced using powder metallurgy technology, the cutting cost can be greatly reduced. For this reason, powder metallurgy products to which powder metallurgy technology is applied are used in various fields as various machine parts. Recently, there has been a strong demand for improving the strength of powder metallurgy products in order to reduce the size and weight of parts. In particular, there is a demand for higher strength in iron-based powder metallurgy products (iron-based sintered bodies). Is strong.
- an alloy element is added to the iron-based powder used in powder metallurgy.
- the alloy element for example, Cr, Mn, and Mo are used because they have a high effect of improving hardenability and are relatively inexpensive.
- V is used as an alloy element in order to improve high temperature strength and wear resistance.
- Examples of the alloy powder for powder metallurgy containing the above alloy elements include Cr—Mo alloy steel powder (Patent Document 1), Cr—Mn—Mo alloy steel powder (Patent Document 2, Patent Document 3), Cr—Mn—Mo—V alloy steel powder (Patent Document 4) is known.
- heat treatment is performed to reduce the C content and O content in the iron-based powder as a raw material.
- the heat treatment is generally carried out continuously using a moving bed furnace (moving bed furnace).
- the iron-based powder include a crude iron-based powder that has been atomized and a roughly reduced iron obtained by roughly reducing a mill scale.
- a crude iron-based powder such as a base powder is used.
- at least one treatment of decarburization, deoxidation, and denitrification is performed according to the use of the powder.
- an apparatus described in Patent Document 5 As an apparatus for performing the above heat treatment, for example, an apparatus described in Patent Document 5 is known.
- the space in the moving bed furnace is divided into a plurality of partitions by a partition wall provided so as to be perpendicular to the traveling direction of the raw material powder.
- the flow path for flowing atmospheric gas is provided in the upper part of each divided
- the heat treatment is continuously performed while flowing an atmospheric gas through the channel in a direction opposite to the moving direction of the raw material powder.
- Cr and Mn are further oxidized during the heat treatment, and the amount of oxide is increased.
- the C content and the O content are large, the compressibility of the alloy steel powder at the time of pressure forming is lowered, so that a large amount of oxide remains is a problem.
- V used as an alloy element in Patent Document 4 has a property of being more easily oxidized than Cr and Mn. Therefore, V oxide contained in the atomized iron-based powder is removed by a normal heat treatment. It is difficult. Therefore, in Patent Document 4, costly vacuum reduction is performed.
- Patent Document 6 and Patent Document 7 propose a method that enables decarburization and deoxidation in the production of alloy steel powder containing easily oxidizable elements such as Cr and Mn.
- the method proposed in Patent Document 7 is a method in which heat treatment is continuously performed using a belt furnace, and thus is suitable for mass production.
- it is essential to continuously measure the CO or CO 2 concentration or the oxygen potential (O 2 concentration or H 2 / H 2 O concentration ratio) in the atmospheric gas during the heat treatment, Furthermore, it is necessary to adjust the amount of water vapor injected into the furnace so that these measured values become target values.
- the sensor part is soiled and the gas intake port is clogged, making it impossible to perform measurement normally. There's a problem. Therefore, when the method of Patent Document 7 is continuously performed, maintenance of the analyzer is a heavy burden.
- the present invention has been made in view of the above circumstances, and is a method for producing alloy steel powder for powder metallurgy using a moving bed furnace, without requiring gas analysis that requires complicated maintenance management, To provide a method for producing an alloy steel powder for powder metallurgy that can heat-treat an iron-based powder containing an easily oxidizable element such as Cr, Mn, V, and stably reduce the C content and the O content. With the goal.
- the gist configuration of the present invention is as follows.
- an alloy steel powder containing oxidizable elements such as Cr, Mn, and V is heat-treated using a moving bed furnace without performing gas analysis that requires complicated maintenance and management. , C content and O content can be stably reduced. As a result, it is possible to produce alloy steel powder that is low in cost and excellent in compressibility during pressure forming.
- sintered parts produced using the alloy steel powder for powder metallurgy obtained by the production method of the present invention have excellent mechanical properties such as strength, toughness and fatigue properties. Applications of powders and sintered bodies can be expanded.
- FIG. 1 It is side sectional drawing which shows the example of the heat processing apparatus which can be used in one Embodiment of this invention. It is a figure which shows the example of the temperature pattern in the heat processing apparatus described in patent document 5.
- FIG. 1 It is side sectional drawing which shows the example of the heat processing apparatus which can be used in one Embodiment of this invention. It is a figure which shows the example of the temperature pattern in the heat processing apparatus described in patent document 5.
- alloy steel powder for powder metallurgy (hereinafter sometimes simply referred to as “alloy steel powder”) is produced by heat-treating atomized iron-based powder as a raw material using a moving bed furnace.
- the production method of the present invention includes the following treatments; (1) Prepare atomized iron-based powder. (2) supplying the atomized iron-based powder into a moving bed furnace so as to form a packed bed having a thickness of d (mm); (3) By supplying hydrogen-containing gas into the moving bed furnace so as to have an average gas flow velocity v (mm / s), and (4) by heat-treating the atomized iron-based powder in the moving bed furnace. Reduce to alloy steel powder for powder metallurgy.
- Each of the above processes can be performed independently at an arbitrary timing, and a plurality of processes can be performed simultaneously.
- atomized iron-based powder is used as a raw material.
- the manufacturing method of the atomized iron-based powder is not particularly limited, and can be manufactured according to a conventional method.
- “Atomized iron-based powder” means an iron-based powder produced by the atomizing method.
- the “iron-based powder” means a powder containing 50% by mass or more of Fe.
- the atomized iron-based powder either a gas atomized iron-based powder obtained by a gas atomizing method or a water atomized iron-based powder obtained by a water atomizing method can be used.
- the gas atomization method it is preferable to use an inert gas such as nitrogen or argon.
- gas since gas is inferior in cooling capacity compared to water, it is necessary to use a large amount of gas when producing iron-based powder by the gas atomization method. Therefore, it is preferable to use the water atomization method from the viewpoint of mass productivity and manufacturing cost.
- the water atomization method is normally performed in an atmosphere in which air is mixed, the iron-based powder is more easily oxidized in the production process than the gas atomization method. Therefore, the method of the present invention is particularly effective when a water atomized iron-based powder is used.
- C and O are elements to be reduced by a heat treatment described later. And from the viewpoint of improving the compressibility of the finally obtained alloy steel powder for powder metallurgy, it is desirable to reduce the C content and O content of the alloy steel powder as much as possible, specifically, C: 0.1% or less, O: 0.28% or less are preferable. In order to achieve these appropriate amounts of C and O, the amount that can be reduced by the heat treatment according to the present invention is anticipated, and the appropriate ranges of the C content and O content of the atomized iron-based powder are determined as follows.
- C 0.8% or less C is present in the atomized iron-based powder mainly as a precipitate such as cementite or in a solid solution state.
- the C content in the atomized iron-based powder exceeds 0.8%, it becomes difficult to lower the C content to 0.1% or less in the heat treatment of the present invention, and an alloy powder having excellent compressibility is obtained. I can't. Therefore, the C content of the atomized iron-based powder is set to 0.8% or less.
- the lower the C content the easier the reduction (decarburization) of the C content during heat treatment. Therefore, the lower limit of the C content is not particularly limited, and may be 0% or industrially greater than 0%.
- O 1.0% or less O is mainly present on the surface of the iron-based powder as Cr oxide, Mn oxide, V oxide, and Fe oxide. If the O content in the atomized iron-based powder exceeds 1.0%, it becomes difficult to reduce the O content to 0.28% or less during heat treatment, and an alloy powder having excellent compressibility cannot be obtained. Therefore, the O content of the atomized iron-based powder is set to 1.0% or less. The O content is preferably 0.9% or less. On the other hand, the lower the O content, the easier the reduction (deoxidation) of the O content during heat treatment. Therefore, the lower limit of the O content is not particularly limited, but excessive reduction leads to an increase in manufacturing cost, so the O content is preferably 0.4% or more.
- the contents of S, P, Cr, Mn, Mo, and V are not changed by the heat treatment of the present invention. Therefore, these elements contained in the atomized iron-based powder remain as they are in the alloy steel powder for powder metallurgy after the heat treatment. Based on this, the contents of these elements in the atomized iron-based powder are respectively defined as follows.
- the S content in the alloy steel powder is 0.3% or less.
- the S content in the atomized iron-based powder stage is made 0.3% or less.
- the S content is preferably set to 0.25% or less.
- the lower limit of the S content is not particularly limited and may be 0%, but industrially it may be more than 0%. From the viewpoint of improving the machinability after sintering, the S content is preferably 0.05% or more.
- P 0.03% or less
- P is an element contained as one of inevitable impurities.
- the P content of the atomized iron-based powder is set to 0.03% or less.
- the lower limit of the P content is not particularly limited and may be 0%, but industrially it may be more than 0%. However, excessive reduction leads to an increase in manufacturing cost, so the P content is preferably 0.0005% or more.
- the atomized iron-based powder in the present invention contains one or more selected from the group consisting of Mn, Cr, Mo, and V in addition to the above components.
- Mn more than 0.08% and not more than 1.0% Mn is an element having an action of improving the strength of the sintered body by improving hardenability and strengthening solid solution.
- Mn content shall be over 0.08%.
- the Mn content is preferably 0.10% or more.
- the Mn content is higher than 1.0%, the amount of Mn oxide generated increases, and the compressibility of the alloy steel powder decreases. Further, the Mn oxide serves as a starting point for destruction inside the sintered body, and reduces fatigue strength and toughness. Therefore, the Mn content is 1.0% or less.
- the Mn content is preferably 0.95% or less, and more preferably 0.80% or less.
- Cr 0.3-3.5%
- Cr is an element that has the effect of improving hardenability and improving the tensile strength and fatigue strength of the sintered body. Further, Cr has the effect of increasing the hardness after heat treatment such as quenching and tempering of the sintered body and improving the wear resistance. When adding Cr, in order to acquire these effects, Cr content shall be 0.3% or more. On the other hand, when the Cr content exceeds 3.5%, the amount of Cr oxide generated increases. Since the Cr oxide serves as a starting point for fatigue failure inside the sintered body, the fatigue strength of the sintered body is reduced. Therefore, the Cr content is 3.5% or less.
- Mo 0.1-2%
- Mo is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, precipitation strengthening, and the like.
- Mo content shall be 0.1% or more.
- the content of Mo exceeds 2%, the toughness of the sintered body decreases. Therefore, the Mo content is 2% or less.
- V 0.1-0.5%
- V is an element having an action of improving the strength of the sintered body by improving hardenability, solid solution strengthening, precipitation strengthening, and the like.
- V content shall be 0.1% or more.
- the V content exceeds 0.5%, the toughness of the sintered body decreases. Therefore, the V content is 0.5% or less.
- the component composition of the atomized iron-based powder in the present invention is composed of the above elements, the remainder Fe and inevitable impurities.
- the average particle size of the atomized iron-based powder is not particularly limited, and any particle size can be used as long as it is an iron-based powder obtained by the atomization method.
- the average particle size of the atomized iron-based powder is less than 30 ⁇ m, the fluidity of the atomized iron-based powder is lowered, and it may be difficult to supply to the moving bed furnace using a hopper or the like.
- the average particle size of the atomized iron-based powder is less than 30 ⁇ m, the fluidity of the alloy steel powder after heat treatment also decreases, so the work efficiency of filling the mold when the alloy steel powder is press-formed decreases. There is a case.
- the average particle size of the atomized iron-based powder is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, and even more preferably 50 ⁇ m or more.
- the average particle size of the atomized iron-based powder is preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 90 ⁇ m or less.
- the average particle diameter means a median diameter (so-called d50, volume basis).
- the apparent density of the atomized iron-based powder is not particularly limited, but is preferably 2.0 to 3.5 Mg / m 3, and more preferably 2.4 to 3.2 Mg / m 3 .
- Atomized iron-based powder having the above component composition is supplied to a moving bed furnace, and a packed bed having a thickness d (mm) is formed on the moving bed of the moving bed furnace.
- a moving bed furnace any one can be used as long as it can heat treat the atomized iron-based powder, but a moving bed furnace (hereinafter referred to as a “belt type moving bed furnace” or “ It is preferable to use a belt furnace).
- a moving bed furnace hereinafter referred to as a “belt type moving bed furnace” or “ It is preferable to use a belt furnace).
- an atomized iron-based powder can be supplied onto the belt to form a packed bed.
- the atomized iron-based powder can be supplied by any method, but it is preferable to use a hopper.
- the conveyance direction of the atomized iron-based powder in the moving bed furnace is not particularly limited, but it is generally conveyed linearly from the inlet side to the outlet side of the moving bed furnace. The thickness of the fill
- the heating system of the moving bed furnace is not particularly limited, and any system can be used as long as it can heat the atomized iron-based powder.
- the indirect heating system is used. It is preferable to use heating using a radiant tube.
- a muffle furnace can also be suitably used as an indirect heating furnace.
- the moving bed furnace is supplied with a hydrogen-containing gas.
- the hydrogen-containing gas any gas can be used as long as it contains hydrogen.
- the hydrogen-containing gas include pure H 2 gas and a mixed gas of H 2 gas and inert gas.
- the mixed gas it is preferable to use a mixed gas of H 2 gas and N 2 gas.
- a mixed gas of H 2 gas and N 2 gas (so-called AX gas) obtained by decomposing ammonia can also be used.
- the H 2 content of the hydrogen-containing gas is preferably 75 vol% or more, and 90 vol% or more. it is more preferable, and even more preferably to a 100 vol% (H 2 gas).
- the hydrogen-containing gas is supplied into the moving bed furnace so as to have an average gas flow velocity v (mm / s) during the heat treatment of the atomized iron-based powder in the moving bed furnace.
- the hydrogen-containing gas is preferably flowed in the moving bed furnace in a direction opposite to the moving direction of the raw material powder.
- a conveying means such as a belt
- the hydrogen-containing gas is introduced from the other end (downstream side) and exhausted from the one end (upstream side). Therefore, it is preferable that the moving bed furnace is provided with an atomized iron-based powder supply port and an atmospheric gas discharge port at one end, and a discharge port for treated powder (alloy steel powder) and a hydrogen-containing gas supply port at the other end.
- both the thickness d (mm) of the packed bed and the average gas flow velocity v (mm / s) are controlled so as to satisfy the following expression (1).
- the heat treatment By performing the heat treatment under the above conditions, it is possible to stably reduce C and O contained in the atomized iron-based powder in spite of the fact that the atomized iron-based powder contains oxidizable elements such as Cr, Mn, and V. it can. As a result, the C content and the O content in the alloy steel powder after the heat treatment can be set to extremely low values such as C ⁇ 0.1% and O ⁇ 0.28%. The reason will be described below.
- the dew point of the atmosphere gas in the furnace is always set higher than the equilibrium dew point determined by the equilibrium reaction of the above equations (2) to (5). Need to keep low. Therefore, it is necessary to reduce the amount of generated H 2 O gas so that the dew point of the atmospheric gas is not increased too much by the H 2 O gas generated by the reaction.
- the packed bed thickness it is conceivable to suppress the amount of iron-based powder charged into the moving bed furnace, that is, the packed bed thickness. It is also conceivable to reduce the H 2 O gas concentration by removing the H 2 O gas generated by the above reaction or diluting with a hydrogen-containing gas introduced into the moving bed furnace. Therefore, in the present invention, the packed bed thickness d and the average gas flow velocity v in the furnace when the hydrogen-containing gas is introduced into the furnace are controlled so as to satisfy the above equation (1).
- a velocity boundary layer of flowing hydrogen-containing gas is formed in the space above the surface of the packed bed. It is derived from the theory regarding the boundary layer that the thickness of the velocity boundary layer is inversely proportional to ⁇ v. In addition, since the diffusion rate of hydrogen before the reduction reaction and water vapor generated by the reduction reaction is considered to be constant regardless of the thickness of the velocity boundary layer, the diffusion time is proportional to the thickness of the velocity boundary layer.
- the velocity boundary layer thickness is halved and the same diffusion time is given, the hydrogen concentration at the packed bed surface will be doubled and the water vapor concentration at the packed bed surface will be halved, It is estimated that even if the thickness of the packed bed is doubled, the concentration of hydrogen and water vapor in the lowermost layer of the packed bed can be made the same. Therefore, assuming that the concentration is constant, the packed layer thickness and the velocity boundary layer thickness are inversely proportional, that is, it is estimated that the packed layer thickness and ⁇ v are in a proportional relationship.
- d / ⁇ v ⁇ 2.3 (mm 1/2 ⁇ s 1/2 ) is more preferable.
- the lower limit of d / ⁇ v is not particularly limited. The lower the better, the lower the better. However, if d is excessively decreased, the production efficiency decreases, and if v is excessively increased, the cost increases. It is preferable to set it as the above, and it is more preferable to set it as 0.3 or more.
- the average gas flow velocity v (mm / s) is obtained by changing the volume flow rate f of hydrogen-containing gas supplied to the moving bed furnace (volume of hydrogen-containing gas supplied per second). It is defined as dividing by the cross-sectional area S of the floor furnace.
- the cross-sectional area refers to the area of the space inside the annealing furnace that is perpendicular to the conveying direction of the atomized iron-based powder (in the belt furnace, the belt traveling method).
- the cross-sectional area S is the cross-sectional area at the highest temperature in the annealing furnace.
- the deoxidation zone is usually at the highest temperature. May be used.
- the volume flow rate f is a volume flow rate at the measurement position of the cross-sectional area S. That is, considering the volume expansion of gas at a high temperature, the above flow rate is multiplied by the volume expansion coefficient obtained from the temperature at the position.
- the definition of the cross-sectional area S will be further described.
- the cross-sectional area of the internal space of the moving bed furnace is used as it is as the cross-sectional area S without subtracting the area of objects existing in the furnaces.
- a radiant tube type heat treatment furnace as shown in FIG. 1, a radiant tube, a belt, a roll (not shown) for feeding the belt, and iron-based powder laminated on the belt are contained in the furnace.
- existing in the cross section of the space part in the furnace the gas flow rate is slower in the part where there is no radiant tube or roll, but it is particularly important to control the flow rate in this slow part. It was because it was found from.
- the cross-sectional area of the belt or iron powder packed-layer thickness portion is negligible with respect to the entire cross-sectional area of the furnace, so there is no need to consider it.
- the dew point of the hydrogen-containing gas introduced into the furnace is preferably 0 ° C or less.
- it is necessary to keep the dew point of the atmospheric gas lower than the equilibrium dew point determined from the equilibrium reaction represented by the above equations (2) to (5). There is. Therefore, it is preferable to lower the dew point of the introduced hydrogen-containing gas. Specifically, it is preferably 0 ° C. or lower, more preferably ⁇ 15 ° C. or lower.
- the hydrogen-containing gas flowing upstream in the iron-based powder conveyance direction contains water vapor generated by the reaction.
- the dew point is higher than the hydrogen-containing gas at the time of supply. Considering this, the dew point of the introduced hydrogen-containing gas is kept low at 0 ° C. or less. Thereby, even if a dew point rises with progress of reaction, deoxidation reaction can fully be advanced.
- the equilibrium dew point increases, so it seems that the dew point of the hydrogen-containing gas may be increased at first glance.
- the reaction rate of the deoxidation reaction reaction
- the generation rate of H 2 O also increases.
- the dew point of the in-furnace gas also tends to increase. Therefore, it is preferable to control the dew point of the hydrogen-containing gas introduced into the moving bed furnace as described above.
- the dew point is set to 40 ° C. or less, as in Patent Document 5, in the conventional iron-based powder that does not contain an easily oxidizable element such as Cr.
- the temperature is preferably 0 ° C. or lower.
- the lower the dew point of the hydrogen-containing gas the better the deoxidation reaction proceeds.
- a gas with a low dew point is expensive, and the use of a gas with an excessively low dew point causes an increase in production cost. Therefore, it is usually preferable to set the dew point to ⁇ 40 ° C. or higher.
- the moving bed furnace includes a sealing unit for preventing gas leakage and intrusion.
- a sealing unit for example, a water-sealed tank (15 in FIG. 1) as described in Patent Document 5 can be used, but it is more preferable to use a system that does not use water such as a seal roll.
- the sealing means is preferably provided at both ends on the upstream side and the downstream side in the transport direction.
- the atmospheric temperature is preferably set to 1080 ° C. or higher.
- the upper limit of the ambient temperature is not particularly limited, but is preferably about 1200 ° C. in consideration of the heat resistance performance of the apparatus, the manufacturing cost, and the like.
- the “atmosphere temperature” is a temperature measured by a thermocouple at a position 20 mm immediately above the surface of the iron-based powder (packed bed) in the moving bed furnace.
- the holding time t is 10 4 -0.0037 ⁇ T hours or more according to the ambient temperature T (° C.) because O can be further reduced. .
- the relationship between the said t and T was determined from the result of having conducted the experiment which manufactures alloy steel powder with various T and t. Specifically, the O content of the obtained alloy steel powder was plotted on a Tt diagram, and a curve (contour line) connecting the same oxygen content was determined as an approximate expression.
- the upper limit of the retention time is not particularly limited, but the retention time is preferably 4 hours or less because the production cost only increases even if the retention time is longer than the time required for completion of the deoxidation reaction.
- Patent Document 5 it is assumed that one or more processes of decarburization, deoxidation, or denitrification are continuously performed by using a continuous moving bed furnace to heat-treat the iron-based powder. Further, in the description of Patent Document 5, each of the decarburization, deoxidation, and denitrification treatment steps is made independent using the divided space of the moving bed furnace, and the decarburization step is performed at 600 to 1100 ° C. In the denitrification process, the iron-base powder is heat-treated by controlling the temperature independently at 450 to 750 ° C.
- Patent Document 5 as an atmospheric gas, a reducing gas such as H 2 or AX gas at decarburization zone or an inert gas such as N 2 or Ar, reduction such as H 2 or AX gas in deoxidation zone It is said that gas mainly composed of H 2 is used in the denitrification zone.
- FIG. 1 A heat treatment apparatus 100 shown in FIG. 1 is provided on a furnace body 30 divided into a plurality of zones by a partition wall 1, that is, a decarburization zone 2, a deoxidation zone 3, and a denitrification zone 4, and an entrance side of the furnace body 30.
- the hopper 8 is provided, a wheel 10 provided on the entrance / exit side of the furnace body 30, a belt 9 that continuously rotates by the wheel 10 and circulates in each zone in the furnace body 30, and a radiant tube 11.
- the product powder 13 is stored in the product tank 14.
- the reaction in each zone is considered as follows.
- the ambient temperature is controlled to 600 to 1100 ° C. by the radiant tube 11, and the water vapor (H 2 O gas) introduced from the water vapor inlet 12 provided on the downstream side of the decarburization zone 2
- the atmospheric gas in the deoxidation zone 3 which is the next zone, to a dew point of 30 to 60 ° C.
- an atmospheric gas discharge port 6 is provided to discharge the atmospheric gas to the outside of the apparatus.
- the decarburization reaction formula is represented by the following formula (I).
- C (in Fe) + H 2 O (g) CO (g) + H 2 (g) (I)
- the ambient temperature is controlled to 700 to 1100 ° C. by the radiant tube 11, and deoxidation is performed from the crude iron-based powder using the atmospheric gas from the denitrification zone 4 (dew point: hydrogen gas of 40 ° C. or less). Is going to do.
- the ambient temperature is controlled to 450 to 750 ° C. by the radiant tube 11, and hydrogen gas (dew point: 40 ° C.) as a reaction gas is supplied from the atmosphere gas inlet 5 provided on the downstream side of the denitrification zone 4.
- hydrogen gas dew point: 40 ° C.
- the following is introduced to denitrify the crude iron-based powder.
- the water sealing tank 15 functions to block the mixing of the outside gas into the furnace gas and the leakage of the inside gas to the outside of the furnace.
- FIG. 5 a typical example of a heat treatment temperature pattern by a belt furnace type heat treatment apparatus described in Patent Document 5 is shown in FIG.
- the iron-based powder to be treated is first heated in the decarburization zone, then soaked in the deoxidation zone, and finally in the denitrification zone.
- the hydrogen gas introduced in the direction opposite to the flow of the iron-based powder first enters the denitrification zone, denitrifies the iron-based powder while being heated, and then enters the deoxidation zone and is kept at a constant temperature.
- the iron-base powder is deoxidized while finally entering the decarburization zone together with a predetermined amount of water vapor, and the iron-base powder is decarburized while being cooled.
- the C content in the atomized iron-based powder is set to 0.8% or less so that the decarburization can be completed only with water vapor generated by the deoxidation reaction. Therefore, decarburization can be completed without additionally introducing water vapor.
- An atomized iron-based powder having the component composition shown in Table 1 was produced by the water atomization method. These atomized iron-based powders were heat-treated using a moving bed furnace and crushed to obtain alloy steel powder for powder metallurgy. Table 2 shows the atomized iron-based powder used and the heat treatment conditions. Further, in the heat treatment, the atomized iron powder is supplied into the moving bed furnace so as to have a packed bed thickness d shown in Table 2, and a hydrogen-containing gas so as to have an average gas flow velocity v shown in Table 2. The heat treatment was carried out continuously while supplying. The contents of C and O in the obtained alloy steel powder for powder metallurgy were as shown in Table 2. In addition,% display in the composition of the hydrogen-containing gas shown in Table 2 means vol%.
- the obtained alloy steel powder has a C content of 0.1% or less and an O content of 0. .28% or less.
- the O content exceeded 0.28%.
- the obtained alloy steel was 0.1% or less, the O content was 0.23% or less, and the O content was further reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Iron (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
C :0.8%以下、
O :1.0%以下、
S :0.3%以下、
P :0.03%以下、ならびに
合金元素として、
Mn:0.08%超1.0%以下、
Cr:0.3~3.5%、
Mo:0.1~2%、および
V :0.1~0.5%、からなる群より選択される1または2以上
を含有し、
残部Feおよび不可避不純物であるアトマイズ鉄基粉末を用意し、
前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給し、
前記移動床炉内に、水素含有気体を平均ガス流速v(mm/s)となるように供給し、
前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする、粉末冶金用合金鋼粉の製造方法であって、
前記dおよびvが、下記(1)式を満足する、粉末冶金用合金鋼粉の製造方法。
記
d/√v≦2.7(mm1/2・s1/2)…(1)
(1)アトマイズ鉄基粉末を用意する、
(2)前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給する、
(3)前記移動床炉内に、水素含有気体を平均ガス流速v(mm/s)となるように供給する、および
(4)前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする。
d/√v≦2.7(mm1/2・s1/2)…(1)
本発明においては、原料としてアトマイズ鉄基粉末を使用する。アトマイズ鉄基粉末の製造方法は特に限定されず、常法に従って製造することができる。なお、「アトマイズ鉄基粉末」とは、アトマイズ法によって製造された鉄基粉末を意味する。また、「鉄基粉末」とは、Feを50質量%以上含有する粉末を意味する。
次に、本発明においてアトマイズ鉄基粉末の成分組成を上記のように限定する理由について説明する。なお、特に断らない限り、以下の説明において「%」は「質量%」を意味するものとする。
Cは、主にセメンタイトなどの析出物として、あるいは固溶状態でアトマイズ鉄基粉末中に存在する。アトマイズ鉄基粉末中のC含有量が0.8%を超えると、本発明の熱処理においてC含有量を0.1%以下まで下げることが困難となり、優れた圧縮性を有する合金粉末を得ることができない。そのため、アトマイズ鉄基粉末のC含有量を0.8%以下とする。一方、C含有量が低ければ低いほど、熱処理時のC含有量の低減(脱炭)が容易になる。そのため、C含有量の下限は特に限定されず、0%であって良く、工業的には0%超であってよい。
Oは、主にCr酸化物、Mn酸化物、V酸化物、およびFe酸化物として鉄基粉末表面に存在する。アトマイズ鉄基粉末中のO含有量が1.0%を超えると、熱処理においてO含有量を0.28%以下まで下げることが困難となり、優れた圧縮性を有する合金粉末を得ることができない。そのため、アトマイズ鉄基粉末のO含有量を1.0%以下とする。O含有量は、0.9%以下とすることが好ましい。一方、O含有量が低ければ低いほど、熱処理時のO含有量の低減(脱酸)が容易になる。そのため、O含有量の下限は特に限定されないが、過度の低減は製造コストの増加を招くため、O含有量は0.4%以上とすることが好ましい。
合金鋼粉に含まれるSの一部はMnと結合してMnSを形成し、焼結後の切削性を向上させる。しかし、合金鋼粉中のS含有量が0.3%を超えると固溶Sが増え、粒界強度が低下する。そのため、合金鋼粉中のS含有量を0.3%以下とするために、アトマイズ鉄基粉末の段階でのS含有量を0.3%以下とする。粒界強度の低下を確実に回避するためには、S含有量を0.25%以下とすることが好ましい。一方、S含有量の下限は特に限定されず、0%であって良いが、工業的には0%超であってよい。焼結後の切削性を改善するという観点からは、S含有量を0.05%以上とすることが好ましい。
Pは不可避不純物の1つとして含まれる元素である。P含有量を0.03%以下とすることによって、粒界強度が増加し、靭性が向上する。そのため、アトマイズ鉄基粉末のP含有量を0.03%以下とする。一方、P含有量は低ければ低いほど粒界強度が増加し、靭性が向上するため好ましい。そのため、P含有量の下限は特に限定されず、0%であってよいが、工業的には0%超であってよい。しかし、過度の低減は製造コストの増加を招くため、P含有量は0.0005%以上とすることが好ましい。
Mnは、焼入性向上、固溶強化などによって、焼結体の強度を向上させる作用を有する元素である。Mnを添加する場合は、前記効果を得るためにMn含有量を0.08%超とする。Mn含有量は0.10%以上とすることが好ましい。一方、Mn含有量が1.0%より高いと、Mn酸化物の生成量が多くなり、合金鋼粉の圧縮性が低下する。また、Mn酸化物が、焼結体内部の破壊の起点となって、疲労強度および靱性を低下させる。そのため、Mn含有量を1.0%以下とする。Mn含有量は0.95%以下とすることが好ましく、0.80%以下とすることがより好ましい。
Crは、焼入性を向上させて、焼結体の引張強度および疲労強度を向上させる作用を有する元素である。さらにCrは、焼結体の焼入れ・焼き戻しなどの熱処理後の硬さを高め、耐摩耗性を向上させる効果を有している。Crを添加する場合は、これらの効果を得るためにCr含有量を0.3%以上とする。一方、Cr含有量が3.5%を超えると、Cr酸化物の生成量が多くなる。Cr酸化物は、焼結体内部の疲労破壊の起点となるため、焼結体の疲労強度を低下させる。したがって、Cr含有量を3.5%以下とする。
Moは、焼入性向上、固溶強化、析出強化などによって、焼結体の強度を向上させる作用を有する元素である。Moを添加する場合は、前記効果を得るために、Mo含有量を0.1%以上とする。一方、Moの含有量が2%を超えると、焼結体の靭性が低下する。したがって、Mo含有量を2%以下とする。
Vは、焼入性向上、固溶強化、析出強化などによって、焼結体の強度を向上させる作用を有する元素である。Vを添加する場合は、前記効果を得るためにV含有量を0.1%以上とする。一方、V含有量が0.5%を超えると、焼結体の靭性が低下する。そのため、V含有量を0.5%以下とする。
アトマイズ鉄基粉末の平均粒径は特に限定されず、アトマイズ法によって得られた鉄基粉末であれば、任意の粒径のものを用いることができる。しかし、アトマイズ鉄基粉末の平均粒径が30μmを下回ると、アトマイズ鉄基粉末の流動性が低下し、ホッパなどを用いて移動床炉へ供給することが困難となる場合がある。また、アトマイズ鉄基粉末の平均粒径が30μmを下回ると、熱処理後の合金鋼粉の流動性も低下するため、該合金鋼粉をプレス成形する際の金型への充填の作業効率が低下する場合がある。そのため、アトマイズ鉄基粉末の平均粒径を30μm以上とすることが好ましく、40μm以上とすることがより好ましく、50μm以上とすることがさらに好ましい。
アトマイズ鉄基粉末の見掛密度は、特に限定しないが、2.0~3.5Mg/m3とすることが好ましく、2.4~3.2Mg/m3とすることがより好ましい。
上記成分組成を有するアトマイズ鉄基粉末を、移動床炉に供給し、該移動床炉の移動床上に厚さd(mm)の充填層を形成する。前記移動床炉としては、アトマイズ鉄基粉末を熱処理できるものであれば任意のものを用いることができるが、搬送用のベルトを備えた移動床炉(以下、「ベルト式移動床炉」または「ベルト炉」ともいう)を用いることが好ましい。ベルト炉を用いて熱処理を行う場合には、ベルト上にアトマイズ鉄基粉末を供給して、充填層を形成することができる。アトマイズ鉄基粉末の供給は、任意の方法で行うことができるが、ホッパを用いて行うことが好ましい。また、移動床炉におけるアトマイズ鉄基粉末の搬送方向は特に限定されないが、移動床炉の入り口側から出口側へ直線的に搬送することが一般的である。なお、充填層の厚さについては後述する。
上記移動床炉には、水素含有気体が供給される。前記水素含有気体としては、水素を含有する気体であれば任意のものを用いることができる。前記水素含有気体としては、例えば、純H2ガスや、H2ガスと不活性ガスとの混合ガスなどが挙げられる。前記混合ガスとしては、H2ガスとN2ガスとの混合ガスを用いることが好ましい。アンモニアを分解して得られる、H2ガスとN2ガスとの混合ガス(いわゆるAXガス)も用いることができる。熱処理における還元、すなわち、アトマイズ鉄基粉末からの酸素の除去を効率的に進めるという観点からは、水素含有気体のH2含有量を、75vol%以上とすることが好ましく、90vol%以上とすることがより好ましく、100vol%(H2ガス)とすることがさらに好ましい。
上記のように水素含有気体を供給した状態で、前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することにより、粉末冶金用合金鋼粉を得ることができる。前記熱処理により、アトマイズ鉄基粉末に含まれるCおよびOは、後述する脱炭および脱酸(還元)の反応により、除去される。
本発明においては、上記熱処理を行う間、前記充填層の厚さd(mm)および平均ガス流速v(mm/s)の両者を、下記(1)式を満足するように制御する。
d/√v≦2.7(mm1/2・s1/2)…(1)
FeO(s)+ H2(g)= Fe(s)+H2O(g)…(2)
Cr2O3(s)+ 3H2(g)= 2Cr(in Fe)+3H2O(g)…(3)
MnO(s)+ H2(g)= Mn(in Fe)+H2O(g)…(4)
VO(s)+ H2(g)= V(in Fe)+H2O(g)…(5)
なお、本発明において、上記平均ガス流速v(mm/s)は、移動床炉に供給される水素含有気体の体積流量f(1秒当たりに供給される水素含有気体の体積)を、該移動床炉の断面積Sで割ったものと定義される。ここで、断面積とは、アトマイズ鉄基粉末の搬送方向(ベルト炉においては、ベルトの進行方法)に垂直な断面の、焼鈍炉内部の空間の面積を指すものとする。ただし、焼鈍炉の断面積が搬送方向の位置によって異なる場合には、焼鈍炉内の最も高温である位置での断面積を前記断面積Sとする。後述するように、移動床炉内に脱炭ゾーン、脱酸ゾーン、および脱窒ゾーンを設ける場合は、通常、脱酸ゾーンが最も高温であるため、脱酸ゾーンにおける断面積を前記断面積Sとして用いればよい。さらに、上記体積流量fは、前記断面積Sの測定位置での体積流量とする。すなわち、高温でガスが体積膨張することを考慮して、前記位置における温度から求められる体積膨張率を上記流量に乗じておく。
・水素含有気体の露点:0℃以下
炉内に導入する水素含有気体の露点は0℃以下とすることが好ましい。先に述べたように、熱処理での還元反応を効率よく進めるためには、雰囲気ガスの露点を、上記(2)~(5)式で表される平衡反応から決まる平衡露点よりも低く保つ必要がある。そのため、導入される水素含有気体の露点を低くすることが好ましく、具体的には、0℃以下とすることが好ましく、-15℃以下とすることがより好ましい。
さらに、上記熱処理では、雰囲気温度T:1080℃以上、保持時間t:104-0.0037・T時間以上の条件で脱酸を行うことが好ましい。言い換えれば、上記熱処理では、雰囲気温度T:1080℃以上で、保持時間t:104-0.0037・T時間以上保持する時間を設けることが好ましい。以下、その理由について説明する。
従来のように、Cr、Mn、Vなどの易酸化性元素を含まない鉄基粉末を還元する場合には、還元すべき酸化物はFeOのみである。そのため、特許文献5に記載されているように脱酸ゾーンにおける雰囲気温度を700℃以上とすれば、上式(2)の平衡反応から決まる平衡露点は70℃以上と高い温度になる。このとき、導入するH2の露点を特許文献5にあるように40℃以下とすれば、十分な速度で脱酸反応(還元反応)が進むために問題は発生しなかった。
保持時間tを、雰囲気温度T(℃)に応じて、104-0.0037・T時間以上とすれば、Oをより低減することができるため好ましい。なお、前記tおよびTの間の関係は、様々なTおよびtで合金鋼粉を製造する実験を行った結果から決定した。具体的には、得られた合金鋼粉のO含有量を、T-t図上へプロットし、同一酸素量を結ぶ曲線(等高線)を近似式として定めた。一方、保持時間の上限は特に限定されないが、脱酸反応完了に必要な時間以上に保持を行っても製造コストが増加するだけであるため、 前記保持時間は4時間以下とすることが好ましい。
脱炭ゾーン2の上流側には、雰囲気ガスの排出口6が設けられ、雰囲気ガスを装置外に排出している。なお、脱炭の反応式は、次式(I)で表される。
C(in Fe)+ H2O(g)=CO(g)+H2(g)…(I)
FeO(s)+ H2(g)=Fe(s)+H2O(g)…(II)
N(in Fe)+ 3/2H2(g)=NH3(g)…(III)
水封槽15は、炉外ガスの炉内ガスへの混入や炉内ガスの炉外への漏洩を遮断する働きを果たしている。
2 脱炭ゾーン
3 脱酸ゾーン
4 脱窒ゾーン
5 雰囲気ガス供給口(供給雰囲気ガス)
6 雰囲気ガス排出口(排出雰囲気ガス)
7 粗製鉄基粉末
8 ホッパ
9 ベルト
10 ホイール
11 ラジアントチューブ
12 水蒸気吹込み管
13 製品粉
14 製品タンク
15 水封槽
20 製品粉粉砕用装置
21 冷却器
22 循環ファン
30 炉体(加熱炉)
100 熱処理装置
Claims (3)
- 質量%で、
C :0.8%以下、
O :1.0%以下、
S :0.3%以下、
P :0.03%以下、ならびに
合金元素として、
Mn:0.08%超1.0%以下、
Cr:0.3~3.5%、
Mo:0.1~2%、および
V :0.1~0.5%、からなる群より選択される1または2以上
を含有し、
残部Feおよび不可避不純物であるアトマイズ鉄基粉末を用意し、
前記アトマイズ鉄基粉末を、厚さd(mm)の充填層を形成するように移動床炉内へ供給し、
前記移動床炉内に、水素含有気体を平均ガス流速v(mm/s)となるように供給し、
前記アトマイズ鉄基粉末を前記移動床炉内で熱処理することによって還元し、粉末冶金用合金鋼粉とする、粉末冶金用合金鋼粉の製造方法であって、
前記dおよびvが、下記(1)式を満足する、粉末冶金用合金鋼粉の製造方法。
記
d/√v≦2.7(mm1/2・s1/2)…(1) - 前記水素含有気体の露点を0℃以下とする、請求項1に記載の粉末冶金用合金鋼粉の製造方法。
- 前記熱処理において、雰囲気温度T:1080℃以上、保持時間t:104-0.0037・T時間以上の条件で脱酸が行われる、請求項1または2に記載の粉末冶金用合金鋼粉の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017500093A JP6112282B1 (ja) | 2015-09-30 | 2016-09-30 | 粉末冶金用合金鋼粉の製造方法 |
KR1020187003334A KR102022946B1 (ko) | 2015-09-30 | 2016-09-30 | 분말 야금용 합금 강분의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-195148 | 2015-09-30 | ||
JP2015195148 | 2015-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017056511A1 true WO2017056511A1 (ja) | 2017-04-06 |
Family
ID=58423055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/004440 WO2017056511A1 (ja) | 2015-09-30 | 2016-09-30 | 粉末冶金用合金鋼粉の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6112282B1 (ja) |
KR (1) | KR102022946B1 (ja) |
WO (1) | WO2017056511A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09170002A (ja) * | 1995-10-19 | 1997-06-30 | Kawasaki Steel Corp | 鉄粉の仕上げ熱処理方法および仕上げ熱処理装置 |
JP2006016688A (ja) * | 2004-05-31 | 2006-01-19 | Jfe Steel Kk | 鉄粉の仕上げ熱処理方法および装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5125158A (en) | 1974-08-26 | 1976-03-01 | Nippon Kuatsu System Co | Ryutaijikukeryono ryuryokei |
JPS594298B2 (ja) | 1977-01-13 | 1984-01-28 | 三菱重工業株式会社 | 包装用容器整形装置 |
JPS5810962B2 (ja) | 1978-10-30 | 1983-02-28 | 川崎製鉄株式会社 | 圧縮性、成形性および熱処理特性に優れる合金鋼粉 |
JPS6440881A (en) | 1987-08-07 | 1989-02-13 | Canon Kk | Hologram having protective layer |
JP3224417B2 (ja) | 1992-02-14 | 2001-10-29 | 川崎製鉄株式会社 | 高強度、高疲労強度および高靱性を有する焼結体用合金鋼粉および焼結体 |
JP3272886B2 (ja) * | 1994-04-15 | 2002-04-08 | 川崎製鉄株式会社 | 高強度焼結体用合金鋼粉および高強度焼結体の製造方法 |
SE9602835D0 (sv) | 1996-07-22 | 1996-07-22 | Hoeganaes Ab | Process for the preparation of an iron-based powder |
SE9800153D0 (sv) | 1998-01-21 | 1998-01-21 | Hoeganaes Ab | Low pressure process |
KR20110114679A (ko) * | 2006-02-15 | 2011-10-19 | 제이에프이 스틸 가부시키가이샤 | 철기 혼합 분말 그리고 철기 분말 성형체 및 철기 분말 소결체의 제조 방법 |
US20130136646A1 (en) * | 2010-06-04 | 2013-05-30 | Hoganas Ab (Publ) | Nitrided sintered steels |
-
2016
- 2016-09-30 JP JP2017500093A patent/JP6112282B1/ja not_active Expired - Fee Related
- 2016-09-30 KR KR1020187003334A patent/KR102022946B1/ko not_active Expired - Fee Related
- 2016-09-30 WO PCT/JP2016/004440 patent/WO2017056511A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09170002A (ja) * | 1995-10-19 | 1997-06-30 | Kawasaki Steel Corp | 鉄粉の仕上げ熱処理方法および仕上げ熱処理装置 |
JP2006016688A (ja) * | 2004-05-31 | 2006-01-19 | Jfe Steel Kk | 鉄粉の仕上げ熱処理方法および装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017056511A1 (ja) | 2017-10-05 |
KR102022946B1 (ko) | 2019-09-19 |
JP6112282B1 (ja) | 2017-04-12 |
KR20180022994A (ko) | 2018-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3124636A1 (en) | Rail and method for manufacturing same | |
CN111440987A (zh) | 采用短流程生产的抗拉强度≥980MPa淬火配分钢及方法 | |
CN103757530B (zh) | 抗拉强度≥1250MPa的薄带连铸经济性超高强捆带及其制造方法 | |
CN112226676A (zh) | 一种低成本l320ms/x46ms抗硫化氢腐蚀焊管用热轧钢带及其制造方法 | |
US9815115B2 (en) | Finish heat treatment method and finish heat treatment apparatus for iron powder | |
JP6112280B1 (ja) | 粉末冶金用合金鋼粉の製造方法 | |
JP6112283B1 (ja) | 粉末冶金用合金鋼粉の製造方法 | |
JP6112281B1 (ja) | 粉末冶金用合金鋼粉の製造方法 | |
JP6112282B1 (ja) | 粉末冶金用合金鋼粉の製造方法 | |
JP6112277B1 (ja) | 粉末冶金用合金鋼粉の製造方法 | |
JP6112278B1 (ja) | 粉末冶金用合金鋼粉の製造方法 | |
CN111893390A (zh) | 一种性能均匀的宽板幅铁路车辆罐体用薄钢板的生产方法 | |
JPS61110701A (ja) | 鉄鋼粉の仕上熱処理方法及びその装置 | |
CN114130820B (zh) | 一种车厢用热轧钢板及其制造方法 | |
KR101543850B1 (ko) | 냉간압조성 및 피삭성이 우수한 흑연화 선재 및 이의 제조방법 | |
CN116590610A (zh) | 一种正火型屈服强度370MPa级压力容器钢板及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017500093 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16850689 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187003334 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16850689 Country of ref document: EP Kind code of ref document: A1 |