WO2016192313A1 - 显示面板的驱动方法及驱动模块、显示面板及显示装置 - Google Patents

显示面板的驱动方法及驱动模块、显示面板及显示装置 Download PDF

Info

Publication number
WO2016192313A1
WO2016192313A1 PCT/CN2015/094428 CN2015094428W WO2016192313A1 WO 2016192313 A1 WO2016192313 A1 WO 2016192313A1 CN 2015094428 W CN2015094428 W CN 2015094428W WO 2016192313 A1 WO2016192313 A1 WO 2016192313A1
Authority
WO
WIPO (PCT)
Prior art keywords
bias current
gate line
scanned
current value
display panel
Prior art date
Application number
PCT/CN2015/094428
Other languages
English (en)
French (fr)
Inventor
金婷婷
余涛
林强
徐红祥
阳奇
方绪洋
汪亚坤
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/126,892 priority Critical patent/US10109257B2/en
Publication of WO2016192313A1 publication Critical patent/WO2016192313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/028Generation of voltages supplied to electrode drivers in a matrix display other than LCD

Definitions

  • the present disclosure relates to a driving method of a display panel, a driving module, a display panel, and a display device.
  • the gate driver is integrated on the array substrate (Gate driver On Array, English abbreviation: GOA) technology refers to integrating the gate driving circuit on the array substrate of the display panel.
  • the GOA circuit includes cascaded GOA units that correspond to different gate lines. A driving signal of the GOA unit for driving the GOA unit to gate and/or scan the corresponding gate line.
  • the drive signal of the GOA unit often has a certain phase delay when transmitted to the GOA unit.
  • Increasing the bias current of the drive signal of the GOA unit can reduce the phase delay. Therefore, by adjusting the magnitude of the bias current, the phase delay can be controlled below the threshold.
  • the inventors have found through experiments that when scanning the gate line close to the source driving circuit, since the phase delay is small, only a small bias current is required to ensure the normal display of the display panel, if unified according to the maximum phase delay. Setting the bias current can result in wasted power.
  • Embodiments of the present disclosure provide a driving method of a display panel, a driving module, a display panel, and a display device, which can reduce power consumption of the display panel.
  • a driving method of a display panel including a GOA circuit and an L-row gate line, the GOA circuit providing a gate driving signal to the L-row gate line, L is a positive integer, and the method includes:
  • the position of the gate line to be scanned is a line number of the gate line to be scanned
  • each row number of the L row gate lines corresponds to a bias current value.
  • a bias current value corresponding to each of the row numbers is linear with a distance between a gate line and a source driving circuit of the row number.
  • the gate lines including at least one set of consecutive preset line numbers in the L row gate lines correspond to the same bias current value, wherein the preset line number is less than L.
  • determining the bias current value according to the position of the to-be-scanned gate line includes:
  • a bias current value corresponding to the position of the gate line to be scanned is calculated.
  • the driving signal of the GOA unit includes at least one clock driving signal; when the GOA unit corresponding to the to-be-scanned gate line is a first-level GOA unit, the driving signal of the GOA unit further includes a frame Start signal STV.
  • a driving module of a display panel including a GOA circuit and an L-row gate line, the GOA circuit providing a gate driving signal to the L-row gate line, L is a positive integer, wherein the driving module includes:
  • timing control unit configured to determine a position of the gate line to be scanned
  • a bias current control unit configured to determine a bias current value according to a position of the gate line to be scanned
  • a level converting unit configured to generate a driving signal of the GOA unit corresponding to the to-be-scanned gate line according to the bias current value and a clock signal of the display panel.
  • the position of the gate line to be scanned is a line number of the gate line to be scanned
  • the bias current control unit may be configured to search a bias current configuration list according to a row number of the gate line to be scanned, and determine a bias current value corresponding to a row number of the gate line to be scanned.
  • each row number of the L row gate lines corresponds to a bias current value.
  • a bias current value corresponding to each of the row numbers is linear with a distance between a gate line and a source driving circuit of the row number.
  • the L-row gate line includes at least one set of consecutive preset line numbers corresponding to the same bias current value, wherein the preset line number is less than L.
  • the bias current control unit may be configured to calculate and calculate by using a preset formula The value of the bias current corresponding to the position of the gate line to be scanned.
  • a display panel including the above-described driving module is provided.
  • a display device including the above display panel is provided.
  • the driving method of the display panel determines the bias current value according to the position of the gate line to be scanned by determining the position of the gate line to be scanned, and further generates a standby signal according to the bias current and the clock signal of the display panel.
  • the driving signal of the GOA unit corresponding to the gate line is scanned to complete the scanning of the gate line to be scanned.
  • the bias current value is determined according to the position of the gate line to be scanned, and the magnitude of the bias current value only needs to ensure that the display panel is normally displayed when scanning the scan gate line to be scanned, thereby significantly reducing the display panel. Power consumption.
  • 1 is a schematic diagram of a phase delay caused by a panel load on a driving signal of a GOA unit
  • FIG. 2 is a schematic flow chart of a driving method of a display panel provided in an embodiment of the present disclosure
  • FIG. 3 is a schematic flow chart of a driving method of a display panel according to another embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing a relationship between a bias current value corresponding to a gate line and a line number
  • FIG. 5 is a schematic diagram showing a variation of a bias voltage of a driving signal of a GOA unit with a clock signal of a display panel;
  • FIG. 6 is a schematic structural diagram of a driving module of a display panel provided in another embodiment of the present disclosure.
  • FIG. 1 shows a schematic diagram of the phase delay caused by the panel load to the drive signal of the GOA unit.
  • the phase delay caused by the panel load to the driving signals of the GOA unit is not the same.
  • the driving signals of the GOA units corresponding to the three gate lines of Ga, Gb and Gc, the distances of Ga, Gb and Gc and the source driving circuit are sequentially increased, and the driving signals of the corresponding GOA units are output with respect to the source driving circuit.
  • the phase delay of the data signal Data also increases in sequence. That is, when scanning the gate line close to the source driving circuit, the phase delay is small, and when scanning the gate line away from the source driving circuit, the phase delay is large.
  • a uniform bias current is set for the driving signals of different GOA units, and the value of the bias current value needs to ensure that the maximum phase delay is less than the threshold.
  • FIG. 2 is a flow chart showing a driving method of a display panel provided in an embodiment of the present disclosure.
  • the driving method of the display panel includes the following steps:
  • step 201 the position of the gate line to be scanned is determined.
  • the display panel includes L rows of gate lines, L is a positive integer, and the specific value of L depends on the resolution of the display panel. For example, for a vertical screen extended width display array (English full name: Wide Extended Graphics Array, abbreviation: WXGA) panel with a resolution of 800 ⁇ 1280, L is equal to 1280, indicating that the display panel has 1280 rows of grid lines.
  • WXGA Wide Extended Graphics Array
  • the display panel also includes a GOA circuit for providing a gate drive signal for the L row gate lines.
  • the GOA circuit scans the L-row raster lines progressively by the gate drive signal. In one scan cycle, each row in the L row gate line needs to be scanned once.
  • the gate line to be scanned may be any one of the L row gate lines. Therefore, the position of the gate line to be scanned is constantly changing during the scanning process.
  • step 202 a bias current value is determined according to the position of the gate line to be scanned.
  • the bias current in the embodiment of the present disclosure refers to the bias current of the driving signal of the GOA unit.
  • the GOA circuit can include cascaded GOA units with different gate lines on the display panel corresponding to different GOA units.
  • the driving signal of the GOA unit is used to drive the GOA unit to output a gate driving signal to gate and/or scan the gate line to be scanned.
  • the bias current value is related to the position of the gate line to be scanned.
  • the magnitudes of the bias currents corresponding to different gate lines may be unequal or equal.
  • the magnitude of the bias current value remains constant for a certain period of time, during which the gate lines scanned are equal in magnitude to the bias current values.
  • the bias current value jumps once after a certain period of time, then the gate line scanned after the bias current value jumps, and the bias current corresponding to the gate line scanned before the bias current value jumps Values are not equal in size.
  • step 203 a driving signal of the GOA unit corresponding to the gate line to be scanned is generated according to the bias current value and the clock signal of the display panel.
  • the drive signal of the GOA unit is synchronized with the clock signal of the display panel during one scan period.
  • the GOA unit corresponding to the scan gate line After determining the bias current value according to the position of the gate line to be scanned, generating a driving signal of the GOA unit corresponding to the gate line to be scanned according to the bias current value, and synchronously outputting the driving signal of the GOA unit and the clock signal of the display panel,
  • the GOA unit corresponding to the scan gate line outputs a gate drive signal to strobe the gate line to be scanned, and scans the scan gate line.
  • the driving method of the display panel determines the bias current value according to the position of the gate line to be scanned by determining the position of the gate line to be scanned, and further according to the bias current value and the clock signal of the display panel A driving signal of the GOA unit corresponding to the gate line to be scanned is generated to complete scanning of the gate line to be scanned.
  • the same bias current value is arranged for the L-row gate lines. In fact, when the gate lines are not in the same position, the required bias current values are not exactly the same. In order to ensure that the display panel is normally displayed when scanning all the gate lines, the bias current value that is generally configured is often obtained by taking the maximum value of the bias current values actually required for each gate line.
  • the bias current value is determined according to the position of the gate line to be scanned, and the magnitude of the bias current value only needs to ensure that the display panel is normally displayed when scanning the scan gate line to be scanned, thereby significantly reducing the display panel. Power consumption.
  • FIG. 3 is a schematic flow chart showing a driving method of a display panel in another embodiment of the present disclosure.
  • the driving method of the display panel includes the following steps:
  • step 301 the position of the gate line to be scanned is determined according to the row number of the gate line to be scanned.
  • the gate line to be scanned may be any one of the L row gate lines. Therefore, the position of the gate line to be scanned is constantly changing during the scanning process.
  • the position of the gate line to be scanned is the row number of the gate line to be scanned. For example, a vertical screen WXGA panel with a resolution of 800 ⁇ 1280, the display panel includes 1280 rows of gate lines, and the row numbers are: G1, G2, ... G1280, wherein the gate lines with larger distances between the source drive circuits correspond to The larger the line number.
  • the gate lines are scanned in a scan cycle according to the row number from small to large, and the frame start signal (English full name: Start Vertical, abbreviated: STV) appears to be scanned.
  • the line number of the gate line is 1.
  • the line number of the gate line to be scanned is increased by one every time a Clock Pulse Vertical (CPV) cycle is passed.
  • CPV Clock Pulse Vertical
  • step 302 the bias current value is determined according to the row number of the gate line to be scanned.
  • the bias current value is related to the position of the gate line to be scanned, and the position of each gate line to be scanned corresponds to a bias current value.
  • This embodiment combines two specific application scenarios, and the specific correspondence between the position of the scanning gate line and the bias current value and the process of determining the bias current value are illustrated.
  • the bias current configuration list is searched according to the row number of the gate line to be scanned, and the bias current value corresponding to the row number of the gate line to be scanned is determined.
  • each row number of the L row gate line corresponds to a bias current value.
  • the magnitude of the bias current value can be configured as 16 blocks, and each block is represented by a hexadecimal code between 00h and 0Fh in order of small to large.
  • the actually configured bias current value may include some or all of the above 16 gears.
  • the bias current value corresponding to each row number is linear with the distance between the gate line and the source driving circuit of the row number.
  • the linear relationship referred to here includes a one-time functional relationship.
  • the slope of the primary function can be zero.
  • Fig. 4 is a view showing a relationship between a bias current value corresponding to a gate line and a line number.
  • the bias current value remains unchanged for a period of one scan period, and jumps once after a predetermined length of time has elapsed.
  • the display panel includes L row gate lines, and the row numbers are: G1, G2, ... GL.
  • the gate line having a larger distance from the source driving circuit has a larger row number.
  • bias current value is required to ensure that the display panel is normally displayed, so that for any two adjacent gate lines Gn and Gn+1, Gn+1 corresponds to
  • the bias current value is greater than or equal to the bias current value corresponding to Gn.
  • the value of the bias current is actually divided into three files, namely I1, I2 and I3, where I1, I2 and I3 are values between 00h-0Fh, representing a value of the bias current. And I1 ⁇ I2 ⁇ I3.
  • the L-row gate line includes at least one set of consecutive preset line numbers corresponding to the same bias current value, wherein the preset line number is less than L.
  • the L row gate lines are divided into a number of groups, wherein each group includes consecutive preset line numbers of gate lines, and the number of consecutive gate lines included in different groups may be the same or different. It can be understood that if the preset line number is 1, the gate lines of consecutive preset line numbers refer only to one row of gate lines.
  • Table 1 below is an example of a list of bias current configurations.
  • the value of L is 1280, and the 1280-row raster line is divided into 6 groups. 6 groups correspond to 6 files of bias current, respectively 00h, 03h, 06h, 09h, 0Ch and 0Fh.
  • the larger the packet with the larger row number the larger the bias current value.
  • the phase delay caused by the panel load on the driving signal of the GOA unit increases, and the bias current value is increased stepwise.
  • the phase delay of the driving signals of different GOA units can be controlled within a certain range.
  • the L-row raster lines can be divided into more or less packets, for example, only two packets, or 16 packets, and the maximum number of packets is the number of bias current configurable values.
  • the bias current configuration list is set, and in one scan period, the row number of the gate line to be scanned is determined, and the bias current configuration list is searched according to the row number. A bias current value corresponding to the row number of the gate line to be scanned is determined.
  • the bias current value corresponding to the gate line to be scanned is calculated by using a preset formula.
  • the preset formula is a function of the bias current I with respect to the row number Gn of the gate line to be scanned.
  • the corresponding bias current value can be determined according to the row number thereof.
  • step 303 a driving signal of the GOA unit corresponding to the gate line to be scanned is generated according to the bias current value and the clock signal of the display panel.
  • the position of the gate line to be scanned changes synchronously with the clock signal of the display panel, and the driving signal of the GOA unit is also synchronized with the clock signal of the display panel.
  • the scanning order of the L gate lines may be from small to large, from large to small, or from the middle to the two sides, etc., this implementation For example, the scanning sequence according to the line number from small to large is taken as an example for description.
  • a driving signal of the GOA unit corresponding to the gate line to be scanned is generated according to the bias current value, and the driving signal of the GOA unit is synchronously output with the clock signal of the display panel.
  • FIG. 5 is a diagram showing changes in the bias electric value of the driving signal of the GOA unit as a function of the clock signal of the display panel.
  • Schematic diagram of the change in CLK In Fig. 5, the abscissa is time, the figure is denoted by t, and the ordinate is bias current, which is denoted by i. In Fig. 5, the time interval between two STVs is one scanning period T.
  • the bias current value jumps once after a certain period of time, and gradually increases from the minimum value 00h to the maximum value 0Fh.
  • the time interval between the two hops may be the same or different, and the embodiment of the present disclosure does not limit this.
  • the driving signal of the GOA unit outputted in synchronization with the clock signal of the display panel drives the GOA unit corresponding to the scanning gate line to output a gate driving signal to strobe the gate line to be scanned and scan the scanning gate line.
  • the drive signal of the GOA unit includes at least one clock drive signal.
  • the driving signal of the GOA unit further includes an STV.
  • the driving method of the display panel determines the bias current value according to the position of the gate line to be scanned by determining the position of the gate line to be scanned, and further generates the bias current value according to the bias current value and the clock signal of the display panel.
  • the same bias current value is arranged for the L-row gate lines. In fact, when the position of the gate line is different, the required bias current value is not exactly the same.
  • the bias current value that is generally configured is It is often obtained by taking the maximum value of the bias current values actually required for each gate line. For a gate line that requires only a small bias current to ensure normal display, if the configured bias current value is too large, power is wasted.
  • the bias current value is determined according to the position of the gate line to be scanned, and the magnitude of the bias current value only needs to ensure that the display panel is normally displayed when scanning the scan gate line to be scanned, thereby reducing the work of the display panel. Consumption.
  • FIG. 6 is a schematic structural diagram of a driving module of a display panel provided in another embodiment of the present disclosure.
  • the driving module of the display panel as shown in FIG. 6 can be used to execute the driving method of the display panel described in the above embodiments.
  • the driving module 60 includes:
  • the timing control unit 601 is configured to determine the position of the gate line to be scanned.
  • the bias current control unit 602 is configured to determine a bias current value according to a position of the gate line to be scanned.
  • the level converting unit 603 is configured to generate a driving signal of the GOA unit corresponding to the gate line to be scanned according to the bias current value and the clock signal of the display panel.
  • driver module processor 601 of the display panel may be a central processing unit (CPU) or an application specific integrated circuit (ASIC).
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • one or more integrated circuits configured to implement the embodiments of the present disclosure, and the functions described in the embodiments of the present disclosure may be implemented by a combination of hardware and software.
  • the driving module of the display panel determines the bias current value according to the position of the gate line to be scanned, and further generates the driving of the GOA unit corresponding to the gate line to be scanned according to the bias current and the clock signal of the display panel.
  • the signal is used to complete the scanning of the gate line to be scanned, and the power consumption of the display panel is reduced compared to the prior art driving method of configuring the same bias current for the L row gate line.
  • the position of the gate line to be scanned is the row number of the gate line to be scanned.
  • the bias current control unit 602 can be used, for example, to look up the bias current configuration list according to the row number of the gate line to be scanned, and determine a bias current value corresponding to the row number of the gate line to be scanned.
  • each row number of the L row gate lines corresponds to a bias current value.
  • the bias current value corresponding to each row number is linear with the distance between the gate line of the row number and the source driving circuit.
  • the L-row gate line includes at least one set of consecutive preset line number gate lines corresponding to the same bias current value, wherein the preset line number is less than L.
  • the bias current control unit 602 can also be used, for example, to calculate a bias current value corresponding to the position of the gate line to be scanned by a preset formula.
  • the driving module of the display panel determines the bias current value according to the position of the gate line to be scanned by determining the position of the gate line to be scanned, and further generates a standby signal according to the bias current and the clock signal of the display panel.
  • the driving signal of the GOA unit corresponding to the gate line is scanned to complete the scanning of the gate line to be scanned.
  • the same bias current value is arranged for the L-row gate lines. In fact, when the gate lines are in different positions, the required bias current values are not exactly the same. To ensure that the display panel is normally displayed when scanning all the gate lines, the bias current is generally configured.
  • the value is often obtained by taking the maximum value of the bias current value actually required for each gate line, and for the gate line which only needs a small bias current value to ensure normal display, if the configured bias current value is too large , causing power wastage.
  • the bias current value is determined according to the position of the gate line to be scanned, and the magnitude of the bias current value only needs to ensure that the display panel is normally displayed when scanning the scan gate line to be scanned, thereby significantly reducing the display panel. Power consumption.
  • Embodiments of the present disclosure also provide a display panel including the drive module as described above. Further, an embodiment of the present disclosure provides a display device including the above display panel, which may be an electronic paper, a mobile phone, a television, a digital photo frame, or the like.
  • the corresponding bias current can be determined according to the position of the gate line to be scanned, and the driving signal of the GOA unit corresponding to the gate line to be scanned is generated according to the bias current and the clock signal of the display panel, and the driving signal of the GOA unit and the display panel are The clock signal is synchronized to output, which reduces power consumption compared to the prior art method of configuring the same bias current for all gate lines.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include a RAM (Random Access Memory), a ROM (Read Only Memory), and an EEPROM (Electrically Erasable Programmable Read Only Memory).
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • other optical disk storage disk storage media or other magnetic storage device, or can be used to carry or store a desired program in the form of an instruction or data structure.
  • the disc and the disc include a CD (Compact Disc), a laser disc, a compact disc, a DVD disc (Digital Versatile Disc), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, The disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

一种显示面板的驱动方法及驱动模块、显示面板及显示装置,能够降低显示面板的功耗。该显示面板的驱动方法包括下列步骤:确定待扫描栅线的位置(201);根据所述待扫描栅线的位置确定偏置电流值(202);根据所述偏置电流值及所述显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号(203)。该显示面板的驱动方法及驱动模块、显示面板及显示装置根据待扫描栅线的位置确定偏置电流值,偏置电流值的大小只需保证在对待扫描栅线进行扫描时显示面板正常显示即可,因而降低了显示面板的功耗。

Description

显示面板的驱动方法及驱动模块、显示面板及显示装置 技术领域
本公开涉及一种显示面板的驱动方法及驱动模块、显示面板及显示装置。
背景技术
栅极驱动集成于阵列基板上(英文全称:Gate driver On Array,英文缩写:GOA)技术是指将栅极驱动电路集成在显示面板的阵列基板上。GOA电路包括级联的GOA单元,分别对应不同的栅线。GOA单元的驱动信号,用于驱动GOA单元选通和/或扫描对应栅线。
受面板负载(英文:Panel Load)等因素的影响,GOA单元的驱动信号传输到GOA单元时往往会有一定的相位延迟。增大GOA单元的驱动信号的偏置电流,可以减小相位延迟。因此,通过对偏置电流的大小进行调节,可以将相位延迟控制在阈值以下。
发明人经过实验研究发现,在对接近源极驱动电路的栅线进行扫描时,由于相位延迟较小,只需较小的偏置电流就能够保证显示面板的正常显示,如果按照最大相位延迟统一设定偏置电流会导致功耗浪费。
发明内容
本公开的实施例提供一种显示面板的驱动方法及驱动模块、显示面板及显示装置,能够降低显示面板的功耗。
在本公开实施例的一个方面,提供一种显示面板的驱动方法,所述显示面板包括GOA电路和L行栅线,所述GOA电路向所述L行栅线提供栅极驱动信号,所述L为正整数,所述方法包括:
确定待扫描栅线的位置;
根据所述待扫描栅线的位置确定偏置电流值;
根据所述偏置电流值及所述显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号。
可选地,所述待扫描栅线的位置为所述待扫描栅线的行号;
根据所述待扫描栅线的行号查找偏置电流配置列表,确定与所述待扫描栅线的行号对应的偏置电流值。
可选地,所述偏置电流配置列表中,所述L行栅线的每一个行号对应一个偏置电流值。
可选地,所述偏置电流配置列表中,每个所述行号对应的偏置电流值与所述行号的栅线和源极驱动电路之间的距离呈线性关系。
可选地,所述L行栅线中包括至少一组连续的预设行号的栅线对应同一偏置电流值,其中预设行号小于L。
可选地,所述根据所述待扫描栅线的位置确定偏置电流值,包括:
通过预设公式,计算得到与所述待扫描栅线的位置所对应的偏置电流值。
可选地,所述GOA单元的驱动信号包括至少一个时钟驱动信号;当所述待扫描栅线对应的所述GOA单元为第一级GOA单元时,所述GOA单元的驱动信号还包括帧起始信号STV。
在本公开实施例的另一方面,提供一种显示面板的驱动模块,所述显示面板包括GOA电路和L行栅线,所述GOA电路向所述L行栅线提供栅极驱动信号,所述L为正整数,其中,所述驱动模块包括:
时序控制单元,用于确定待扫描栅线的位置;
偏置电流控制单元,用于根据所述待扫描栅线的位置确定偏置电流值;
电平转换单元,用于根据所述偏置电流值及所述显示面板的时钟信号生成所述待扫描栅线对应的GOA单元的驱动信号。
可选地,所述待扫描栅线的位置为所述待扫描栅线的行号;
所述偏置电流控制单元可以用于根据所述待扫描栅线的行号查找偏置电流配置列表,确定与所述待扫描栅线的行号对应的偏置电流值。
可选地,所述偏置电流配置列表中,所述L行栅线的每一个行号对应一个偏置电流值。
可选地,所述偏置电流配置列表中,每个所述行号对应的偏置电流值与所述行号的栅线和源极驱动电路的距离呈线性关系。
可选地,所述L行栅线包括至少一组连续的预设行号的栅线对应同一偏置电流值,其中所述预设行号小于L。
可选地,所述偏置电流控制单元可以用于通过预设公式,计算得到与所述 待扫描栅线的位置所对应的偏置电流值。
在本公开实施例的另一方面,提供一种显示面板,包括上述驱动模块。
在本公开实施例的另一方面,提供一种显示装置,包括上述显示面板。
本公开的实施例所提供的显示面板的驱动方法,通过确定待扫描栅线的位置,根据待扫描栅线的位置确定偏置电流值,并进一步根据偏置电流及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号,以完成对待扫描栅线的扫描。本公开的实施例中根据待扫描栅线的位置确定偏置电流值,偏置电流值的大小只需保证在对待扫描栅线进行扫描时显示面板正常显示即可,因而明显降低了显示面板的功耗。
附图说明
图1为面板负载对GOA单元的驱动信号所造成的相位延迟的示意图;
图2为本公开的一个实施例中提供的显示面板的驱动方法流程示意图;
图3为本公开的另一个实施例中提供的显示面板的驱动方法流程示意图;
图4为栅线对应的偏置电流值与行号之间变化关系的示意图;
图5为GOA单元的驱动信号的偏置电值随着显示面板的时钟信号的变化示意图;
图6为本公开的另一个实施例中提供的显示面板的驱动模块的结构示意图。
具体实施方式
下面将结合附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1示出面板负载对GOA单元的驱动信号所造成的相位延迟的示意图。参照图1所示,在对不同栅线进行扫描时,面板负载对GOA单元的驱动信号所造成的相位延迟并不相同。图1中Ga、Gb和Gc三条栅线对应的GOA单元的驱动信号,Ga、Gb和Gc与源极驱动电路的距离依次增大,各自对应的GOA单元的驱动信号相对于源极驱动电路输出的数据信号Data的相位延迟也依次增大。 即在对接近源极驱动电路的栅线进行扫描时,相位延迟较小,在对远离源极驱动电路的栅线进行扫描时,相位延迟较大。一般情况下,为不同GOA单元的驱动信号设定统一的偏置电流,偏置电流值的取值需要保证最大相位延迟小于阈值。
图2示出了在本公开的一个实施例中提供的一种显示面板的驱动方法的流程示意图。参照图2所示,该显示面板的驱动方法包括以下步骤:
在步骤201中,确定待扫描栅线的位置。
显示面板包括L行栅线,L为正整数,L的具体取值视显示面板分辨率而定。例如,对于分辨率为800×1280的竖屏扩展宽度显示阵列(英文全称:Wide Extended Graphics Array,缩写:WXGA)面板,L等于1280,表示该显示面板有1280行栅线。
显示面板还包括GOA电路,用于为L行栅线提供栅极驱动信号。当显示面板正常工作时,GOA电路通过栅极驱动信号对L行栅线进行逐行扫描。在一个扫描周期中,需要对L行栅线中每行均进行一次扫描。在扫描过程中的任一时刻,待扫描栅线可能是L行栅线中的任意一行。因此,待扫描栅线的位置在扫描过程中不断变化。
在步骤202中,根据待扫描栅线的位置确定偏置电流值。
本公开实施例中的偏置电流,是指GOA单元的驱动信号的偏置电流。
示例性地,GOA电路可以包括级联的GOA单元,显示面板上不同的栅线对应不同的GOA单元。GOA单元的驱动信号,用于驱动GOA单元输出栅极驱动信号,以选通和/或扫描待扫描栅线。
偏置电流值与待扫描栅线的位置相关。在对显示面板中的栅线进行扫描时,针对每行栅线,均有一个偏置电流值与之对应。不同栅线对应的偏置电流值大小可以不等,也可以相等。例如,在一个扫描周期中,偏置电流值的大小在一定时间内维持不变,在这段时间内所扫描的栅线,对应偏置电流值的大小相等。进一步地,偏置电流值经过一定时间后就跳变一次,那么在偏置电流值跳变后所扫描的栅线,与偏置电流值跳变前所扫描的栅线,对应的偏置电流值大小不相等。
在步骤203中,根据偏置电流值及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号。
在一个扫描周期内,GOA单元的驱动信号与显示面板的时钟信号保持同步。
在根据待扫描栅线的位置确定偏置电流值后,根据偏置电流值生成待扫描栅线对应的GOA单元的驱动信号,并将该GOA单元的驱动信号与显示面板的时钟信号同步输出,驱动扫描栅线对应的GOA单元输出栅极驱动信号,以选通待扫描栅线,对待扫描栅线进行扫描。
本公开的实施例中所提供的显示面板的驱动方法,通过确定待扫描栅线的位置,根据待扫描栅线的位置确定偏置电流值,并进一步根据偏置电流值及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号,以完成对待扫描栅线的扫描。在通常的显示面板驱动方法中,对L行栅线配置相同的偏置电流值。事实上,栅线位置不同时,其所需的偏置电流值大小并不完全相同。为保证在对所有栅线进行扫描时显示面板均正常显示,一般情况下所配置的偏置电流值,往往是从各栅线实际需要的偏置电流值中取最大值所得。而针对只需要较小偏置电流值即可保证正常显示的栅线,如果所配置的偏置电流值偏大,会造成功率浪费。本公开的实施例中根据待扫描栅线的位置确定偏置电流值,偏置电流值的大小只需保证在对待扫描栅线进行扫描时显示面板正常显示即可,因而明显降低了显示面板的功耗。
图3示出了本公开的另一实施例中提供一种显示面板的驱动方法的流程示意图。参照图3所示,该显示面板的驱动方法包括以下步骤:
在步骤301中,根据待扫描栅线的行号确定待扫描栅线位置。
在一个扫描周期中,需要对L行栅线均进行一次扫描。在扫描过程中的任一时刻,待扫描栅线可能是L行栅线中的任意一行。因此,待扫描栅线的位置在扫描过程中不断变化。可选地,待扫描栅线的位置为待扫描栅线的行号。例如,分辨率为800×1280的竖屏WXGA面板,显示面板包括1280行栅线,行号为:G1,G2……G1280,其中源极驱动电路之间的距离越大的栅线,对应的行号越大。
在一种具体的应用场景中,一个扫描周期中按照行号由小到大的顺序对栅线进行扫描,则当帧起始信号(英文全称:Start Vertical,缩写:STV)出现时,待扫描栅线的行号为1。进一步地,每经过一个栅移动信号(Clock Pulse Vertical,CPV)周期,待扫描栅线的行号增加1。由此,在扫描过程中通过对 行号的计数,可以确定待扫描栅线的位置。
在步骤302中,根据待扫描栅线的行号确定偏置电流值。
偏置电流值与待扫描栅线的位置相关,每个待扫描栅线的位置对应一个偏置电流值。本实施例结合两种具体的应用场景,对待扫描栅线的位置与偏置电流值的具体对应关系、确定偏置电流值的过程进行举例说明。
在第一种应用场景中,根据待扫描栅线的行号查找偏置电流配置列表,确定与待扫描栅线的行号对应的偏置电流值。其中,偏置电流配置列表中,L行栅线的每一个行号对应一个偏置电流值。
例如,偏置电流值的大小可配置为16个档,按照由小到大的顺序,每一档用一个00h-0Fh之间的16进制代码表示。在偏置电流配置列表中,实际配置的偏置电流值,可以包括以上16个档的部分或者全部。
可选地,偏置电流配置列表中,每个行号对应的偏置电流值与行号的栅线和源极驱动电路之间的距离呈线性关系。此处所指的线性关系,包括一次函数关系。其中,一次函数的斜率可为0。
图4示出了栅线对应的偏置电流值与行号之间变化关系的示意图。结合图4所示,偏置电流值在一个扫描周期的一段时间内保持不变,在经过预设时间长度后跳变一次。示例性地,显示面板包括L行栅线,行号为:G1,G2……GL。且L行栅线中,与源极驱动电路之间的距离越大的栅线,对应的行号越大。对于和源极驱动电路之间的距离较大的栅线,需要较大偏置电流值以保证显示面板正常显示,因此针对任意两条相邻的栅线Gn和Gn+1,Gn+1对应的偏置电流值大于等于Gn对应的偏置电流值。图3中,偏置电流的取值实际分为3个档,分别为I1、I2和I3,其中I1、I2和I3均为00h-0Fh之间的值,代表偏置电流的一个取值,且I1<I2<I3。
可替换地,L行栅线包括至少一组连续的预设行号的栅线对应同一偏置电流值,其中预设行号小于L。示例性地,偏置电流配置列表中,将L行栅线划分为若干分组,其中每组包括连续的预设行号的栅线,不同分组所包括的连续栅线的数量可以相同或者不同。可以理解的是,如果预设行号为1,则连续的预设行号的栅线仅指1行栅线。
下表一为偏置电流配置列表的一个示例。L的取值为1280,1280行栅线划分为6个分组。6个分组对应偏置电流的6个档,分别为00h、03h、06h、 09h、0Ch和0Fh。行号较大的分组对应的偏置电流值越大。随着待扫描栅线与源极驱动电路之间的距离不断增大,由于面板负载对GOA单元的驱动信号所造成的相位延迟增大,通过台阶式地增大偏置电流值,在对不同栅线进行扫描时,不同GOA单元的驱动信号的相位延迟均可以控制在一定范围内。
表一
行号 偏置电流值
(G1,……G239) 00h
(G240,……G479) 03h
(G480,……G719) 06h
(G720,……G959) 09h
(G960,……G1279) 0Ch
(G1280) 0Fh
当然,L行栅线可以划分为更多或者更少分组,例如只包括两个分组,或者包括16个分组,分组数量的最大值为偏置电流可配置取值的数量。
在第一种应用场景中,通过对显示面板进行调试,设定偏置电流配置列表,在一个扫描周期中,通过确定待扫描栅线的行号,并根据行号查找偏置电流配置列表以确定与待扫描栅线的行号对应的偏置电流值。在第二种应用场景中,通过预设公式,计算得到待扫描栅线所对应的偏置电流值。
例如,预设公式为偏置电流I关于待扫描栅线的行号Gn的函数。可选地,预设公式可以为i=k*[Gn/M]+I,其中,M为预设行号,k、i均为预设值,[N/M]为取整运算。具体地,以k为3、M为240、I为00h为例,当待扫描栅线的行号Gn大于等于1且小于240时,k*[Gn/M]=00h,此时偏置电流i为00h。当待扫描栅线的行号Gn等于240时,k*[Gn/M]=03h,此时偏置电流i为03h。进一步地,对显示面板所包括的每一条栅线,均可根据其行号确定相应的偏置电流值。
在步骤303中,根据偏置电流值及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号。
在一个扫描周期中,待扫描栅线的位置随着显示面板的时钟信号同步变化,GOA单元的驱动信号也与显示面板的时钟信号保持同步。对L条栅线的扫描顺序可以是按照行号从小到大、从大到小,或者从中间向两边等等,本实施 例仅以按照行号由小到大的扫描顺序为例进行说明。
在根据待扫描栅线的位置确定偏置电流值后,根据偏置电流值生成待扫描栅线对应的GOA单元的驱动信号,并将该GOA单元的驱动信号与显示面板的时钟信号同步输出。
图5示出了GOA单元的驱动信号的偏置电值随着显示面板的时钟信号的变化示意图。结合步骤302中的第二种应用场景,图5示出了预设公式为i=3*[Gn/240]+00h时,GOA单元的驱动信号的偏置电流值随着显示面板的时钟信号CLK的变化示意图。图5中,横坐标为时间,图中用t表示,纵坐标为偏置电流,图中用i表示。图5中以两个STV之间的时间间隔为一个扫描周期T。在一个扫描周期中,随着显示面板的时钟信号的变化,偏置电流值经过一定时间就跳变一次,由最小值00h逐渐增大至最大值0Fh。当然每两次跳变之间的时间间隔可以相同或者不同,本公开的实施例对此不做限定。
与显示面板的时钟信号同步输出的GOA单元的驱动信号,驱动扫描栅线对应的GOA单元输出栅极驱动信号,以选通待扫描栅线,对待扫描栅线进行扫描。通常,GOA单元的驱动信号包括至少一个时钟驱动信号。进一步地,当待扫描栅线对应的GOA单元为第一级GOA单元时,GOA单元的驱动信号还包括STV。
本公开的实施例所提供的显示面板的驱动方法,通过确定待扫描栅线的位置,根据待扫描栅线的位置确定偏置电流值,并进一步根据偏置电流值及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号,以完成对待扫描栅线的扫描。在通常的显示面板驱动方法中,对L行栅线配置相同的偏置电流值。事实上,栅线位置不同时,其所需的偏置电流值大小并不完全相同,为保证在对所有栅线进行扫描时显示面板均正常显示,一般情况下所配置的偏置电流值,往往是从各栅线实际需要的偏置电流值中取最大值所得。而针对只需要较小偏置电流即可保证正常显示的栅线,如果所配置的偏置电流值偏大,造成功率浪费。本公开的实施例中根据待扫描栅线的位置确定偏置电流值,偏置电流值的大小只需保证在对待扫描栅线进行扫描时显示面板正常显示即可,因而降低了显示面板的功耗。
图6示出了本公开的另一个实施例中提供的显示面板的驱动模块的结构示意图。如图6所示的显示面板的驱动模块可以用于执行上述实施例中所描述的显示面板的驱动方法。参照图6所示,驱动模块60包括:
时序控制单元601,用于确定待扫描栅线的位置。
偏置电流控制单元602,用于根据待扫描栅线的位置确定偏置电流值。
电平转换单元603,用于根据偏置电流值及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号。
本领域内技术人员可以理解的是,显示面板的驱动模块处理器601可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本公开实施例的一个或多个集成电路,并可以通过硬件和软件的组合来实现本公开的实施例中所描述的功能。
本公开的实施例所提供的显示面板的驱动模块,根据待扫描栅线的位置确定偏置电流值,并进一步根据偏置电流及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号,以完成对待扫描栅线的扫描,相比现有技术中对L行栅线配置相同偏置电流的驱动方法,降低了显示面板的功耗。
可选地,待扫描栅线的位置为待扫描栅线的行号。
偏置电流控制单元602可以例如用于根据待扫描栅线的行号查找偏置电流配置列表,确定与待扫描栅线的行号对应的偏置电流值。
可选地,偏置电流配置列表中,L行栅线的每一个行号对应一个偏置电流值。
可选地,偏置电流配置列表中,每个行号对应的偏置电流值与行号的栅线与源极驱动电路的距离呈线性关系。
可选地,L行栅线包括至少一组连续的预设行号的栅线对应同一偏置电流值,其中预设行号小于L。
可选地,偏置电流控制单元602还可以例如用于通过预设公式,计算得到与待扫描栅线的位置所对应的偏置电流值。
本公开的实施例所提供的显示面板的驱动模块,通过确定待扫描栅线的位置,根据待扫描栅线的位置确定偏置电流值,并进一步根据偏置电流及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号,以完成对待扫描栅线的扫描。在通常的显示面板驱动方法中,对L行栅线配置相同的偏置电流值。事实上,栅线位置不同时,其所需的偏置电流值大小并不完全相同,为保证在对所有栅线进行扫描时显示面板均正常显示,一般情况下所配置的偏置电流 值,往往是从各栅线实际需要的偏置电流值中取最大值所得,而针对只需要较小偏置电流值即可保证正常显示的栅线,如果所配置的偏置电流值偏大,造成功率浪费。本公开的实施例中根据待扫描栅线的位置确定偏置电流值,偏置电流值的大小只需保证在对待扫描栅线进行扫描时显示面板正常显示即可,因而明显降低了显示面板的功耗。
本公开的实施例还提供一种显示面板,包括如上所述的驱动模块。进一步地,本公开的实施例提供一种显示装置,包括上述的显示面板,该显示装置可以为电子纸、手机、电视、数码相框等等。能够根据待扫描栅线的位置确定相应的偏置电流,根据偏置电流及显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号,并将该GOA单元的驱动信号与显示面板的时钟信号同步输出,相比现有技术中为所有栅线配置相同偏置电流的方式,降低了功耗。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本公开可以用硬件实现,或固件实现,或它们的组合方式来实现。例如,当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM(Random Access Memory,随机存储器)、ROM(Read Only Memory,只读内存)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,即只读光盘)或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。如本公开所使用的,盘和碟包括CD(Compact Disc,压缩光碟)、激光碟、光碟、DVD碟(Digital Versatile Disc,数字通用光)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应 以所述权利要求的保护范围为准。
本申请要求于2015年5月29日递交的中国专利申请第201510292713.4号的优先权,在此全文引用该中国专利申请公开的内容作为本申请的一部分。

Claims (15)

  1. 一种显示面板的驱动方法,所述显示面板包括GOA电路和L行栅线,所述GOA电路向所述L行栅线提供栅极驱动信号,所述L为正整数,所述方法包括:
    确定待扫描栅线的位置;
    根据所述待扫描栅线的位置确定偏置电流值;
    根据所述偏置电流值及所述显示面板的时钟信号生成待扫描栅线对应的GOA单元的驱动信号。
  2. 根据权利要求1所述的方法,其中,所述待扫描栅线的位置为所述待扫描栅线的行号;
    根据所述待扫描栅线的行号查找偏置电流配置列表,确定与所述待扫描栅线的行号对应的偏置电流值。
  3. 根据权利要求2所述的方法,其中,
    所述偏置电流配置列表中,所述L行栅线的每一个行号对应一个偏置电流值。
  4. 根据权利要求3所述的方法,其中,
    所述偏置电流配置列表中,每个所述行号对应的偏置电流值与所述行号的栅线和源极驱动电路之间的距离呈线性关系。
  5. 根据权利要求4所述的方法,其中,
    所述L行栅线中包括至少一组连续的预设行号的栅线对应同一偏置电流值,其中预设行号小于L。
  6. 根据权利要求1所述的方法,其中,所述根据所述待扫描栅线的位置确定偏置电流值,包括:
    通过预设公式,计算得到与所述待扫描栅线的位置所对应的偏置电流值。
  7. 根据权利要求1所述的方法,其中,所述GOA单元的驱动信号包括至少一个时钟驱动信号;当所述待扫描栅线对应的所述GOA单元为第一级GOA单元时,所述GOA单元的驱动信号还包括帧起始信号STV。
  8. 一种显示面板的驱动模块,所述显示面板包括GOA电路和L行栅线,所述GOA电路向所述L行栅线提供栅极驱动信号,所述L为正整数,所述驱动 模块包括:
    时序控制单元,用于确定待扫描栅线的位置;
    偏置电流控制单元,用于根据所述待扫描栅线的位置确定偏置电流值;
    电平转换单元,用于根据所述偏置电流值及所述显示面板的时钟信号生成所述待扫描栅线对应的GOA单元的驱动信号。
  9. 根据权利要求8所述的驱动模块,其中,
    所述待扫描栅线的位置为所述待扫描栅线的行号;
    所述偏置电流控制单元根据所述待扫描栅线的行号查找偏置电流配置列表,确定与所述待扫描栅线的行号对应的偏置电流值。
  10. 根据权利要求9所述的驱动模块,其中,
    所述偏置电流配置列表中,所述L行栅线的每一个行号对应一个偏置电流值。
  11. 根据权利要求10所述的驱动模块,其中,
    所述偏置电流配置列表中,每个所述行号对应的偏置电流值与所述行号的栅线和源极驱动电路的距离呈线性关系。
  12. 根据权利要求8所述的驱动模块,其中,
    所述L行栅线包括至少一组连续的预设行号的栅线对应同一偏置电流值,其中所述预设行号小于L。
  13. 根据权利要求8所述的驱动模块,其中,
    所述偏置电流控制单元通过预设公式,计算得到与所述待扫描栅线的位置所对应的偏置电流值。
  14. 一种显示面板,包括如权利要求8-13任一项所述的驱动模块。
  15. 一种显示装置,包括如权利要求14所述的显示面板。
PCT/CN2015/094428 2015-05-29 2015-11-12 显示面板的驱动方法及驱动模块、显示面板及显示装置 WO2016192313A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/126,892 US10109257B2 (en) 2015-05-29 2015-11-12 Driving method of display panel and driving module, display panel and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510292713.4A CN104851384B (zh) 2015-05-29 2015-05-29 显示面板的驱动方法及驱动模块、显示面板及显示装置
CN201510292713.4 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016192313A1 true WO2016192313A1 (zh) 2016-12-08

Family

ID=53850996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094428 WO2016192313A1 (zh) 2015-05-29 2015-11-12 显示面板的驱动方法及驱动模块、显示面板及显示装置

Country Status (3)

Country Link
US (1) US10109257B2 (zh)
CN (1) CN104851384B (zh)
WO (1) WO2016192313A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851384B (zh) 2015-05-29 2018-04-20 合肥京东方光电科技有限公司 显示面板的驱动方法及驱动模块、显示面板及显示装置
CN105118452A (zh) * 2015-08-20 2015-12-02 京东方科技集团股份有限公司 栅极驱动方法和结构
CN110517617A (zh) * 2018-05-22 2019-11-29 上海和辉光电有限公司 一种像素阵列控制方法及显示面板
CN109166516A (zh) * 2018-11-12 2019-01-08 京东方科技集团股份有限公司 驱动单元、显示面板及其驱动方法和显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160753A1 (en) * 2002-02-11 2003-08-28 Mccartney Richard I. Display line drivers and method for signal propagation delay compensation
US20100128019A1 (en) * 2008-11-25 2010-05-27 Kabushiki Kaisha Toshiba Liquid crystal display device
CN102982775A (zh) * 2012-10-31 2013-03-20 合肥京东方光电科技有限公司 驱动电压提供装置、方法及显示装置
CN103426409A (zh) * 2012-05-15 2013-12-04 联咏科技股份有限公司 显示驱动装置及显示面板的驱动方法
CN104036740A (zh) * 2014-05-16 2014-09-10 京东方科技集团股份有限公司 栅极驱动电路的控制电路、工作方法和显示装置
CN104851384A (zh) * 2015-05-29 2015-08-19 合肥京东方光电科技有限公司 显示面板的驱动方法及驱动模块、显示面板及显示装置
CN105118452A (zh) * 2015-08-20 2015-12-02 京东方科技集团股份有限公司 栅极驱动方法和结构

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674919B1 (ko) * 2004-11-06 2007-01-26 삼성전자주식회사 팬-아웃 라인 저항에 무관하게 개선된 화질을 제공하는lcd용 게이트 구동 집적 회로
US7830351B2 (en) * 2005-10-11 2010-11-09 Au Optronics Corporation LCD gate driver circuitry having adjustable current driving capacity
US8411006B2 (en) * 2005-11-04 2013-04-02 Sharp Kabushiki Kaisha Display device including scan signal line driving circuits connected via signal wiring
CN201725544U (zh) 2010-01-21 2011-01-26 新相微电子(上海)有限公司 用于液晶显示栅极驱动芯片的低功耗驱动电路
CN102467891B (zh) 2010-10-29 2013-10-09 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动装置及液晶显示器
CN102411946A (zh) 2011-11-01 2012-04-11 张锦堂 越南数字邮票
TWI438751B (zh) * 2011-11-18 2014-05-21 Au Optronics Corp 閘極驅動電路及其閘極驅動方法
CN102881254B (zh) * 2012-09-28 2015-07-15 昆山工研院新型平板显示技术中心有限公司 一种改善画质的驱动***及其驱动方法
KR102115530B1 (ko) * 2012-12-12 2020-05-27 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
CN104376825B (zh) * 2014-11-20 2017-02-22 深圳市华星光电技术有限公司 一种移位寄存器单元、栅极驱动电路及显示装置
KR102271628B1 (ko) * 2014-12-04 2021-07-02 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
CN104361878B (zh) * 2014-12-10 2017-01-18 京东方科技集团股份有限公司 一种显示面板、其驱动方法及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160753A1 (en) * 2002-02-11 2003-08-28 Mccartney Richard I. Display line drivers and method for signal propagation delay compensation
US20100128019A1 (en) * 2008-11-25 2010-05-27 Kabushiki Kaisha Toshiba Liquid crystal display device
CN103426409A (zh) * 2012-05-15 2013-12-04 联咏科技股份有限公司 显示驱动装置及显示面板的驱动方法
CN102982775A (zh) * 2012-10-31 2013-03-20 合肥京东方光电科技有限公司 驱动电压提供装置、方法及显示装置
CN104036740A (zh) * 2014-05-16 2014-09-10 京东方科技集团股份有限公司 栅极驱动电路的控制电路、工作方法和显示装置
CN104851384A (zh) * 2015-05-29 2015-08-19 合肥京东方光电科技有限公司 显示面板的驱动方法及驱动模块、显示面板及显示装置
CN105118452A (zh) * 2015-08-20 2015-12-02 京东方科技集团股份有限公司 栅极驱动方法和结构

Also Published As

Publication number Publication date
US10109257B2 (en) 2018-10-23
US20180033393A1 (en) 2018-02-01
CN104851384B (zh) 2018-04-20
CN104851384A (zh) 2015-08-19

Similar Documents

Publication Publication Date Title
WO2016192313A1 (zh) 显示面板的驱动方法及驱动模块、显示面板及显示装置
CN109859696B (zh) 同步背光装置及其操作方法
TWI567608B (zh) 顯示裝置、顯示裝置之驅動方法及其驅動裝置
US9293223B2 (en) Shift register unit, gate driving circuit and display device
WO2014139199A1 (zh) 过驱动方法、电路、显示面板和显示装置
JP2007041258A (ja) 画像表示装置およびタイミングコントローラ
TWI277052B (en) Liquid crystal display device
WO2017012296A1 (zh) 触摸显示驱动方法及装置、显示装置和应用处理器
TWI714334B (zh) 控制裝置、顯示裝置及其操作方法
TW201937468A (zh) 顯示裝置及其閘極驅動器
WO2018023831A1 (zh) 寄生电容的消除方法以及装置
JP2009180989A (ja) 液晶表示装置および液晶表示装置の駆動方法
WO2019061875A1 (zh) 一种电平转化器的时钟输入信号异常的处理方法
TWI484466B (zh) 顯示面板的驅動方法
JP5549610B2 (ja) 液晶表示装置
KR20160047678A (ko) 데이터 인에이블 신호 생성 방법, 타이밍 컨트롤러 및 표시장치
US9946101B2 (en) Gate driver control circuit
US8730222B2 (en) Display capable of improving frame quality and method thereof
TW201604853A (zh) 顯示驅動電路
JP2020524357A (ja) 発光制御回路、発光制御ドライバー及び表示装置
CN105609084B (zh) 一种显示图像亮度的补偿方法、装置
TWI661408B (zh) 時序控制器裝置及其垂直起始脈衝產生方法
TWI774100B (zh) 影像處理晶片與影像處理方法
CN101593501B (zh) 液晶显示器的驱动方法及其驱动装置
US11888487B2 (en) Phase interpolation device and multi-phase clock generation device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15126892

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893958

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 13/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15893958

Country of ref document: EP

Kind code of ref document: A1