WO2017038413A1 - Method for manufacturing composite material, and composite material - Google Patents

Method for manufacturing composite material, and composite material Download PDF

Info

Publication number
WO2017038413A1
WO2017038413A1 PCT/JP2016/073508 JP2016073508W WO2017038413A1 WO 2017038413 A1 WO2017038413 A1 WO 2017038413A1 JP 2016073508 W JP2016073508 W JP 2016073508W WO 2017038413 A1 WO2017038413 A1 WO 2017038413A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
fibrous carbon
dispersion
carbon nanostructure
plating
Prior art date
Application number
PCT/JP2016/073508
Other languages
French (fr)
Japanese (ja)
Inventor
新井 進
貢 上島
有信 堅田
Original Assignee
日本ゼオン株式会社
国立大学法人信州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 国立大学法人信州大学 filed Critical 日本ゼオン株式会社
Priority to CN201680047089.4A priority Critical patent/CN107923059A/en
Priority to JP2017537702A priority patent/JP7023112B2/en
Publication of WO2017038413A1 publication Critical patent/WO2017038413A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention relates to a method for producing a composite material and a composite material, and more particularly to a method for producing a composite material containing a metal and a fibrous carbon nanostructure, and a composite material obtained by the production method.
  • CNT carbon nanotubes
  • the metal and the fibrous carbon nanostructure have a large difference in specific gravity between the materials, and thus there is a problem in that the composite material is very difficult to prepare. Therefore, as a method for solving the above problem, for example, a technique has been proposed in which metal and CNT are combined well by mixing CNT into a plating solution and forming a plating film with the plating solution. (See Patent Document 1).
  • the fibrous carbon nanostructure is used in the plating solution. It is necessary to satisfactorily disperse the structure and suppress the formation of aggregates of fibrous carbon nanostructures in the obtained composite material.
  • an object of the present invention is to provide a method for producing a composite material having excellent physical properties by favorably compounding a metal and a fibrous carbon nanostructure. Moreover, an object of this invention is to provide the composite material manufactured using the said manufacturing method.
  • the present inventors have intensively studied to achieve the above object. And the present inventors surprisingly made metal and fibrous carbon nanostructures by immersing a carbon film formed by assembling fibrous carbon nanostructures into a film and immersing them in a plating solution. The present inventors have found that a composite material in which the body is well composited can be obtained, and the present invention has been completed.
  • the present invention aims to advantageously solve the above-described problems, and the method for producing a composite material of the present invention comprises plating a carbon film containing fibrous carbon nanostructures using a plating solution.
  • the method includes a step of performing processing. In this way, when a carbon film containing fibrous carbon nanostructures is plated, a metal is deposited inside the carbon film to produce a composite material in which the metal and fibrous carbon nanostructures are well compounded. be able to.
  • Such a composite material is excellent in physical properties such as conductivity and thermal conductivity.
  • the manufacturing method of the composite material of the present invention is a step of preparing the carbon film by removing the solvent from the dispersion containing the fibrous carbon nanostructure and the solvent prior to the step of performing the plating treatment. It is preferable to contain.
  • a carbon film obtained by removing a solvent from a dispersion liquid in which fibrous carbon nanostructures are dispersed in a solvent tends to have a low density. Therefore, the plating solution easily penetrates into the carbon film in the plating process, and the metal is easily deposited inside the carbon film. Therefore, the metal and the fibrous carbon nanostructure can be more favorably combined, and the physical properties of the composite material can be further improved.
  • the density of the carbon film is 0.01 g / cm 3 or more 1.8 g / cm 3 or less. If a carbon film having a density within the above-described range is used, the metal and the fibrous carbon nanostructure can be more satisfactorily combined while ensuring the strength of the obtained composite material.
  • the said plating solution contains a nonionic surfactant.
  • a plating solution containing a nonionic surfactant easily penetrates into the carbon film and facilitates deposition of metal inside the carbon film. Therefore, the metal and the fibrous carbon nanostructure can be more satisfactorily combined, and the physical properties of the composite material can be further enhanced.
  • the nonionic surfactant is preferably a polyether surfactant. If a plating solution containing a polyether-based surfactant is used, the metal and the fibrous carbon nanostructure can be combined more satisfactorily.
  • the said fibrous carbon nanostructure contains a carbon nanotube. If a fibrous carbon nanostructure containing carbon nanotubes is used, the physical properties of the composite material can be further enhanced. In addition, it is preferable that the specific surface area of the fibrous carbon nanostructure containing the said carbon nanotube is 600 m ⁇ 2 > / g or more. If a fibrous carbon nanostructure having a specific surface area of 600 m 2 / g or more is used, the physical properties of the composite material can be further enhanced.
  • the present invention aims to advantageously solve the above-mentioned problems, and the composite material of the present invention is characterized by being manufactured using any one of the above-described composite material manufacturing methods. If any one of the composite material manufacturing methods described above is used, a composite material having excellent physical properties can be obtained.
  • a metal and a fibrous carbon nanostructure can be favorably compounded to produce a composite material having excellent physical properties.
  • a composite material having excellent physical properties can be obtained.
  • Example 2 is a cross-sectional photograph of the composite material of Example 1 taken with a field emission scanning electron microscope. It is a cross-sectional photograph of the composite material of Example 2 photographed with a field emission scanning electron microscope.
  • the method for producing a composite material of the present invention can be used when producing a composite material in which a metal and a fibrous carbon nanostructure are combined.
  • the composite material of this invention manufactured using the manufacturing method of the composite material of this invention is excellent in physical properties, such as electroconductivity and heat conductivity.
  • the manufacturing method of the composite material of this invention includes the process (plating process process) which performs a plating process using the plating solution on the carbon film containing a fibrous carbon nanostructure. And in the manufacturing method of the composite material of this invention, a metal and fibrous carbon nanostructure are compounded favorably by depositing the metal derived from a plating solution inside a carbon film, and excellent electrical conductivity, thermal conductivity, etc. A composite material exhibiting the physical properties of can be obtained.
  • the carbon film is composed of an aggregate of fibrous carbon nanostructures obtained by assembling a plurality of fibrous carbon nanostructures into a film shape.
  • the process of obtaining a carbon film by assembling a plurality of fibrous carbon nanostructures into a film form is not particularly limited.
  • the following processes (1) Step of forming a film by removing a solvent from a dispersion containing a plurality of fibrous carbon nanostructures and a solvent (2) Fibrous carbon obtained by growing in a substantially vertical direction on a substrate A step of forming a film by allowing the aggregate of nanostructures to fall on a substrate and then compressing as necessary is mentioned.
  • the step (1) is preferable.
  • the carbon film obtained through the step (1) tends to have a low density, and the plating solution easily permeates in the plating process. Therefore, the metal deposition inside the carbon film is facilitated, the metal and the fibrous carbon nanostructure are more complexed, and the physical properties of the composite material can be further improved.
  • the carbon film preparation step will be described in detail by taking the step (1) as an example.
  • the dispersion used for the preparation of the carbon film is not particularly limited, and a dispersion obtained by dispersing an aggregate of fibrous carbon nanostructures in a solvent using a known dispersion treatment method can be used.
  • a dispersion containing a fibrous carbon nanostructure and a solvent and optionally further containing an additive for dispersion such as a dispersant can be used.
  • the fibrous carbon nanostructure is not particularly limited, and for example, a fibrous carbon nanostructure having an aspect ratio exceeding 10 can be used.
  • a fibrous carbon nanostructure carbon nanotubes, vapor-grown carbon fibers, carbon fibers obtained by carbonizing organic fibers, and cut products thereof can be used. These may be used individually by 1 type and may use 2 or more types together.
  • the “aspect ratio” can be obtained by measuring the diameter (outer diameter) and length of 100 fibrous carbon nanostructures randomly selected using a transmission electron microscope.
  • the fibrous carbon nanostructure it is more preferable to use a fibrous carbon nanostructure including carbon nanotubes. This is because the physical properties of the composite material can be further improved by using a fibrous carbon nanostructure containing carbon nanotubes.
  • the fibrous carbon nanostructure containing CNT may be composed of only CNT, or may be a mixture of CNT and fibrous carbon nanostructure other than CNT.
  • the CNT in the fibrous carbon nanostructure is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Preferably, it is a single-walled carbon nanotube. This is because the use of single-walled carbon nanotubes can further improve the physical properties of the composite material as compared to the case of using multi-walled carbon nanotubes.
  • the average diameter (Av) of the fibrous carbon nanostructure containing CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and preferably 10 nm or less. It is more preferable. If the average diameter (Av) of the fibrous carbon nanostructure is 0.5 nm or more, a sufficient space for the metal to deposit between the plurality of fibrous carbon nanostructures in the carbon film is ensured. A composite material in which the fibrous carbon nanostructures are better composited can be obtained. Moreover, if the average diameter (Av) of the fibrous carbon nanostructure is 15 nm or less, the physical properties of the composite material can be further improved.
  • the “average diameter (Av) of fibrous carbon nanostructures” is obtained by measuring the diameter (outer diameter) of 100 fibrous carbon nanostructures selected at random using a transmission electron microscope. Can do. And the average diameter (Av) of the fibrous carbon nanostructure containing CNT may be adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructure containing CNT, or obtained by a different manufacturing method. You may adjust by combining multiple types of fibrous carbon nanostructure containing the produced CNT.
  • the BET specific surface area of the fibrous carbon nanostructure containing CNTs is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and preferably 2500 m 2 / g or less. More preferably, it is 1200 m 2 / g or less. If the BET specific surface area of the fibrous carbon nanostructure containing CNTs is 600 m 2 / g or more, the physical properties of the composite material can be further improved.
  • the BET specific surface area of the fibrous carbon nanostructure containing CNTs is 2500 m 2 / g or less, excessive crowding of the fibrous carbon nanostructure in the carbon film and the composite material is suppressed, and the metal And the fibrous carbon nanostructure can be combined more satisfactorily.
  • the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
  • the fibrous carbon nanostructure containing CNT is an aggregate oriented in a direction substantially perpendicular to the base material on a base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later.
  • the mass density of the fibrous carbon nanostructure as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, the bonding between the fibrous carbon nanostructures becomes weak, so that the fibrous carbon nanostructures can be uniformly dispersed. Further, if the mass density is 0.002 g / cm 3 or more, the integrity of the fibrous carbon nanostructure can be improved, and the handling can be facilitated because it can be prevented from being broken.
  • the fibrous carbon nanostructure containing CNTs has a shape in which the t-plot obtained from the adsorption isotherm is convex upward.
  • the opening process of CNT is not performed and the t-plot shows a convex shape upward.
  • the “t-plot” is obtained by converting the relative pressure into the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm of the fibrous carbon nanostructure measured by the nitrogen gas adsorption method. Can do.
  • the average thickness t of the nitrogen gas adsorption layer is plotted against the relative pressure P / P0, and the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained from the known standard isotherm to perform the above conversion.
  • a t-plot of the fibrous carbon nanostructure containing CNT is obtained (de-boer et al. T-plot method).
  • the growth of the nitrogen gas adsorption layer is classified into the following processes (1) to (3). Then, the inclination of the t-plot is changed by the following processes (1) to (3).
  • the t-plot showing an upwardly convex shape is located on a straight line passing through the origin in a region where the average thickness t of the nitrogen gas adsorption layer is small, whereas when t becomes large, the plot becomes the straight line. The position will be shifted downward.
  • the fibrous carbon nanostructure having such a t-plot shape has a large ratio of the internal specific surface area to the total specific surface area of the fibrous carbon nanostructure, and there are many carbon nanostructures constituting the fibrous carbon nanostructure. It is shown that the opening is formed.
  • the inflection point of the t-plot of the fibrous carbon nanostructure containing CNT is preferably in a range satisfying 0.2 ⁇ t (nm) ⁇ 1.5, and 0.45 ⁇ t (nm) ⁇ More preferably, it is in the range of 1.5, and more preferably in the range of 0.55 ⁇ t (nm) ⁇ 1.0.
  • the “position of the bending point” is an intersection of the approximate line A in the process (1) described above and the approximate line B in the process (3) described above.
  • the fibrous carbon nanostructure containing CNTs preferably has a ratio (S2 / S1) of the internal specific surface area S2 to the total specific surface area S1 obtained from the t-plot of 0.05 or more and 0.30 or less.
  • the total specific surface area S1 and the internal specific surface area S2 of the fibrous carbon nanostructure containing CNTs are not particularly limited, but individually, S1 is preferably 600 m 2 / g or more and 1400 m 2 / g or less. 800 m 2 / g or more and 1200 m 2 / g or less is more preferable.
  • S2 is preferably 30 m 2 / g or more and 540 m 2 / g or less.
  • the total specific surface area S1 and the internal specific surface area S2 of the fibrous carbon nanostructure containing CNT can be determined from the t-plot. Specifically, first, the total specific surface area S1 can be obtained from the slope of the approximate line in the process (1), and the external specific surface area S3 can be obtained from the slope of the approximate line in the process (3). Then, the internal specific surface area S2 can be calculated by subtracting the external specific surface area S3 from the total specific surface area S1.
  • the fibrous carbon nanostructure containing CNTs having the above-described properties is obtained by, for example, supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for producing carbon nanotubes on the surface,
  • a method supergrowth method; which dramatically improves the catalytic activity of the catalyst layer by allowing a small amount of an oxidizing agent (catalyst activation material) to be present in the system.
  • an oxidizing agent catalyst activation material
  • the fibrous carbon nanostructure containing CNT manufactured by the super growth method may be comprised only from SGCNT, and may be comprised from SGCNT and a non-cylindrical carbon nanostructure.
  • the fibrous carbon nanostructure containing CNT includes a single-layer or multi-layered flat cylindrical carbon nanostructure (hereinafter referred to as “ It may be referred to as “graphene nanotape (GNT)”.
  • GNT is presumed to be a substance in which a tape-like portion in which inner walls are close to each other or bonded is formed over the entire length from the synthesis, and a carbon six-membered ring network is formed in a flat cylindrical shape.
  • the And the shape of GNT is a flat cylindrical shape, and the presence of a tape-like part in which the inner walls are close to each other or bonded is present in GNT.
  • GNT and fullerene (C60) are sealed in a quartz tube.
  • fullerene insertion GNT obtained by heat treatment (fullerene insertion treatment) under reduced pressure is observed with a transmission electron microscope, it is confirmed that there is a portion (tape-like portion) in which fullerene is not inserted in the GNT. Can do.
  • the shape of GNT is a shape which has a tape-shaped part in the center part of the width direction, and the shape of the cross section orthogonal to the extending direction (axial direction) is the cross-sectional length in the vicinity of both ends in the cross-sectional longitudinal direction. It is more preferable that the maximum dimension in the direction orthogonal to the direction is larger than the maximum dimension in the direction orthogonal to the longitudinal direction of the cross section in the vicinity of the central portion in the longitudinal direction of the cross section. preferable.
  • “near the central portion in the longitudinal direction of the cross section” means the longitudinal width of the cross section from the longitudinal center line of the cross section (a straight line passing through the longitudinal center of the cross section and perpendicular to the longitudinal direction line).
  • the “near the end in the longitudinal direction of the cross section” means the area outside the longitudinal direction of “near the center in the longitudinal direction of the cross section”.
  • a carbon nanostructure containing GNT as a non-cylindrical carbon nanostructure is a base material having a catalyst layer on the surface when a CNT is synthesized by a super-growth method using a base material having a catalyst layer on the surface.
  • Catalyst base material can be obtained by a predetermined method.
  • the carbon nanostructure containing GNT is obtained by applying a coating liquid A containing an aluminum compound on a substrate, drying the applied coating liquid A, and then forming an aluminum thin film (catalyst supporting layer) on the substrate.
  • the coating liquid B containing the iron compound is applied, and the applied coating liquid B is dried at a temperature of 50 ° C. or less to form the iron thin film (catalyst layer) on the aluminum thin film. It can be obtained by synthesizing CNTs by the super-growth method using the catalyst substrate obtained by forming.
  • the solvent of the dispersion is not particularly limited.
  • Amides polar organic solvents such as ethers, N, N-dimethylformamide, N-methylpyrrolidone, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene, paradichlorobenzene And the like. These may be used alone or in combination of two or more.
  • the additive for dispersion that is arbitrarily blended in the dispersion is not particularly limited, and examples thereof include additives generally used for preparing dispersions such as dispersants.
  • the dispersant It is preferable that the amount of the additive for dispersion such as is small.
  • the dispersant used for preparing the dispersion is not particularly limited as long as it can disperse the fibrous carbon nanostructure and can be dissolved in the solvent described above. Natural polymers can be used.
  • examples of the surfactant include sodium dodecylsulfonate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, and the like.
  • examples of the synthetic polymer include polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, and silanol group-modified.
  • Polyvinyl alcohol ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy system Resin, phenoxy ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, Polyacrylamide, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, and polyvinylpyrrolidone.
  • examples of natural polymers include polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, Examples thereof include cellulose and salts or derivatives thereof. And these dispersing agents can be used 1 type or in mixture of 2 or more types.
  • the aggregate of 1 mm or more is not visually confirmed in the dispersion liquid.
  • the fibrous carbon nanostructures in the dispersion are dispersed at a level at which the median diameter (average particle diameter) measured by a particle size distribution meter is 150 ⁇ m or less. If the fibrous carbon nanostructure is well dispersed in the dispersion, the density unevenness of the carbon film obtained by removing the solvent is suppressed. In addition, the plating solution easily penetrates uniformly into the carbon film with less density unevenness, and the metal and the fibrous carbon nanostructure can be combined more satisfactorily. As a result, the physical properties of the composite material are further improved.
  • the solid content concentration of the dispersion is preferably 0.001% by mass or more and 20% by mass or less, although it depends on the type of the fibrous carbon nanostructure.
  • the solid content concentration is less than 0.001% by mass, the amount of the carbon film obtained by removing the solvent decreases, and the production efficiency may not be sufficiently increased.
  • solid content concentration exceeds 20 mass%, while there exists a possibility that the dispersibility of the fibrous carbon nanostructure in a dispersion liquid may fall, the viscosity of a dispersion liquid will increase and fluidity
  • the dispersion As the dispersion, a commercially available dispersion obtained by dispersing an aggregate of fibrous carbon nanostructures in a solvent may be used. However, the dispersion was prepared by performing the dispersion preparation step before the carbon film preparation step. It is preferable to use a dispersion. Among them, from the viewpoint of using a dispersion in which fibrous carbon nanostructures are well dispersed in a solvent and obtaining a composite material having excellent physical properties by suppressing unevenness in the density of the carbon film, the dispersion may be used in the solvent. It is more preferable to use a dispersion obtained by subjecting a coarse dispersion formed by adding fibrous carbon nanostructures to a dispersion treatment that provides a cavitation effect or a crushing effect.
  • a coarse dispersion obtained by adding the above-described fibrous carbon nanostructure and any additive for dispersion to the solvent described above is a dispersion capable of obtaining a cavitation effect described in detail below. It is preferable to use a dispersion obtained by subjecting to a dispersion treatment capable of obtaining a treatment or crushing effect.
  • the dispersion treatment that provides a cavitation effect is a dispersion method that uses a shock wave that is generated when a vacuum bubble generated in water bursts when high energy is applied to a liquid.
  • the fibrous carbon nanostructure can be favorably dispersed.
  • dispersion treatment that provides a cavitation effect
  • dispersion treatment using ultrasonic waves dispersion treatment using a jet mill
  • dispersion treatment using high shear stirring Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirring device are preferably used. These devices may be conventionally known devices.
  • the coarse dispersion may be irradiated with ultrasonic waves using the ultrasonic homogenizer.
  • the irradiation time may be appropriately set depending on the amount of the fibrous carbon nanostructure and the like, for example, preferably 3 minutes or more, more preferably 30 minutes or more, and preferably 5 hours or less, more preferably 2 hours or less.
  • the output is preferably 20 W or more and 500 W or less, more preferably 100 W or more and 500 W or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • the number of treatments may be appropriately set depending on the amount of the fibrous carbon nanostructure and the like, for example, preferably 2 times or more, preferably 100 times or less, and more preferably 50 times or less.
  • the pressure is preferably 20 MPa or more and 250 MPa or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • stirring and shearing may be applied to the coarse dispersion with a high shear stirring device.
  • the operation time time during which the machine is rotating
  • the peripheral speed is preferably 5 m / second or more and 50 m / second or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • the dispersion treatment for obtaining the above-described cavitation effect it is more preferable to perform the dispersion treatment for obtaining the above-described cavitation effect at a temperature of 50 ° C. or lower. This is because a change in concentration due to the volatilization of the solvent is suppressed.
  • the dispersion treatment that provides the crushing effect can uniformly disperse the fibrous carbon nanostructures in the solvent, as well as the fibrous carbon due to the shock wave when the bubbles disappear, compared to the dispersion treatment that provides the cavitation effect described above. This is advantageous in that damage to the nanostructure can be suppressed.
  • the fibrous carbon nanostructure can be uniformly dispersed in the solvent while suppressing the generation of bubbles.
  • the back pressure applied to the coarse dispersion may be reduced to atmospheric pressure all at once, but is preferably reduced in multiple stages.
  • a dispersion system having a disperser having the following structure may be used.
  • the disperser has a disperser orifice having an inner diameter d1, a dispersion space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the coarse dispersion liquid (where d2>d3> d1)).
  • the inflowing high-pressure for example, 10 to 400 MPa, preferably 50 to 250 MPa
  • coarse dispersion passes through the disperser orifice and becomes a high flow rate fluid with a decrease in pressure.
  • the high-velocity coarse dispersion liquid flowing into the dispersion space flows at high speed in the dispersion space and receives a shearing force at that time.
  • the flow rate of the coarse dispersion decreases, and the fibrous carbon nanostructure is well dispersed.
  • a fluid having a pressure (back pressure) lower than the pressure of the inflowing coarse dispersion liquid flows out from the terminal portion as the dispersion liquid of the fibrous carbon nanostructure.
  • the back pressure of the coarse dispersion can be applied to the coarse dispersion by applying a load to the flow of the coarse dispersion.
  • a rough pressure can be obtained by disposing a multistage step-down device downstream of the disperser.
  • a desired back pressure can be applied to the dispersion. Then, by reducing the back pressure of the coarse dispersion in multiple stages using a multistage pressure reducer, bubbles are generated in the dispersion when the dispersion of the fibrous carbon nanostructure is finally released to atmospheric pressure. Can be suppressed.
  • the disperser may include a heat exchanger for cooling the coarse dispersion and a cooling liquid supply mechanism. This is because the generation of bubbles in the coarse dispersion can be further suppressed by cooling the coarse dispersion that has been heated to a high temperature by applying a shearing force with the disperser. In addition, it can suppress that a bubble generate
  • the occurrence of cavitation can be suppressed, so damage to the fibrous carbon nanostructure caused by cavitation that is sometimes a concern, especially when the bubbles disappear. Damage to the fibrous carbon nanostructure due to the shock wave can be suppressed.
  • distribution process from which a crushing effect is acquired can be implemented by controlling a dispersion
  • the method for removing the solvent from the dispersion is not particularly limited, and a known solvent removing method such as drying or filtration can be used. Among these, from the viewpoint of efficiently removing the solvent, it is preferable to use reduced-pressure drying, vacuum drying or filtration as the solvent removal method. Furthermore, from the viewpoint of removing the solvent easily and quickly, the solvent removal method is preferably filtration, and more preferably vacuum filtration. If the solvent is removed quickly and efficiently, the once-dispersed fibrous carbon nanostructures can be prevented from aggregating again, and density unevenness of the resulting carbon film can be suppressed. Here, it is not necessary to completely remove the solvent in the dispersion liquid. If the fibrous carbon nanostructure remaining after the removal of the solvent can be handled as an aggregate (carbon film), some solvent remains. There is no problem even if you do.
  • the thickness of the obtained carbon film is preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, more preferably 200 ⁇ m or less, and more preferably 100 ⁇ m or less. Preferably, it is 60 micrometers or less.
  • the thickness of the carbon film is 2 ⁇ m or more, the strength of the resulting composite can be ensured.
  • the thickness of the carbon film is 200 ⁇ m or less, the plating solution can easily penetrate to the central portion in the thickness direction of the carbon film, and a composite material in which the metal and the fibrous carbon nanostructure are more preferably combined can be obtained. it can.
  • the density of the carbon film is preferably 0.01 g / cm 3 or more, more preferably 0.1 g / cm 3 or more, still more preferably 0.5 g / cm 3 or more, 1.8 g / cm 3 or less, more preferably 1.5 g / cm 3 or less, and still more preferably 1.2 g / cm 3 or less. If the density of the carbon film is 0.01 g / cm 3 or more, the strength of the resulting composite can be ensured. On the other hand, if the density of the carbon film is 1.8 g / cm 3 or less, the plating solution can easily penetrate into the central portion of the carbon film in the thickness direction, and the composite in which the metal and the fibrous carbon nanostructure are more effectively combined. Material can be obtained.
  • the “density of the carbon film” can be obtained by measuring the mass, area and thickness of the carbon film and dividing the mass of the carbon film by the volume.
  • a composite material can be obtained by subjecting the above-described carbon film to electrolytic plating treatment or electroless plating treatment, preferably electrolytic plating treatment, using a plating solution.
  • the plating solution used for the plating treatment contains at least metal ions that can be plated, and optionally further contains an additive for the plating solution (nonionic surfactant and other additives generally added to the plating solution).
  • the metal ions that can be plated are not particularly limited, and examples include metal ions that can be plated, such as ions of copper, nickel, tin, platinum, chromium, and zinc. Among these, copper ions are preferred as metal ions that can be plated. Copper is excellent in electrical conductivity, thermal conductivity, and the like, and if it is combined with a fibrous carbon nanostructure, a composite material having excellent performance (for example, electrical conductivity and thermal conductivity) can be obtained. Because.
  • the metal ions that can be plated are not particularly limited and can be introduced into the plating solution by dissolving a known metal compound such as copper sulfate pentahydrate or nickel sulfate hexahydrate. . Further, the concentration of metal ions that can be plated in the plating solution is not particularly limited.
  • the plating solution preferably contains a nonionic surfactant.
  • the plating solution containing the nonionic surfactant is presumed to be because the nonionic surfactant has excellent affinity with the fibrous carbon nanostructure, but can easily penetrate into the carbon film. Therefore, if a plating solution containing a nonionic surfactant is used, the metal and the fibrous carbon nanostructure can be more satisfactorily combined, and the physical properties of the composite material can be further enhanced.
  • nonionic surfactants examples include polyether surfactants, alkylphenol surfactants, polyester surfactants, sorbitan ester ether surfactants, alkylamine surfactants, and the like.
  • polyether surfactants are preferred from the viewpoint of further improving the physical properties of the composite material.
  • Polyether-based surfactants include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether, polyoxyethylene dodecyl ether, polyoxyethylene nonylphenyl ether , Polyoxyethylene octyl phenyl ether, and polyoxyethylene / polyoxypropylene block copolymer.
  • polyethylene glycol is particularly preferable.
  • a nonionic surfactant may be used individually by 1 type and may use 2 or more types together.
  • the weight average molecular weight of the nonionic surfactant is not particularly limited, but is preferably 500 or more, more preferably 1000 or more, further preferably 1500 or more, and preferably 20000 or less. It is more preferably 10,000 or less, further preferably 5000 or less, and particularly preferably 4000 or less. When the weight-average molecular weight of the nonionic surfactant is within the above range, the metal and the fibrous carbon nanostructure can be combined more satisfactorily, and the physical properties of the composite material can be further improved.
  • the weight average molecular weight (Mw) of a nonionic surfactant can be calculated
  • the concentration of the nonionic surfactant in the plating solution is not particularly limited, but is preferably 5 ppm by mass or more, more preferably 10 ppm by mass or more, and further preferably 50 ppm by mass or more, Moreover, it is preferable that it is 500 mass ppm or less, It is more preferable that it is 300 mass ppm or less, It is still more preferable that it is 200 mass ppm or less. If the concentration of the nonionic surfactant is within the above-described range, the metal and the fibrous carbon nanostructure can be combined more satisfactorily, and the physical properties of the composite material can be further enhanced.
  • the plating solution may contain known additives for a plating solution such as a brightener in addition to the above-described components within a range not impairing the effects of the present invention.
  • the plating solution can be prepared by dissolving or dispersing the above-described components in a known solvent such as water.
  • the method for plating the carbon film is not particularly limited as long as the metal ion-derived metal in the plating solution can be deposited inside the carbon film.
  • a carbon film may be used as the cathode, or a laminate formed by adhering a carbon film to the substrate surface via a carbon tape or the like may be used. From the viewpoint of facilitating the penetration of the plating solution into the carbon film and efficiently producing a composite material in which the metal and the fibrous carbon nanostructure are combined, it is possible to use a cathode made of only the carbon film. preferable.
  • the metal ion-derived metal in the plating solution is deposited from both sides of the carbon film to the inside of the carbon film.
  • electrolytic plating there is no limitation to direct current plating, and current reversal plating and pulse plating can also be employed.
  • the plating treatment is not limited to electrolytic plating, and electroless plating can also be employed.
  • the plating solution may be stirred, for example, with a stirrer or the like.
  • a waiting time from when the carbon film is immersed in the plating solution to when the plating treatment is started (for example, in the case of electrolytic plating treatment, energization is started) (wait time before plating treatment) ) Is preferably provided.
  • the waiting time before the plating treatment is preferably 5 minutes or more, more preferably 10 minutes or more. If the waiting time before the plating treatment is 5 minutes or more, the penetration of the plating solution can be promoted to the inside of the carbon film.
  • the upper limit of the waiting time before the plating process is not particularly limited, but is usually 60 minutes or less.
  • the amount of energization is preferably 40C or more, more preferably 50C or more. If the energization amount is 40C or more, the plating process can be sufficiently performed to the inside of the carbon film.
  • composite material (Composite material) And the composite material manufactured using the manufacturing method mentioned above shows the outstanding electroconductivity and heat conductivity, since the metal and the fibrous carbon nanostructure have compounded favorably.
  • Such a composite material is expected to have a wide range of applications in, for example, electronics-related fields.
  • a cross-sectional sample of a sheet-like composite material was prepared using a cross-section polisher (registered trademark).
  • the composite state of copper and fibrous carbon nanostructures in the obtained cross-sectional sample was observed at a magnification of 400 times using a field emission scanning electron microscope (FE-SEM).
  • Example 1 ⁇ Synthesis of fibrous carbon nanostructure containing single-walled CNT>
  • a fibrous carbon nanostructure containing single-walled CNTs used in the examples was prepared by the super-growth method (hereinafter referred to as “fibrous carbon nanostructure A”) as described in International Publication No. 2006/011655.
  • the thickness of the iron catalyst thin film layer of the metal catalyst was 2 nm.
  • the obtained fibrous carbon nanostructure A had a BET specific surface area of 1050 m 2 / g (unopened state) and an average diameter (Av) of 3.3 nm.
  • the fibrous carbon nanostructure A was measured with a Raman spectrophotometer, a spectrum of a radial breathing mode (RBM) in a low wavenumber region of 100 to 300 cm ⁇ 1 characteristic for single-walled CNTs was observed. Further, the t-plot in the unopened state shows an upwardly convex shape, the inflection point is in the range of 0.55 ⁇ t (nm) ⁇ 1.0, and the total specific surface area S1 and the internal specific surface area S2 The ratio satisfied 0.05 ⁇ S2 / S1 ⁇ 0.30.
  • RBM radial breathing mode
  • the median diameter (average particle diameter) of the fibrous carbon nanostructure A in the dispersion A was 24.1 ⁇ m.
  • the obtained dispersion A was filtered under reduced pressure using Kiriyama filter paper (No. 5A) to obtain a carbon film A having a thickness of 40 ⁇ m and a density of 0.85 g / cm 3 .
  • ⁇ Preparation of composite material> Using the carbon film A described above as the cathode and the phosphorus-containing copper plate as the anode, composite material A was obtained by performing electrolytic plating in a copper plating bath under the following conditions.
  • Example 2 ⁇ Preparation of carbon film> A carbon film B was prepared in the same manner as the carbon film A except that the thickness was 40 ⁇ m and the density was 1.30 g / cm 3 .
  • a carbon tape was affixed on a pure copper plate (substrate) that had been degreased and acid cleaned.
  • a cathode was obtained by further bonding the above-described carbon film B on the carbon tape. Using this cathode and a copper plate as the anode, a composite material B was obtained by performing electrolytic plating under the following conditions in a copper plating bath.
  • a metal and a fibrous carbon nanostructure can be favorably compounded to produce a composite material having excellent physical properties.
  • a composite material having excellent physical properties can be obtained.

Abstract

A purpose of the present invention is to provide a method for manufacturing a composite material, said method allowing a metal and a fibrous carbon nanostructure to be sufficiently combined to produce a composite material with superior physical properties. This method for manufacturing a composite material is characterized by including a step in which a carbon film containing the fibrous carbon nanostructure is subjected to a plating process using a plating fluid.

Description

複合材料の製造方法および複合材料Method for producing composite material and composite material
 本発明は、複合材料の製造方法および複合材料に関し、特には、金属と繊維状炭素ナノ構造体とを含む複合材料の製造方法、およびその製造方法により得られる複合材料に関するものである。 The present invention relates to a method for producing a composite material and a composite material, and more particularly to a method for producing a composite material containing a metal and a fibrous carbon nanostructure, and a composite material obtained by the production method.
 金属、なかでも銅は、導電性が高く、圧延性にも優れるため、配線材料、電線等の導電材料として広く活用されている。
 一方、カーボンナノチューブ(以下「CNT」と称することがある。)などの繊維状炭素ナノ構造体は、導電性、熱伝導性、摺動特性、機械特性等に優れるため、幅広い用途への応用が検討されている。
 そこで、近年、繊維状炭素ナノ構造体の優れた特性を活かし、銅をはじめとした金属と繊維状炭素ナノ構造体とを複合化することで、導電性および熱伝導性をより一層向上させた複合材料を提供する技術の開発が進められている。
Metals, particularly copper, are widely used as conductive materials such as wiring materials and electric wires because of their high conductivity and excellent rollability.
On the other hand, fibrous carbon nanostructures such as carbon nanotubes (hereinafter sometimes referred to as “CNT”) are excellent in conductivity, thermal conductivity, sliding characteristics, mechanical characteristics, etc. It is being considered.
Therefore, in recent years, taking advantage of the excellent properties of fibrous carbon nanostructures, the conductivity and thermal conductivity have been further improved by combining copper and other metals with fibrous carbon nanostructures. Development of technology to provide composite materials is underway.
 しかしながら、金属と繊維状炭素ナノ構造体とでは、材料間の比重差が大きいため、上記複合材料の調製には、複合化が非常に難しいという点に問題があった。
 そこで、上記問題を解決するための方法として、例えば、CNTをめっき液中に混入させ、そのめっき液によりめっき皮膜を形成することで、金属とCNTとを良好に複合化させる技術が提案されている(特許文献1参照)。
However, the metal and the fibrous carbon nanostructure have a large difference in specific gravity between the materials, and thus there is a problem in that the composite material is very difficult to prepare.
Therefore, as a method for solving the above problem, for example, a technique has been proposed in which metal and CNT are combined well by mixing CNT into a plating solution and forming a plating film with the plating solution. (See Patent Document 1).
特開2004−156074号公報JP 2004-156074 A
 ここで、繊維状炭素ナノ構造体を含むめっき液を用いて形成した複合材料の性能(例えば、導電性および熱伝導性)を十分に向上させるためには、めっき液中で、繊維状炭素ナノ構造体を良好に分散させて、得られる複合材料中における繊維状炭素ナノ構造体の凝集物の生成を抑制する必要がある。 Here, in order to sufficiently improve the performance (for example, conductivity and thermal conductivity) of the composite material formed using the plating solution containing the fibrous carbon nanostructure, the fibrous carbon nanostructure is used in the plating solution. It is necessary to satisfactorily disperse the structure and suppress the formation of aggregates of fibrous carbon nanostructures in the obtained composite material.
 しかしながら、上記従来の技術では、CNT等の繊維状炭素ナノ構造体の凝集物の生成を十分に抑制することはできない場合があった。そのため、金属と繊維状炭素ナノ構造体を良好に複合化させて、その表層部から内部にかけて金属と繊維状炭素ナノ構造体とが各々万遍なく存在する複合材料を製造することが困難であった。 However, with the above-described conventional technology, it may not be possible to sufficiently suppress the formation of aggregates of fibrous carbon nanostructures such as CNTs. For this reason, it is difficult to produce a composite material in which the metal and the fibrous carbon nanostructure are satisfactorily composited and the metal and the fibrous carbon nanostructure are present uniformly from the surface layer portion to the inside. It was.
 そこで、本発明は、金属と繊維状炭素ナノ構造体を良好に複合化させ、優れた物性を有する複合材料を製造する方法を提供することを目的とする。
 また、本発明は、当該製造方法を用いて製造された複合材料を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method for producing a composite material having excellent physical properties by favorably compounding a metal and a fibrous carbon nanostructure.
Moreover, an object of this invention is to provide the composite material manufactured using the said manufacturing method.
 本発明者らは、上記目的を達成するべく、鋭意検討を行った。そして、本発明者らは、意外にも、繊維状炭素ナノ構造体を膜状に集合させてなる炭素膜をめっき液中に浸漬させてめっき処理を行うことにより、金属と繊維状炭素ナノ構造体が良好に複合化した複合材料が得られることを見出し、本発明を完成させた。 The present inventors have intensively studied to achieve the above object. And the present inventors surprisingly made metal and fibrous carbon nanostructures by immersing a carbon film formed by assembling fibrous carbon nanostructures into a film and immersing them in a plating solution. The present inventors have found that a composite material in which the body is well composited can be obtained, and the present invention has been completed.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の複合材料の製造方法は、繊維状炭素ナノ構造体を含む炭素膜に、めっき液を用いてめっき処理を行う工程を含むことを特徴とする。このように、繊維状炭素ナノ構造体を含む炭素膜にめっき処理を行えば、炭素膜内部に金属を析出させて、金属と繊維状炭素ナノ構造体が良好に複合化した複合材料を製造することができる。そしてこのような複合材料は、導電性および熱伝導性などの物性に優れる。 That is, the present invention aims to advantageously solve the above-described problems, and the method for producing a composite material of the present invention comprises plating a carbon film containing fibrous carbon nanostructures using a plating solution. The method includes a step of performing processing. In this way, when a carbon film containing fibrous carbon nanostructures is plated, a metal is deposited inside the carbon film to produce a composite material in which the metal and fibrous carbon nanostructures are well compounded. be able to. Such a composite material is excellent in physical properties such as conductivity and thermal conductivity.
 ここで、本発明の複合材料の製造方法は、前記めっき処理を行う工程に先んじて、前記繊維状炭素ナノ構造体と溶媒を含む分散液から溶媒を除去することにより前記炭素膜を調製する工程を含むことが好ましい。溶媒中に繊維状炭素ナノ構造体が分散した分散液から溶媒を除去することで得られる炭素膜は、密度が疎となり易い。そのため、めっき処理においてめっき液が炭素膜中に浸透し易く、炭素膜内部における金属の析出が容易となる。よって、金属と繊維状炭素ナノ構造体を一層良好に複合化することができ、複合材料の物性を更に高めることができる。 Here, the manufacturing method of the composite material of the present invention is a step of preparing the carbon film by removing the solvent from the dispersion containing the fibrous carbon nanostructure and the solvent prior to the step of performing the plating treatment. It is preferable to contain. A carbon film obtained by removing a solvent from a dispersion liquid in which fibrous carbon nanostructures are dispersed in a solvent tends to have a low density. Therefore, the plating solution easily penetrates into the carbon film in the plating process, and the metal is easily deposited inside the carbon film. Therefore, the metal and the fibrous carbon nanostructure can be more favorably combined, and the physical properties of the composite material can be further improved.
 また、本発明の複合材料の製造方法において、前記炭素膜の密度が0.01g/cm以上1.8g/cm以下であることが好ましい。密度が上述の範囲内である炭素膜を用いれば、得られる複合材料の強度を確保しつつ、金属と繊維状炭素ナノ構造体を一層良好に複合化することができる。 In the method for producing the composite material of the present invention, it is preferable that the density of the carbon film is 0.01 g / cm 3 or more 1.8 g / cm 3 or less. If a carbon film having a density within the above-described range is used, the metal and the fibrous carbon nanostructure can be more satisfactorily combined while ensuring the strength of the obtained composite material.
 そして、本発明の複合材料の製造方法において、前記めっき液がノニオン系界面活性剤を含むことが好ましい。ノニオン系界面活性剤を含むめっき液は炭素膜中に浸透しやすく、炭素膜内部における金属の析出が容易となる。そのため、金属と繊維状炭素ナノ構造体を一層良好に複合化することができ、複合材料の物性を更に高めることができる。
 なお、前記ノニオン系界面活性剤がポリエーテル系界面活性剤であることが好ましい。ポリエーテル系界面活性剤を含むめっき液を用いれば、金属と繊維状炭素ナノ構造体をより一層良好に複合化することができる。
And in the manufacturing method of the composite material of this invention, it is preferable that the said plating solution contains a nonionic surfactant. A plating solution containing a nonionic surfactant easily penetrates into the carbon film and facilitates deposition of metal inside the carbon film. Therefore, the metal and the fibrous carbon nanostructure can be more satisfactorily combined, and the physical properties of the composite material can be further enhanced.
The nonionic surfactant is preferably a polyether surfactant. If a plating solution containing a polyether-based surfactant is used, the metal and the fibrous carbon nanostructure can be combined more satisfactorily.
 また、本発明の複合材料の製造方法において、前記繊維状炭素ナノ構造体がカーボンナノチューブを含むことが好ましい。カーボンナノチューブを含む繊維状炭素ナノ構造体を用いれば、複合材料の物性を一層高めることができる。
 なお、前記カーボンナノチューブを含む繊維状炭素ナノ構造体の比表面積が600m/g以上であることが好ましい。比表面積が600m/g以上である繊維状炭素ナノ構造体を用いれば、複合材料の物性をより一層高めることができる。
Moreover, in the manufacturing method of the composite material of this invention, it is preferable that the said fibrous carbon nanostructure contains a carbon nanotube. If a fibrous carbon nanostructure containing carbon nanotubes is used, the physical properties of the composite material can be further enhanced.
In addition, it is preferable that the specific surface area of the fibrous carbon nanostructure containing the said carbon nanotube is 600 m < 2 > / g or more. If a fibrous carbon nanostructure having a specific surface area of 600 m 2 / g or more is used, the physical properties of the composite material can be further enhanced.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の複合材料は、上述した複合材料の製造方法の何れかを用いて製造したことを特徴とする。上述した何れかの複合材料の製造方法を使用すれば、優れた物性を有する複合材料が得られる。 Further, the present invention aims to advantageously solve the above-mentioned problems, and the composite material of the present invention is characterized by being manufactured using any one of the above-described composite material manufacturing methods. If any one of the composite material manufacturing methods described above is used, a composite material having excellent physical properties can be obtained.
 本発明の複合材料の製造方法によれば、金属と繊維状炭素ナノ構造体を良好に複合化させ、優れた物性を有する複合材料を製造することができる。
 また、本発明によれば、優れた物性を有する複合材料が得られる。
According to the method for producing a composite material of the present invention, a metal and a fibrous carbon nanostructure can be favorably compounded to produce a composite material having excellent physical properties.
Moreover, according to the present invention, a composite material having excellent physical properties can be obtained.
電界放出型走査電子顕微鏡で撮影した、実施例1の複合材料の断面写真である。2 is a cross-sectional photograph of the composite material of Example 1 taken with a field emission scanning electron microscope. 電界放出型走査電子顕微鏡で撮影した、実施例2の複合材料の断面写真である。It is a cross-sectional photograph of the composite material of Example 2 photographed with a field emission scanning electron microscope.
 以下、本発明の実施形態について詳細に説明する。
 本発明の複合材料の製造方法は、金属と繊維状炭素ナノ構造体が複合化された複合材料を製造する際に用いることができる。そして、本発明の複合材料の製造方法を用いて製造した本発明の複合材料は、導電性や熱伝導性などの物性に優れている。
Hereinafter, embodiments of the present invention will be described in detail.
The method for producing a composite material of the present invention can be used when producing a composite material in which a metal and a fibrous carbon nanostructure are combined. And the composite material of this invention manufactured using the manufacturing method of the composite material of this invention is excellent in physical properties, such as electroconductivity and heat conductivity.
(複合材料の製造方法)
 ここで、本発明の複合材料の製造方法は、繊維状炭素ナノ構造体を含む炭素膜に、めっき液を用いてめっき処理を行う工程(めっき処理工程)を含む。
 そして、本発明の複合材料の製造方法では、炭素膜内部にめっき液由来の金属を析出させることで、金属と繊維状炭素ナノ構造体が良好に複合化し、優れた導電性や熱伝導性などの物性を発揮する複合材料を得ることができる。
(Production method of composite material)
Here, the manufacturing method of the composite material of this invention includes the process (plating process process) which performs a plating process using the plating solution on the carbon film containing a fibrous carbon nanostructure.
And in the manufacturing method of the composite material of this invention, a metal and fibrous carbon nanostructure are compounded favorably by depositing the metal derived from a plating solution inside a carbon film, and excellent electrical conductivity, thermal conductivity, etc. A composite material exhibiting the physical properties of can be obtained.
<炭素膜>
 炭素膜は、複数本の繊維状炭素ナノ構造体を膜状に集合させてなる繊維状炭素ナノ構造体の集合体よりなる。ここで、複数本の繊維状炭素ナノ構造体を膜状に集合させて炭素膜を得る工程(炭素膜調製工程)は、特に限定されないが、例えば以下の工程:
(1)複数本の繊維状炭素ナノ構造体と溶媒とを含む分散液から溶媒を除去することにより製膜する工程
(2)基材上に略垂直方向に成長させて得られた繊維状炭素ナノ構造体の集合体を基材に倒伏させ、その後必要に応じて圧縮することにより製膜する工程
 が挙げられる。中でも、(1)の工程が好ましい。(1)の工程を経て得られた炭素膜は、密度が疎となり易く、めっき処理においてめっき液が浸透し易い。そのため炭素膜内部の金属析出が容易となり、金属と繊維状炭素ナノ構造体が一層良好に複合化され、複合材料の物性を更に向上させることができる。
 以下、(1)の工程を例に挙げて炭素膜調製工程について詳述する。
<Carbon film>
The carbon film is composed of an aggregate of fibrous carbon nanostructures obtained by assembling a plurality of fibrous carbon nanostructures into a film shape. Here, the process of obtaining a carbon film by assembling a plurality of fibrous carbon nanostructures into a film form (carbon film preparation process) is not particularly limited. For example, the following processes:
(1) Step of forming a film by removing a solvent from a dispersion containing a plurality of fibrous carbon nanostructures and a solvent (2) Fibrous carbon obtained by growing in a substantially vertical direction on a substrate A step of forming a film by allowing the aggregate of nanostructures to fall on a substrate and then compressing as necessary is mentioned. Among these, the step (1) is preferable. The carbon film obtained through the step (1) tends to have a low density, and the plating solution easily permeates in the plating process. Therefore, the metal deposition inside the carbon film is facilitated, the metal and the fibrous carbon nanostructure are more complexed, and the physical properties of the composite material can be further improved.
Hereinafter, the carbon film preparation step will be described in detail by taking the step (1) as an example.
[分散液]
 炭素膜の調製に用いる分散液としては、特に限定されることなく、既知の分散処理方法を用いて繊維状炭素ナノ構造体の集合体を溶媒に分散させてなる分散液を用いることができる。具体的には、分散液としては、繊維状炭素ナノ構造体と、溶媒とを含み、任意に分散剤などの分散液用添加剤を更に含有する分散液を用いることができる。
[Dispersion]
The dispersion used for the preparation of the carbon film is not particularly limited, and a dispersion obtained by dispersing an aggregate of fibrous carbon nanostructures in a solvent using a known dispersion treatment method can be used. Specifically, as the dispersion, a dispersion containing a fibrous carbon nanostructure and a solvent and optionally further containing an additive for dispersion such as a dispersant can be used.
[[繊維状炭素ナノ構造体]]
 繊維状炭素ナノ構造体としては、特に限定されることなく、例えば、アスペクト比が10を超える繊維状炭素ナノ構造体を使用することができる。具体的には、繊維状炭素ナノ構造体としては、カーボンナノチューブ、気相成長炭素繊維、有機繊維を炭化して得られる炭素繊維、及びそれらの切断物などを用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 なお、本発明において、「アスペクト比」は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)および長さを測定して求めることができる。
 中でも、繊維状炭素ナノ構造体としては、カーボンナノチューブを含む繊維状炭素ナノ構造体を用いることがより好ましい。カーボンナノチューブを含む繊維状炭素ナノ構造体を使用すれば、複合材料の物性を更に向上させることができるからである。
[[Fibrous carbon nanostructure]]
The fibrous carbon nanostructure is not particularly limited, and for example, a fibrous carbon nanostructure having an aspect ratio exceeding 10 can be used. Specifically, as the fibrous carbon nanostructure, carbon nanotubes, vapor-grown carbon fibers, carbon fibers obtained by carbonizing organic fibers, and cut products thereof can be used. These may be used individually by 1 type and may use 2 or more types together.
In the present invention, the “aspect ratio” can be obtained by measuring the diameter (outer diameter) and length of 100 fibrous carbon nanostructures randomly selected using a transmission electron microscope.
Among these, as the fibrous carbon nanostructure, it is more preferable to use a fibrous carbon nanostructure including carbon nanotubes. This is because the physical properties of the composite material can be further improved by using a fibrous carbon nanostructure containing carbon nanotubes.
—カーボンナノチューブを含む繊維状炭素ナノ構造体—
 ここで、CNTを含む繊維状炭素ナノ構造体は、CNTのみからなるものであってもよいし、CNTと、CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。
 なお、繊維状炭素ナノ構造体中のCNTとしては、特に限定されることなく、単層カーボンナノチューブおよび/または多層カーボンナノチューブを用いることができるが、CNTは、単層から5層までのカーボンナノチューブであることが好ましく、単層カーボンナノチューブであることがより好ましい。単層カーボンナノチューブを使用すれば、多層カーボンナノチューブを使用した場合と比較し、複合材料の物性を更に向上させることができるからである。
—Fibrous carbon nanostructures containing carbon nanotubes—
Here, the fibrous carbon nanostructure containing CNT may be composed of only CNT, or may be a mixture of CNT and fibrous carbon nanostructure other than CNT.
The CNT in the fibrous carbon nanostructure is not particularly limited, and single-walled carbon nanotubes and / or multi-walled carbon nanotubes can be used. Preferably, it is a single-walled carbon nanotube. This is because the use of single-walled carbon nanotubes can further improve the physical properties of the composite material as compared to the case of using multi-walled carbon nanotubes.
 また、CNTを含む繊維状炭素ナノ構造体の平均直径(Av)は、0.5nm以上であることが好ましく、1nm以上であることがより好ましく、15nm以下であることが好ましく、10nm以下であることがより好ましい。繊維状炭素ナノ構造体の平均直径(Av)が0.5nm以上であれば、炭素膜中において複数の繊維状炭素ナノ構造体間に金属が析出するための空間が十分に確保され、金属と繊維状炭素ナノ構造体がより良好に複合化した複合材料を得ることができる。また、繊維状炭素ナノ構造体の平均直径(Av)が15nm以下であれば、複合材料の物性を更に向上させることができる。
 なお、「繊維状炭素ナノ構造体の平均直径(Av)」は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)を測定して求めることができる。そして、CNTを含む繊維状炭素ナノ構造体の平均直径(Av)は、CNTを含む繊維状炭素ナノ構造体の製造方法や製造条件を変更することにより調整してもよいし、異なる製法で得られたCNTを含む繊維状炭素ナノ構造体を複数種類組み合わせることにより調整してもよい。
Further, the average diameter (Av) of the fibrous carbon nanostructure containing CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, preferably 15 nm or less, and preferably 10 nm or less. It is more preferable. If the average diameter (Av) of the fibrous carbon nanostructure is 0.5 nm or more, a sufficient space for the metal to deposit between the plurality of fibrous carbon nanostructures in the carbon film is ensured. A composite material in which the fibrous carbon nanostructures are better composited can be obtained. Moreover, if the average diameter (Av) of the fibrous carbon nanostructure is 15 nm or less, the physical properties of the composite material can be further improved.
The “average diameter (Av) of fibrous carbon nanostructures” is obtained by measuring the diameter (outer diameter) of 100 fibrous carbon nanostructures selected at random using a transmission electron microscope. Can do. And the average diameter (Av) of the fibrous carbon nanostructure containing CNT may be adjusted by changing the manufacturing method and manufacturing conditions of the fibrous carbon nanostructure containing CNT, or obtained by a different manufacturing method. You may adjust by combining multiple types of fibrous carbon nanostructure containing the produced CNT.
 更に、CNTを含む繊維状炭素ナノ構造体のBET比表面積は、600m/g以上であることが好ましく、800m/g以上であることがより好ましく、2500m/g以下であることが好ましく、1200m/g以下であることがより好ましい。CNTを含む繊維状炭素ナノ構造体のBET比表面積が600m/g以上であれば、複合材料の物性を更に向上させることができる。また、CNTを含む繊維状炭素ナノ構造体のBET比表面積が2500m/g以下であれば、炭素膜中および複合材料中での繊維状炭素ナノ構造体の過度な密集を抑制して、金属と繊維状炭素ナノ構造体を一層良好に複合化することができる。
 なお、本発明において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を指す。
Furthermore, the BET specific surface area of the fibrous carbon nanostructure containing CNTs is preferably 600 m 2 / g or more, more preferably 800 m 2 / g or more, and preferably 2500 m 2 / g or less. More preferably, it is 1200 m 2 / g or less. If the BET specific surface area of the fibrous carbon nanostructure containing CNTs is 600 m 2 / g or more, the physical properties of the composite material can be further improved. Moreover, if the BET specific surface area of the fibrous carbon nanostructure containing CNTs is 2500 m 2 / g or less, excessive crowding of the fibrous carbon nanostructure in the carbon film and the composite material is suppressed, and the metal And the fibrous carbon nanostructure can be combined more satisfactorily.
In the present invention, the “BET specific surface area” refers to a nitrogen adsorption specific surface area measured using the BET method.
 更に、CNTを含む繊維状炭素ナノ構造体は、後述のスーパーグロース法によれば、カーボンナノチューブ成長用の触媒層を表面に有する基材上に、基材に略垂直な方向に配向した集合体(配向集合体)として得られるが、当該集合体としての、繊維状炭素ナノ構造体の質量密度は、0.002g/cm以上0.2g/cm以下であることが好ましい。質量密度が0.2g/cm以下であれば、繊維状炭素ナノ構造体同士の結びつきが弱くなるので、繊維状炭素ナノ構造体を均質に分散させることができる。また、質量密度が0.002g/cm以上であれば、繊維状炭素ナノ構造体の一体性を向上させ、バラけることを抑制できるため取り扱いが容易になる。 Furthermore, the fibrous carbon nanostructure containing CNT is an aggregate oriented in a direction substantially perpendicular to the base material on a base material having a catalyst layer for carbon nanotube growth on the surface according to the super growth method described later. Although obtained as (aligned aggregate), the mass density of the fibrous carbon nanostructure as the aggregate is preferably 0.002 g / cm 3 or more and 0.2 g / cm 3 or less. If the mass density is 0.2 g / cm 3 or less, the bonding between the fibrous carbon nanostructures becomes weak, so that the fibrous carbon nanostructures can be uniformly dispersed. Further, if the mass density is 0.002 g / cm 3 or more, the integrity of the fibrous carbon nanostructure can be improved, and the handling can be facilitated because it can be prevented from being broken.
 また、CNTを含む繊維状炭素ナノ構造体は、吸着等温線から得られるt−プロットが上に凸な形状を示すことが好ましい。中でも、CNTの開口処理が施されておらず、t−プロットが上に凸な形状を示すことがより好ましい。なお、「t−プロット」は、窒素ガス吸着法により測定された繊維状炭素ナノ構造体の吸着等温線において、相対圧を窒素ガス吸着層の平均厚みt(nm)に変換することにより得ることができる。すなわち、窒素ガス吸着層の平均厚みtを相対圧P/P0に対してプロットした、既知の標準等温線から、相対圧に対応する窒素ガス吸着層の平均厚みtを求めて上記変換を行うことにより、CNTを含む繊維状炭素ナノ構造体のt−プロットが得られる(de Boerらによるt−プロット法)。 Moreover, it is preferable that the fibrous carbon nanostructure containing CNTs has a shape in which the t-plot obtained from the adsorption isotherm is convex upward. Among them, it is more preferable that the opening process of CNT is not performed and the t-plot shows a convex shape upward. The “t-plot” is obtained by converting the relative pressure into the average thickness t (nm) of the nitrogen gas adsorption layer in the adsorption isotherm of the fibrous carbon nanostructure measured by the nitrogen gas adsorption method. Can do. That is, the average thickness t of the nitrogen gas adsorption layer is plotted against the relative pressure P / P0, and the average thickness t of the nitrogen gas adsorption layer corresponding to the relative pressure is obtained from the known standard isotherm to perform the above conversion. Thus, a t-plot of the fibrous carbon nanostructure containing CNT is obtained (de-boer et al. T-plot method).
 ここで、表面に細孔を有する物質では、窒素ガス吸着層の成長は、次の(1)~(3)の過程に分類される。そして、下記の(1)~(3)の過程によって、t−プロットの傾きに変化が生じる。
(1)全表面への窒素分子の単分子吸着層形成過程
(2)多分子吸着層形成とそれに伴う細孔内での毛管凝縮充填過程
(3)細孔が窒素によって満たされた見かけ上の非多孔性表面への多分子吸着層形成過程
Here, in the substance having pores on the surface, the growth of the nitrogen gas adsorption layer is classified into the following processes (1) to (3). Then, the inclination of the t-plot is changed by the following processes (1) to (3).
(1) Monomolecular adsorption layer formation process of nitrogen molecules on the entire surface (2) Multimolecular adsorption layer formation and capillary condensation filling process in the pores accompanying it (3) Apparent filling of the pores with nitrogen Formation process of multimolecular adsorption layer on non-porous surface
 そして、上に凸な形状を示すt−プロットは、窒素ガス吸着層の平均厚みtが小さい領域では、原点を通る直線上にプロットが位置するのに対し、tが大きくなると、プロットが当該直線から下にずれた位置となる。かかるt−プロットの形状を有する繊維状炭素ナノ構造体は、繊維状炭素ナノ構造体の全比表面積に対する内部比表面積の割合が大きく、繊維状炭素ナノ構造体を構成する炭素ナノ構造体に多数の開口が形成されていることを示している。 The t-plot showing an upwardly convex shape is located on a straight line passing through the origin in a region where the average thickness t of the nitrogen gas adsorption layer is small, whereas when t becomes large, the plot becomes the straight line. The position will be shifted downward. The fibrous carbon nanostructure having such a t-plot shape has a large ratio of the internal specific surface area to the total specific surface area of the fibrous carbon nanostructure, and there are many carbon nanostructures constituting the fibrous carbon nanostructure. It is shown that the opening is formed.
 なお、CNTを含む繊維状炭素ナノ構造体のt−プロットの屈曲点は、0.2≦t(nm)≦1.5を満たす範囲にあることが好ましく、0.45≦t(nm)≦1.5の範囲にあることがより好ましく、0.55≦t(nm)≦1.0の範囲にあることが更に好ましい。
 なお、「屈曲点の位置」は、前述した(1)の過程の近似直線Aと、前述した(3)の過程の近似直線Bとの交点である。
The inflection point of the t-plot of the fibrous carbon nanostructure containing CNT is preferably in a range satisfying 0.2 ≦ t (nm) ≦ 1.5, and 0.45 ≦ t (nm) ≦ More preferably, it is in the range of 1.5, and more preferably in the range of 0.55 ≦ t (nm) ≦ 1.0.
The “position of the bending point” is an intersection of the approximate line A in the process (1) described above and the approximate line B in the process (3) described above.
 更に、CNTを含む繊維状炭素ナノ構造体は、t−プロットから得られる全比表面積S1に対する内部比表面積S2の比(S2/S1)が0.05以上0.30以下であるのが好ましい。
 また、CNTを含む繊維状炭素ナノ構造体の全比表面積S1および内部比表面積S2は、特に限定されないが、個別には、S1は、600m/g以上1400m/g以下であることが好ましく、800m/g以上1200m/g以下であることが更に好ましい。一方、S2は、30m/g以上540m/g以下であることが好ましい。
 ここで、CNTを含む繊維状炭素ナノ構造体の全比表面積S1および内部比表面積S2は、そのt−プロットから求めることができる。具体的には、まず、(1)の過程の近似直線の傾きから全比表面積S1を、(3)の過程の近似直線の傾きから外部比表面積S3を、それぞれ求めることができる。そして、全比表面積S1から外部比表面積S3を差し引くことにより、内部比表面積S2を算出することができる。
Furthermore, the fibrous carbon nanostructure containing CNTs preferably has a ratio (S2 / S1) of the internal specific surface area S2 to the total specific surface area S1 obtained from the t-plot of 0.05 or more and 0.30 or less.
Further, the total specific surface area S1 and the internal specific surface area S2 of the fibrous carbon nanostructure containing CNTs are not particularly limited, but individually, S1 is preferably 600 m 2 / g or more and 1400 m 2 / g or less. 800 m 2 / g or more and 1200 m 2 / g or less is more preferable. On the other hand, S2 is preferably 30 m 2 / g or more and 540 m 2 / g or less.
Here, the total specific surface area S1 and the internal specific surface area S2 of the fibrous carbon nanostructure containing CNT can be determined from the t-plot. Specifically, first, the total specific surface area S1 can be obtained from the slope of the approximate line in the process (1), and the external specific surface area S3 can be obtained from the slope of the approximate line in the process (3). Then, the internal specific surface area S2 can be calculated by subtracting the external specific surface area S3 from the total specific surface area S1.
 因みに、CNTを含む繊維状炭素ナノ構造体の吸着等温線の測定、t−プロットの作成、および、t−プロットの解析に基づく全比表面積S1と内部比表面積S2との算出は、例えば、市販の測定装置である「BELSORP(登録商標)−mini」(日本ベル(株)製)を用いて行うことができる。 Incidentally, measurement of adsorption isotherm of fibrous carbon nanostructure containing CNT, creation of t-plot, and calculation of total specific surface area S1 and internal specific surface area S2 based on analysis of t-plot are commercially available, for example. It is possible to use “BELSORP (registered trademark) -mini” (manufactured by Nippon Bell Co., Ltd.).
 そして、上述した性状を有するCNTを含む繊維状炭素ナノ構造体は、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)に準じて、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。 The fibrous carbon nanostructure containing CNTs having the above-described properties is obtained by, for example, supplying a raw material compound and a carrier gas onto a substrate having a catalyst layer for producing carbon nanotubes on the surface, When synthesizing CNTs by the growth method (CVD method), a method (supergrowth method; which dramatically improves the catalytic activity of the catalyst layer by allowing a small amount of an oxidizing agent (catalyst activation material) to be present in the system. According to WO 2006/011655), it can be produced efficiently. Hereinafter, the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
 なお、スーパーグロース法により製造したCNTを含む繊維状炭素ナノ構造体は、SGCNTのみから構成されていてもよいし、SGCNTと、非円筒形状の炭素ナノ構造体とから構成されていてもよい。具体的には、CNTを含む繊維状炭素ナノ構造体には、内壁同士が近接または接着したテープ状部分を全長に亘って有する単層または多層の扁平筒状の炭素ナノ構造体(以下、「グラフェンナノテープ(GNT)」と称することがある。)が含まれていてもよい。 In addition, the fibrous carbon nanostructure containing CNT manufactured by the super growth method may be comprised only from SGCNT, and may be comprised from SGCNT and a non-cylindrical carbon nanostructure. Specifically, the fibrous carbon nanostructure containing CNT includes a single-layer or multi-layered flat cylindrical carbon nanostructure (hereinafter referred to as “ It may be referred to as “graphene nanotape (GNT)”.
 ここで、GNTは、その合成時から内壁同士が近接または接着したテープ状部分が全長に亘って形成されており、炭素の六員環ネットワークが扁平筒状に形成された物質であると推定される。そして、GNTの形状が扁平筒状であり、かつ、GNT中に内壁同士が近接または接着したテープ状部分が存在していることは、例えば、GNTとフラーレン(C60)とを石英管に密封し、減圧下で加熱処理(フラーレン挿入処理)して得られるフラーレン挿入GNTを透過型電子顕微鏡で観察すると、GNT中にフラーレンが挿入されない部分(テープ状部分)が存在していることから確認することができる。 Here, GNT is presumed to be a substance in which a tape-like portion in which inner walls are close to each other or bonded is formed over the entire length from the synthesis, and a carbon six-membered ring network is formed in a flat cylindrical shape. The And the shape of GNT is a flat cylindrical shape, and the presence of a tape-like part in which the inner walls are close to each other or bonded is present in GNT. For example, GNT and fullerene (C60) are sealed in a quartz tube. When the fullerene insertion GNT obtained by heat treatment (fullerene insertion treatment) under reduced pressure is observed with a transmission electron microscope, it is confirmed that there is a portion (tape-like portion) in which fullerene is not inserted in the GNT. Can do.
 そして、GNTの形状は、幅方向中央部にテープ状部分を有する形状であることが好ましく、延在方向(軸線方向)に直行する断面の形状が、断面長手方向の両端部近傍における、断面長手方向に直交する方向の最大寸法が、いずれも、断面長手方向の中央部近傍における、断面長手方向に直交する方向の最大寸法よりも大きい形状であることがより好ましく、ダンベル状であることが特に好ましい。
 ここで、GNTの断面形状において、「断面長手方向の中央部近傍」とは、断面の長手中心線(断面の長手方向中心を通り、長手方向線に直交する直線)から、断面の長手方向幅の30%以内の領域をいい、「断面長手方向の端部近傍」とは、「断面長手方向の中央部近傍」の長手方向外側の領域をいう。
And it is preferable that the shape of GNT is a shape which has a tape-shaped part in the center part of the width direction, and the shape of the cross section orthogonal to the extending direction (axial direction) is the cross-sectional length in the vicinity of both ends in the cross-sectional longitudinal direction. It is more preferable that the maximum dimension in the direction orthogonal to the direction is larger than the maximum dimension in the direction orthogonal to the longitudinal direction of the cross section in the vicinity of the central portion in the longitudinal direction of the cross section. preferable.
Here, in the cross-sectional shape of the GNT, “near the central portion in the longitudinal direction of the cross section” means the longitudinal width of the cross section from the longitudinal center line of the cross section (a straight line passing through the longitudinal center of the cross section and perpendicular to the longitudinal direction line). The “near the end in the longitudinal direction of the cross section” means the area outside the longitudinal direction of “near the center in the longitudinal direction of the cross section”.
 なお、非円筒形状の炭素ナノ構造体としてGNTを含む炭素ナノ構造体は、触媒層を表面に有する基材を用いてスーパーグロース法によりCNTを合成する際に、触媒層を表面に有する基材(以下、「触媒基材」と称することがある。)を所定の方法で形成することにより、得ることができる。具体的には、GNTを含む炭素ナノ構造体は、アルミニウム化合物を含む塗工液Aを基材上に塗布し、塗布した塗工液Aを乾燥して基材上にアルミニウム薄膜(触媒担持層)を形成した後、アルミニウム薄膜の上に、鉄化合物を含む塗工液Bを塗布し、塗布した塗工液Bを温度50℃以下で乾燥してアルミニウム薄膜上に鉄薄膜(触媒層)を形成することで得た触媒基材を用いてスーパーグロース法によりCNTを合成することで得ることができる。 A carbon nanostructure containing GNT as a non-cylindrical carbon nanostructure is a base material having a catalyst layer on the surface when a CNT is synthesized by a super-growth method using a base material having a catalyst layer on the surface. (Hereinafter, sometimes referred to as “catalyst base material”) can be obtained by a predetermined method. Specifically, the carbon nanostructure containing GNT is obtained by applying a coating liquid A containing an aluminum compound on a substrate, drying the applied coating liquid A, and then forming an aluminum thin film (catalyst supporting layer) on the substrate. ) Is applied on the aluminum thin film, the coating liquid B containing the iron compound is applied, and the applied coating liquid B is dried at a temperature of 50 ° C. or less to form the iron thin film (catalyst layer) on the aluminum thin film. It can be obtained by synthesizing CNTs by the super-growth method using the catalyst substrate obtained by forming.
[[溶媒]]
 また、分散液の溶媒(繊維状炭素ナノ構造体の分散媒)としては、特に限定されることなく、例えば、水、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸ブチルなどのエステル類、ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類、N,N−ジメチルホルムアミド、N−メチルピロリドンなどのアミド系極性有機溶媒、トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類などが挙げられる。これらは1種類のみを単独で用いてもよいし、2種類以上を混合して用いてもよい。
[[solvent]]
Further, the solvent of the dispersion (dispersion medium of the fibrous carbon nanostructure) is not particularly limited. For example, water, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t- Alcohols such as butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, amyl alcohol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, esters such as ethyl acetate and butyl acetate, diethyl ether, dioxane, tetrahydrofuran, etc. Amides polar organic solvents such as ethers, N, N-dimethylformamide, N-methylpyrrolidone, aromatic hydrocarbons such as toluene, xylene, chlorobenzene, orthodichlorobenzene, paradichlorobenzene And the like. These may be used alone or in combination of two or more.
[[分散液用添加剤]]
 更に、分散液に任意に配合される分散液用添加剤としては、特に限定されることなく、分散剤などの分散液の調製に一般に使用される添加剤が挙げられる。
 なお、例えばろ過により分散液から溶媒を除去する際にろ紙が目詰まりするのを防止する観点、および、得られる複合材料の物性(例えば、導電性)の低下を抑制する観点からは、分散剤などの分散液用添加剤の添加量は少量であることが好ましい。
[[Additive for dispersion]]
Furthermore, the additive for dispersion that is arbitrarily blended in the dispersion is not particularly limited, and examples thereof include additives generally used for preparing dispersions such as dispersants.
For example, from the viewpoint of preventing the filter paper from being clogged when removing the solvent from the dispersion by filtration, and from the viewpoint of suppressing a decrease in physical properties (for example, conductivity) of the obtained composite material, the dispersant It is preferable that the amount of the additive for dispersion such as is small.
 そして、分散液の調製に用いる分散剤としては、繊維状炭素ナノ構造体を分散可能であり、前述した溶媒に溶解可能であれば、特に限定されることなく、界面活性剤、合成高分子または天然高分子を用いることができる。 The dispersant used for preparing the dispersion is not particularly limited as long as it can disperse the fibrous carbon nanostructure and can be dissolved in the solvent described above. Natural polymers can be used.
 ここで、界面活性剤としては、ドデシルスルホン酸ナトリウム、デオキシコール酸ナトリウム、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどが挙げられる。
 また、合成高分子としては、例えば、ポリエーテルジオール、ポリエステルジオール、ポリカーボネートジオール、ポリビニルアルコール、部分けん化ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、アセタール基変性ポリビニルアルコール、ブチラール基変性ポリビニルアルコール、シラノール基変性ポリビニルアルコール、エチレン−ビニルアルコール共重合体、エチレン−ビニルアルコール−酢酸ビニル共重合樹脂、ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、アクリル系樹脂、エポキシ樹脂、変性エポキシ系樹脂、フェノキシ樹脂、変性フェノキシ系樹脂、フェノキシエーテル樹脂、フェノキシエステル樹脂、フッ素系樹脂、メラミン樹脂、アルキッド樹脂、フェノール樹脂、ポリアクリルアミド、ポリアクリル酸、ポリスチレンスルホン酸、ポリエチレングリコール、ポリビニルピロリドンなどが挙げられる。
 更に、天然高分子としては、例えば、多糖類であるデンプン、プルラン、デキストラン、デキストリン、グアーガム、キサンタンガム、アミロース、アミロペクチン、アルギン酸、アラビアガム、カラギーナン、コンドロイチン硫酸、ヒアルロン酸、カードラン、キチン、キトサン、セルロース、並びに、その塩または誘導体が挙げられる。
 そして、これらの分散剤は、1種または2種以上を混合して用いることができる。
Here, examples of the surfactant include sodium dodecylsulfonate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate, and the like.
Examples of the synthetic polymer include polyether diol, polyester diol, polycarbonate diol, polyvinyl alcohol, partially saponified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, acetal group-modified polyvinyl alcohol, butyral group-modified polyvinyl alcohol, and silanol group-modified. Polyvinyl alcohol, ethylene-vinyl alcohol copolymer, ethylene-vinyl alcohol-vinyl acetate copolymer resin, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, acrylic resin, epoxy resin, modified epoxy resin, phenoxy resin, modified phenoxy system Resin, phenoxy ether resin, phenoxy ester resin, fluorine resin, melamine resin, alkyd resin, phenol resin, Polyacrylamide, polyacrylic acid, polystyrene sulfonic acid, polyethylene glycol, and polyvinylpyrrolidone.
Furthermore, examples of natural polymers include polysaccharides such as starch, pullulan, dextran, dextrin, guar gum, xanthan gum, amylose, amylopectin, alginic acid, gum arabic, carrageenan, chondroitin sulfate, hyaluronic acid, curdlan, chitin, chitosan, Examples thereof include cellulose and salts or derivatives thereof.
And these dispersing agents can be used 1 type or in mixture of 2 or more types.
[[分散液の性状]]
 そして、分散液は、1mm以上の凝集体が目視で確認されないことが好ましい。また、分散液中の繊維状炭素ナノ構造体は、粒度分布計で測定した際のメジアン径(平均粒子径)の値が150μm以下となるレベルで分散していることが好ましい。分散液中で繊維状炭素ナノ構造体を良好に分散させれば、溶媒を除去して得られる炭素膜の密度むらが抑制される。そして密度むらの少ない炭素膜には、めっき液が満遍なく浸透し易く、金属と繊維状炭素ナノ構造体を一層良好に複合化することができる。その結果、複合材料の物性が更に向上する。
[[Dispersion properties]]
And it is preferable that the aggregate of 1 mm or more is not visually confirmed in the dispersion liquid. Moreover, it is preferable that the fibrous carbon nanostructures in the dispersion are dispersed at a level at which the median diameter (average particle diameter) measured by a particle size distribution meter is 150 μm or less. If the fibrous carbon nanostructure is well dispersed in the dispersion, the density unevenness of the carbon film obtained by removing the solvent is suppressed. In addition, the plating solution easily penetrates uniformly into the carbon film with less density unevenness, and the metal and the fibrous carbon nanostructure can be combined more satisfactorily. As a result, the physical properties of the composite material are further improved.
 また、分散液の固形分濃度は、繊維状炭素ナノ構造体の種類にもよるが、0.001質量%以上20質量%以下が好ましい。固形分濃度が0.001質量%未満の場合、溶媒を除去して得られる炭素膜の量が少なくなり、製造効率を十分に高めることができない虞がある。また、固形分濃度が20質量%超の場合、分散液中での繊維状炭素ナノ構造体の分散性が低下する虞があると共に、分散液の粘度が増加し、流動性が低下する。 Further, the solid content concentration of the dispersion is preferably 0.001% by mass or more and 20% by mass or less, although it depends on the type of the fibrous carbon nanostructure. When the solid content concentration is less than 0.001% by mass, the amount of the carbon film obtained by removing the solvent decreases, and the production efficiency may not be sufficiently increased. Moreover, when solid content concentration exceeds 20 mass%, while there exists a possibility that the dispersibility of the fibrous carbon nanostructure in a dispersion liquid may fall, the viscosity of a dispersion liquid will increase and fluidity | liquidity will fall.
[[分散液の調製]]
 なお、分散液として、繊維状炭素ナノ構造体の集合体を溶媒に分散させてなる市販の分散液を用いてもよいが、炭素膜調製工程の前に分散液調製工程を実施して調製した分散液を用いることが好ましい。中でも、溶媒中で繊維状炭素ナノ構造体が良好に分散した分散液を使用し、炭素膜の密度むらを抑制して物性に優れる複合材料を得る観点からは、分散液としては、溶媒中に繊維状炭素ナノ構造体を添加してなる粗分散液をキャビテーション効果または解砕効果が得られる分散処理に供して得た分散液を用いることがより好ましい。
[[Preparation of dispersion]]
As the dispersion, a commercially available dispersion obtained by dispersing an aggregate of fibrous carbon nanostructures in a solvent may be used. However, the dispersion was prepared by performing the dispersion preparation step before the carbon film preparation step. It is preferable to use a dispersion. Among them, from the viewpoint of using a dispersion in which fibrous carbon nanostructures are well dispersed in a solvent and obtaining a composite material having excellent physical properties by suppressing unevenness in the density of the carbon film, the dispersion may be used in the solvent. It is more preferable to use a dispersion obtained by subjecting a coarse dispersion formed by adding fibrous carbon nanostructures to a dispersion treatment that provides a cavitation effect or a crushing effect.
 具体的には、上述した溶媒に対して上述した繊維状炭素ナノ構造体と任意の分散液用添加剤とを添加してなる粗分散液を、以下に詳細に説明するキャビテーション効果が得られる分散処理または解砕効果が得られる分散処理に供して得た分散液を用いることが好ましい。 Specifically, a coarse dispersion obtained by adding the above-described fibrous carbon nanostructure and any additive for dispersion to the solvent described above is a dispersion capable of obtaining a cavitation effect described in detail below. It is preferable to use a dispersion obtained by subjecting to a dispersion treatment capable of obtaining a treatment or crushing effect.
—キャビテーション効果が得られる分散処理—
 キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、水に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。この分散方法を用いることにより、繊維状炭素ナノ構造体を良好に分散させることができる。
—Distributed processing with cavitation effect—
The dispersion treatment that provides a cavitation effect is a dispersion method that uses a shock wave that is generated when a vacuum bubble generated in water bursts when high energy is applied to a liquid. By using this dispersion method, the fibrous carbon nanostructure can be favorably dispersed.
 ここで、キャビテーション効果が得られる分散処理の具体例としては、超音波による分散処理、ジェットミルによる分散処理および高剪断撹拌による分散処理が挙げられる。これらの分散処理は一つのみを行なってもよく、複数の分散処理を組み合わせて行なってもよい。より具体的には、例えば超音波ホモジナイザー、ジェットミルおよび高剪断撹拌装置が好適に用いられる。これらの装置は従来公知のものを使用すればよい。 Here, specific examples of the dispersion treatment that provides a cavitation effect include dispersion treatment using ultrasonic waves, dispersion treatment using a jet mill, and dispersion treatment using high shear stirring. Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirring device are preferably used. These devices may be conventionally known devices.
 繊維状炭素ナノ構造体の分散に超音波ホモジナイザーを用いる場合には、粗分散液に対し、超音波ホモジナイザーにより超音波を照射すればよい。照射する時間は、繊維状炭素ナノ構造体の量等により適宜設定すればよく、例えば、3分以上が好ましく、30分以上がより好ましく、また、5時間以下が好ましく、2時間以下がより好ましい。また、例えば、出力は20W以上500W以下が好ましく、100W以上500W以下がより好ましく、温度は15℃以上50℃以下が好ましい。 When an ultrasonic homogenizer is used to disperse the fibrous carbon nanostructure, the coarse dispersion may be irradiated with ultrasonic waves using the ultrasonic homogenizer. The irradiation time may be appropriately set depending on the amount of the fibrous carbon nanostructure and the like, for example, preferably 3 minutes or more, more preferably 30 minutes or more, and preferably 5 hours or less, more preferably 2 hours or less. . For example, the output is preferably 20 W or more and 500 W or less, more preferably 100 W or more and 500 W or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
 また、ジェットミルを用いる場合、処理回数は、繊維状炭素ナノ構造体の量等により適宜設定すればよく、例えば、2回以上が好ましく、100回以下が好ましく、50回以下がより好ましい。また、例えば、圧力は20MPa以上250MPa以下が好ましく、温度は15℃以上50℃以下が好ましい。 In the case of using a jet mill, the number of treatments may be appropriately set depending on the amount of the fibrous carbon nanostructure and the like, for example, preferably 2 times or more, preferably 100 times or less, and more preferably 50 times or less. For example, the pressure is preferably 20 MPa or more and 250 MPa or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
 さらに、高剪断撹拌を用いる場合には、粗分散液に対し、高剪断撹拌装置により撹拌および剪断を加えればよい。旋回速度は速ければ速いほどよい。例えば、運転時間(機械が回転動作をしている時間)は3分以上4時間以下が好ましく、周速は5m/秒以上50m/秒以下が好ましく、温度は15℃以上50℃以下が好ましい。 Furthermore, when high shear stirring is used, stirring and shearing may be applied to the coarse dispersion with a high shear stirring device. The faster the turning speed, the better. For example, the operation time (time during which the machine is rotating) is preferably 3 minutes or more and 4 hours or less, the peripheral speed is preferably 5 m / second or more and 50 m / second or less, and the temperature is preferably 15 ° C. or more and 50 ° C. or less.
 なお、上記したキャビテーション効果が得られる分散処理は、50℃以下の温度で行なうことがより好ましい。溶媒の揮発による濃度変化が抑制されるからである。 In addition, it is more preferable to perform the dispersion treatment for obtaining the above-described cavitation effect at a temperature of 50 ° C. or lower. This is because a change in concentration due to the volatilization of the solvent is suppressed.
—解砕効果が得られる分散処理—
 解砕効果が得られる分散処理は、繊維状炭素ナノ構造体を溶媒中に均一に分散できることは勿論、上記したキャビテーション効果が得られる分散処理に比べ、気泡が消滅する際の衝撃波による繊維状炭素ナノ構造体の損傷を抑制することができる点で有利である。
—Dispersion treatment that provides the effect of crushing—
The dispersion treatment that provides the crushing effect can uniformly disperse the fibrous carbon nanostructures in the solvent, as well as the fibrous carbon due to the shock wave when the bubbles disappear, compared to the dispersion treatment that provides the cavitation effect described above. This is advantageous in that damage to the nanostructure can be suppressed.
 この解砕効果が得られる分散処理では、粗分散液にせん断力を与えて繊維状炭素ナノ構造体の凝集体を解砕・分散させ、さらに粗分散液に背圧を負荷し、また必要に応じ、粗分散液を冷却することで、気泡の発生を抑制しつつ、繊維状炭素ナノ構造体を溶媒中に均一に分散させることができる。
 なお、粗分散液に背圧を負荷する場合、粗分散液に負荷した背圧は、大気圧まで一気に降圧させてもよいが、多段階で降圧することが好ましい。
In the dispersion treatment that provides this crushing effect, a shear force is applied to the coarse dispersion to break up and disperse the aggregates of the fibrous carbon nanostructures, and the back pressure is applied to the coarse dispersion. Accordingly, by cooling the coarse dispersion, the fibrous carbon nanostructure can be uniformly dispersed in the solvent while suppressing the generation of bubbles.
When a back pressure is applied to the coarse dispersion, the back pressure applied to the coarse dispersion may be reduced to atmospheric pressure all at once, but is preferably reduced in multiple stages.
 ここに、粗分散液にせん断力を与えて繊維状炭素ナノ構造体をさらに分散させるには、例えば、以下のような構造の分散器を有する分散システムを用いればよい。
 すなわち、分散器は、粗分散液の流入側から流出側に向かって、内径がd1の分散器オリフィスと、内径がd2の分散空間と、内径がd3の終端部と(但し、d2>d3>d1である。)、を順次備える。
 そして、この分散器では、流入する高圧(例えば10~400MPa、好ましくは50~250MPa)の粗分散液が、分散器オリフィスを通過することで、圧力の低下を伴いつつ、高流速の流体となって分散空間に流入する。その後、分散空間に流入した高流速の粗分散液は、分散空間内を高速で流動し、その際にせん断力を受ける。その結果、粗分散液の流速が低下すると共に、繊維状炭素ナノ構造体が良好に分散する。そして、終端部から、流入した粗分散液の圧力よりも低い圧力(背圧)の流体が、繊維状炭素ナノ構造体の分散液として流出することになる。
Here, in order to further disperse the fibrous carbon nanostructure by applying a shearing force to the coarse dispersion, for example, a dispersion system having a disperser having the following structure may be used.
In other words, the disperser has a disperser orifice having an inner diameter d1, a dispersion space having an inner diameter d2, and a terminal portion having an inner diameter d3 from the inflow side to the outflow side of the coarse dispersion liquid (where d2>d3> d1)).
In this disperser, the inflowing high-pressure (for example, 10 to 400 MPa, preferably 50 to 250 MPa) coarse dispersion passes through the disperser orifice and becomes a high flow rate fluid with a decrease in pressure. Into the dispersed space. Thereafter, the high-velocity coarse dispersion liquid flowing into the dispersion space flows at high speed in the dispersion space and receives a shearing force at that time. As a result, the flow rate of the coarse dispersion decreases, and the fibrous carbon nanostructure is well dispersed. Then, a fluid having a pressure (back pressure) lower than the pressure of the inflowing coarse dispersion liquid flows out from the terminal portion as the dispersion liquid of the fibrous carbon nanostructure.
 なお、粗分散液の背圧は、粗分散液の流れに負荷をかけることで粗分散液に負荷することができ、例えば、多段降圧器を分散器の下流側に配設することにより、粗分散液に所望の背圧を負荷することができる。
 そして、粗分散液の背圧を多段降圧器により多段階で降圧することで、最終的に繊維状炭素ナノ構造体の分散液を大気圧に開放した際に、分散液中に気泡が発生するのを抑制できる。
Note that the back pressure of the coarse dispersion can be applied to the coarse dispersion by applying a load to the flow of the coarse dispersion. For example, a rough pressure can be obtained by disposing a multistage step-down device downstream of the disperser. A desired back pressure can be applied to the dispersion.
Then, by reducing the back pressure of the coarse dispersion in multiple stages using a multistage pressure reducer, bubbles are generated in the dispersion when the dispersion of the fibrous carbon nanostructure is finally released to atmospheric pressure. Can be suppressed.
 また、この分散器は、粗分散液を冷却するための熱交換器や冷却液供給機構を備えていてもよい。というのは、分散器でせん断力を与えられて高温になった粗分散液を冷却することにより、粗分散液中で気泡が発生するのをさらに抑制できるからである。
 なお、熱交換器等の配設に替えて、粗分散液を予め冷却しておくことでも、繊維状炭素ナノ構造体を含む溶媒中で気泡が発生することを抑制できる。
Further, the disperser may include a heat exchanger for cooling the coarse dispersion and a cooling liquid supply mechanism. This is because the generation of bubbles in the coarse dispersion can be further suppressed by cooling the coarse dispersion that has been heated to a high temperature by applying a shearing force with the disperser.
In addition, it can suppress that a bubble generate | occur | produces in the solvent containing a fibrous carbon nanostructure also by cooling a rough dispersion liquid beforehand instead of arrangement | positioning of a heat exchanger etc.
 上記したように、この解砕効果が得られる分散処理では、キャビテーションの発生を抑制できるので、時として懸念されるキャビテーションに起因した繊維状炭素ナノ構造体の損傷、特に、気泡が消滅する際の衝撃波に起因した繊維状炭素ナノ構造体の損傷を抑制することができる。加えて、繊維状炭素ナノ構造体への気泡の付着や、気泡の発生によるエネルギーロスを抑制して、繊維状炭素ナノ構造体を均一かつ効率的に分散させることができる。 As described above, in the dispersion treatment that can obtain this crushing effect, the occurrence of cavitation can be suppressed, so damage to the fibrous carbon nanostructure caused by cavitation that is sometimes a concern, especially when the bubbles disappear. Damage to the fibrous carbon nanostructure due to the shock wave can be suppressed. In addition, it is possible to uniformly and efficiently disperse the fibrous carbon nanostructure by suppressing the attachment of bubbles to the fibrous carbon nanostructure and energy loss due to the generation of bubbles.
 以上のような構成を有する分散システムとしては、例えば、製品名「BERYU SYSTEM PRO」(株式会社美粒製)などがある。そして、解砕効果が得られる分散処理は、このような分散システムを用い、分散条件を適切に制御することで、実施することができる。 As a distributed system having the above-described configuration, for example, there is a product name “BERYU SYSTEM PRO” (manufactured by Mie Co., Ltd.). And the dispersion | distribution process from which a crushing effect is acquired can be implemented by controlling a dispersion | distribution condition appropriately using such a dispersion | distribution system.
[溶媒の除去]
 分散液から溶媒を除去する方法としては、特に限定されることなく、乾燥やろ過などの既知の溶媒除去方法を用いることができる。中でも、効率的に溶媒を除去する観点からは、溶媒除去方法としては、減圧乾燥、真空乾燥またはろ過を用いることが好ましい。更に、容易かつ迅速に溶媒を除去する観点からは、溶媒除去方法としては、ろ過を用いることが好ましく、減圧ろ過を用いることが更に好ましい。迅速かつ効率的に溶媒を除去すれば、一度分散させた繊維状炭素ナノ構造体が再び凝集するのを抑制し、得られる炭素膜の密度むらを抑制することができる。
 ここで、分散液中の溶媒は完全に除去する必要はなく、溶媒の除去後に残った繊維状炭素ナノ構造体が集合体(炭素膜)としてハンドリング可能な状態であれば、多少の溶媒が残留していても問題はない。
[Removal of solvent]
The method for removing the solvent from the dispersion is not particularly limited, and a known solvent removing method such as drying or filtration can be used. Among these, from the viewpoint of efficiently removing the solvent, it is preferable to use reduced-pressure drying, vacuum drying or filtration as the solvent removal method. Furthermore, from the viewpoint of removing the solvent easily and quickly, the solvent removal method is preferably filtration, and more preferably vacuum filtration. If the solvent is removed quickly and efficiently, the once-dispersed fibrous carbon nanostructures can be prevented from aggregating again, and density unevenness of the resulting carbon film can be suppressed.
Here, it is not necessary to completely remove the solvent in the dispersion liquid. If the fibrous carbon nanostructure remaining after the removal of the solvent can be handled as an aggregate (carbon film), some solvent remains. There is no problem even if you do.
[炭素膜の性状]
 得られる炭素膜の厚みは、2μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが更に好ましく、また200μm以下であることが好ましく、100μm以下であることがより好ましく、60μm以下であることが更に好ましい。炭素膜の厚みが2μm以上であれば、得られる複合体の強度を確保することができる。一方、炭素膜の厚みが200μm以下であれば、めっき液が炭素膜の厚み方向中心部まで容易に浸透し、金属と繊維状炭素ナノ構造体が一層良好に複合化した複合材料を得ることができる。
[Characteristics of carbon film]
The thickness of the obtained carbon film is preferably 2 μm or more, more preferably 5 μm or more, further preferably 10 μm or more, more preferably 200 μm or less, and more preferably 100 μm or less. Preferably, it is 60 micrometers or less. When the thickness of the carbon film is 2 μm or more, the strength of the resulting composite can be ensured. On the other hand, if the thickness of the carbon film is 200 μm or less, the plating solution can easily penetrate to the central portion in the thickness direction of the carbon film, and a composite material in which the metal and the fibrous carbon nanostructure are more preferably combined can be obtained. it can.
 また、炭素膜の密度は、0.01g/cm以上であることが好ましく、0.1g/cm以上であることがより好ましく、0.5g/cm以上であることが更に好ましく、また、1.8g/cm以下であることが好ましく、1.5g/cm以下であることがより好ましく、1.2g/cm以下であることが更に好ましい。炭素膜の密度が0.01g/cm以上であれば、得られる複合体の強度を確保することができる。一方、炭素膜の密度が1.8g/cm以下であれば、めっき液が炭素膜の厚み方向中心部まで容易に浸透し、金属と繊維状炭素ナノ構造体が一層良好に複合化した複合材料を得ることができる。
 なお、本発明において、「炭素膜の密度」は、炭素膜の質量、面積および厚さを測定し、炭素膜の質量を体積で割って求めることができる。
The density of the carbon film is preferably 0.01 g / cm 3 or more, more preferably 0.1 g / cm 3 or more, still more preferably 0.5 g / cm 3 or more, 1.8 g / cm 3 or less, more preferably 1.5 g / cm 3 or less, and still more preferably 1.2 g / cm 3 or less. If the density of the carbon film is 0.01 g / cm 3 or more, the strength of the resulting composite can be ensured. On the other hand, if the density of the carbon film is 1.8 g / cm 3 or less, the plating solution can easily penetrate into the central portion of the carbon film in the thickness direction, and the composite in which the metal and the fibrous carbon nanostructure are more effectively combined. Material can be obtained.
In the present invention, the “density of the carbon film” can be obtained by measuring the mass, area and thickness of the carbon film and dividing the mass of the carbon film by the volume.
<めっき処理>
 上述した炭素膜に対して、めっき液を用いて電解めっき処理または無電解めっき処理、好ましくは電解めっき処理を施すことにより、複合材料を得ることができる。
<Plating treatment>
A composite material can be obtained by subjecting the above-described carbon film to electrolytic plating treatment or electroless plating treatment, preferably electrolytic plating treatment, using a plating solution.
[めっき液]
 めっき処理に用いるめっき液は、少なくともめっき可能な金属イオンを含み、任意にめっき液用添加剤(ノニオン系界面活性剤や、その他めっき液に一般に添加される添加剤)を更に含む。
[Plating solution]
The plating solution used for the plating treatment contains at least metal ions that can be plated, and optionally further contains an additive for the plating solution (nonionic surfactant and other additives generally added to the plating solution).
[[めっき可能な金属イオン]]
 めっき可能な金属イオンとしては、特に限定されることなく、めっき処理可能な金属のイオン、例えば、銅、ニッケル、錫、白金、クロム、亜鉛のイオンなどが挙げられる。これらの中でも、めっき可能な金属イオンとしては、銅イオンが好ましい。銅は、導電性、熱伝導性などに優れており、繊維状炭素ナノ構造体と複合化させれば、優れた性能(例えば、導電性および熱伝導性)を有する複合材料を得ることができるからである。
 なお、めっき可能な金属イオンは、特に限定されることなく、例えば硫酸銅五水和物や硫酸ニッケル六水和物などの既知の金属化合物を溶解させることによりめっき液中に導入することができる。また、めっき液中におけるめっき可能な金属イオンの濃度は、特に限定されない。
[[Platable metal ions]]
The metal ions that can be plated are not particularly limited, and examples include metal ions that can be plated, such as ions of copper, nickel, tin, platinum, chromium, and zinc. Among these, copper ions are preferred as metal ions that can be plated. Copper is excellent in electrical conductivity, thermal conductivity, and the like, and if it is combined with a fibrous carbon nanostructure, a composite material having excellent performance (for example, electrical conductivity and thermal conductivity) can be obtained. Because.
The metal ions that can be plated are not particularly limited and can be introduced into the plating solution by dissolving a known metal compound such as copper sulfate pentahydrate or nickel sulfate hexahydrate. . Further, the concentration of metal ions that can be plated in the plating solution is not particularly limited.
[[ノニオン系界面活性剤]]
 めっき液は、ノニオン系界面活性剤を含むことが好ましい。ノニオン系界面活性剤を含むめっき液は、ノニオン系界面活性剤が繊維状炭素ナノ構造体との親和性に優れるためと推察されるが、炭素膜内部に容易に浸透することができる。そのため、ノニオン系界面活性剤を含むめっき液を用いれば、金属と繊維状炭素ナノ構造体を一層良好に複合化することができ、複合材料の物性を更に高めることができる。
[[Nonionic surfactant]]
The plating solution preferably contains a nonionic surfactant. The plating solution containing the nonionic surfactant is presumed to be because the nonionic surfactant has excellent affinity with the fibrous carbon nanostructure, but can easily penetrate into the carbon film. Therefore, if a plating solution containing a nonionic surfactant is used, the metal and the fibrous carbon nanostructure can be more satisfactorily combined, and the physical properties of the composite material can be further enhanced.
 そして、ノニオン系界面活性剤としては、ポリエーテル系界面活性剤、アルキルフェノール系界面活性剤、ポリエステル系界面活性剤、ソルビタンエステルエーテル系界面活性剤、アルキルアミン系界面活性剤等が挙げられる。これらの中でも、複合材料の物性をより一層高める観点からは、ポリエーテル系界面活性剤が好ましい。ポリエーテル系界面活性剤としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンドデシルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレン・ポリオキシプロピレンブロック共重合体が挙げられる。これらの中でもポリエチレングリコールが特に好ましい。なお、ノニオン系界面活性剤は1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of nonionic surfactants include polyether surfactants, alkylphenol surfactants, polyester surfactants, sorbitan ester ether surfactants, alkylamine surfactants, and the like. Among these, polyether surfactants are preferred from the viewpoint of further improving the physical properties of the composite material. Polyether-based surfactants include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether, polyoxyethylene dodecyl ether, polyoxyethylene nonylphenyl ether , Polyoxyethylene octyl phenyl ether, and polyoxyethylene / polyoxypropylene block copolymer. Among these, polyethylene glycol is particularly preferable. In addition, a nonionic surfactant may be used individually by 1 type and may use 2 or more types together.
 ノニオン系界面活性剤の重量平均分子量は、特に限定されないが、500以上であることが好ましく、1000以上であることがより好ましく、1500以上であることが更に好ましく、また20000以下であることが好ましく、10000以下であることがより好ましく、5000以下であることが更に好ましく、4000以下であることが特に好ましい。ノニオン系界面活性剤の重量平均分子量が上述の範囲内であれば、金属と繊維状炭素ナノ構造体を一層良好に複合化することができ、複合材料の物性を更に高めることができる。
 なお、ノニオン系界面活性剤の重量平均分子量(Mw)は、テトラヒドロフランを溶離液とするゲルパーミエーションクロマトグラフィーにより、標準ポリスチレン換算で求めることができる。
The weight average molecular weight of the nonionic surfactant is not particularly limited, but is preferably 500 or more, more preferably 1000 or more, further preferably 1500 or more, and preferably 20000 or less. It is more preferably 10,000 or less, further preferably 5000 or less, and particularly preferably 4000 or less. When the weight-average molecular weight of the nonionic surfactant is within the above range, the metal and the fibrous carbon nanostructure can be combined more satisfactorily, and the physical properties of the composite material can be further improved.
In addition, the weight average molecular weight (Mw) of a nonionic surfactant can be calculated | required in standard polystyrene conversion by the gel permeation chromatography which uses tetrahydrofuran as an eluent.
 めっき液中におけるノニオン系界面活性剤の濃度は、特に限定されないが、5質量ppm以上であることが好ましく、10質量ppm以上であることがより好ましく、50質量ppm以上であることが更に好ましく、また500質量ppm以下であることが好ましく、300質量ppm以下であることがより好ましく、200質量ppm以下であることが更に好ましい。ノニオン系界面活性剤の濃度が上述の範囲内であれば、金属と繊維状炭素ナノ構造体を一層良好に複合化することができ、複合材料の物性を更に高めることができる。 The concentration of the nonionic surfactant in the plating solution is not particularly limited, but is preferably 5 ppm by mass or more, more preferably 10 ppm by mass or more, and further preferably 50 ppm by mass or more, Moreover, it is preferable that it is 500 mass ppm or less, It is more preferable that it is 300 mass ppm or less, It is still more preferable that it is 200 mass ppm or less. If the concentration of the nonionic surfactant is within the above-described range, the metal and the fibrous carbon nanostructure can be combined more satisfactorily, and the physical properties of the composite material can be further enhanced.
[[その他のめっき液用添加剤]]
 めっき液は、本発明の効果を損なわない範囲で、上述した成分以外に、光沢剤などの既知のめっき液用添加剤を含有していてもよい。
[[Other additives for plating solution]]
The plating solution may contain known additives for a plating solution such as a brightener in addition to the above-described components within a range not impairing the effects of the present invention.
[[めっき液の製造方法]]
 めっき液は、上述した成分を水などの既知の溶媒中に溶解または分散させることにより調製することができる。
[[Plating solution manufacturing method]]
The plating solution can be prepared by dissolving or dispersing the above-described components in a known solvent such as water.
[めっき処理の方法]
 炭素膜にめっき処理を施す方法は、炭素膜の内部にめっき液中の金属イオン由来の金属を析出させうる方法であれば特に限定されない。例えば、電解めっき処理を行う場合、陰極として、炭素膜のみを使用してもよいし、基板表面にカーボンテープ等を介して炭素膜を接着してなる積層体を使用してもよい。そして、炭素膜内部へのめっき液の浸透を容易として、金属と繊維状炭素ナノ構造体とが複合化した複合材料を効率良く製造する観点からは、炭素膜のみからなる陰極を使用することが好ましい。また、炭素膜の両面に接するように二枚の陰極を配置した状態で電解めっき処理を行うことで、炭素膜の両面から炭素膜の内部にかけて、めっき液中の金属イオン由来の金属を析出させることもできる。
 なお電解めっきの場合、直流めっきに限定されることはなく、電流反転めっき法やパルスめっき法も採用することができる。
 まためっき処理としては、電解めっきに限らず、無電解めっきを採用することもできる。
 めっき処理中、めっき液の分散状態を維持するため、例えばスターラー等でめっき液を撹拌してもよい。
 そして炭素膜にめっき処理を行うに際し、めっき液中に炭素膜を浸漬させてからめっき処理を開始(例えば、電解めっき処理の場合においては通電を開始)するまでの待ち時間(めっき処理前待ち時間)を設けるのが好ましい。めっき処理前待ち時間は、好ましくは5分以上、より好ましくは10分以上である。めっき処理前待ち時間が5分以上あれば、炭素膜内部にまで、めっき液の浸透を促すことができる。なお、めっき処理前待ち時間の上限は特に限定されないが、通常60分以下である。
 さらに、電解めっき処理の場合、通電量は、好ましくは40C以上であり、より好ましくは50C以上である。通電量が40C以上あれば、炭素膜内部まで十分にめっき処理を実施可能である。
[Method of plating treatment]
The method for plating the carbon film is not particularly limited as long as the metal ion-derived metal in the plating solution can be deposited inside the carbon film. For example, when performing an electroplating process, only a carbon film may be used as the cathode, or a laminate formed by adhering a carbon film to the substrate surface via a carbon tape or the like may be used. From the viewpoint of facilitating the penetration of the plating solution into the carbon film and efficiently producing a composite material in which the metal and the fibrous carbon nanostructure are combined, it is possible to use a cathode made of only the carbon film. preferable. In addition, by performing electroplating treatment with two cathodes placed on both sides of the carbon film, the metal ion-derived metal in the plating solution is deposited from both sides of the carbon film to the inside of the carbon film. You can also
In the case of electrolytic plating, there is no limitation to direct current plating, and current reversal plating and pulse plating can also be employed.
The plating treatment is not limited to electrolytic plating, and electroless plating can also be employed.
In order to maintain the dispersion state of the plating solution during the plating process, the plating solution may be stirred, for example, with a stirrer or the like.
When performing plating treatment on the carbon film, a waiting time from when the carbon film is immersed in the plating solution to when the plating treatment is started (for example, in the case of electrolytic plating treatment, energization is started) (wait time before plating treatment) ) Is preferably provided. The waiting time before the plating treatment is preferably 5 minutes or more, more preferably 10 minutes or more. If the waiting time before the plating treatment is 5 minutes or more, the penetration of the plating solution can be promoted to the inside of the carbon film. The upper limit of the waiting time before the plating process is not particularly limited, but is usually 60 minutes or less.
Furthermore, in the case of electrolytic plating treatment, the amount of energization is preferably 40C or more, more preferably 50C or more. If the energization amount is 40C or more, the plating process can be sufficiently performed to the inside of the carbon film.
(複合材料)
 そして、上述した製造方法を用いて製造された複合材料は、金属と繊維状炭素ナノ構造体が良好に複合化しているので、優れた導電性および熱伝導性を示す。このような複合材料は、例えばエレクトロニクス関連分野において幅広い応用が期待される。
(Composite material)
And the composite material manufactured using the manufacturing method mentioned above shows the outstanding electroconductivity and heat conductivity, since the metal and the fibrous carbon nanostructure have compounded favorably. Such a composite material is expected to have a wide range of applications in, for example, electronics-related fields.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 なお、実施例において調製した複合材料の評価は、以下の方法を使用して行った。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
The composite materials prepared in the examples were evaluated using the following methods.
(複合材料の評価)
 シート状の複合材料の断面試料を、クロスセクションポリッシャ(登録商標)を用いて作成した。得られた断面試料中における銅と繊維状炭素ナノ構造体の複合化の状態を、電界放出型走査電子顕微鏡(FE−SEM)を用いて倍率400倍で観察した。
(Composite material evaluation)
A cross-sectional sample of a sheet-like composite material was prepared using a cross-section polisher (registered trademark). The composite state of copper and fibrous carbon nanostructures in the obtained cross-sectional sample was observed at a magnification of 400 times using a field emission scanning electron microscope (FE-SEM).
(実施例1)
<単層CNTを含む繊維状炭素ナノ構造体の合成>
 実施例において用いる単層CNTを含む繊維状炭素ナノ構造体を、国際公開第2006/011655号の記載に従って、スーパーグロース法により調製した(以下、「繊維状炭素ナノ構造体A」という)。なお、金属触媒の鉄薄膜層の厚さは2nmとした。
 得られた繊維状炭素ナノ構造体Aは、BET比表面積が1050m/g(未開口状態)、平均直径(Av)が3.3nmであった。また、繊維状炭素ナノ構造体Aを、ラマン分光光度計での測定において、単層CNTに特長的な100~300cm−1の低波数領域におけるラジアルブリージングモード(RBM)のスペクトルが観察された。また、未開口状態におけるt−プロットは上に凸な形状を示し、その屈曲点は0.55≦t(nm)≦1.0の範囲にあり、全比表面積S1と内部比表面積S2との比は0.05≦S2/S1≦0.30を満たしていた。
<分散液の調製>
 繊維状炭素ナノ構造体Aを400mg量り取り、溶媒としてのメチルエチルケトン2L中に混ぜ、ホモジナイザーにより2分間撹拌し、粗分散液を得た。湿式ジェットミル(株式会社常光製、JN−20)を使用し、得られた粗分散液を湿式ジェットミルの0.5mmの流路に100MPaの圧力で2サイクル通過させて、繊維状炭素ナノ構造体Aをメチルエチルケトンに分散させた。そして、固形分濃度0.20質量%の分散液Aを得た。
 なお、得られた分散液Aの性状を評価したところ、分散液A中の繊維状炭素ナノ構造体Aのメジアン径(平均粒子径)は24.1μmであった。
<炭素膜の調製>
 得られた分散液Aをキリヤマろ紙(No.5A)を用いて減圧ろ過し、厚みが40μm、密度が0.85g/cmである炭素膜Aを得た。
<複合材料の調製>
 陰極として上述した炭素膜A、陽極として含リン銅板を使用し、銅めっき浴中で以下の条件で電解めっきを行うことで複合材料Aを得た。
1)銅めっき浴中のめっき液組成(溶媒:水、温度:25℃)
[基本浴]
 CuSO・5HO:0.85M
 HSO:0.55M
[めっき液用添加剤]
 ポリエチレングリコール(重量平均分子量2000):100質量ppm
 塩化物イオン(塩酸由来):50質量ppm
 3,3’−ジチオビス(1−プロパンスルホン酸)2ナトリウム:2質量ppm
 ヤヌスグリーンB:2質量ppm
2)電析条件
 電流モード:電流規制法
 通電量:108.6C
 めっき処理時間:30分
 めっき処理前待ち時間:10分
Example 1
<Synthesis of fibrous carbon nanostructure containing single-walled CNT>
A fibrous carbon nanostructure containing single-walled CNTs used in the examples was prepared by the super-growth method (hereinafter referred to as “fibrous carbon nanostructure A”) as described in International Publication No. 2006/011655. The thickness of the iron catalyst thin film layer of the metal catalyst was 2 nm.
The obtained fibrous carbon nanostructure A had a BET specific surface area of 1050 m 2 / g (unopened state) and an average diameter (Av) of 3.3 nm. Further, when the fibrous carbon nanostructure A was measured with a Raman spectrophotometer, a spectrum of a radial breathing mode (RBM) in a low wavenumber region of 100 to 300 cm −1 characteristic for single-walled CNTs was observed. Further, the t-plot in the unopened state shows an upwardly convex shape, the inflection point is in the range of 0.55 ≦ t (nm) ≦ 1.0, and the total specific surface area S1 and the internal specific surface area S2 The ratio satisfied 0.05 ≦ S2 / S1 ≦ 0.30.
<Preparation of dispersion>
400 mg of fibrous carbon nanostructure A was weighed, mixed in 2 L of methyl ethyl ketone as a solvent, and stirred with a homogenizer for 2 minutes to obtain a crude dispersion. Using a wet jet mill (JN-20, manufactured by Joko Co., Ltd.), the obtained coarse dispersion was passed through a 0.5 mm flow path of the wet jet mill at a pressure of 100 MPa for 2 cycles to obtain a fibrous carbon nanostructure. Form A was dispersed in methyl ethyl ketone. Then, a dispersion A having a solid content concentration of 0.20% by mass was obtained.
In addition, when the property of the obtained dispersion A was evaluated, the median diameter (average particle diameter) of the fibrous carbon nanostructure A in the dispersion A was 24.1 μm.
<Preparation of carbon film>
The obtained dispersion A was filtered under reduced pressure using Kiriyama filter paper (No. 5A) to obtain a carbon film A having a thickness of 40 μm and a density of 0.85 g / cm 3 .
<Preparation of composite material>
Using the carbon film A described above as the cathode and the phosphorus-containing copper plate as the anode, composite material A was obtained by performing electrolytic plating in a copper plating bath under the following conditions.
1) Plating solution composition in a copper plating bath (solvent: water, temperature: 25 ° C.)
[Basic bath]
CuSO 4 · 5H 2 O: 0.85M
H 2 SO 4 : 0.55M
[Additive for plating solution]
Polyethylene glycol (weight average molecular weight 2000): 100 mass ppm
Chloride ion (derived from hydrochloric acid): 50 ppm by mass
3,3′-dithiobis (1-propanesulfonic acid) disodium: 2 mass ppm
Janus Green B: 2 mass ppm
2) Electrodeposition conditions Current mode: Current regulation method Current flow: 108.6C
Plating treatment time: 30 minutes Waiting time before plating treatment: 10 minutes
 得られた複合材料Aの断面をFE−SEMにて観察したところ、繊維状炭素ナノ構造体と銅とが良好に複合化されている様子が確認された(図1)。かかる複合材料は優れた導電性および熱伝導性を示す。 When the cross section of the obtained composite material A was observed with FE-SEM, it was confirmed that the fibrous carbon nanostructure and copper were well compounded (FIG. 1). Such a composite material exhibits excellent conductivity and thermal conductivity.
(実施例2)
<炭素膜の調製>
 厚みを40μm、密度を1.30g/cmとした以外は、炭素膜Aと同様にして炭素膜Bを調製した。
<複合材料の調製>
 脱脂および酸洗浄を施した純銅板(基板)の上にカーボンテープを貼り付けた。このカーボンテープの上に更に上述の炭素膜Bを貼り付けることで、陰極を得た。この陰極と、陽極として銅板とを使用し、銅めっき浴中で以下の条件で電解めっきを行うことで複合材料Bを得た。
1)銅めっき浴中のめっき液組成(溶媒:水、温度:25℃)
[基本浴]
 CuSO・5HO:0.85M
 HSO:0.55M
[めっき液用添加剤]
 ポリエチレングリコール(重量平均分子量2000):100質量ppm
 塩化物イオン(塩酸由来):50質量ppm
 3,3’−ジチオビス(1−プロパンスルホン酸)2ナトリウム:2質量ppm
 ヤヌスグリーンB:2質量ppm
2)電析条件
 電流モード:電流規制法
 通電量:54.3C
 めっき処理時間:30分
 めっき処理前待ち時間:10分
(Example 2)
<Preparation of carbon film>
A carbon film B was prepared in the same manner as the carbon film A except that the thickness was 40 μm and the density was 1.30 g / cm 3 .
<Preparation of composite material>
A carbon tape was affixed on a pure copper plate (substrate) that had been degreased and acid cleaned. A cathode was obtained by further bonding the above-described carbon film B on the carbon tape. Using this cathode and a copper plate as the anode, a composite material B was obtained by performing electrolytic plating under the following conditions in a copper plating bath.
1) Plating solution composition in a copper plating bath (solvent: water, temperature: 25 ° C.)
[Basic bath]
CuSO 4 · 5H 2 O: 0.85M
H 2 SO 4 : 0.55M
[Additive for plating solution]
Polyethylene glycol (weight average molecular weight 2000): 100 mass ppm
Chloride ion (derived from hydrochloric acid): 50 ppm by mass
3,3′-dithiobis (1-propanesulfonic acid) disodium: 2 mass ppm
Janus Green B: 2 mass ppm
2) Electrodeposition conditions Current mode: Current regulation method Current flow: 54.3C
Plating treatment time: 30 minutes Waiting time before plating treatment: 10 minutes
 得られた複合材料Bの断面をFE−SEMにて観察したところ、実施例1に比べると炭素膜内部への銅の浸透度合いにやや劣るが、総じて繊維状炭素ナノ構造体と銅とが良好に複合化されている様子が確認された(図2)。かかる複合材料は優れた導電性および熱伝導性を示す。 When the cross section of the obtained composite material B was observed with FE-SEM, it was somewhat inferior to the penetration degree of copper into the carbon film as compared with Example 1, but the fibrous carbon nanostructure and copper were generally good. (Fig. 2). Such a composite material exhibits excellent conductivity and thermal conductivity.
 本発明の複合材料の製造方法によれば、金属と繊維状炭素ナノ構造体を良好に複合化させ、優れた物性を有する複合材料を製造することができる。
 また、本発明によれば、優れた物性を有する複合材料が得られる。
According to the method for producing a composite material of the present invention, a metal and a fibrous carbon nanostructure can be favorably compounded to produce a composite material having excellent physical properties.
Moreover, according to the present invention, a composite material having excellent physical properties can be obtained.

Claims (8)

  1.  繊維状炭素ナノ構造体を含む炭素膜に、めっき液を用いてめっき処理を行う工程を含む、複合材料の製造方法。 The manufacturing method of a composite material including the process of performing the plating process using the plating liquid on the carbon film containing a fibrous carbon nanostructure.
  2.  前記めっき処理を行う工程に先んじて、前記繊維状炭素ナノ構造体と溶媒を含む分散液から溶媒を除去することにより前記炭素膜を調製する工程を含む、請求項1に記載の複合材料の製造方法。 The manufacturing of the composite material according to claim 1, comprising a step of preparing the carbon film by removing the solvent from the dispersion liquid containing the fibrous carbon nanostructure and the solvent prior to the step of performing the plating treatment. Method.
  3.  前記炭素膜の密度が0.01g/cm以上1.8g/cm以下である、請求項1又は2に記載の複合材料の製造方法。 The density of the carbon film is less than 0.01 g / cm 3 or more 1.8 g / cm 3, The method of producing a composite material according to claim 1 or 2.
  4.  前記めっき液がノニオン系界面活性剤を含む、請求項1~3の何れかに記載の複合材料の製造方法。 The method for producing a composite material according to any one of claims 1 to 3, wherein the plating solution contains a nonionic surfactant.
  5.  前記ノニオン系界面活性剤がポリエーテル系界面活性剤である、請求項4に記載の複合材料の製造方法。 The method for producing a composite material according to claim 4, wherein the nonionic surfactant is a polyether surfactant.
  6.  前記繊維状炭素ナノ構造体がカーボンナノチューブを含む、請求項1~5の何れかに記載の複合材料の製造方法。 The method for producing a composite material according to any one of claims 1 to 5, wherein the fibrous carbon nanostructure contains a carbon nanotube.
  7.  前記カーボンナノチューブを含む繊維状炭素ナノ構造体の比表面積が600m/g以上である、請求項6に記載の複合材料の製造方法。 The manufacturing method of the composite material of Claim 6 whose specific surface area of the fibrous carbon nanostructure containing the said carbon nanotube is 600 m < 2 > / g or more.
  8.  請求項1~7の何れかに記載の複合材料の製造方法を用いて製造した、複合材料。 A composite material manufactured using the method for manufacturing a composite material according to any one of claims 1 to 7.
PCT/JP2016/073508 2015-08-28 2016-08-03 Method for manufacturing composite material, and composite material WO2017038413A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680047089.4A CN107923059A (en) 2015-08-28 2016-08-03 The manufacture method and composite material of composite material
JP2017537702A JP7023112B2 (en) 2015-08-28 2016-08-03 Method for manufacturing composite materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015169352 2015-08-28
JP2015-169352 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017038413A1 true WO2017038413A1 (en) 2017-03-09

Family

ID=58187333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073508 WO2017038413A1 (en) 2015-08-28 2016-08-03 Method for manufacturing composite material, and composite material

Country Status (3)

Country Link
JP (1) JP7023112B2 (en)
CN (1) CN107923059A (en)
WO (1) WO2017038413A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127498A (en) * 2020-02-13 2021-09-02 国立大学法人信州大学 Production method of metal cnt wire and production method of insulation coated metal cnt wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283169A (en) * 2005-04-04 2006-10-19 Okuno Chem Ind Co Ltd Acidic solution for electrolytic copper plating, and electrolytic copper-plating method with little consumption of sulfur-containing organic compound due to electrolysis
JP2011098885A (en) * 2008-02-29 2011-05-19 National Institute Of Advanced Industrial Science & Technology Carbon nanotube film structure and carbon nanotube microstructure
JP2011119539A (en) * 2009-12-04 2011-06-16 Fujitsu Ltd Bump structure and method of manufacturing the same, and electronic apparatus and method of manufacturing the same
WO2012091139A1 (en) * 2010-12-28 2012-07-05 独立行政法人産業技術総合研究所 Carbon nanotube metal composite material and production method for same
WO2015012275A1 (en) * 2013-07-22 2015-01-29 独立行政法人産業技術総合研究所 Cnt metal composite material, and method for producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032116B2 (en) * 2002-11-01 2008-01-16 国立大学法人信州大学 Electronic component and manufacturing method thereof
CN101552052B (en) * 2008-04-01 2013-03-27 索尼株式会社 Conducting film and manufacturing method thereof, electronic device and manufacturing method thereof
CN101255590B (en) * 2008-04-03 2011-03-30 厦门大学 Method for preparing carbon nano-tube/nano-platinum composite film
US20100038251A1 (en) * 2008-08-14 2010-02-18 Snu R&Db Foundation Carbon nanotube network-based nano-composites
CN103921520B (en) * 2014-04-17 2016-08-24 苏州捷迪纳米科技有限公司 Carbon nano-tube film composite and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283169A (en) * 2005-04-04 2006-10-19 Okuno Chem Ind Co Ltd Acidic solution for electrolytic copper plating, and electrolytic copper-plating method with little consumption of sulfur-containing organic compound due to electrolysis
JP2011098885A (en) * 2008-02-29 2011-05-19 National Institute Of Advanced Industrial Science & Technology Carbon nanotube film structure and carbon nanotube microstructure
JP2011119539A (en) * 2009-12-04 2011-06-16 Fujitsu Ltd Bump structure and method of manufacturing the same, and electronic apparatus and method of manufacturing the same
WO2012091139A1 (en) * 2010-12-28 2012-07-05 独立行政法人産業技術総合研究所 Carbon nanotube metal composite material and production method for same
WO2015012275A1 (en) * 2013-07-22 2015-01-29 独立行政法人産業技術総合研究所 Cnt metal composite material, and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021127498A (en) * 2020-02-13 2021-09-02 国立大学法人信州大学 Production method of metal cnt wire and production method of insulation coated metal cnt wire
JP7105425B2 (en) 2020-02-13 2022-07-25 国立大学法人信州大学 METHOD FOR MANUFACTURING METALLIC CNT WIRE AND METHOD FOR MANUFACTURING INSULATED METAL CNT WIRE

Also Published As

Publication number Publication date
CN107923059A (en) 2018-04-17
JPWO2017038413A1 (en) 2018-06-21
JP7023112B2 (en) 2022-02-21

Similar Documents

Publication Publication Date Title
EP3103901B1 (en) Carbon nanotube fiber and method for producing same
KR102512338B1 (en) Carbon nanotube film and method for producing same
JP7218770B2 (en) Conductive nonwoven fabric and manufacturing method thereof
US10995223B2 (en) Fibrous carbon nanostructure dispersion liquid
JP6606076B2 (en) Plating solution and method for producing the same, and composite material, copper composite material and method for producing the same
EP3279138B1 (en) Carbon film and method for producing same
JP2016183395A (en) Metal matrix composite and production method thereof
JP6664200B2 (en) Manufacturing method of composite material
WO2017038413A1 (en) Method for manufacturing composite material, and composite material
WO2017104772A1 (en) Fibrous carbon nanostructure dispersion
JP6483616B2 (en) Method for producing metal composite material
JP6648423B2 (en) Nonwoven fabric and method for producing the same
JP2017119586A (en) Fibrous carbon nanostructure dispersion and production method of the same, production method of carbon film, as well as carbon film
TWI742025B (en) Fibrous carbon nanostructure dispersion
JP7264370B2 (en) Composite manufacturing method
WO2018051925A1 (en) Composite body, negative electrode for lithium ion secondary batteries, and method for producing composite body
JPWO2016143299A1 (en) Method for producing composite material and composite material
KR20140120086A (en) Carbon nanotube-nano silver composites and manufacturing method therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841445

Country of ref document: EP

Kind code of ref document: A1