WO2016192175A1 - 一种高酸量固体酸催化剂的制备方法 - Google Patents

一种高酸量固体酸催化剂的制备方法 Download PDF

Info

Publication number
WO2016192175A1
WO2016192175A1 PCT/CN2015/083776 CN2015083776W WO2016192175A1 WO 2016192175 A1 WO2016192175 A1 WO 2016192175A1 CN 2015083776 W CN2015083776 W CN 2015083776W WO 2016192175 A1 WO2016192175 A1 WO 2016192175A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid catalyst
solid acid
mixture
water
plant waste
Prior art date
Application number
PCT/CN2015/083776
Other languages
English (en)
French (fr)
Inventor
王洛生
郭万平
余林
Original Assignee
广州澳银生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州澳银生物科技有限公司 filed Critical 广州澳银生物科技有限公司
Publication of WO2016192175A1 publication Critical patent/WO2016192175A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30

Definitions

  • the invention belongs to the technical field of solid acid catalysts, and in particular relates to a preparation method of a high acid amount solid acid catalyst.
  • Liquid acid catalysts such as sulfuric acid, hydrochloric acid, phosphoric acid, hydrofluoric acid and p-toluenesulfonic acid are widely used in chemical production because of their good catalytic performance and low price.
  • shortcomings such as severe corrosion of equipment, difficulty in repeated recycling, difficulty in separation of reactants and products, and large discharge of three wastes, which have serious negative impacts on human health, work and living environment.
  • the development of solid acid catalysts that take into account the environment and achieve clean production of chemical industrial products has become an inherent demand for the sustainable development of the chemical industry.
  • the solid acid catalyst Compared with the liquid acid catalyst, the solid acid catalyst has the advantages that the catalyst is easy to separate from the raw materials and products, can be recycled and reused, does not corrode the reaction equipment, and does not pollute the environment.
  • biomass solid acid catalyst has become a research hotspot in the field of catalyst preparation because of its advantages of good catalytic reaction performance, low cost, efficient use of resources, etc.
  • such catalysts are mainly prepared by high temperature carbonization sulfonation method, that is, raw materials are at high temperature.
  • Incomplete carbonization is carried out under an inert atmosphere (>350 ° C), and then sulfonated with concentrated sulfuric acid or fuming sulfuric acid.
  • This method is more complicated to operate and needs
  • the preparation conditions are high temperature, inert atmosphere, etc., and the solid acid catalyst prepared has a small specific surface area, serious damage to the original structure, and low surface acidity and easy loss.
  • the Chinese invention patent application CN104475127A reports that activated carbon is prepared from pineapple slag, and the prepared activated carbon catalyst is used to prepare a solid acid catalyst, which needs to be activated at a high temperature of 450 to 500 °C. It can be seen that the existing biomass solid acid preparation process is difficult to be used for large-scale industrial production. Therefore, it is urgent to improve the preparation process, and a simple method for synthesizing a solid acid catalyst with high acid content, stable structure and suitable for industrial production. In order to realize the practical use of such catalysts for the clean production of chemical industrial products.
  • the technical problem solved by the invention is to provide a preparation method of a high acid amount solid acid catalyst, wherein the surface acidity of the solid acid prepared by the method is 3.5-5.0 mmol/g, and the solid acid catalyst is called GDUT-1, which has a low Cost, high acid content, simple and efficient, suitable for industrial production.
  • the technical solution adopted by the present invention is:
  • a method for preparing a high acid amount solid acid catalyst which comprises using plant waste as raw material, first adding concentrated sulfuric acid to dehydrate carbonization, and then performing sulfonation, comprising the following steps:
  • the plant waste in the step (1) is any one or more of turmeric waste residue, coco peat, rice bran, wheat crust, peanut shell, bamboo shavings, wood chips, and straw.
  • the plant waste is added to the concentrated sulfuric acid in a ratio of the ratio of the plant waste to the concentrated sulfuric acid of 1:1 to 10.
  • the water washing method in the step (3) is to add water to the mixture at a mass/volume ratio of the mixture to water of 1:3 to 5, and magnetically stir in a water bath at 60 to 80 ° C, and the stirring time is 30 to 60 min. Washed 4 to 6 times.
  • the GDUT-1 solid acid catalyst prepared by the invention uses the cheap and easily available plant waste as raw material, and dehydrates and carbonizes the raw material at room temperature by using the dehydration property and strong acidity of concentrated sulfuric acid to obtain a solid carbon material having a stable structure, and further The sulfonation is heated at 100 to 200 ° C, thereby maintaining the original structural characteristics of the biomass, and forming a solid acid catalyst having a stable structure, a large specific surface area, and a high acid amount.
  • the invention Compared with the existing biomass solid acid catalyst preparation technology, the invention has the following beneficial effects:
  • the preparation process is simple, and the original structure of the biomass is not destroyed. It is dehydrated and carbonized at room temperature, and then sulfonated at 100-200 ° C. It does not require high temperature and inert atmosphere, and the plant waste is low in cost and suitable for industrial production;
  • the obtained GDUT-1 solid acid catalyst has a high acid amount of 3.5 to 5.0 mmol/g. It has high thermal stability, thermal decomposition temperature above 200 °C, high catalytic activity, and can be recycled many times. It is an efficient, stable and clean catalyst with wide application prospects.
  • the dried turmeric waste residue was pulverized and sieved through 80 mesh; 350 g of ginger slag powder was weighed and added to 350 g of concentrated sulfuric acid, mechanically stirred, stirred for 18 h, and then placed in an oven at 150 ° C for 6 h, at 190 ° C for 12 h to obtain a mixture.
  • Adding water to the mixture at a ratio of mass to water volume ratio of 1:3, magnetic stirring in a water bath at 70 ° C, stirring time is 60 min, washing 4 times, washing and drying after washing, crushing and sifting through 80 mesh to obtain GDUT -1 solid acid catalyst with an acidity of 4.28 mmol/g.
  • the dried coco peat is pulverized and sieved through 60 mesh; 150 g of copra powder is weighed and added to 450 g of concentrated sulfuric acid, mechanically stirred, stirred for 12 h, and then placed in an oven at 140 ° C for 6 h, 200 ° C for 10 h to obtain a mixture. Adding water to the mixture at a ratio of mass to water volume ratio of 1:5, placed in a 60 ° C water bath, magnetic stirring, stirring time is 50 min, washing 5 times, washing and drying after washing, pulverizing and sifting through 60 mesh to obtain GDUT -1 solid acid catalyst with an acidity of 4.84 mmol/g.
  • the dried rice bran is crushed and sieved through 20 mesh; 300 g of rice bran powder is weighed and added to 1500 g of concentrated sulfuric acid, mechanically stirred, stirred for 20 h, and then placed in an oven at 130 ° C for 8 h.
  • the mixture was obtained at 180 ° C for 16 h, and water was added to the mixture according to the ratio of the mass of the mixture to the volume ratio of water: 1:4, and the mixture was stirred in a water bath at 80 ° C for 10 min, washed for 6 times, washed with water, dried, filtered, and pulverized.
  • the GDUT-1 solid acid catalyst was prepared by sieving, and the acidity was 4.25 mmol/g.
  • the dried wheat hull was pulverized and sieved through 40 mesh; 200 g of wheat hull powder was weighed and added to 1900 g of concentrated sulfuric acid, mechanically stirred for 24 hours, then placed in an oven, 140 ° C for 12 h, and 180 ° C for 14 h to obtain a mixture. Adding water to the mixture at a ratio of mass to water volume ratio of 1:4, magnetic stirring in a water bath at 70 ° C, stirring time is 60 min, washing 4 times, washing and drying after washing, pulverizing and sifting through 40 mesh to obtain GDUT -1 solid acid catalyst with an acidity of 4.90 mmol/g.
  • the dried peanut shell was pulverized and sieved through 20 mesh; 750 g of peanut shell powder was weighed and added to 1500 g of concentrated sulfuric acid, mechanically stirred, stirred for 14 h, and then placed in an oven, 120 ° C for 11 h, and at 200 ° C for 9 h to obtain a mixture. Adding water to the mixture at a ratio of mass to water volume ratio of 1:3, placed in a water bath at 60 ° C, magnetic stirring, stirring time is 50 min, washing 5 times, washing and drying after washing, pulverizing and sifting through 20 mesh to obtain GDUT -1 solid acid catalyst with an acidity of 4.13 mmol/g.
  • the dried bamboo chips are pulverized and sieved through 60 mesh; 200 g of bamboo powder is weighed and added to 1200 g of concentrated sulfuric acid, mechanically stirred, stirred for 20 h, and then placed in an oven, 100 ° C for 14 h, 200 ° C for 10 h to obtain a mixture, according to the mixture Adding water to the mixture at a ratio of mass to water volume ratio of 1:4, The mixture was placed in a water bath at 80 ° C for magnetic stirring, the stirring time was 40 min, washed with water for 6 times, washed with water, filtered and dried, pulverized and sieved through 60 mesh to obtain a GDUT-1 solid acid catalyst with an acidity of 3.89 mmol/g.
  • the dried straw is pulverized and sieved through 20 mesh; 500 g of straw powder is weighed into 3500 g of concentrated sulfuric acid, mechanically stirred, stirred for 16 h, and then placed in an oven, 150 ° C for 6 h, 190 ° C for 13 h to obtain a mixture, according to the mass of the mixture Add water to the mixture in a ratio of 1:5 to water, and place it in a water bath at 80 °C for magnetic stirring. The stirring time is 40 min, washed 6 times, washed with water, filtered and dried, crushed and sieved through 20 mesh to obtain GDUT-1.
  • the solid acid catalyst had an acidity of 4.19 mmol/g.
  • the dried bamboo chips and wood chips are crushed and sieved through 60 mesh; 300 g bamboo powder and 300 g wood powder are weighed separately, sequentially added to 3600 g concentrated sulfuric acid, mechanically stirred, stirred for 12 h, and then placed in an oven at 130 ° C for 10 h.
  • the mixture was obtained at 180 ° C for 15 h, and water was added to the mixture at a ratio of the mass of the mixture to the volume ratio of water of 1:4, and placed in a water bath at 70 ° C for magnetic stirring.
  • the mixing time was 50 min, washed with water for 5 times, washed with water, filtered and dried, pulverized and sieved through 60 mesh to obtain a GDUT-1 solid acid catalyst with an acidity of 4.62 mmol/g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

一种高酸量固体酸催化剂的制备方法,该方法以植物废料为原料,首先将植物废料干燥后粉碎过筛,在搅拌下加入到浓硫酸中并混合均匀,然后在室温下脱水碳化10~24h,100~200℃下进一步磺化15~30h,得到固体混合物。将该混合物用热水洗涤,除净固体混合物中残留的液体酸,洗净后的固体物经过滤、烘干、粉碎,即制得固体酸催化剂。所得固体酸酸度为3.5~5.0mmol/g,该固体酸催化剂称作GDUT-1。

Description

一种高酸量固体酸催化剂的制备方法 技术领域
本发明属于固体酸催化剂技术领域,具体涉及一种高酸量固体酸催化剂的制备方法。
背景技术
在现代化学工业生产中,酸催化剂占据十分重要的地位,液体酸催化剂如硫酸、盐酸、磷酸、氢氟酸、对甲苯磺酸等因具有催化性能良好、价格低廉等特点大量应用于化工生产中,但存在对设备腐蚀严重,难以重复再生利用,与反应物及产物难分离,三废排放量大等缺点,给人类的健康、工作和生存环境造成了严重的负面影响。
随着人们环保意识的增强以及绿色化学概念的提出,开发效益兼顾环境、实现化学工业品清洁化生产的固体酸催化剂已成为促使化学工业可持续发展的内在需求。相比于液体酸催化剂,固体酸催化剂具有催化剂与原料和产物易分离,可回收重复利用,不腐蚀反应设备以及不污染环境等优点。其中,生物质固体酸催化剂因具有催化反应性能良好、成本低廉、资源化有效利用等优点成为催化剂制备领域的研究热点,但目前这类催化剂主要是通过高温碳化磺化法制得,即将原料在高温(>350℃)下在惰性气氛保护下进行不完全碳化,再用浓硫酸或者发烟硫酸对其进行磺酸化处理。这种方法操作比较复杂,需要 高温、惰性气氛等制备条件,并且制得的固体酸催化剂比表面积小,原有结构破坏严重,同时表面酸量低且易于流失。例如中国发明专利申请CN104475127A报道用菠萝渣制成活性炭,再用制得的活性炭制备固体酸催化剂,需要在450~500℃下高温活化。可以看出,现有的生物质固体酸制备工艺很难用于大规模工业化生产,因此急需改进制备工艺,用简易的方法合成一种高酸量、结构稳定、并且适合工业化生产的固体酸催化剂,从而实现将此类催化剂真正用于化学工业品清洁化生产的目的。
发明内容
本发明解决的技术问题在于提供一种高酸量固体酸催化剂的制备方法,利用该方法制得的固体酸表面酸度为3.5~5.0mmol/g,该固体酸催化剂称作GDUT-1,具有低成本、高酸量、简易高效、适合工业化生产的特点。
为实现上述技术目标,本发明采用的技术方案是:
一种高酸量固体酸催化剂的制备方法,该方法以植物废料为原料,先加入浓硫酸脱水碳化,后进行磺化,包括以下步骤:
(1)将干燥的植物废料粉碎并20~80目过筛;
(2)过筛后加入到浓硫酸中并机械搅拌,在室温下脱水碳化10~24h,然后在烘箱中100~200℃下磺化15~30h,得到固体混合物;
(3)将该混合物水洗至滤液中pH不再变化,然后过滤、烘干,粉碎并20~80目过筛即制得固体酸催化剂。
所述步骤(1)中植物废料为黄姜废渣、椰糠、米糠、麦壳、花生壳、竹屑、木屑、秸秆的任意一种或几种。
所述步骤(2)中按植物废料与浓硫酸的质量比1:1~10的比例将植物废料加入到浓硫酸中。
所述步骤(3)中水洗方法为按混合物与水的质量/体积比1:3~5的比例向混合物中加水,置于60~80℃的水浴锅中磁力搅拌,搅拌时间为30~60min,水洗4~6次。
本发明制得的GDUT-1固体酸催化剂以廉价易得的植物废料为原料,利用浓硫酸的脱水性以及强酸性将原料在室温下脱水碳化,得到具有稳定结构的固体炭材料,再进一步在100~200℃下加热磺化,因而能够保持生物质原有的结构特性,形成结构稳定、比表面积大、酸量高的固体酸催化剂。
本发明与现有的生物质固体酸催化剂制备技术相比,具有以下有益效果:
(1)制备工艺简单,生物质原有结构没有破坏。先在室温下脱水碳化,然后在100~200℃下磺化即可,无需高温和惰性气氛,植物废料成本低廉,适合工业化生产;
(2)制得的GDUT-1固体酸催化剂酸量高,为3.5~5.0mmol/g。热稳定性高,热分解温度在200℃以上,并且具有较高的催化活性,且可多次循环利用,是一种具有广泛应用前景的高效、稳定、清洁催化剂。
具体实施方式
下面结合具体实施例对本发明的技术方案作详细的说明,以下实施例是为了本领域的技术人员更好地理解本发明,而非限制本发明的技术方案。
实施例1
将干燥的黄姜废渣粉碎并80目过筛;称取350g姜渣粉加入到350g浓硫酸中,机械搅拌,搅拌时间为18h,然后置于烘箱中,150℃6h,190℃12h得到混合物,按混合物质量与水体积比1:3比例向混合物中加水,置于70℃水浴锅中磁力搅拌,搅拌时间为60min,水洗4次,水洗后过滤烘干,粉碎并80目过筛即制得GDUT-1固体酸催化剂,酸度为4.28mmol/g。
实施例2
将干燥的椰糠粉碎并60目过筛;称取150g椰糠粉加入到450g浓硫酸中,机械搅拌,搅拌时间为12h,然后置于烘箱中,140℃6h,200℃10h得到混合物,按混合物质量与水体积比1:5比例向混合物中加水,置于60℃水浴锅中磁力搅拌,搅拌时间为50min,水洗5次,水洗后过滤烘干,粉碎并60目过筛即制得GDUT-1固体酸催化剂,酸度为4.84mmol/g。
实施例3
将干燥的米糠粉碎并20目过筛;称取300g米糠粉加入到1500g浓硫酸中,机械搅拌,搅拌时间为20h,然后置于烘箱中,130℃8h, 180℃16h得到混合物,按混合物质量与水体积比1:4比例向混合物中加水,置于80℃水浴锅中磁力搅拌,搅拌时间为40min,水洗6次,水洗后过滤烘干,粉碎并20目过筛即制得GDUT-1固体酸催化剂,酸度为4.25mmol/g。
实施例4
将干燥的麦壳粉碎并40目过筛;称取200g麦壳粉加入到1900g浓硫酸中,机械搅拌,搅拌时间为24h,然后置于烘箱中,140℃12h,180℃14h得到混合物,按混合物质量与水体积比1:4比例向混合物中加水,置于70℃水浴锅中磁力搅拌,搅拌时间为60min,水洗4次,水洗后过滤烘干,粉碎并40目过筛即制得GDUT-1固体酸催化剂,酸度为4.90mmol/g。
实施例5
将干燥的花生壳粉碎并20目过筛;称取750g花生壳粉加入到1500g浓硫酸中,机械搅拌,搅拌时间为14h,然后置于烘箱中,120℃11h,200℃9h得到混合物,按混合物质量与水体积比1:3比例向混合物中加水,置于60℃水浴锅中磁力搅拌,搅拌时间为50min,水洗5次,水洗后过滤烘干,粉碎并20目过筛即制得GDUT-1固体酸催化剂,酸度为4.13mmol/g。
实施例6
将干燥的竹屑粉碎并60目过筛;称取200g竹粉加入到1200g浓硫酸中,机械搅拌,搅拌时间为20h,然后置于烘箱中,100℃14h,200℃10h得到混合物,按混合物质量与水体积比1:4比例向混合物中加水, 置于80℃水浴锅中磁力搅拌,搅拌时间为40min,水洗6次,水洗后过滤烘干,粉碎并60目过筛即制得GDUT-1固体酸催化剂,酸度为3.89mmol/g。
实施例7
将干燥的木屑粉碎并40目过筛;称取400g木粉加入到1600g浓硫酸中,机械搅拌,搅拌时间为18h,然后置于烘箱中,130℃8h,180℃16h得到混合物,按混合物质量与水体积比1:4比例向混合物中加水,置于70℃水浴锅中磁力搅拌,搅拌时间为50min,水洗5次,水洗后过滤烘干,粉碎并40目过筛即制得GDUT-1固体酸催化剂,酸度为4.77mmol/g。
实施例8
将干燥的秸秆粉碎并20目过筛;称取500g秸秆粉加入到3500g浓硫酸中,机械搅拌,搅拌时间为16h,然后置于烘箱中,150℃6h,190℃13h得到混合物,按混合物质量与水体积比1:5比例向混合物中加水,置于80℃水浴锅中磁力搅拌,搅拌时间为40min,水洗6次,水洗后过滤烘干,粉碎并20目过筛即制得GDUT-1固体酸催化剂,酸度为4.19mmol/g。
实施例9
将干燥的竹屑和木屑粉碎并60目过筛;分别称取300g竹粉和300g木粉,依次加入到3600g浓硫酸中,机械搅拌,搅拌时间为12h,然后置于烘箱中,130℃10h,180℃15h得到混合物,按混合物质量与水体积比1:4比例向混合物中加水,置于70℃水浴锅中磁力搅拌,搅 拌时间为50min,水洗5次,水洗后过滤烘干,粉碎并60目过筛即制得GDUT-1固体酸催化剂,酸度为4.62mmol/g。
最后所应说明的是:以上实施例仅用以说明,而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同交换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围之中。

Claims (5)

  1. 一种高酸量固体酸催化剂的制备方法,所述方法以植物废料为原料,先加入浓硫酸脱水碳化,后进行磺化,其特征在于包括如下步骤:
    (1)将干燥的植物废料粉碎并20~80目过筛;
    (2)过筛后加入到浓硫酸中并机械搅拌,在室温下脱水碳化10~24h,然后在烘箱中100~200℃下磺化15~30h,得到固体混合物;
    (3)将该混合物水洗至溶液中pH不再变化,然后过滤、烘干,粉碎并20~80目过筛即制得固体酸催化剂。
  2. 根据权利要求1所述的高酸量固体酸催化剂的制备方法,其特征在于:所述步骤(1)中植物废料为黄姜废渣、椰糠、米糠、麦壳、花生壳、竹屑、木屑、秸秆的任意一种或几种。
  3. 根据权利要求1所述的高酸量固体酸催化剂的制备方法,其特征在于:所述步骤(2)中按植物废料与浓硫酸的质量比1:1~10的比例将植物废料加入到浓硫酸中。
  4. 根据权利要求1所述的高酸量固体酸催化剂的制备方法,其特征在于:所述步骤(3)中水洗方法为按混合物与水的质量/体积比1:3~5的比例向混合物中加水,置于60~80℃的水浴锅中磁力搅拌,搅拌时间为30~60min,水洗4~6次。
  5. 根据权利要求1所述的高酸量固体酸催化剂的制备方法,其特征在于:所得固体酸表面酸度为3.5~5.0mmol/g,该固体酸催化剂称作GDUT-1。
PCT/CN2015/083776 2015-05-29 2015-07-10 一种高酸量固体酸催化剂的制备方法 WO2016192175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510286135.3A CN104941663A (zh) 2015-04-09 2015-05-29 一种高酸量固体酸催化剂的制备方法
CN201510286135.3 2015-05-29

Publications (1)

Publication Number Publication Date
WO2016192175A1 true WO2016192175A1 (zh) 2016-12-08

Family

ID=60022892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083776 WO2016192175A1 (zh) 2015-05-29 2015-07-10 一种高酸量固体酸催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN104941663A (zh)
WO (1) WO2016192175A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846194A (zh) * 2019-11-21 2020-02-28 广西民族大学 一种利用碳基固体酸提高白酒品质的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855159B (zh) * 2018-06-27 2021-07-20 广东工业大学 一种以普鲁士蓝衍生物合成的磷化钴及其制备方法和应用
CN109225275A (zh) * 2018-11-06 2019-01-18 绍兴文理学院 一种碳基固体酸的制备方法
CN112191257A (zh) * 2020-10-29 2021-01-08 广西大学 固体酸催化剂的制备方法及该催化剂的用途
CN113617332A (zh) * 2021-08-27 2021-11-09 郑子渝洋 一种用于处理重金属废液的磺化生物炭

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101314138A (zh) * 2008-07-07 2008-12-03 大连理工大学 直接磺化生物质制备的炭质固体酸催化剂
CN101400443A (zh) * 2006-03-10 2009-04-01 新日本石油株式会社 碳基固体酸、包括该固体酸的催化剂和利用该固体酸作为催化剂的反应
CN101890364A (zh) * 2010-06-25 2010-11-24 西北农林科技大学 一种利用农林废弃物制备固体酸催化剂的方法
CN103157512A (zh) * 2011-12-19 2013-06-19 天津工业大学 一种稻壳炭基固体磺酸的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9157040B2 (en) * 2012-04-16 2015-10-13 The United States Of America As Represented By The Secretary Of The Navy Renewable high density turbine and diesel fuels
CN103084187B (zh) * 2012-12-17 2015-07-01 常州大学 一种碳基固体酸及其制备方法
CN104475127A (zh) * 2014-11-18 2015-04-01 成都理想财富投资咨询有限公司 固体酸催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400443A (zh) * 2006-03-10 2009-04-01 新日本石油株式会社 碳基固体酸、包括该固体酸的催化剂和利用该固体酸作为催化剂的反应
CN101314138A (zh) * 2008-07-07 2008-12-03 大连理工大学 直接磺化生物质制备的炭质固体酸催化剂
CN101890364A (zh) * 2010-06-25 2010-11-24 西北农林科技大学 一种利用农林废弃物制备固体酸催化剂的方法
CN103157512A (zh) * 2011-12-19 2013-06-19 天津工业大学 一种稻壳炭基固体磺酸的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, SHI;, HYDROLYSIS TECHNOLOGY OF PLANT MATERIALS, 30 June 1994 (1994-06-30) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846194A (zh) * 2019-11-21 2020-02-28 广西民族大学 一种利用碳基固体酸提高白酒品质的方法

Also Published As

Publication number Publication date
CN104941663A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2016192175A1 (zh) 一种高酸量固体酸催化剂的制备方法
CN104671229B (zh) 一种基于生物质基的水热碳化制备炭微球的方法
CN103084187B (zh) 一种碳基固体酸及其制备方法
CN105948041B (zh) 一种真菌基活性炭纳米纤维及其制备方法与应用
CN101890364B (zh) 一种利用农林废弃物制备固体酸催化剂的方法
CN102218342B (zh) 一种高效磺化炭固体酸催化剂的制备方法
JP7339631B2 (ja) 炭素ベース固体酸触媒及びその製造方法、並びにそれをバイオマス水熱転換に使用する方法
CN104891479B (zh) 植物基类石墨烯及其制备方法
CN104028294B (zh) 一种适用微波辅助反应的固体酸催化剂及其制备方法
CN106215951A (zh) 一种核壳结构磁性碳基固体酸催化剂及其制备方法以及在木质纤维素水解糖化过程中的应用
CN104624206B (zh) 一种木质素碳基固体酸的制备方法
CN106672965B (zh) 一种用棉秸秆制备高比表面多级孔活性炭的方法
CN104624207A (zh) 木质素基磁性固体酸催化剂的制备方法
CN104118863A (zh) 一种离子液体活化稻壳制备超级电容器用多孔炭材料的方法
CN108993410A (zh) 一种磁性壳聚糖修饰的秸秆复合吸附剂的制备方法及所得产品和应用
CN104229780A (zh) 一种石墨烯基复合物的制备方法
CN111099587A (zh) 一种高比表面积竹叶基炭材料的制备方法
CN109317099A (zh) 一种负载铁猪粪生物炭的制备方法及应用
CN112844409B (zh) 生物质秸秆基磁性固体酸催化剂的制备方法及应用
CN104148099A (zh) 一种MoS2-BiPO4复合光催化剂的制备方法
CN110203931A (zh) 一种利用柚子皮制备高压水系超级电容器电极材料的方法
CN106423214A (zh) 玉米芯水解残渣制备高比表面积高酸量碳基固体酸方法
CN110078137A (zh) 硫化镍电极材料及其制备方法与应用
CN106902843A (zh) 一种新型固体酸催化剂其制备方法及应用
CN107433182A (zh) 一种利用银耳蒂头制备炭微球的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893831

Country of ref document: EP

Kind code of ref document: A1