WO2017051495A1 - Method for producing circuit board, circuit board, and apparatus for producing circuit board - Google Patents

Method for producing circuit board, circuit board, and apparatus for producing circuit board Download PDF

Info

Publication number
WO2017051495A1
WO2017051495A1 PCT/JP2016/003766 JP2016003766W WO2017051495A1 WO 2017051495 A1 WO2017051495 A1 WO 2017051495A1 JP 2016003766 W JP2016003766 W JP 2016003766W WO 2017051495 A1 WO2017051495 A1 WO 2017051495A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
wiring board
seed layer
oxide film
Prior art date
Application number
PCT/JP2016/003766
Other languages
French (fr)
Japanese (ja)
Inventor
饗庭 彰
大輝 堀部
昌仁 生井
浩子 鈴木
丸山 俊
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2017051495A1 publication Critical patent/WO2017051495A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections

Definitions

  • the present invention relates to a method of manufacturing a wiring board in which an insulating layer and a conductive layer are stacked, a wiring board manufactured by the manufacturing method, and a wiring board manufacturing apparatus.
  • a multilayer wiring board in which an insulating layer and a conductive layer (wiring layer) are alternately stacked is known.
  • a part of the insulating layer or the conductive layer is removed by performing drilling or laser processing on the wiring board material in which the insulating layer is laminated on the conductive layer. , Form via holes and through holes.
  • a smear is generated in the wiring substrate material due to the material forming the insulating layer or the conductive layer. Therefore, a desmear process is performed on the wiring board material to remove smear.
  • Patent Document 1 discloses a substrate manufacturing method having a step of removing smear generated in a via formation step by wet desmear processing, and a step of forming a seed layer by electroless plating.
  • the surface of the insulating layer is appropriately roughened in order to ensure the adhesion between the seed layer and the insulating layer. It is necessary to firmly fix the seed layer to the surface of the insulating layer by the anchor effect.
  • the surface of the insulating layer is roughened by performing a wet desmearing process as the desmearing process.
  • one mode of a manufacturing method of a wiring board concerning the present invention forms a penetration hole which penetrates the insulating layer to wiring board material by which an insulating layer was laminated on a conductive layer.
  • a second step of performing a desmear treatment of the wiring substrate material by irradiating the wiring substrate material having the through holes with ultraviolet rays having a wavelength of 220 nm or less.
  • Forming a seed layer by removing an oxide film formed on the conductive material at the bottom of the through hole, and causing material particles to collide and adhere to the inside of the through hole and the insulating layer; And forming a plating layer made of a conductive material by electrolytic plating on the seed layer.
  • the desmear treatment with ultraviolet light is performed, the surface roughening of the insulating layer can be suppressed. Therefore, the fine wiring pattern can be appropriately formed. Further, since the seed layer is formed by causing the material particles to collide and adhere to each other, the adhesion strength with the insulating layer can be secured by the seed layer without relying on the conventional anchor effect. In particular, a color center (structural defect or bonding defect) can be generated on the surface of the insulating layer by irradiation with ultraviolet light having a wavelength of 220 nm or less which does not pass through the insulating layer.
  • material particles (electrically conductive material) are driven into the insulating layer, and energy is applied to the bonding defects present on the resin surface irradiated with ultraviolet light, whereby a new chemical bonding action can be made between the metal particles and the resin.
  • a seed layer having a strong adhesion is formed as compared to the case where metal particles collide and adhere to a resin which has not been irradiated with ultraviolet light having a wavelength of 220 nm or less.
  • an oxide film may be formed in the conductive material at the bottom of the through hole after desmearing treatment due to the passage of time after the treatment, etc. If this oxide film is left to form a seed layer, the seed layer and the conductivity are formed. There is a possibility that the connectivity with the layer may be reduced, and thus the connection strength between the conductive layer and the plated layer may be reduced. Therefore, in the third step, after the oxide film is removed, the seed layer is formed to secure the connectivity between the seed layer and the conductive layer.
  • the oxide film may be removed by ion etching, the oxide film may be removed by a chemical solution, or hydrogen peroxide and sulfuric acid are mixed. The oxide film may be removed by a chemical solution. Thus, the seed layer can be formed in which the connection strength with the conductive layer is secured.
  • the oxide film may be removed by ion etching, and the seed layer may be formed by sputtering.
  • the removal of the oxide film can be switched to the formation of the seed layer only by reversing the direction of voltage application.
  • the wiring board according to the present invention is manufactured by any of the above-described method for manufacturing a wiring board. Therefore, the wiring substrate can be a highly reliable fine wiring substrate in which the adhesion between the seed layer and the insulating layer is ensured and the connection strength between the conductive layer and the plating layer is ensured.
  • an ultraviolet ray having a wavelength of 220 nm or less is applied to a wiring substrate material in which an insulating layer is stacked on a conductive layer and a through hole penetrating the insulating layer is formed.
  • a seed layer forming portion for forming a seed layer by colliding and depositing material particles on the layer In this way, it is possible to manufacture a highly reliable wiring board in which the adhesion between the seed layer and the insulating layer is secured and the connection strength between the conductive layer and the plating layer is secured.
  • the present invention it is possible to realize the miniaturization of the wiring pattern while securing the adhesion between the seed layer and the insulating layer, and to manufacture a highly reliable micro wiring substrate.
  • the objects, aspects and effects of the present invention described above as well as the objects, aspects and effects of the present invention not described above can be carried out by those skilled in the art by referring to the attached drawings and claims. It can be understood from the form (detailed description of the invention).
  • FIG. 1 is a view showing a method of manufacturing a wiring board of the present embodiment.
  • FIG. 2 is a graph showing the ultraviolet light transmission characteristics of the epoxy resin.
  • FIG. 3 is a diagram in which a resin that has received ultraviolet light of 220 nm or less is sputtered.
  • FIG. 4 is a diagram in which a resin that has received 250 nm ultraviolet light is sputtered.
  • FIG. 5 is a diagram in which sputtering is performed after ion etching.
  • FIG. 6 is a diagram in which the oxide film is left to be sputtered.
  • FIG. 7 is a diagram for explaining the evaluation of via connection strength.
  • FIG. 8 is a schematic view showing the configuration of a wiring board manufacturing apparatus.
  • FIG. 1 is a view showing a method of manufacturing a wiring board of the present embodiment.
  • the wiring substrate to be manufactured is a multilayer wiring substrate formed by laminating a conductive layer (wiring layer) and an insulating layer on a core substrate.
  • the core substrate is made of, for example, a glass epoxy resin.
  • a material which comprises a conductive layer (wiring layer) copper, nickel, gold etc. can be used, for example.
  • the insulating layer is made of, for example, a resin containing a particulate filler made of an inorganic substance.
  • an epoxy resin bismaleimide triazine resin, polyimide resin, polyester resin etc.
  • a material which comprises a granular filler a silica, an alumina, mica
  • a wiring board material in which the conductive layer 11 and the insulating layer 12 are laminated is formed.
  • a method of forming the insulating layer 12 on the conductive layer 11 a method of curing the insulating layer forming material after applying the insulating layer forming material in which the particulate filler is contained in the liquid thermosetting resin
  • the insulating layer 12 is processed by using a laser L or the like to form a via hole 12a having a depth reaching the conductive layer 11.
  • a method of laser processing a method using a CO 2 laser, a method using a UV laser, or the like can be used.
  • the method of forming the via holes 12a is not limited to laser processing, and for example, drilling may be used.
  • the via hole 12a When the via hole 12a is formed in this manner, the inner wall surface (side wall) of the via hole 12a in the insulating layer 12, the peripheral region of the via hole 12a in the surface of the insulating layer 12, and the bottom of the via hole 12a, that is, the via hole 12a in the conductive layer 11 Smear (residue) S resulting from the material which comprises the conductive layer 11 and the insulating layer 12 arises in the exposed part etc.
  • a process (desmear process) for removing the smear S is performed.
  • the desmearing process a so-called photodesmearing process in which the smear S is removed by irradiating ultraviolet rays (UV) to the portion to be treated is used. More specifically, in the photodesmear process, an ultraviolet irradiation process step of irradiating the above-mentioned ultraviolet rays to the treated portion of the wiring board material and physical vibration are applied to the wiring board material after the ultraviolet irradiation process step. And physical vibration treatment process.
  • UV ultraviolet rays
  • the ultraviolet irradiation treatment can be performed, for example, in an atmosphere containing oxygen such as the air.
  • an ultraviolet light source various lamps that emit ultraviolet light (vacuum ultraviolet light) having a wavelength of 220 nm or less, preferably 190 nm or less can be used.
  • the reason for setting the wavelength to 220 nm is that when the wavelength of ultraviolet light exceeds 220 nm, it becomes difficult to decompose and remove the smear caused by the organic substance such as resin.
  • the smear due to the organic substance is decomposed by the energy of the ultraviolet light and the ozone and active oxygen generated along with the irradiation of the ultraviolet light by irradiating the ultraviolet light having a wavelength of 220 nm or less in the ultraviolet irradiation treatment process.
  • smears caused by inorganic substances, specifically, silica and alumina become brittle when irradiated with ultraviolet light.
  • the ultraviolet light source for example, a xenon excimer lamp (peak wavelength 172 nm), low pressure mercury lamp (185 nm bright line) or the like in which xenon gas is sealed can be used. Among them, for example, a xenon excimer lamp is preferable as the one used for the desmear treatment.
  • the processing region where the wiring substrate material to be processed is exposed to the ultraviolet light in the atmosphere of the processing gas containing oxygen is, for example, 120 ° C. or more and 190 ° C. or less (e.g. It is heated to ° C.
  • the separation distance between the ultraviolet light emission window and the wiring substrate material to be processed is set to, for example, 0.3 mm.
  • the illuminance of the ultraviolet light, the irradiation time of the ultraviolet light, and the like can be appropriately set in consideration of the residual state of the smear S and the like.
  • the frequency of ultrasonic waves in the ultrasonic vibration processing is preferably, for example, 20 kHz or more and 70 kHz or less. When the frequency of the ultrasonic wave exceeds 70 kHz, it is difficult to break the smear caused by the inorganic substance and to separate it from the wiring board material.
  • a liquid such as water and a gas such as air can be used as a vibration medium of ultrasonic waves.
  • ultrasonic vibration processing can be performed by immersing the wiring substrate material, for example, in water and subjecting the water to ultrasonic vibration in this state. .
  • the processing time of ultrasonic vibration processing is, for example, 10 seconds to 600 seconds.
  • ultrasonic vibration processing can be performed by blowing compressed air onto the wiring substrate material while ultrasonically vibrating it.
  • the pressure of the compressed air is preferably, for example, 0.2 MPa or more.
  • the processing time of ultrasonic vibration processing with compressed air is, for example, 5 seconds to 60 seconds.
  • the ultraviolet irradiation treatment step and the physical vibration treatment step may be performed once in this order, but it is preferable to alternately repeat the ultraviolet irradiation treatment step and the physical vibration treatment step.
  • the number of repetitions of the ultraviolet irradiation processing step and the physical vibration processing step is appropriately set in consideration of the irradiation time of the ultraviolet light in each ultraviolet irradiation processing step, and is, for example, 1 to 5 times.
  • ozone and active oxygen are generated by irradiating the processing gas containing oxygen with ultraviolet light having a wavelength of 220 nm or less in the ultraviolet irradiation treatment, and the smear S caused by the organic substance is decomposed by ozone and active oxygen to form a gas Be As a result, most of the smear S due to the organic substance is removed. At this time, the smear S due to the inorganic substance is exposed by the removal of the smear S due to the organic substance, and further becomes brittle due to the irradiation of the ultraviolet light.
  • the remaining portion of the smear S due to the exposed inorganic substance and the smear S due to the organic substance is broken and removed by the mechanical action by the vibration.
  • the difference in thermal expansion generated when each smear S is irradiated with ultraviolet light a slight gap is generated between the smears, and the smear S caused by the inorganic substance is It releases from wiring board material by giving physical vibration processing. As a result, the smear S due to the inorganic substance and the smear S due to the organic substance are completely removed from the wiring board material.
  • the photodesmear process in the present embodiment since the ultraviolet irradiation process and the physical vibration process may be performed on the wiring substrate material, it is not necessary to use a chemical which requires the waste liquid process.
  • a seed layer forming process for forming a seed layer is performed.
  • ion etching is used as a method of removing the oxide film F in the removing step.
  • the target material T is disposed to face the wiring substrate material in an argon atmosphere, and the target material T is relative between the wiring substrate material and the target material T.
  • a positive voltage is applied, and a voltage of a polarity at which the wiring board material becomes relatively negative is applied.
  • argon plasma P is generated between the wiring substrate material and the target material T, and argon ions AI in the plasma P fly toward the wiring substrate material which is relatively at a negative potential and oxidized. It collides with membrane F etc.
  • the oxide film F is etched and removed by this collision.
  • sputtering is used as a method of forming the seed layer 13 in the forming step.
  • a voltage having a voltage polarity reverse to the voltage polarity in the removing step is applied between the wiring substrate material and the target material T.
  • argon plasma P is generated between the wiring substrate material and the target material T, and argon ions AI in the plasma P collide with the target material T which has a relatively negative potential.
  • the target particles TP are knocked out of the target material T, and the target particles TP collide and adhere to the surface of the wiring substrate material.
  • the seed layer 13 is formed.
  • the target material T is used as the target material T to form a base layer (about 10 nm to 100 nm), and then the target material A seed layer (about 100 nm to 1000 nm) is formed using Cu (copper) as T.
  • a resist pattern R is formed on the seed layer 13.
  • a method of forming the resist pattern R for example, a method of forming a pattern by exposure and development after applying a resist on the seed layer 13 can be used.
  • the plating layer 14 is formed from the inside of the via hole 12a to the opening of the resist pattern R by electrolytic plating using the seed layer 13 as a plating feed path.
  • a layer (about 20 ⁇ m to 50 ⁇ m) made of Cu (copper) or the like can be used as the plating layer 14.
  • the resist pattern R is removed, and then, as shown in FIG. 1 (i), the seed layer 13 is removed (flash etching) using the plating layer 14 as a mask.
  • the step shown in FIG. 1 (b) corresponds to the first step of forming a through hole in the insulating layer stacked on the conductive layer, as shown in FIG. 1 (c).
  • the step shown corresponds to a second step of performing desmear treatment by irradiating ultraviolet rays having a wavelength of 220 nm or less after the first step.
  • the steps shown in FIGS. 1D and 1E correspond to the third step of forming a seed layer in the through hole and on the insulating layer after the second step.
  • the step shown in) corresponds to the fourth step of forming a plating layer made of a conductive material by electrolytic plating on the seed layer.
  • the seed layer 13 is formed by the sputtering method.
  • the adhesion between the insulating layer and the seed layer has been secured by the anchor effect. That is, in order to secure the adhesion between the insulating layer and the seed layer, it has been considered preferable to roughen the surface of the insulating layer.
  • the present inventor performs the desmearing process and the seed layer forming process which are a part of the manufacturing process of the wiring substrate by combining the photodesmear process and the sputtering method, without roughening the surface of the insulating layer. It has been found that the adhesion between the insulating layer and the seed layer can be secured.
  • the photodesmear treatment can remove smear without roughening the surface of the object to be treated. Further, in the photodesmear treatment in the present embodiment, physical vibration treatment is performed subsequent to the ultraviolet irradiation treatment, so that it is possible to appropriately remove the smear caused by the organic substance and the smear caused by the inorganic substance. Furthermore, since the seed layer 13 is formed by sputtering, the seed layer 13 can be formed with sufficient adhesion strength on the insulating layer 12 whose surface is not roughened.
  • the dense and strong seed layer 13 is formed on the insulating layer 12 Can.
  • this point will be described in detail.
  • FIG. 2 is a view showing the ultraviolet light transmission characteristic of the epoxy resin (25 ⁇ m film).
  • the horizontal axis is the wavelength (nm) of ultraviolet light
  • the vertical axis is the transmittance (%) of ultraviolet light.
  • light passes through the resin in a region of wavelengths of 220 nm or more, that is, in a portion of visible light and near ultraviolet light, and the transmittance thereof becomes smaller as the wavelength becomes shorter.
  • the transmittance thereof becomes smaller as the wavelength becomes shorter.
  • the transmittance thereof becomes smaller as the wavelength becomes shorter.
  • the ultraviolet light is almost transmitted through the resin.
  • the ultraviolet light is slightly absorbed by the resin, but the absorption is so small that the ultraviolet light is not completely blocked. This is to absorb ultraviolet light in the entire thickness direction of the resin, and the resin excited by the ultraviolet light is widely distributed throughout the resin.
  • FIG. 3 is a view showing a state in which a resin receiving ultraviolet light having a wavelength of 220 nm or less is sputtered, and FIG.
  • FIGS. 3 and 4 are views showing a state in which a resin receiving ultraviolet light having a wavelength 250 nm is sputtered. It is.
  • insulating layer 10 conductive layer 11 having a required pattern stacked on the surface of insulating layer 10, and insulating layer 12 stacked on insulating layer 10 including conductive layer 11.
  • a part of the wiring board material configured to include
  • UV ultraviolet light
  • the ultraviolet light is the insulating layer 12 as described above. It is absorbed at the surface, and a color center (coupling defect, structural defect) C occurs on the surface of the insulating layer 12.
  • the color center C is a defect which is excited by absorbing the above-mentioned ultraviolet light, and is generated by breaking a chemical bond between atoms or changing a bonding state.
  • FIG. 3B is an enlarged view of the surface of the insulating layer 12 at this time.
  • the adhesion between the insulating layer 12 that has been subjected to the ultraviolet light having a wavelength of 220 nm or less and the sputtered metal film (seed layer 13 in FIG. 1) becomes very strong.
  • the distribution of the excited resin in the insulating layer 12 receiving the ultraviolet light are sparse and distributed throughout the insulating layer 12. That is, as shown in FIG. 4A, the color centers C are not distributed on the surface of the insulating layer 12 but are distributed inside the insulating layer 12. Therefore, as shown in FIG. 4B, even if target particles (metal particles) TP flying from a sputtering source are implanted into the surface of the insulating layer 12, the trapping effect of the metal particles TP is small. That is, as shown in FIG.
  • the seed layer formation treatment using the sputtering method is performed after the ultraviolet irradiation treatment using the ultraviolet light having a wavelength of 220 nm or less in the ultraviolet irradiation treatment to form a dense and strong seed layer 13 on the insulating layer 12. Can be formed. Therefore, the plating layer 14 subjected to electrolytic plating based on the seed layer 13 exhibits high adhesion to the insulating layer 12. Thus, the adhesion between the insulating layer 12 and the seed layer 13 can be secured without roughening the surface of the insulating layer 12. As a result, a highly reliable fine wiring board can be realized.
  • the surface of the insulating layer 12 can be kept smooth, high frequency response can be improved.
  • the skin effect has the property that the signal is concentrated on the surface of the conductor. If the surface of the insulating layer 12 is roughened to obtain an anchor effect as in the above-described conventional case, the signal transmission distance also increases, and accordingly, the transmission loss increases and the responsiveness deteriorates. In the present embodiment, the transmission loss can be reduced, and the response can be improved.
  • the adhesion between the insulating layer 12 and the seed layer 13 can be ensured, but if the photodesmear treatment is excessively performed for some reason, or after the photodesmear treatment, When left for a long time before forming a layer, for example, there is a possibility that an oxide film may be generated in the conductive layer 11 exposed at the bottom of the via hole 12a. Then, when the oxide film is left to form the seed layer 13, the connection strength between the conductive layer 11 and the seed layer 13 is reduced. Therefore, in this embodiment, the seed layer 13 strongly connected to the conductive layer 11 can be formed by performing ion etching in preparation for forming the seed layer 13. Hereinafter, this point will be further described.
  • FIG. 5 is a view showing a state in which sputtering is performed after the ion etching is performed
  • FIG. 6 is a view showing a state in which the oxide film is left to be sputtered.
  • the insulating layer 10 the conductive layer 11 having the required pattern stacked on the surface of the insulating layer 10
  • the insulating layer 12 stacked on the insulating layer 10 including the conductive layer 11.
  • a part of the wiring board material configured to include When ion etching is performed on the wiring substrate material in which the via hole 12a is formed, the wiring substrate material side becomes a cathode, and the ions AI collide with the oxide film F on the conductive layer 11 as shown in FIG.
  • FIG. 5C is an enlarged view of the surface of the conductive layer 11 at this time.
  • FIG. 6B when the oxide film F is left to be sputtered as shown in FIG. 6A with respect to the same wiring substrate material as the wiring substrate material shown in FIG.
  • the metal particles TP adhere to the oxide film F.
  • FIG. 6C a magnified view of the surface of the conductive layer 11 at this time is shown in FIG. 6C.
  • This layer structure is low in strength, and the connection strength between the conductive layer 11 and the seed layer 13 is also low.
  • the seed layer 13 in the seed layer formation process, the seed layer 13 firmly integrated with the conductive layer 11 can be reliably formed by performing the formation step after the removal step. Therefore, the plated layer 14 electrolytically plated based on the seed layer 13 exhibits high connection strength to the conductive layer 11.
  • Reference Example 1 The wiring board material was subjected to wet desmear treatment using a permanganic acid solution, the protective film was peeled off, and then a 1 ⁇ m seed layer was formed by electroless copper plating. Furthermore, on the substrate, a Cu layer (plated layer) of 30 ⁇ m was formed by electrolytic plating.
  • Reference Example 2 The wiring board material was subjected to wet desmear treatment using a permanganic acid solution, and then the oxide film was removed by wet etching using a mixed solution of hydrogen peroxide and sulfuric acid. Then, after the protective film was peeled off, a 1 ⁇ m seed layer was formed by electroless copper plating. Furthermore, on the substrate, a Cu layer (plated layer) of 30 ⁇ m was formed by electrolytic plating.
  • ultraviolet irradiation treatment and physical vibration treatment ultrasonic vibration treatment
  • Example 4 The wiring board material was subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 1 minute to remove the oxide film.
  • Example 6 The wiring board material was subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 10 minutes to remove the oxide film.
  • the Cu layer of the substrate is cut with a cutter knife to a width of 1 cm in accordance with the method described in JIS H8630 Annex 1, and then pulled. A peel test was conducted by peeling off in a 90 degree direction with a tester. Then, the via connection strength (%) and the repeated reliability (%) described later were obtained. The results are shown in Table 1.
  • FIG. 7 is a view showing various states generated in the via in the peel test.
  • FIG. 7A when the plating layer 114 is peeled off at both the bottom and the side wall of the via 112a formed in the insulating layer 112 of the sample 100 in the peel test, a defective product (via bottom It is determined that the condition is defective + defective sidewall).
  • the pattern shown in FIG. 7A occurs when the adhesion between both the via bottom (the conductive layer 111 and the plating layer 114) and the sidewall of the via (the insulating layer 112 and the plating layer 114) is low.
  • the non-defective product was obtained with 100% via connection strength, the repeat reliability is 40%, and 100% non-defective product is not obtained with three out of five sheets. The This is because the oxide film was not removed, and the adhesion between the seed layer and the conductive layer was hindered by the oxide film in some of the vias.
  • the via connection strength was 100% and good products were obtained, and the repeat reliability was 80%.
  • the chemical solution subjected to the wet desmear treatment had the function of roughening the surface of the epoxy resin, and the surface roughness was increased on the side walls.
  • Example 1 the non-defective product was obtained with the via connection strength of 100%, and the repeated reliability was 100%. This is because the seed layer is in close contact with the conductive layer by removing the oxide film by wet etching. In addition, the roughness of the sidewalls was suppressed by the photodesmear treatment.
  • Example 2 and 3 the via connection strength was 100%, and good products were obtained, and the repeat reliability was 90 to 95%. This is because the seed layer is in close contact with the conductive layer by removing the oxide film by ion etching. In addition, the roughness of the sidewalls was suppressed by the photodesmear treatment.
  • the non-defective product was obtained with the via connection strength of 100%, and the repeated reliability was also 100%. This is because the oxide film was completely removed by ion etching for one minute or more. In addition, the roughness of the sidewalls was suppressed by the photodesmear treatment. As described above, securing high adhesion in the via by combining the photodesmear process using ultraviolet light with a wavelength of 220 nm or less, the process of removing the oxide film, and the process of forming the seed layer by sputtering Thus, a highly reliable substrate can be realized. Furthermore, since the resin surface can be kept smooth, a resist pattern for forming fine wiring can be stably formed, and a fine wiring board can be manufactured with high accuracy.
  • FIG. 8 is a schematic view showing the configuration of a wiring board manufacturing apparatus.
  • FIG. 8A shows a configuration of a wiring substrate manufacturing apparatus 210 for manufacturing a wiring substrate without using the above-described protective film
  • FIG. 8B shows a wiring substrate using the above-described protective film.
  • the configuration of the wiring board manufacturing apparatus 220 to be manufactured is shown.
  • the wiring substrate manufacturing apparatus 210 shown in FIG. 8A includes an ultraviolet irradiation device 211, an ultrasonic cleaning / drying device 212, and an etching / sputtering device 213.
  • the ultraviolet irradiation device 211 performs an ultraviolet irradiation process in the photodesmear process on the work (wiring substrate material).
  • the ultrasonic cleaning / drying apparatus 212 performs an ultrasonic vibration process (ultrasonic cleaning process) as a physical vibration process in the photodesmear process, and then performs a drying process to dry the workpiece.
  • the etching / sputtering apparatus 213 employs an ion etching method and a sputtering method, and performs a process of forming a seed layer by removing the oxide film from the surface of the work after the photodesmear process.
  • the wiring substrate manufacturing apparatus 220 shown in FIG. 8B includes an ultraviolet irradiation device 221, an ultrasonic cleaning / drying device 222, a mask peeler 223, and an etching / sputtering device 224.
  • the ultraviolet irradiation device 221 and the ultrasonic cleaning / drying device 222 are the same as the ultraviolet irradiation device 211 and the ultrasonic cleaning / drying device 212.
  • the mask peeler apparatus 223 performs a process of removing the protective film from the work after the photodesmear process.
  • the etching / sputtering apparatus 224 employs an ion etching method and a sputtering method, and further performs a process of removing the oxide film from the surface of the work after removing the protective film to form a seed layer.
  • a wiring board manufacturing apparatus 210, 220 it is possible to manufacture a highly reliable wiring board in which the adhesion between the seed layer and the insulating layer is secured and the connection strength between the seed layer and the conductor layer is also secured. can do.
  • the ultraviolet irradiation devices 211 and 221 correspond to the ultraviolet irradiation unit
  • the ultrasonic cleaning / drying devices 212 and 222 correspond to the vibration application unit
  • the etching / sputtering devices 213 and 224 are the seed layer forming unit. It corresponds.
  • the seed layer may be formed by ion plating.
  • the same effect as in the case where the seed layer is formed by sputtering can be obtained. That is, in the case of a method of forming a seed layer by causing material particles (metal particles) to collide and adhere as in a sputtering method or an ion plating method, the same effect as the above embodiment can be obtained.
  • the case where an oxide film was removed by the ion etching method was demonstrated, it is not limited to this.
  • the substrate material may be immersed in a chemical solution to remove the oxide film.
  • medical solution the chemical
  • the oxide film is removed with a chemical solution as described above, the same effect as in the case where the oxide film is removed by ion etching can be obtained.
  • the present invention is also applicable to a descum device and a surface reforming device.
  • the descum apparatus is, for example, an apparatus for removing residues such as solder resist (Photo Solder Resist: PSR), dry film (DFR) and the like used in the manufacturing process.
  • the surface modification device is, for example, a device that performs adhesion improvement and wettability improvement by cleaning before and after plating, roughening of the material surface, and the like.
  • the light processing apparatus of the present invention is applicable to, for example, a light ashing processing apparatus, a resist removal processing apparatus, a dry cleaning processing apparatus, and the like.
  • SYMBOLS 10 Insulating layer, 11 ... Conducting layer, 12 ... Insulating layer, 12a ... Via hole, 13 ... Seed layer, 14 ... Plating layer, C ... Color center, L ... Laser, R ... Resist pattern, S ... Smear, T ... Target Material, F ... oxide film

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

Disclosed is a method for producing a circuit board that enables the achievement of a finer wiring pattern while ensuring adhesion between a seed layer and an insulating layer. This method comprises, as steps for producing a circuit board: a first step for forming a through hole that runs through an insulating layer of a circuit board material in which the insulating layer is laminated upon a conductive layer; a second step for, after the first step, desmearing the circuit board material by irradiating the circuit board material with ultraviolet rays having a wavelength of 220 nm or less; a third step for, after the second step, forming a seed layer upon the inner surface of the through hole and upon the insulating layer by removing the oxide film at the bottom of the through hole and having material particles run into and adhere to the inner surface of the through hole and the insulating layer; and a fourth step for forming a plating layer upon the seed layer by electrolytic plating, said plating layer being formed from a conductive material.

Description

配線基板の製造方法、配線基板及び配線基板製造装置Wiring board manufacturing method, wiring board and wiring board manufacturing apparatus
 本発明は、絶縁層と導電層とが積層されてなる配線基板の製造方法、その製造方法によって製造された配線基板、及び配線基板製造装置に関する。 The present invention relates to a method of manufacturing a wiring board in which an insulating layer and a conductive layer are stacked, a wiring board manufactured by the manufacturing method, and a wiring board manufacturing apparatus.
 半導体集積回路素子等の半導体素子を搭載するための配線基板としては、絶縁層と導電層(配線層)とが交互に積層されてなる多層配線基板が知られている。
 多層配線基板の製造工程の一例としては、先ず、絶縁層が導電層の上に積層されてなる配線基板材料に、ドリル加工やレーザ加工を施すことによって絶縁層や導電層の一部を除去し、ビアホールやスルーホールを形成する。このとき、配線基板材料には絶縁層や導電層を構成する材料に起因するスミア(残渣)が生じる。そのため、当該配線基板材料に対してスミアを除去するデスミア処理を行う。
As a wiring board for mounting semiconductor elements, such as a semiconductor integrated circuit element, a multilayer wiring board in which an insulating layer and a conductive layer (wiring layer) are alternately stacked is known.
As an example of the manufacturing process of a multilayer wiring board, first, a part of the insulating layer or the conductive layer is removed by performing drilling or laser processing on the wiring board material in which the insulating layer is laminated on the conductive layer. , Form via holes and through holes. At this time, a smear (residue) is generated in the wiring substrate material due to the material forming the insulating layer or the conductive layer. Therefore, a desmear process is performed on the wiring board material to remove smear.
 次いで、絶縁層の上やビアホール等の内面にシード層を形成し、絶縁層の上にレジストパターンを形成した後、電解めっきによって導電材料を積層する。その後、レジストパターンとシード層とを除去することで導体回路パターンを形成する。その後も種々の工程を経て、半導体素子は作製される。
 特許文献1には、湿式デスミア処理によってビア形成工程で生じたスミアを除去する工程と、無電解めっきによってシード層を形成する工程と、を有する基板製造方法が開示されている。
Next, a seed layer is formed on the insulating layer, the inner surface of the via hole and the like, a resist pattern is formed on the insulating layer, and then a conductive material is laminated by electrolytic plating. Thereafter, the resist pattern and the seed layer are removed to form a conductor circuit pattern. The semiconductor element is manufactured through various processes after that.
Patent Document 1 discloses a substrate manufacturing method having a step of removing smear generated in a via formation step by wet desmear processing, and a step of forming a seed layer by electroless plating.
特開2003-318519号公報Japanese Patent Application Publication No. 2003-318519
 上記特許文献1に記載の技術では、デスミア処理後、無電解めっきによりシード層を形成するが、シード層と絶縁層との密着性を確保するためには、絶縁層の表面を適度に粗い状態とし、アンカー効果によりシード層を絶縁層表面に強固に固定する必要がある。上記特許文献1に記載の技術では、デスミア処理として湿式デスミア処理を行うことにより、絶縁層表面を粗化している。
 ところで、近年、半導体素子は小型化傾向にあり、配線基板も微細化が求められている。しかしながら、上記のようにアンカー効果を得るために絶縁層の表面を粗くすると、その上に形成する配線パターン、特に、L/S(ライン/スペース)=10/10μm以下の微細配線パターンが立たなくなり、配線基板を微細化することができない。
 そこで、本発明は、シード層と絶縁層との密着性を担保しつつ、配線パターンの微細化を実現することができる配線基板の製造方法、配線基板及び配線基板製造装置を提供することを課題としている。
Although the seed layer is formed by electroless plating after desmearing in the technique described in Patent Document 1, the surface of the insulating layer is appropriately roughened in order to ensure the adhesion between the seed layer and the insulating layer. It is necessary to firmly fix the seed layer to the surface of the insulating layer by the anchor effect. In the technique described in Patent Document 1, the surface of the insulating layer is roughened by performing a wet desmearing process as the desmearing process.
By the way, in recent years, semiconductor elements tend to be miniaturized, and miniaturization of wiring boards is also required. However, when the surface of the insulating layer is roughened to obtain the anchor effect as described above, the wiring pattern formed thereon, in particular, the fine wiring pattern of L / S (line / space) = 10/10 μm or less no longer stands And the wiring substrate can not be miniaturized.
Therefore, it is an object of the present invention to provide a method of manufacturing a wiring substrate, a wiring substrate and a wiring substrate manufacturing apparatus which can realize miniaturization of a wiring pattern while securing the adhesion between a seed layer and an insulating layer. And
 上記課題を解決するために、本発明に係る配線基板の製造方法の一態様は、導電層の上に絶縁層が積層された配線基板材料に対して、前記絶縁層を貫通する貫通孔を形成する第一工程と、前記貫通孔が形成された前記配線基板材料に対して、波長220nm以下の紫外線を照射することにより、当該配線基板材料のデスミア処理を行う第二工程と、前記デスミア処理された前記貫通孔の底の導電材料に形成された酸化膜を除去し、前記貫通孔内および前記絶縁層の上に、材料粒子を衝突させ付着させることでシード層を形成する第三工程と、前記シード層の上に、電解めっきにより導電材料からなるめっき層を形成する第四工程と、を含む。 In order to solve the above-mentioned subject, one mode of a manufacturing method of a wiring board concerning the present invention forms a penetration hole which penetrates the insulating layer to wiring board material by which an insulating layer was laminated on a conductive layer. And a second step of performing a desmear treatment of the wiring substrate material by irradiating the wiring substrate material having the through holes with ultraviolet rays having a wavelength of 220 nm or less. Forming a seed layer by removing an oxide film formed on the conductive material at the bottom of the through hole, and causing material particles to collide and adhere to the inside of the through hole and the insulating layer; And forming a plating layer made of a conductive material by electrolytic plating on the seed layer.
 このように、紫外線によるデスミア処理を行うので、絶縁層表面の粗化を抑制することができる。そのため、微細配線パターンを適切に形成することができる。また、材料粒子を衝突させ付着させることでシード層を形成するので、従来のようなアンカー効果に拠らずに、シード層によって絶縁層との密着強度を担保することができる。特に、絶縁層を透過しない波長220nm以下の紫外線を照射することで、絶縁層表面にカラーセンター(構造欠陥、結合欠陥)を生じさせることができる。このとき、材料粒子(導電材料)が絶縁層に打ち込まれ、紫外線照射を受けた樹脂表面に存在する結合欠陥部にエネルギーが加わることで金属粒子と樹脂間にあらたな化学的結合作用ができる。これにより、波長220nm以下の紫外線の照射を受けていない樹脂に金属粒子が衝突し付着するのと比較して、強い密着力をもつシード層ができる。 As described above, since the desmear treatment with ultraviolet light is performed, the surface roughening of the insulating layer can be suppressed. Therefore, the fine wiring pattern can be appropriately formed. Further, since the seed layer is formed by causing the material particles to collide and adhere to each other, the adhesion strength with the insulating layer can be secured by the seed layer without relying on the conventional anchor effect. In particular, a color center (structural defect or bonding defect) can be generated on the surface of the insulating layer by irradiation with ultraviolet light having a wavelength of 220 nm or less which does not pass through the insulating layer. At this time, material particles (electrically conductive material) are driven into the insulating layer, and energy is applied to the bonding defects present on the resin surface irradiated with ultraviolet light, whereby a new chemical bonding action can be made between the metal particles and the resin. As a result, a seed layer having a strong adhesion is formed as compared to the case where metal particles collide and adhere to a resin which has not been irradiated with ultraviolet light having a wavelength of 220 nm or less.
 また、デスミア処理後の貫通孔の底の導電材料には、処理後の時間経過などによって酸化膜が形成される場合が有り、この酸化膜を放置してシード層を形成すると、シード層と導電層との接続性が低下する虞があり、延いては、導電層とメッキ層との接続強度が低下する虞がある。そこで、第三工程では、酸化膜を除去した上でシード層を形成することでシード層と導電層との接続性を担保している。
 上記の配線基板の製造方法において、前記第三工程は、イオンエッチングにより前記酸化膜を除去してもよいし、薬液により前記酸化膜を除去してもよいし、過酸化水素と硫酸を混合した薬液により前記酸化膜を除去してもよい。これにより、導電層との接続強度が確保されたシード層を形成することができる。
In addition, an oxide film may be formed in the conductive material at the bottom of the through hole after desmearing treatment due to the passage of time after the treatment, etc. If this oxide film is left to form a seed layer, the seed layer and the conductivity are formed. There is a possibility that the connectivity with the layer may be reduced, and thus the connection strength between the conductive layer and the plated layer may be reduced. Therefore, in the third step, after the oxide film is removed, the seed layer is formed to secure the connectivity between the seed layer and the conductive layer.
In the above method for manufacturing a wiring board, in the third step, the oxide film may be removed by ion etching, the oxide film may be removed by a chemical solution, or hydrogen peroxide and sulfuric acid are mixed. The oxide film may be removed by a chemical solution. Thus, the seed layer can be formed in which the connection strength with the conductive layer is secured.
 また、上記の配線基板の製造方法において、前記第三工程は、イオンエッチングにより前記酸化膜を除去し、スパッタリング法により前記シード層を形成してもよい。これにより、電圧印加の方向を逆転させるだけで酸化膜の除去からシード層の形成に切り換えることができる。
 さらに、本発明に係る配線基板は、上記のいずれかの配線基板の製造方法により製造される。したがって、当該配線基板は、シード層と絶縁層との密着性が担保され導電層とメッキ層との接続強度が確保された信頼性の高い微細配線基板とすることができる。
In the method of manufacturing a wiring substrate described above, in the third step, the oxide film may be removed by ion etching, and the seed layer may be formed by sputtering. Thus, the removal of the oxide film can be switched to the formation of the seed layer only by reversing the direction of voltage application.
Furthermore, the wiring board according to the present invention is manufactured by any of the above-described method for manufacturing a wiring board. Therefore, the wiring substrate can be a highly reliable fine wiring substrate in which the adhesion between the seed layer and the insulating layer is ensured and the connection strength between the conductive layer and the plating layer is ensured.
 また、本発明に係る配線基板製造装置の一態様は、導電層の上に絶縁層が積層され、前記絶縁層を貫通する貫通孔が形成された配線基板材料に対して、波長220nm以下の紫外線を照射することにより、当該配線基板材料のデスミア処理を行う紫外線照射部と、前記デスミア処理された前記貫通孔の底の導電材料に形成された酸化膜を除去し、前記貫通孔内および前記絶縁層の上に、材料粒子を衝突させ付着させることでシード層を形成するシード層形成部と、を備える。これにより、シード層と絶縁層との密着性が担保され導電層とメッキ層との接続強度が確保された信頼性の高い配線基板を製造することができる。 In one aspect of the wiring substrate manufacturing apparatus according to the present invention, an ultraviolet ray having a wavelength of 220 nm or less is applied to a wiring substrate material in which an insulating layer is stacked on a conductive layer and a through hole penetrating the insulating layer is formed. To remove the oxide film formed on the conductive material at the bottom of the through hole which has been subjected to the desmearing process for the wiring substrate material and the desmeared inside of the through hole and the insulating material. And a seed layer forming portion for forming a seed layer by colliding and depositing material particles on the layer. In this way, it is possible to manufacture a highly reliable wiring board in which the adhesion between the seed layer and the insulating layer is secured and the connection strength between the conductive layer and the plating layer is secured.
 本発明によれば、シード層と絶縁層との密着性を担保しつつ、配線パターンの微細化を実現することができ、信頼性の高い微細配線基板を製造することができる。
 上記した本発明の目的、態様及び効果並びに上記されなかった本発明の目的、態様及び効果は、当業者であれば添付図面及び請求の範囲の記載を参照することにより下記の発明を実施するための形態(発明の詳細な説明)から理解できるであろう。
According to the present invention, it is possible to realize the miniaturization of the wiring pattern while securing the adhesion between the seed layer and the insulating layer, and to manufacture a highly reliable micro wiring substrate.
The objects, aspects and effects of the present invention described above as well as the objects, aspects and effects of the present invention not described above can be carried out by those skilled in the art by referring to the attached drawings and claims. It can be understood from the form (detailed description of the invention).
図1は、本実施形態の配線基板の製造方法を示す図である。FIG. 1 is a view showing a method of manufacturing a wiring board of the present embodiment. 図2は、エポキシ樹脂の紫外線透過率特性を表す図である。FIG. 2 is a graph showing the ultraviolet light transmission characteristics of the epoxy resin. 図3は、220nm以下の紫外光を受けた樹脂にスパッタを施した図である。FIG. 3 is a diagram in which a resin that has received ultraviolet light of 220 nm or less is sputtered. 図4は、250nmの紫外光を受けた樹脂にスパッタを施した図である。FIG. 4 is a diagram in which a resin that has received 250 nm ultraviolet light is sputtered. 図5は、イオンエッチングを施した後にスパッタを施した図である。FIG. 5 is a diagram in which sputtering is performed after ion etching. 図6は、酸化膜を放置してスパッタを施した図である。FIG. 6 is a diagram in which the oxide film is left to be sputtered. 図7は、ビア接続強度の評価について説明する図である。FIG. 7 is a diagram for explaining the evaluation of via connection strength. 図8は、配線基板製造装置の構成を示す概略図である。FIG. 8 is a schematic view showing the configuration of a wiring board manufacturing apparatus.
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は、本実施形態の配線基板の製造方法を示す図である。本実施形態において、製造対象の配線基板は、コア基板上に導電層(配線層)と絶縁層とを積層してなる多層配線基板である。コア基板は、例えばガラスエポキシ樹脂などによって構成されている。導電層(配線層)を構成する材料としては、例えば、銅、ニッケル、金などを用いることができる。
 絶縁層は、例えば無機物質よりなる粒状フィラーが含有された樹脂などによって構成されている。このような樹脂としては、例えば、エポキシ樹脂、ビスマレイミドトリアジン樹脂、ポリイミド樹脂、ポリエステル樹脂などを用いることができる。また、粒状フィラーを構成する材料としては、例えば、シリカ、アルミナ、マイカ、珪酸塩、硫酸バリウム、水酸化マグネシウム、酸化チタンなどを用いることができる。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 is a view showing a method of manufacturing a wiring board of the present embodiment. In the present embodiment, the wiring substrate to be manufactured is a multilayer wiring substrate formed by laminating a conductive layer (wiring layer) and an insulating layer on a core substrate. The core substrate is made of, for example, a glass epoxy resin. As a material which comprises a conductive layer (wiring layer), copper, nickel, gold etc. can be used, for example.
The insulating layer is made of, for example, a resin containing a particulate filler made of an inorganic substance. As such a resin, an epoxy resin, bismaleimide triazine resin, polyimide resin, polyester resin etc. can be used, for example. Moreover, as a material which comprises a granular filler, a silica, an alumina, mica | cuttle-fish, a silicate, barium sulfate, magnesium hydroxide, a titanium oxide etc. can be used, for example.
 多層配線基板を製造する場合、先ず、図1(a)に示すように、導電層11と絶縁層12とが積層されてなる配線基板材料を形成する。導電層11の上に絶縁層12を形成する方法としては、液状の熱硬化性樹脂中に粒状フィラーが含有されてなる絶縁層形成材料を塗布した後、当該絶縁層形成材料を硬化処理する方法や、粒状フィラーが含有された絶縁シートを熱圧着等によって貼り合わせる方法などを利用することができる。 In the case of manufacturing a multilayer wiring board, first, as shown in FIG. 1A, a wiring board material in which the conductive layer 11 and the insulating layer 12 are laminated is formed. As a method of forming the insulating layer 12 on the conductive layer 11, a method of curing the insulating layer forming material after applying the insulating layer forming material in which the particulate filler is contained in the liquid thermosetting resin Alternatively, it is possible to use, for example, a method of laminating an insulation sheet containing a granular filler by thermocompression bonding or the like.
 次に、図1(b)に示すように、絶縁層12を、レーザLを用いて加工するなどにより、導電層11に到達する深さのビアホール12aを形成する。レーザ加工の方法としては、CO2レーザを用いる方法や、UVレーザを用いる方法などを利用することができる。なお、ビアホール12aを形成する方法は、レーザ加工に限定されるものではなく、例えばドリル加工などを用いてもよい。
 このようにしてビアホール12aを形成すると、絶縁層12におけるビアホール12aの内壁面(サイドウォール)、絶縁層12の表面におけるビアホール12aの周辺領域、およびビアホール12aの底部、即ち導電層11におけるビアホール12aによって露出した部分などには、導電層11や絶縁層12を構成する材料に起因するスミア(残渣)Sが生じる。
Next, as shown in FIG. 1B, the insulating layer 12 is processed by using a laser L or the like to form a via hole 12a having a depth reaching the conductive layer 11. As a method of laser processing, a method using a CO 2 laser, a method using a UV laser, or the like can be used. The method of forming the via holes 12a is not limited to laser processing, and for example, drilling may be used.
When the via hole 12a is formed in this manner, the inner wall surface (side wall) of the via hole 12a in the insulating layer 12, the peripheral region of the via hole 12a in the surface of the insulating layer 12, and the bottom of the via hole 12a, that is, the via hole 12a in the conductive layer 11 Smear (residue) S resulting from the material which comprises the conductive layer 11 and the insulating layer 12 arises in the exposed part etc.
 そこで、図1(c)に示すように、スミアSを除去する処理(デスミア処理)を行う。
本実施形態では、デスミア処理として、被処理部分に対して紫外線(UV)を照射することでスミアSを除去する、所謂フォトデスミア処理を用いる。より具体的には、フォトデスミア処理では、配線基板材料の被処理部分に対して上記の紫外線を照射する紫外線照射処理工程と、この紫外線照射処理工程の後、配線基板材料に物理的振動を与える物理的振動処理工程とを行う。
Therefore, as shown in FIG. 1C, a process (desmear process) for removing the smear S is performed.
In the present embodiment, as the desmearing process, a so-called photodesmearing process in which the smear S is removed by irradiating ultraviolet rays (UV) to the portion to be treated is used. More specifically, in the photodesmear process, an ultraviolet irradiation process step of irradiating the above-mentioned ultraviolet rays to the treated portion of the wiring board material and physical vibration are applied to the wiring board material after the ultraviolet irradiation process step. And physical vibration treatment process.
 ここで、フォトデスミア処理について詳細に説明する。
 紫外線照射処理は、例えば大気などの酸素を含む雰囲気下において行うことができる。
紫外線光源としては、波長220nm以下、好ましくは190nm以下の紫外線(真空紫外線)を出射する種々のランプを利用できる。ここで、波長220nmとしたのは、紫外線の波長が220nmを超える場合には、樹脂などの有機物質に起因するスミアを分解除去することが困難となるためである。
 有機物質に起因するスミアは、紫外線照射処理工程において、波長220nm以下の紫外線を照射することにより、紫外線のエネルギーおよび紫外線の照射に伴って生ずるオゾンや活性酸素によって分解される。また、無機物質に起因するスミア、具体的にはシリカやアルミナは、紫外線が照射されることによって脆いものとなる。
Here, the photodesmear process will be described in detail.
The ultraviolet irradiation treatment can be performed, for example, in an atmosphere containing oxygen such as the air.
As an ultraviolet light source, various lamps that emit ultraviolet light (vacuum ultraviolet light) having a wavelength of 220 nm or less, preferably 190 nm or less can be used. Here, the reason for setting the wavelength to 220 nm is that when the wavelength of ultraviolet light exceeds 220 nm, it becomes difficult to decompose and remove the smear caused by the organic substance such as resin.
The smear due to the organic substance is decomposed by the energy of the ultraviolet light and the ozone and active oxygen generated along with the irradiation of the ultraviolet light by irradiating the ultraviolet light having a wavelength of 220 nm or less in the ultraviolet irradiation treatment process. In addition, smears caused by inorganic substances, specifically, silica and alumina become brittle when irradiated with ultraviolet light.
 紫外線光源としては、例えば、キセノンガスを封入したキセノンエキシマランプ(ピーク波長172nm)、低圧水銀ランプ(185nm輝線)などを用いることができる。なかでも、デスミア処理に用いるものとしては、例えばキセノンエキシマランプが好適である。
 上記の紫外線照射処理を行う紫外線照射装置において、被処理対象である配線基板材料が酸素を含む処理気体の雰囲気中で紫外線に曝される処理領域は、例えば120℃以上190℃以下(例えば、150℃)に加熱される。また、紫外線出射窓と被処理対象である配線基板材料との離間距離は、例えば0.3mmに設定される。なお、紫外線の照度や紫外線の照射時間などは、スミアSの残留状態などを考慮して適宜設定することができる。
As the ultraviolet light source, for example, a xenon excimer lamp (peak wavelength 172 nm), low pressure mercury lamp (185 nm bright line) or the like in which xenon gas is sealed can be used. Among them, for example, a xenon excimer lamp is preferable as the one used for the desmear treatment.
In the ultraviolet irradiation apparatus which performs the above-mentioned ultraviolet irradiation processing, the processing region where the wiring substrate material to be processed is exposed to the ultraviolet light in the atmosphere of the processing gas containing oxygen is, for example, 120 ° C. or more and 190 ° C. or less (e.g. It is heated to ° C. Further, the separation distance between the ultraviolet light emission window and the wiring substrate material to be processed is set to, for example, 0.3 mm. The illuminance of the ultraviolet light, the irradiation time of the ultraviolet light, and the like can be appropriately set in consideration of the residual state of the smear S and the like.
 また、物理的振動処理は、例えば超音波振動処理によって行うことができる。超音波振動処理における超音波の周波数は、例えば20kHz以上70kHz以下であることが好ましい。超音波の周波数が70kHzを超えると、無機物質に起因するスミアを破壊して配線基板材料から離脱させることが困難となるためである。
 このような超音波振動処理においては、超音波の振動媒体として、水などの液体および空気などの気体を用いることができる。
 具体的に説明すると、振動媒体として水を用いる場合には、配線基板材料を、例えば水中に浸漬し、この状態で、当該水を超音波振動させることにより、超音波振動処理を行うことができる。超音波の振動媒体として液体を用いる場合には、超音波振動処理の処理時間は、例えば10秒間~600秒間である。
Also, physical vibration processing can be performed by ultrasonic vibration processing, for example. The frequency of ultrasonic waves in the ultrasonic vibration processing is preferably, for example, 20 kHz or more and 70 kHz or less. When the frequency of the ultrasonic wave exceeds 70 kHz, it is difficult to break the smear caused by the inorganic substance and to separate it from the wiring board material.
In such ultrasonic vibration processing, a liquid such as water and a gas such as air can be used as a vibration medium of ultrasonic waves.
Specifically, in the case of using water as a vibration medium, ultrasonic vibration processing can be performed by immersing the wiring substrate material, for example, in water and subjecting the water to ultrasonic vibration in this state. . In the case of using a liquid as a vibration medium of ultrasonic waves, the processing time of ultrasonic vibration processing is, for example, 10 seconds to 600 seconds.
 また、振動媒体として空気を用いる場合には、圧縮空気を超音波振動させながら配線基板材料に吹きつけることにより、超音波振動処理を行うことができる。ここで、圧縮空気の圧力は、例えば0.2MPa以上であることが好ましい。また、圧縮空気による超音波振動処理の処理時間は、例えば5秒間~60秒間である。
 上記の紫外線照射処理工程および物理的振動処理工程は、この順でそれぞれ1回ずつ行ってもよいが、紫外線照射処理工程および物理的振動処理工程を交互に繰り返して行うことが好ましい。ここで、紫外線照射処理工程および物理的振動処理工程の繰り返し回数は、各紫外線照射処理工程における紫外線の照射時間などを考慮して適宜設定されるが、例えば1回~5回である。
When air is used as the vibration medium, ultrasonic vibration processing can be performed by blowing compressed air onto the wiring substrate material while ultrasonically vibrating it. Here, the pressure of the compressed air is preferably, for example, 0.2 MPa or more. Further, the processing time of ultrasonic vibration processing with compressed air is, for example, 5 seconds to 60 seconds.
The ultraviolet irradiation treatment step and the physical vibration treatment step may be performed once in this order, but it is preferable to alternately repeat the ultraviolet irradiation treatment step and the physical vibration treatment step. Here, the number of repetitions of the ultraviolet irradiation processing step and the physical vibration processing step is appropriately set in consideration of the irradiation time of the ultraviolet light in each ultraviolet irradiation processing step, and is, for example, 1 to 5 times.
 このように、紫外線照射処理において波長220nm以下の紫外線を、酸素を含む処理気体に照射することによりオゾンや活性酸素が生じ、有機物質に起因するスミアSは、オゾンや活性酸素によって分解されてガス化される。その結果、有機物質に起因するスミアSは、その大部分が除去される。このとき、無機物質に起因するスミアSは、有機物質に起因するスミアSの除去により露出し、さらに、紫外線が照射されることによって脆いものとなる。 Thus, ozone and active oxygen are generated by irradiating the processing gas containing oxygen with ultraviolet light having a wavelength of 220 nm or less in the ultraviolet irradiation treatment, and the smear S caused by the organic substance is decomposed by ozone and active oxygen to form a gas Be As a result, most of the smear S due to the organic substance is removed. At this time, the smear S due to the inorganic substance is exposed by the removal of the smear S due to the organic substance, and further becomes brittle due to the irradiation of the ultraviolet light.
 そして、その状態で物理的振動処理を施すことにより、露出した無機物質に起因するスミアSや有機物質に起因するスミアSの残部は、振動による機械的作用によって破壊され、除去される。或いは、無機物質に起因するスミアSの収縮や、各スミアSに紫外線を照射したときに発生する熱膨張の差などによって、スミア間にわずかな隙間が生じ、無機物質に起因するスミアSは、物理的振動処理を施すことにより配線基板材料から離脱する。その結果、配線基板材料から無機物質に起因するスミアSと、有機物質に起因するスミアSとが完全に除去される。 Then, by applying physical vibration treatment in that state, the remaining portion of the smear S due to the exposed inorganic substance and the smear S due to the organic substance is broken and removed by the mechanical action by the vibration. Alternatively, due to the shrinkage of the smear S caused by the inorganic substance, the difference in thermal expansion generated when each smear S is irradiated with ultraviolet light, a slight gap is generated between the smears, and the smear S caused by the inorganic substance is It releases from wiring board material by giving physical vibration processing. As a result, the smear S due to the inorganic substance and the smear S due to the organic substance are completely removed from the wiring board material.
  本実施形態におけるフォトデスミア処理によれば、配線基板材料に対して紫外線照射処理および物理的振動処理を行えばよいので、廃液処理が必要となる薬品を用いることが不要である。
 フォトデスミア処理が完了すると、次に、シード層を形成するシード層形成処理を行う。このシード層形成処理では、図1(d)に示すように、ビアホール12aの底に形成されたた酸化膜Fを除去する除去工程と、図1(e)に示すように、絶縁層12の上面およびビアホール12aの内面にシード層13を形成する形成工程とを行う。
According to the photodesmear process in the present embodiment, since the ultraviolet irradiation process and the physical vibration process may be performed on the wiring substrate material, it is not necessary to use a chemical which requires the waste liquid process.
When the photodesmear process is completed, next, a seed layer forming process for forming a seed layer is performed. In this seed layer forming process, as shown in FIG. 1D, a removal step of removing the oxide film F formed at the bottom of the via hole 12a, and as shown in FIG. And forming a seed layer 13 on the upper surface and the inner surface of the via hole 12a.
 本実施形態では、除去工程における酸化膜Fの除去方法としてイオンエッチングを用いる。具体的には、図1(d)に示すように、アルゴン雰囲気中で配線基板材料に対向してターゲット材料Tを配置し、配線基板材料とターゲット材料Tとの間に、ターゲット材料Tが相対的に正電位となり配線基板材料が相対的に負電位となる極性の電圧を印加する。
これにより、配線基板材料とターゲット材料Tとの間では、アルゴンのプラズマPが発生し、プラズマP中のアルゴンイオンAIが、相対的に負電位になっている配線基板材料に向かって飛び、酸化膜Fなどに衝突する。この衝突によって酸化膜Fがエッチングされて除去される。
In the present embodiment, ion etching is used as a method of removing the oxide film F in the removing step. Specifically, as shown in FIG. 1D, the target material T is disposed to face the wiring substrate material in an argon atmosphere, and the target material T is relative between the wiring substrate material and the target material T. In this case, a positive voltage is applied, and a voltage of a polarity at which the wiring board material becomes relatively negative is applied.
As a result, argon plasma P is generated between the wiring substrate material and the target material T, and argon ions AI in the plasma P fly toward the wiring substrate material which is relatively at a negative potential and oxidized. It collides with membrane F etc. The oxide film F is etched and removed by this collision.
 本実施形態では、形成工程におけるシード層13の形成方法としてスパッタリングを用いる。具体的には、図1(e)に示すように、除去工程における電圧極性とは逆向きの電圧極性を有する電圧を、配線基板材料とターゲット材料Tとの間に印加する。これにより、配線基板材料とターゲット材料Tとの間では、アルゴンのプラズマPが発生し、プラズマP中のアルゴンイオンAIが、相対的に負電位になっているターゲット材料Tに衝突する。この衝突によってターゲット材料Tからターゲット粒子TPがたたき出され、そのターゲット粒子TPが配線基板材料の表面に衝突して付着する。このようにターゲット粒子TPを付着させることでシード層13を形成する。なお、シード層13を形成するスパッタリングでは、例えば、密着強度確保のために、先ずターゲット材料TとしてTi(チタン)を用いてベースとなる層(10nm~100nm程度)を形成し、その後、ターゲット材料TとしてCu(銅)を用いてシード層(100nm~1000nm程度)を形成する。 In the present embodiment, sputtering is used as a method of forming the seed layer 13 in the forming step. Specifically, as shown in FIG. 1E, a voltage having a voltage polarity reverse to the voltage polarity in the removing step is applied between the wiring substrate material and the target material T. As a result, argon plasma P is generated between the wiring substrate material and the target material T, and argon ions AI in the plasma P collide with the target material T which has a relatively negative potential. By this collision, the target particles TP are knocked out of the target material T, and the target particles TP collide and adhere to the surface of the wiring substrate material. By depositing the target particles TP in this manner, the seed layer 13 is formed. In the sputtering for forming the seed layer 13, for example, in order to secure the adhesion strength, first, Ti (titanium) is used as the target material T to form a base layer (about 10 nm to 100 nm), and then the target material A seed layer (about 100 nm to 1000 nm) is formed using Cu (copper) as T.
 次に、図1(f)に示すように、シード層13の上にレジストパターンRを形成する。
レジストパターンRの形成方法としては、例えば、シード層13の上にレジストを塗布した後、露光・現像によってパターンを形成する方法を用いることができる。
 次に、図1(g)に示すように、シード層13をめっき給電経路に利用する電解めっきにより、ビアホール12a内からレジストパターンRの開口部にかけてめっき層14を形成する。めっき層14としては、例えば、Cu(銅)などからなる層(20μm~50μm程度)を用いることができる。
 その後、図1(h)に示すように、レジストパターンRを除去し、次いで、図1(i)に示すように、めっき層14をマスクにしてシード層13を除去(フラッシュエッチング)する。
Next, as shown in FIG. 1F, a resist pattern R is formed on the seed layer 13.
As a method of forming the resist pattern R, for example, a method of forming a pattern by exposure and development after applying a resist on the seed layer 13 can be used.
Next, as shown in FIG. 1G, the plating layer 14 is formed from the inside of the via hole 12a to the opening of the resist pattern R by electrolytic plating using the seed layer 13 as a plating feed path. For example, a layer (about 20 μm to 50 μm) made of Cu (copper) or the like can be used as the plating layer 14.
Thereafter, as shown in FIG. 1 (h), the resist pattern R is removed, and then, as shown in FIG. 1 (i), the seed layer 13 is removed (flash etching) using the plating layer 14 as a mask.
 なお、図1に示す各工程のうち、図1(b)に示す工程が、導電層の上に積層された絶縁層に貫通孔を形成する第一工程に対応し、図1(c)に示す工程が、第一工程の後に、波長220nm以下の紫外線を照射してデスミア処理を行う第二工程に対応している。また、図1(d)および図1(e)に示す工程が、第二工程の後に、上記貫通孔内および絶縁層の上にシード層を形成する第三工程に対応し、図1(g)に示す工程が、シード層の上に電解めっきにより導電材料からなるめっき層を形成する第四工程に対応している。 Of the steps shown in FIG. 1, the step shown in FIG. 1 (b) corresponds to the first step of forming a through hole in the insulating layer stacked on the conductive layer, as shown in FIG. 1 (c). The step shown corresponds to a second step of performing desmear treatment by irradiating ultraviolet rays having a wavelength of 220 nm or less after the first step. The steps shown in FIGS. 1D and 1E correspond to the third step of forming a seed layer in the through hole and on the insulating layer after the second step. The step shown in) corresponds to the fourth step of forming a plating layer made of a conductive material by electrolytic plating on the seed layer.
 このように、本実施形態では、フォトデスミア処理を用いてスミアSを除去した後、スパッタリング法によりシード層13を形成する。
 従来、絶縁層とシード層との密着性は、アンカー効果により担保していた。すなわち、絶縁層とシード層との密着性を確保するためには、絶縁層の表面を粗化することが好ましいとされていた。しかしながら、絶縁層の表面を粗化すると、特にL/S(ライン/スペース)=10/10μm以下の微細配線パターンが立たなくなるため、微細配線基板の作製が困難となる。そのため、微細配線基板を作製するためには、絶縁層の表面を粗化することなく、絶縁層とシード層との密着性を担保する必要がある。本発明者は、配線基板の製造工程の一部であるデスミア処理とシード層形成処理とを、フォトデスミア処理とスパッタリング法との組み合わせにより行うことで、絶縁層の表面を粗化することなく、絶縁層とシード層との密着性を担保することができることを見出した。
As described above, in the present embodiment, after the smear S is removed using the photodesmear process, the seed layer 13 is formed by the sputtering method.
Conventionally, the adhesion between the insulating layer and the seed layer has been secured by the anchor effect. That is, in order to secure the adhesion between the insulating layer and the seed layer, it has been considered preferable to roughen the surface of the insulating layer. However, when the surface of the insulating layer is roughened, in particular, a fine wiring pattern of L / S (line / space) = 10/10 μm or less does not stand up, which makes it difficult to produce a fine wiring board. Therefore, in order to manufacture a fine wiring board, it is necessary to secure the adhesion between the insulating layer and the seed layer without roughening the surface of the insulating layer. The present inventor performs the desmearing process and the seed layer forming process which are a part of the manufacturing process of the wiring substrate by combining the photodesmear process and the sputtering method, without roughening the surface of the insulating layer. It has been found that the adhesion between the insulating layer and the seed layer can be secured.
 フォトデスミア処理は、被処理物体の表面を粗くすることなく、スミアを除去することができる。また、本実施形態におけるフォトデスミア処理では、紫外線照射処理に続いて物理的振動処理を実施するので、有機物質に起因するスミアと無機物質に起因するスミアとを適切に除去することができる。
 さらに、スパッタリング法を用いてシード層13を形成するので、表面が粗化されていない絶縁層12の上に、シード層13を十分な密着強度で形成することができる。特に、紫外線照射処理において波長220nm以下の紫外線を用い、当該紫外線照射処理の後にスパッタリング法を用いたシード層形成処理を実施するので、絶縁層12の上に緻密強固なシード層13を形成することができる。以下、この点について詳細に説明する。
The photodesmear treatment can remove smear without roughening the surface of the object to be treated. Further, in the photodesmear treatment in the present embodiment, physical vibration treatment is performed subsequent to the ultraviolet irradiation treatment, so that it is possible to appropriately remove the smear caused by the organic substance and the smear caused by the inorganic substance.
Furthermore, since the seed layer 13 is formed by sputtering, the seed layer 13 can be formed with sufficient adhesion strength on the insulating layer 12 whose surface is not roughened. In particular, since the seed layer forming process using a sputtering method is performed after the ultraviolet ray irradiation process using ultraviolet rays with a wavelength of 220 nm or less in the ultraviolet ray irradiation process, the dense and strong seed layer 13 is formed on the insulating layer 12 Can. Hereinafter, this point will be described in detail.
 図2は、エポキシ樹脂(25μm膜)の紫外線透過率特性を示す図である。図2において、横軸は紫外線の波長(nm)、縦軸は紫外線の透過率(%)である。
 この図2に示すように、波長220nm以上の領域、即ち可視光線および近紫外線の一部の領域では、光は樹脂を透過し、その透過率は波長が短くなるにしたがって小さくなる。具体的には、波長300nmを超える領域では、光は樹脂をほぼ透過する。波長300nm以下では、紫外線は樹脂にやや吸収されるが、その吸収は小さく紫外線が完全に遮られるほどではない。これは、樹脂の厚さ方向全体で紫外線を吸収するためであり、その紫外線により励起された樹脂は、樹脂の全体に広く分布する。
FIG. 2 is a view showing the ultraviolet light transmission characteristic of the epoxy resin (25 μm film). In FIG. 2, the horizontal axis is the wavelength (nm) of ultraviolet light, and the vertical axis is the transmittance (%) of ultraviolet light.
As shown in FIG. 2, light passes through the resin in a region of wavelengths of 220 nm or more, that is, in a portion of visible light and near ultraviolet light, and the transmittance thereof becomes smaller as the wavelength becomes shorter. Specifically, in the region exceeding the wavelength of 300 nm, light is almost transmitted through the resin. At a wavelength of 300 nm or less, the ultraviolet light is slightly absorbed by the resin, but the absorption is so small that the ultraviolet light is not completely blocked. This is to absorb ultraviolet light in the entire thickness direction of the resin, and the resin excited by the ultraviolet light is widely distributed throughout the resin.
 一方、波長220nm以下の紫外線は、樹脂を透過しない。この吸光度は高く、紫外線は樹脂の表面層で吸収される。さらに短波長になると、樹脂の極表面で紫外線は完全に吸収され、紫外線の吸収により発生した励起箇所は樹脂表面に層状に分布する。
 そして、このような活性な樹脂部は、スパッタリングによって飛来したターゲット粒子が樹脂に打ち込まれたときのエネルギーによって新たな結合を作り出し、強固にターゲット粒子を固定する。
 図3は、波長220nm以下の紫外線を受けた樹脂にスパッタを施したときの状態を示す図であり、図4は、波長250nmの紫外線を受けた樹脂にスパッタを施したときの状態を示す図である。これら図3、図4では、絶縁層10と、絶縁層10の表面上に積層された所要のパターンを有する導電層11と、導電層11を含む絶縁層10上に積層された絶縁層12とを含んで構成される配線基板材料の一部を示している。
On the other hand, ultraviolet rays having a wavelength of 220 nm or less do not pass through the resin. This absorbance is high, and ultraviolet light is absorbed by the surface layer of the resin. When the wavelength further decreases, ultraviolet light is completely absorbed on the surface of the resin, and the excitation sites generated by the absorption of ultraviolet light are distributed in layers on the resin surface.
Then, such an active resin part creates new bonds by energy when target particles ejected by sputtering are injected into the resin, and the target particles are firmly fixed.
FIG. 3 is a view showing a state in which a resin receiving ultraviolet light having a wavelength of 220 nm or less is sputtered, and FIG. 4 is a view showing a state in which a resin receiving ultraviolet light having a wavelength 250 nm is sputtered. It is. In FIGS. 3 and 4, insulating layer 10, conductive layer 11 having a required pattern stacked on the surface of insulating layer 10, and insulating layer 12 stacked on insulating layer 10 including conductive layer 11. And a part of the wiring board material configured to include
 ビアホール12aに残留するスミア(不図示)を除去するフォトデスミア処理として、図3(a)に示すように、波長220nm以下の紫外線(UV)を照射した場合、上述したように紫外線は絶縁層12表面で吸収され、絶縁層12の表面にカラーセンター(結合欠陥、構造欠陥)Cが生じる。カラーセンターCとは、上記の紫外線を吸収することで励起され、原子同士の化学結合が切れたり結合状態が変化したりすることで生成される欠陥である。
 このようにカラーセンターCが生じている絶縁層12表面に対し、図3(b)に示すように、スパッタ源から飛来するターゲット粒子(金属粒子)TPが打ち込まれると、カラーセンターCがその金属粒子TPを強固に捕獲する。つまり、紫外線照射を受けた樹脂表面に存在する結合欠陥部にエネルギーが加わることで、金属粒子と樹脂との間にあらたな化学的結合作用ができる。図3(c)は、このときの絶縁層12表面の拡大図である。このように、波長220nm以下の紫外線を受けた絶縁層12とスパッタを施した金属膜(図1のシード層13)との密着性は、非常に強固となる。
As shown in FIG. 3A, when ultraviolet light (UV) having a wavelength of 220 nm or less is irradiated as the photodesmear processing for removing the smear (not shown) remaining in the via hole 12a, the ultraviolet light is the insulating layer 12 as described above. It is absorbed at the surface, and a color center (coupling defect, structural defect) C occurs on the surface of the insulating layer 12. The color center C is a defect which is excited by absorbing the above-mentioned ultraviolet light, and is generated by breaking a chemical bond between atoms or changing a bonding state.
Thus, as shown in FIG. 3B, when target particles (metal particles) TP flying from a sputtering source are bombarded onto the surface of the insulating layer 12 where the color center C is generated, the color center C will Firmly capture particles TP. In other words, a new chemical bonding action can be made between the metal particles and the resin by applying energy to the bonding defect present on the resin surface that has been irradiated with ultraviolet light. FIG. 3C is an enlarged view of the surface of the insulating layer 12 at this time. As described above, the adhesion between the insulating layer 12 that has been subjected to the ultraviolet light having a wavelength of 220 nm or less and the sputtered metal film (seed layer 13 in FIG. 1) becomes very strong.
 一方、図3に示す配線基板材料と同様の配線基板材料に対し、フォトデスミア処理として、例えば波長250nmの紫外線を照射した場合には、紫外線を受けた絶縁層12では、励起された樹脂の分布が疎で絶縁層12全体に分布する。すなわち、図4(a)に示すように、カラーセンターCは絶縁層12の表面に分布せず、絶縁層12の内部に分布する。
 そのため、この絶縁層12表面に対し、図4(b)に示すように、スパッタ源から飛来するターゲット粒子(金属粒子)TPを打ち込んでも、金属粒子TPの捕獲作用は少ない。すなわち、図4(c)に、このときの絶縁層12表面の拡大図を示すように、絶縁層12表面と金属粒子TPとの特別な結合作用は無く、絶縁層12上に形成される金属膜(図1のシード層13)の密着力は強化されない。
On the other hand, when the same wiring board material as the wiring board material shown in FIG. 3 is irradiated with, for example, ultraviolet light having a wavelength of 250 nm as the photodesmear process, the distribution of the excited resin in the insulating layer 12 receiving the ultraviolet light. Are sparse and distributed throughout the insulating layer 12. That is, as shown in FIG. 4A, the color centers C are not distributed on the surface of the insulating layer 12 but are distributed inside the insulating layer 12.
Therefore, as shown in FIG. 4B, even if target particles (metal particles) TP flying from a sputtering source are implanted into the surface of the insulating layer 12, the trapping effect of the metal particles TP is small. That is, as shown in FIG. 4C, an enlarged view of the surface of the insulating layer 12 at this time, there is no special bonding action between the surface of the insulating layer 12 and the metal particles TP, and the metal formed on the insulating layer 12 The adhesion of the film (seed layer 13 in FIG. 1) is not enhanced.
 本実施形態では、紫外線照射処理において波長220nm以下の紫外線を用い、当該紫外線照射処理の後にスパッタリング法を用いたシード層形成処理を実施することで、絶縁層12の上に緻密強固なシード層13を形成することができる。したがって、このシード層13をベースに電解めっきを施しためっき層14は、絶縁層12に対して高い密着性を示す。このように、絶縁層12の表面を粗化することなく、絶縁層12とシード層13との密着性を担保することができる。その結果、信頼性の高い微細配線基板を実現することができる。 In the present embodiment, the seed layer formation treatment using the sputtering method is performed after the ultraviolet irradiation treatment using the ultraviolet light having a wavelength of 220 nm or less in the ultraviolet irradiation treatment to form a dense and strong seed layer 13 on the insulating layer 12. Can be formed. Therefore, the plating layer 14 subjected to electrolytic plating based on the seed layer 13 exhibits high adhesion to the insulating layer 12. Thus, the adhesion between the insulating layer 12 and the seed layer 13 can be secured without roughening the surface of the insulating layer 12. As a result, a highly reliable fine wiring board can be realized.
 さらに、絶縁層12の表面を平滑に保つことができるので、高周波応答性を向上させることができる。周波数が高くなると、表皮効果により信号は導体の表面に集中するという性質を持つ。上記従来のように、アンカー効果を得るために絶縁層12の表面を粗くすると、信号の伝達距離も大きくなるため、それに伴って伝送損失が大きくなり、応答性が悪くなってしまう。本実施形態では、上記伝送損失を低減し、応答性を向上させることができる。
 このように、本実施形態では、絶縁層12とシード層13との密着性を担保することができるが、フォトデスミア処理が何らかの原因で過剰に行われた場合や、フォトデスミア処理の後、シード層を形成する前に長時間放置された場合などには、ビアホール12aの底に露出した導電層11に酸化膜が生じる虞がある。そして、酸化膜を放置してシード層13を形成すると、導電層11とシード層13との接続強度が低下する。そのため、本実施形態では、シード層13形成の準備としてイオンエッチングを行うことで、導電層11に強固に接続したシード層13を形成することができる。以下、この点についてさらに説明する。
Furthermore, since the surface of the insulating layer 12 can be kept smooth, high frequency response can be improved. At higher frequencies, the skin effect has the property that the signal is concentrated on the surface of the conductor. If the surface of the insulating layer 12 is roughened to obtain an anchor effect as in the above-described conventional case, the signal transmission distance also increases, and accordingly, the transmission loss increases and the responsiveness deteriorates. In the present embodiment, the transmission loss can be reduced, and the response can be improved.
As described above, in the present embodiment, the adhesion between the insulating layer 12 and the seed layer 13 can be ensured, but if the photodesmear treatment is excessively performed for some reason, or after the photodesmear treatment, When left for a long time before forming a layer, for example, there is a possibility that an oxide film may be generated in the conductive layer 11 exposed at the bottom of the via hole 12a. Then, when the oxide film is left to form the seed layer 13, the connection strength between the conductive layer 11 and the seed layer 13 is reduced. Therefore, in this embodiment, the seed layer 13 strongly connected to the conductive layer 11 can be formed by performing ion etching in preparation for forming the seed layer 13. Hereinafter, this point will be further described.
 図5は、イオンエッチングを施した後にスパッタを施したときの状態を示す図であり、図6は酸化膜を放置してスパッタを施したときの状態を示す図である。これら図5、図6でも、絶縁層10と、絶縁層10の表面上に積層された所要のパターンを有する導電層11と、導電層11を含む絶縁層10上に積層された絶縁層12とを含んで構成される配線基板材料の一部を示している。
 ビアホール12aが形成された配線基板材料に対してイオンエッチングを行うと、配線基板材料側が陰極となり、図5(a)に示すように導電層11上の酸化膜FにイオンAIが衝突して酸化膜Fがエッチングされて除去される。
 このように酸化膜Fが除去された導電層11表面に対し、酸化膜Fが再び形成される前に、図5(b)に示すように、スパッタ源から飛来するターゲット粒子(金属粒子)TPが打ち込まれると、導電層11表面にその金属粒子TPが強固に付着して一体化する。図5(c)は、このときの導電層11表面の拡大図である。
FIG. 5 is a view showing a state in which sputtering is performed after the ion etching is performed, and FIG. 6 is a view showing a state in which the oxide film is left to be sputtered. Also in FIGS. 5 and 6, the insulating layer 10, the conductive layer 11 having the required pattern stacked on the surface of the insulating layer 10, and the insulating layer 12 stacked on the insulating layer 10 including the conductive layer 11. And a part of the wiring board material configured to include
When ion etching is performed on the wiring substrate material in which the via hole 12a is formed, the wiring substrate material side becomes a cathode, and the ions AI collide with the oxide film F on the conductive layer 11 as shown in FIG. The film F is etched away.
Thus, before the oxide film F is formed again on the surface of the conductive layer 11 from which the oxide film F has been removed, as shown in FIG. 5B, target particles (metal particles) TP flying from the sputtering source The metal particles TP adhere firmly to the surface of the conductive layer 11 to be integrated. FIG. 5C is an enlarged view of the surface of the conductive layer 11 at this time.
 一方、図3に示す配線基板材料と同様の配線基板材料に対し、図6(a)に示すように酸化膜Fを放置してスパッタを施した場合には、図6(b)に示すように、金属粒子TPは酸化膜F上に付着する。図6(c)に、このときの導電層11表面の拡大図を示すように、導電層11と酸化膜Fとシード層13とが積み重なった層構造が得られるが、酸化膜Fが間に入っていることでこの層構造は強度が低く、導電層11とシード層13との接続強度も低い。
 本実施形態では、シード層の形成処理において、除去工程を行った後に形成工程を行うことで導電層11と強固に一体化したシード層13を確実に形成することができる。したがって、このシード層13をベースに電解めっきを施しためっき層14は、導電層11に対して高い接続強度を示す。
On the other hand, as shown in FIG. 6B, when the oxide film F is left to be sputtered as shown in FIG. 6A with respect to the same wiring substrate material as the wiring substrate material shown in FIG. The metal particles TP adhere to the oxide film F. As a magnified view of the surface of the conductive layer 11 at this time is shown in FIG. 6C, a layered structure in which the conductive layer 11, the oxide film F, and the seed layer 13 are stacked is obtained. This layer structure is low in strength, and the connection strength between the conductive layer 11 and the seed layer 13 is also low.
In the present embodiment, in the seed layer formation process, the seed layer 13 firmly integrated with the conductive layer 11 can be reliably formed by performing the formation step after the removal step. Therefore, the plated layer 14 electrolytically plated based on the seed layer 13 exhibits high connection strength to the conductive layer 11.
(実施例) 
 次に、本発明の効果を確認するために行った実施例について説明する。
<配線基板材料> 
 先ず、ガラスエポキシ樹脂と銅からなるプリプレグのコア材に、25μmのエポキシ樹脂を両面真空ラミネートし、高圧プレスとベーキングにより作成した積層体(エポキシ基板)を用意した。この積層体に厚さ38μmのPETフィルムによる保護膜を貼り、その後、ビア加工機(UVレーザ)によってレーザ加工を施すことにより、ブラインドビアを、500μmピッチで格子状に作成した。ビア開口径は、φ50μmとした。このようにして、配線基板材料を得た。また、このとき、配線基板材料のブラインドビアの底部に、スミアが残留していることを確認した。
(Example)
Next, an example carried out to confirm the effect of the present invention will be described.
<Wiring board material>
First, an epoxy resin of 25 μm was vacuum laminated on both sides of a core material of a prepreg made of glass epoxy resin and copper, and a laminate (epoxy substrate) was prepared by high-pressure pressing and baking. A protective film of PET film with a thickness of 38 μm was attached to this laminated body, and then laser processing was performed by a via processing machine (UV laser) to form blind vias in a lattice at a pitch of 500 μm. The via opening diameter was φ50 μm. Thus, a wiring board material was obtained. At this time, it was confirmed that smear remained at the bottom of the blind via of the wiring board material.
<参考例1> 
 上記配線基板材料に対し、過マンガン酸液を利用したウェットデスミア処理を施し、保護膜を剥がした後、無電解銅めっきにより1μmのシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
<参考例2> 
 上記配線基板材料に対し、過マンガン酸液を利用したウェットデスミア処理を施した後、過酸化水素と硫酸を混合した溶液を用いたウェットエッチングにより酸化膜除去を行った。そして、保護膜を剥がした後、無電解銅めっきにより1μmのシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
Reference Example 1
The wiring board material was subjected to wet desmear treatment using a permanganic acid solution, the protective film was peeled off, and then a 1 μm seed layer was formed by electroless copper plating. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
Reference Example 2
The wiring board material was subjected to wet desmear treatment using a permanganic acid solution, and then the oxide film was removed by wet etching using a mixed solution of hydrogen peroxide and sulfuric acid. Then, after the protective film was peeled off, a 1 μm seed layer was formed by electroless copper plating. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
<参考例3> 
 上記配線基板材料に対し、過マンガン酸液を利用したウェットデスミア処理を施した後、10分間のイオンエッチングを施して酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
Reference Example 3
The wiring board material was subjected to wet desmear treatment using a permanganic acid solution, and then ion etching was performed for 10 minutes to remove the oxide film. Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
<比較例1> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施し、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。なお、フォトデスミア処理においては、紫外線照射処理と物理的振動処理(超音波振動処理)とを実施した。
Comparative Example 1
The above wiring substrate material is subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, the protective film is peeled off, and then a 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) seed layer is formed by sputtering. It formed. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating. In the photodesmear treatment, ultraviolet irradiation treatment and physical vibration treatment (ultrasonic vibration treatment) were performed.
<実施例1> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施した後、過酸化水素と硫酸を混合した溶液を用いたウェットエッチング(処理時間:5分間)により酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。なお、以下全ての実施例で、フォトデスミア処理においては、紫外線照射処理と物理的振動処理(超音波振動処理)とを実施した。
Example 1
The above wiring board material was subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, and then the oxide film was removed by wet etching (treatment time: 5 minutes) using a solution in which hydrogen peroxide and sulfuric acid were mixed. . Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating. In all the following examples, ultraviolet irradiation treatment and physical vibration treatment (ultrasonic vibration treatment) were performed in the photodesmear treatment.
<実施例2> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施した後、0.25分間のイオンエッチングを施して酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
Example 2
The wiring board material was subjected to photodesmear processing using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 0.25 minutes to remove the oxide film. Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
<実施例3> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施した後、0.5分間のイオンエッチングを施して酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
<実施例4> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施した後、1分間のイオンエッチングを施して酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
Example 3
The wiring board material was subjected to photodesmear processing using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 0.5 minutes to remove the oxide film. Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
Example 4
The wiring board material was subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 1 minute to remove the oxide film. Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
<実施例5> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施した後、5分間のイオンエッチングを施して酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
<実施例6> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施した後、10分間のイオンエッチングを施して酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
Example 5
The wiring board material was subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 5 minutes to remove the oxide film. Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
Example 6
The wiring board material was subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 10 minutes to remove the oxide film. Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
<実施例7> 
 上記配線基板材料に対し、波長172nmの紫外線を用いたフォトデスミア処理を施した後、20分間のイオンエッチングを施して酸化膜除去を行った。そして、保護膜を剥がした後、スパッタリング法により0.33μm(Ti/Cu=0.03μm/0.3μm)のシード層を形成した。さらに、その基板に、電解めっきにより30μmのCu層(めっき層)を形成した。
 上記の参考例1~3、比較例1、実施例1~6について、基板のCu層をJIS H8630付属書1に記載の方法に準拠して、1cmの幅にカッターナイフで切り込みを入れ、引っ張り試験器で90度方向に引き剥がすピール試験を行った。そして、後で説明するビア接続強度(%)と繰り返し信頼性(%)を求めた。その結果を表1に示す。
Example 7
The wiring board material was subjected to photodesmear treatment using ultraviolet light of wavelength 172 nm, and then ion etching was performed for 20 minutes to remove the oxide film. Then, after the protective film was peeled off, a seed layer of 0.33 μm (Ti / Cu = 0.03 μm / 0.3 μm) was formed by sputtering. Furthermore, on the substrate, a Cu layer (plated layer) of 30 μm was formed by electrolytic plating.
For the above reference examples 1 to 3 and comparative example 1 and examples 1 to 6, the Cu layer of the substrate is cut with a cutter knife to a width of 1 cm in accordance with the method described in JIS H8630 Annex 1, and then pulled. A peel test was conducted by peeling off in a 90 degree direction with a tester. Then, the via connection strength (%) and the repeated reliability (%) described later were obtained. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記ビア接続強度とは、同じ条件で製作した基板上の100個のビアに対してピール試験を行い、そのビアの様子を顕微鏡で観察し、良品の率を計算して表したものである。
 図7は、ピール試験でビアに生じる各種の状態を示す図である。
 例えば、図7(a)に示すように、ピール試験において、試料100の絶縁層112に形成されたビア112aの底とサイドウォールとの両方でめっき層114が剥がれた場合、不良品(ビア底不良+サイドウォール不良)であると判定する。この図7(a)に示すパターンは、ビア底(導電層111とめっき層114)とビアのサイドウォール(絶縁層112とめっき層114)の両方の密着性が低い場合に起こる。
The above-mentioned via connection strength is obtained by performing a peel test on 100 vias on a substrate manufactured under the same conditions, observing the state of the via with a microscope, and calculating the rate of non-defective products.
FIG. 7 is a view showing various states generated in the via in the peel test.
For example, as shown in FIG. 7A, when the plating layer 114 is peeled off at both the bottom and the side wall of the via 112a formed in the insulating layer 112 of the sample 100 in the peel test, a defective product (via bottom It is determined that the condition is defective + defective sidewall). The pattern shown in FIG. 7A occurs when the adhesion between both the via bottom (the conductive layer 111 and the plating layer 114) and the sidewall of the via (the insulating layer 112 and the plating layer 114) is low.
 これに対して、図7(b)に示すように、ピール試験において、めっき層114と共に導電層111が引き剥がされた場合には、良品であると判定する。
 また、図7(c)に示すように、ピール試験において、めっき層114が絶縁層112の表面から剥がれ、ビア112aとは密着したままの場合にも、良品であると判定する。
この図7(c)に示すパターンは、ビア内(ビア底およびサイドウォール)の密着性が非常に高い場合に起こる。
 また、図7(d)に示すように、ピール試験において、ビア112aが大きく崩れるほど絶縁層112内で凝集破壊している場合にも、良品であると判定する。
 上記繰り返し信頼性とは、デスミア後に放置時間を設けて同じ条件で製作した5枚の基板に対し、基板毎に100個のビアに対する上記ビア接続強度の試験を繰り返し、100%のビア接続強度が得られる率を計算して表したものである。
On the other hand, as shown in FIG. 7B, when the conductive layer 111 is peeled off together with the plating layer 114 in the peel test, it is determined that the product is non-defective.
Further, as shown in FIG. 7C, in the peel test, it is determined that the product is non-defective also when the plating layer 114 peels off from the surface of the insulating layer 112 and remains in close contact with the via 112a.
The pattern shown in FIG. 7C occurs when the adhesion in the via (via bottom and sidewall) is very high.
Further, as shown in FIG. 7D, in the peel test, it is determined to be a non-defective product also when cohesive failure occurs in the insulating layer 112 as the via 112a is largely broken.
The above-mentioned repeated reliability means repeating the above test of the via connection strength to 100 vias for each substrate for five boards manufactured under the same conditions by providing a leaving time after desmearing, 100% via connection strength The calculated rates are shown.
 表1に示すように、参考例1では、ビア接続強度は100%で良品が得られたが、繰り返し信頼性は40%で、5枚の内3枚で、100%の良品が得られなかった。これは、酸化膜の除去が行われなかったため、一部のビアで酸化膜によりシード層と導電層との密着が妨げられたからである。
 参考例2~3では、ビア接続強度は100%で良品が得られ、繰り返し信頼性は80%だった。但し、これら参考例2~3の試料では、ウェットデスミア処理の薬液がエポキシ樹脂の表面を荒らす作用があり、サイドウォールで表面粗さが大きくなった。このため、ビア接続強度が高くてもピール強度は低く、基板の信頼性も低い。
 また、比較例1では、ビア接続強度は100%で良品が得られたが、繰り返し信頼性は40%で、5枚の内3枚で、100%の良品が得られなかった。これは、酸化膜の除去が行われなかったため、一部のビアで酸化膜によりシード層と導電層との密着が妨げられたからである。
As shown in Table 1, in the reference example 1, although the non-defective product was obtained with 100% via connection strength, the repeat reliability is 40%, and 100% non-defective product is not obtained with three out of five sheets. The This is because the oxide film was not removed, and the adhesion between the seed layer and the conductive layer was hindered by the oxide film in some of the vias.
In the reference examples 2 to 3, the via connection strength was 100% and good products were obtained, and the repeat reliability was 80%. However, in the samples of Reference Examples 2 to 3, the chemical solution subjected to the wet desmear treatment had the function of roughening the surface of the epoxy resin, and the surface roughness was increased on the side walls. Therefore, even if the via connection strength is high, the peel strength is low, and the reliability of the substrate is also low.
Further, in Comparative Example 1, although the non-defective product was obtained with the via connection strength of 100%, the 100% non-defective product was not obtained with three of the five sheets with a repeated reliability of 40%. This is because the oxide film was not removed, and the adhesion between the seed layer and the conductive layer was hindered by the oxide film in some of the vias.
 これに対し、実施例1では、ビア接続強度は100%で良品が得られ、繰り返し信頼性は100%だった。これは、ウェットエッチングによる酸化膜の除去でシード層が導電層と密着したためである。また、フォトデスミア処理により、サイドウォールの荒れも抑えられていた。
 実施例2、3では、ビア接続強度は100%で良品が得られ、繰り返し信頼性は90~95%だった。これは、イオンエッチングによる酸化膜の除去でシード層が導電層と密着したためである。また、フォトデスミア処理により、サイドウォールの荒れも抑えられていた。
On the other hand, in Example 1, the non-defective product was obtained with the via connection strength of 100%, and the repeated reliability was 100%. This is because the seed layer is in close contact with the conductive layer by removing the oxide film by wet etching. In addition, the roughness of the sidewalls was suppressed by the photodesmear treatment.
In Examples 2 and 3, the via connection strength was 100%, and good products were obtained, and the repeat reliability was 90 to 95%. This is because the seed layer is in close contact with the conductive layer by removing the oxide film by ion etching. In addition, the roughness of the sidewalls was suppressed by the photodesmear treatment.
 さらに、実施例4~7では、ビア接続強度は100%で良品が得られ、繰り返し信頼性も100%だった。これは、1分以上に亘るイオンエッチングによって酸化膜が完全に除去されたためである。また、フォトデスミア処理により、サイドウォールの荒れも抑えられていた。
 以上説明したように、波長220nm以下の紫外線を用いたフォトデスミア処理と、酸化膜の除去処理と、スパッタリングによるシード層の形成処理との組み合わせにより、ビア内での高い密着性を担保することができ、信頼性の高い基板を実現することができる。
さらに、樹脂表面を平滑に保つことができるので、微細配線形成のためのレジストパターンを安定して形成することができ、微細配線基板を精度良く作製することができる。
Further, in Examples 4 to 7, the non-defective product was obtained with the via connection strength of 100%, and the repeated reliability was also 100%. This is because the oxide film was completely removed by ion etching for one minute or more. In addition, the roughness of the sidewalls was suppressed by the photodesmear treatment.
As described above, securing high adhesion in the via by combining the photodesmear process using ultraviolet light with a wavelength of 220 nm or less, the process of removing the oxide film, and the process of forming the seed layer by sputtering Thus, a highly reliable substrate can be realized.
Furthermore, since the resin surface can be kept smooth, a resist pattern for forming fine wiring can be stably formed, and a fine wiring board can be manufactured with high accuracy.
(配線基板製造装置) 
 以上説明した配線基板の製造は、以下に示す配線基板製造装置により実現することができる。
 図8は、配線基板製造装置の構成を示す概略図である。ここで、図8(a)は、上述した保護膜を用いずに配線基板を製造する配線基板製造装置210の構成を示し、図8(b)は、上述した保護膜を用いて配線基板を製造する配線基板製造装置220の構成を示している。
 図8(a)に示す配線基板製造装置210は、紫外線照射装置211と、超音波洗浄・乾燥装置212と、エッチング・スパッタ装置213と、を備える。紫外線照射装置211は、ワーク(配線基板材料)に対してフォトデスミア処理における紫外線照射処理を行う。超音波洗浄・乾燥装置212は、フォトデスミア処理における物理的振動処理として超音波振動処理(超音波洗浄処理)を行った後、ワークを乾燥する乾燥処理を行う。エッチング・スパッタ装置213は、イオンエッチング法とスパッタリング法を採用し、フォトデスミア処理後のワーク表面から酸化膜を除去してシード層を形成する処理を行う。
(Wiring board manufacturing equipment)
The manufacturing of the wiring substrate described above can be realized by the wiring substrate manufacturing apparatus described below.
FIG. 8 is a schematic view showing the configuration of a wiring board manufacturing apparatus. Here, FIG. 8A shows a configuration of a wiring substrate manufacturing apparatus 210 for manufacturing a wiring substrate without using the above-described protective film, and FIG. 8B shows a wiring substrate using the above-described protective film. The configuration of the wiring board manufacturing apparatus 220 to be manufactured is shown.
The wiring substrate manufacturing apparatus 210 shown in FIG. 8A includes an ultraviolet irradiation device 211, an ultrasonic cleaning / drying device 212, and an etching / sputtering device 213. The ultraviolet irradiation device 211 performs an ultraviolet irradiation process in the photodesmear process on the work (wiring substrate material). The ultrasonic cleaning / drying apparatus 212 performs an ultrasonic vibration process (ultrasonic cleaning process) as a physical vibration process in the photodesmear process, and then performs a drying process to dry the workpiece. The etching / sputtering apparatus 213 employs an ion etching method and a sputtering method, and performs a process of forming a seed layer by removing the oxide film from the surface of the work after the photodesmear process.
 図8(b)に示す配線基板製造装置220は、紫外線照射装置221と、超音波洗浄・乾燥装置222と、マスクピーラー装置223と、エッチング・スパッタ装置224と、を備える。紫外線照射装置221及び超音波洗浄・乾燥装置222は、紫外線照射装置211及び超音波洗浄・乾燥装置212と同様である。マスクピーラー装置223は、フォトデスミア処理後のワークから保護膜を除去する処理を行う。エッチング・スパッタ装置224は、イオンエッチング法とスパッタリング法を採用し、保護膜を除去した後のワーク表面からさらに酸化膜を除去してシード層を形成する処理を行う。
 このような配線基板製造装置210,220によれば、シード層と絶縁層との密着性が担保され、シード層と導体層との接続強度も担保された信頼性の高い配線基板の製造を実現することができる。
 なお、図8において、紫外線照射装置211及び221が紫外線照射部に対応し、超音波洗浄・乾燥装置212及び222が振動付与部に対応し、エッチング・スパッタ装置213及び224がシード層形成部に対応している。
The wiring substrate manufacturing apparatus 220 shown in FIG. 8B includes an ultraviolet irradiation device 221, an ultrasonic cleaning / drying device 222, a mask peeler 223, and an etching / sputtering device 224. The ultraviolet irradiation device 221 and the ultrasonic cleaning / drying device 222 are the same as the ultraviolet irradiation device 211 and the ultrasonic cleaning / drying device 212. The mask peeler apparatus 223 performs a process of removing the protective film from the work after the photodesmear process. The etching / sputtering apparatus 224 employs an ion etching method and a sputtering method, and further performs a process of removing the oxide film from the surface of the work after removing the protective film to form a seed layer.
According to such a wiring board manufacturing apparatus 210, 220, it is possible to manufacture a highly reliable wiring board in which the adhesion between the seed layer and the insulating layer is secured and the connection strength between the seed layer and the conductor layer is also secured. can do.
In FIG. 8, the ultraviolet irradiation devices 211 and 221 correspond to the ultraviolet irradiation unit, the ultrasonic cleaning / drying devices 212 and 222 correspond to the vibration application unit, and the etching / sputtering devices 213 and 224 are the seed layer forming unit. It corresponds.
(変形例) 
 上記実施形態においては、スパッタリング法によりシード層を形成する場合について説明したが、これに限定されるものではない。例えば、イオンプレーティング法によりシード層を形成してもよい。この場合にも、スパッタリング法によりシード層を形成した場合と同様の効果が得られる。すなわち、スパッタリング法やイオンプレーティング法のように、材料粒子(金属粒子)を衝突させ付着させることでシード層を形成する手法であれば、上記実施形態と同様の効果が得られる。
 また、上記実施形態においては、イオンエッチング法により酸化膜を除去する場合について説明したが、これに限定されるものではない。例えば、薬液に基板材料を浸漬して酸化膜を除去してもよい。薬液としては、例えば、過酸化水素と硫酸を混合した薬液が好ましく、水酸化ナトリウム水溶液であってもよい。このように薬液で酸化膜を除去する場合にも、イオンエッチング法により酸化膜を除去する場合と同様の効果が得られる。
(Modification)
Although the case where a seed layer was formed by sputtering method was demonstrated in the said embodiment, it is not limited to this. For example, the seed layer may be formed by ion plating. Also in this case, the same effect as in the case where the seed layer is formed by sputtering can be obtained. That is, in the case of a method of forming a seed layer by causing material particles (metal particles) to collide and adhere as in a sputtering method or an ion plating method, the same effect as the above embodiment can be obtained.
Moreover, in the said embodiment, although the case where an oxide film was removed by the ion etching method was demonstrated, it is not limited to this. For example, the substrate material may be immersed in a chemical solution to remove the oxide film. As a chemical | medical solution, the chemical | medical solution which mixed hydrogen peroxide and sulfuric acid is preferable, for example, and sodium hydroxide aqueous solution may be sufficient. In the case where the oxide film is removed with a chemical solution as described above, the same effect as in the case where the oxide film is removed by ion etching can be obtained.
 なお、上記説明では、本発明の一例としてフォトデスミア装置への適用例を示しているが、デスカム装置や表面改質装置にも適用可能である。デスカム装置は、例えば、製造工程で使用されるソルダーレジスト(Photo Solder Resist:PSR)、ドライフィルム(Dry Film Resist:DFR)などの残渣の除去を行う装置である。また、表面改質装置は、例えば、めっき前後のクリーニング、材料表面の粗化などによる密着性改善や濡れ性向上を行う装置である。このように、本発明の光処理装置は、例えば光アッシング処理装置やレジストの除去処理装置、ドライ洗浄処理装置などへ応用可能である。 In the above description, although an application example to a photodesmear device is shown as an example of the present invention, the present invention is also applicable to a descum device and a surface reforming device. The descum apparatus is, for example, an apparatus for removing residues such as solder resist (Photo Solder Resist: PSR), dry film (DFR) and the like used in the manufacturing process. The surface modification device is, for example, a device that performs adhesion improvement and wettability improvement by cleaning before and after plating, roughening of the material surface, and the like. Thus, the light processing apparatus of the present invention is applicable to, for example, a light ashing processing apparatus, a resist removal processing apparatus, a dry cleaning processing apparatus, and the like.
 なお、上記において特定の実施形態が説明されているが、当該実施形態は単なる例示であり、本発明の範囲を限定する意図はない。本明細書に記載された装置及び方法は上記した以外の形態において具現化することができる。また、本発明の範囲から離れることなく、上記した実施形態に対して適宜、省略、置換及び変更をなすこともできる。かかる省略、置換及び変更をなした形態は、請求の範囲に記載されたもの及びこれらの均等物の範疇に含まれ、本発明の技術的範囲に属する。
 本出願は日本特許出願第2015-188929号(出願日2015年9月25日)を基礎とした出願であり、上記日本出願の優先権を主張し、上記日本出願の開示内容は全て本出願に組み込まれたものとする。
Although specific embodiments are described above, the embodiments are merely examples and are not intended to limit the scope of the present invention. The devices and methods described herein may be embodied in forms other than those described above. In addition, omissions, substitutions and changes can be made as appropriate to the above-described embodiments without departing from the scope of the present invention. Such omissions, substitutions and changes are included in the scope of the claims and their equivalents, and belong to the technical scope of the present invention.
This application is an application based on Japanese Patent Application No. 2015-188929 (filing date: September 25, 2015), and claims the priority of the above-mentioned Japanese application, and the disclosure contents of the above-mentioned Japanese application are all for this application. It shall be incorporated.
 10…絶縁層、11…導電層、12…絶縁層、12a…ビアホール、13…シード層、14…めっき層、C…カラーセンター、L…レーザ、R…レジストパターン、S…スミア、T…ターゲット材料、F…酸化膜 DESCRIPTION OF SYMBOLS 10 ... Insulating layer, 11 ... Conducting layer, 12 ... Insulating layer, 12a ... Via hole, 13 ... Seed layer, 14 ... Plating layer, C ... Color center, L ... Laser, R ... Resist pattern, S ... Smear, T ... Target Material, F ... oxide film

Claims (7)

  1.  導電層の上に絶縁層が積層された配線基板材料に対して、前記絶縁層を貫通する貫通孔を形成する第一工程と、 
     前記貫通孔が形成された前記配線基板材料に対して、波長220nm以下の紫外線を照射することにより、当該配線基板材料のデスミア処理を行う第二工程と、
     前記デスミア処理された前記貫通孔の底の導電材料に形成された酸化膜を除去し、前記貫通孔内および前記絶縁層の上に、材料粒子を衝突させ付着させることでシード層を形成する第三工程と、
     前記シード層の上に、電解めっきにより導電材料からなるめっき層を形成する第四工程と、を含むことを特徴とする配線基板の製造方法。
    A first step of forming a through hole penetrating the insulating layer in the wiring substrate material in which the insulating layer is stacked on the conductive layer;
    A second step of performing a desmear process on the wiring substrate material by irradiating the wiring substrate material having the through holes with ultraviolet light having a wavelength of 220 nm or less;
    A seed layer is formed by removing an oxide film formed on the conductive material at the bottom of the through hole subjected to the desmearing process, and causing material particles to collide and adhere to the inside of the through hole and the insulating layer. Three processes,
    And a fourth step of forming a plating layer made of a conductive material by electrolytic plating on the seed layer.
  2.  前記第三工程は、
     イオンエッチングにより前記酸化膜を除去することを特徴とする請求項1に記載の配線基板の製造方法。
    The third step is
    The method for manufacturing a wiring board according to claim 1, wherein the oxide film is removed by ion etching.
  3.  前記第三工程は、
     イオンエッチングにより前記酸化膜を除去し、スパッタリング法により前記シード層を形成することを特徴とする請求項1または2に記載の配線基板の製造方法。
    The third step is
    3. The method according to claim 1, wherein the oxide film is removed by ion etching, and the seed layer is formed by sputtering.
  4.  前記第三工程は、
     薬液により前記酸化膜を除去することを特徴とする請求項1に記載の配線基板の製造方法。
    The third step is
    The method for manufacturing a wiring board according to claim 1, wherein the oxide film is removed by a chemical solution.
  5.  前記第三工程は、
     過酸化水素と硫酸を混合した薬液により前記酸化膜を除去することを特徴とする請求項4に記載の配線基板の製造方法。
    The third step is
    5. The method for manufacturing a wiring board according to claim 4, wherein the oxide film is removed by a chemical solution in which hydrogen peroxide and sulfuric acid are mixed.
  6.  前記請求項1~5の何れか1項に記載の配線基板の製造方法により製造された配線基板。 A wiring board manufactured by the method for manufacturing a wiring board according to any one of the preceding claims.
  7.  導電層の上に絶縁層が積層され、前記絶縁層を貫通する貫通孔が形成された配線基板材料に対して、波長220nm以下の紫外線を照射することにより、当該配線基板材料のデスミア処理を行う紫外線照射部と、
     前記デスミア処理された前記貫通孔の底の導電材料に形成された酸化膜を除去し、前記貫通孔内および前記絶縁層の上に、材料粒子を衝突させ付着させることでシード層を形成するシード層形成部と、を備えることを特徴とする配線基板製造装置。
    An insulating layer is stacked on a conductive layer, and the wiring board material having a through hole penetrating the insulating layer is irradiated with ultraviolet light having a wavelength of 220 nm or less to perform a desmear process of the wiring board material. UV irradiation unit,
    A seed for forming a seed layer by removing an oxide film formed on the conductive material at the bottom of the through hole subjected to the desmear treatment, and causing material particles to collide and adhere to the inside of the through hole and on the insulating layer And a layer forming unit.
PCT/JP2016/003766 2015-09-25 2016-08-18 Method for producing circuit board, circuit board, and apparatus for producing circuit board WO2017051495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015188929A JP6401136B2 (en) 2015-09-25 2015-09-25 Wiring board manufacturing method, wiring board, and wiring board manufacturing apparatus
JP2015-188929 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051495A1 true WO2017051495A1 (en) 2017-03-30

Family

ID=58385877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003766 WO2017051495A1 (en) 2015-09-25 2016-08-18 Method for producing circuit board, circuit board, and apparatus for producing circuit board

Country Status (3)

Country Link
JP (1) JP6401136B2 (en)
TW (1) TWI651025B (en)
WO (1) WO2017051495A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630584A (en) * 2018-01-25 2020-09-04 Agc株式会社 Transparent display device and laminated glass provided with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015931A (en) * 1999-07-01 2001-01-19 Ibiden Co Ltd Multilayer printed wiring board and manufacture thereof
JP2003007903A (en) * 2001-06-26 2003-01-10 Ibiden Co Ltd Multilayer printed wiring board and method of manufacturing the same
JP2003086935A (en) * 2001-06-27 2003-03-20 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP2011171528A (en) * 2010-02-19 2011-09-01 Fujitsu Ltd Manufacturing method of multilayer wiring board
JP2015126227A (en) * 2013-12-26 2015-07-06 ウシオ電機株式会社 Desmearing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099897A (en) * 2011-11-09 2013-05-23 Sumitomo Electric Ind Ltd Laminate, and laser welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015931A (en) * 1999-07-01 2001-01-19 Ibiden Co Ltd Multilayer printed wiring board and manufacture thereof
JP2003007903A (en) * 2001-06-26 2003-01-10 Ibiden Co Ltd Multilayer printed wiring board and method of manufacturing the same
JP2003086935A (en) * 2001-06-27 2003-03-20 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP2011171528A (en) * 2010-02-19 2011-09-01 Fujitsu Ltd Manufacturing method of multilayer wiring board
JP2015126227A (en) * 2013-12-26 2015-07-06 ウシオ電機株式会社 Desmearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630584A (en) * 2018-01-25 2020-09-04 Agc株式会社 Transparent display device and laminated glass provided with same

Also Published As

Publication number Publication date
JP6401136B2 (en) 2018-10-03
TWI651025B (en) 2019-02-11
JP2017063159A (en) 2017-03-30
TW201713180A (en) 2017-04-01

Similar Documents

Publication Publication Date Title
KR102009255B1 (en) Manufacturing method of wiring board, wiring board and wiring board manufacturing apparatus
JP4126038B2 (en) BGA package substrate and manufacturing method thereof
WO2015025777A1 (en) Desmearing method and desmearing apparatus
JP2009088282A (en) Printed circuit board manufacturing method and electrolytic etching treatment liquid to be used for the same
WO2017051495A1 (en) Method for producing circuit board, circuit board, and apparatus for producing circuit board
US10420221B2 (en) Wiring board desmear treatment method
KR102125931B1 (en) Manufacturing method of wiring board and wiring board
WO2017051496A1 (en) Method for producing wiring board, wiring board and apparatus for producing wiring board
JP2002043753A (en) Manufacturing method of multilayer printed circuit board
JP2017092498A (en) Method for manufacturing wiring board, wiring board, and wiring board manufacturing apparatus
JP6531556B2 (en) Wiring board manufacturing method and wiring board
JP5660118B2 (en) Desmear treatment method
JP2014127604A (en) Desmearing method
JP2017157634A (en) Method of manufacturing wiring substrate and wiring substrate
JP3405473B2 (en) Laser processing of heat-resistant resin
JP2004146533A (en) Desmear method of printed circuit board
JP2005294873A (en) Method of manufacturing printed wiring board
JP2007281089A (en) Manufacturing method of buildup multilayer wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848289

Country of ref document: EP

Kind code of ref document: A1