WO2016180328A1 - 分布式匹配的天线装置 - Google Patents

分布式匹配的天线装置 Download PDF

Info

Publication number
WO2016180328A1
WO2016180328A1 PCT/CN2016/081624 CN2016081624W WO2016180328A1 WO 2016180328 A1 WO2016180328 A1 WO 2016180328A1 CN 2016081624 W CN2016081624 W CN 2016081624W WO 2016180328 A1 WO2016180328 A1 WO 2016180328A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal arm
antenna
coupling piece
metal
disposed
Prior art date
Application number
PCT/CN2016/081624
Other languages
English (en)
French (fr)
Inventor
陈玉稳
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2016180328A1 publication Critical patent/WO2016180328A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a distributed matching antenna device.
  • a commonly adopted design is to provide a coupled feed antenna device in a thinned and strong metal texture handheld terminal device.
  • a metal piece is mounted on the front surface of the mobile phone case, the antenna branch is electrically connected to the metal piece, the antenna branch 2 is coupled to the antenna branch, and the main board is connected to the antenna branch 1 and the antenna branch 2 through the antenna connector. , forming a "return type" antenna loop to solve the problem of communication performance degradation when the hand-held mobile phone.
  • the coupled feed-type antenna device still has many problems.
  • the antenna signal is tuned, there is interference between the high and low frequencies, and it is difficult to simultaneously take care of both high and low frequencies.
  • the high frequency is first tuned to the best match value and then low frequency tuning is started.
  • the high frequency is affected during the low frequency tuning process, and the high frequency is difficult to maintain optimal.
  • Match value It can be seen that in the existing scheme, it is difficult to maintain the best matching position and matching value of high and low frequencies due to mutual interference between high and low frequencies.
  • the antenna branch 2 is generally disposed at an inner position (close to the inner side of the antenna branch 1), and the two affect each other, which is disadvantageous to radiation, and the low frequency bandwidth is poor.
  • the present application provides a distributed matching antenna device to solve the problem that the high and low frequency tuning mutual interference in the related art is difficult to balance at the same time, and the low frequency bandwidth is poor.
  • the present application discloses a distributed matching antenna device, comprising: a main board, a feed, a first metal arm, a second metal arm, an antenna coupling piece, and a first tuning device;
  • the first metal arm and the second metal arm are disposed on a same straight line, and a set interval exists between an end of the first metal arm and an end of the second arm;
  • the length of the metal arm is greater than the length of the second metal arm;
  • the antenna coupling piece is disposed between the feed source and the first metal arm, one side of the antenna coupling piece is connected to the feed source, and the other side of the antenna coupling piece is opposite to the first a metal arm coupled to the connection;
  • the first tuning device is disposed between the antenna coupling piece and the first metal arm, and is respectively connected to the antenna coupling piece and the first metal arm.
  • the first tuning device includes:
  • a first trace composed of at least one wire having a first set length and/or a first set shape, and a first capacitor
  • the antenna coupling piece, the first wire, the first capacitor, and the first metal arm are sequentially connected in sequence.
  • the first capacitor comprises: a lumped capacitor or a coupling capacitor of a double-layer trace.
  • the equivalent inductance of the first trace is between 10 nH and 47 nH;
  • the capacitance of the first capacitor is between 0.5 pF and 4.7 pF.
  • the antenna device further includes: a second capacitor
  • the second capacitor is disposed between the first metal arm and the antenna coupling piece.
  • the antenna device further includes: a third capacitor disposed between the antenna coupling piece and the main board and/or a second inductance disposed between the antenna coupling piece and the main board.
  • the antenna device further includes: a second tuning device;
  • the second tuning device includes: a second trace composed of at least one wire having a second set length and/or a second set shape, and a third inductor;
  • the antenna coupling piece, the second wire, the third inductor, and the first metal arm are sequentially connected in order.
  • the antenna device further includes: a first inductor
  • the second metal arm is connected to the main board through the first inductor.
  • the first set shape comprises an annular shape, a zigzag shape, and an S shape.
  • the second set shape comprises a ring shape, a zigzag shape, and an S shape.
  • the antenna device further includes a metal frame
  • the main board is disposed in the metal frame; wherein the metal frame includes a short side;
  • a break point is disposed on a short side of the metal frame, and the break point divides a short side of the metal frame into a first portion and a second portion having unequal lengths; wherein a length of the first portion is greater than the first portion The length of the two portions, the first portion being the first metal arm and the second portion being the second metal arm.
  • the antenna device further includes a non-metallic frame
  • the main board is disposed in the non-metallic frame
  • the first metal arm and the second metal arm are fixed at a set position of the non-metallic frame.
  • the present application provides a distributed matching antenna device, including: a main board, a feed, a first metal arm, a second metal arm, an antenna coupling piece, a first tuning device, and a first inductor; wherein the antenna a coupling piece is disposed between the feed source and the first metal arm, and a first tuning device is further disposed between the antenna coupling piece and the first metal arm, and can be separated by the first tuning device
  • the low frequency signal keeps the high frequency signal on the coupling piece, avoiding mutual interference between high and low frequencies during the debugging process, and the high and low frequencies are relatively independent, achieving high and low frequency balance, and achieving high and low frequency independent tuning.
  • the first tuning device can be equivalent to an LC series resonant circuit device at a low frequency At the low frequency point of the segment, the first tuning device can be equivalent to a capacitor. At a high frequency point of the low frequency band, the first tuning device can be equivalent to an inductor, which expands the bandwidth and improves the impedance matching degree of the antenna.
  • the antenna device employing the first tuning device and the first inductance constitutes a distributed matching network in which, in addition to the specifications of the distributed components, such as the first tuning device and the first inductor, In addition to the adjustment of the parameters, the position of the distributed components can also be adjusted. By adjusting the distributed component values and/or the position of the distributed components, it is easier to find the best matching position and matching value, which improves the matching efficiency. .
  • FIG. 1 is a schematic structural diagram of a distributed matching antenna device in some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a distributed matching antenna device in some embodiments of the present application.
  • 3a is a schematic structural diagram of a first trace in some embodiments of the present application.
  • FIG. 3b is a schematic structural diagram of still another first trace in some embodiments of the present application.
  • 3c is a schematic structural diagram of still another first trace in some embodiments of the present application.
  • FIG. 3d is a schematic structural diagram of another first trace in some embodiments of the present application.
  • the distributed antenna device comprises a main board 1, a feed 2, a first metal arm 3, a second metal arm 4, an antenna coupling piece 5 and a first tuning device 6.
  • the first metal arm 3 and the second metal arm 4 are disposed on the same straight line, and there is a boundary between the end of the first metal arm 3 and the end of the second arm 4.
  • a set interval can be understood as a breakpoint that is usually set during the tuning of the antenna parameters.
  • the length of the first metal arm 3 is greater than the length of the second metal arm 4. The longer length of the first metal arm 3 is used to generate low frequency resonance and high frequency secondary resonance, and the second metal arm 4 having a shorter length Used to generate high frequency resonance.
  • the antenna coupling piece 5 is disposed between the feed 2 and the first metal arm 3, one side of the antenna coupling piece 5 is connected to the feed 2, and the antenna coupling piece 5 is further One side is coupled to the first metal arm 3 .
  • the first tuning device 6 is disposed between the antenna coupling piece 5 and the first metal arm 3, and is respectively connected to the antenna coupling piece 5 and the first metal arm 3.
  • the first tuning device 6 can be an LC series resonant circuit device, which expands the bandwidth and improves the impedance matching of the antenna.
  • the low frequency signal can be separated by the first tuning device 6, and the high frequency signal is retained on the coupling piece 5, thereby avoiding the mutual influence of the high and low frequency signals during the debugging process, and the independent debugging of the high frequency and low frequency signals can be realized.
  • the debugging operation is simplified, and the parameters can be debugged to the standard requirements more conveniently and quickly.
  • the distributed matching antenna device includes: a main board, a feed, a first metal arm, a second metal arm, an antenna coupling piece, and a first tuning device;
  • An antenna coupling piece is disposed between the feed source and the first metal arm, and a first tuning device is further disposed between the antenna coupling piece and the first metal arm, and the first tuning device can be
  • the low frequency signal is separated, and the high frequency signal is retained on the coupling piece, which avoids the mutual interference between the high and low frequencies during the debugging process.
  • the high and low frequencies are relatively independent in the respective debugging processes, achieving the consideration of high and low frequencies, and achieving high and low frequencies. Independent tuning.
  • the first tuning device may include an LC series resonant circuit device. At a low frequency point of the low frequency band, the first tuning device may be equivalent to a capacitor. At a high frequency point of the low frequency band, the first tuning device may be equivalent to an inductor. The bandwidth is expanded and the impedance matching of the antenna is improved.
  • the distributed matching antenna device comprises: a main board 1, a feed 2, a first metal arm 3, a second metal arm 4, an antenna coupling piece 5, a first tuning device 6, and a first Inductance 7.
  • the antenna device further includes: a frame 8.
  • the main board 1 is disposed inside the bezel 8.
  • the frame 8 may be a metal frame or a non-metal. frame.
  • the bezel 8 can be any suitable shape, such as a rectangular bezel.
  • one of the short sides 81 of the frame 8 may be selected to set the first metal arm 3 and the second metal arm 4.
  • a break point 82 may be disposed on the short side 81, and the break point 82 divides the short side 81 into two parts of different lengths, and the first part with a longer length may serve as the first metal branch
  • the arm 3, the second portion of the shorter length, can serve as the second metal arm 4.
  • the first metal arm 3 and the second metal arm 4 can be fabricated using an antenna or an antenna sheet. That is, the first metal arm 3 and the second metal arm 4 satisfying the length and shape requirements can be respectively processed by using an antenna or an antenna sheet as a processing material. Then, the processed first metal arm 3 and the second metal arm 4 are respectively fixed at set positions in the bezel 8, and for example, may be fixed above the short side 81 shown in FIG.
  • first metal arm 3 and the second metal arm are fixed, it is necessary to ensure that the fixed first metal arm 3 and the second metal arm 4 are on the same straight line, both of which are The ends of the ends are oppositely arranged, and the distance between the ends of the two is to satisfy the requirements of the breakpoint.
  • the length of the first metal arm 3 is greater than the length of the second metal arm 4.
  • the second metal arm 4 is connected to the main board 1 through the first inductor 7.
  • the first inductor 7 is disposed between the second metal arm 4 and the main board 1.
  • the first inductor 7 is disposed at an end position of the second metal arm 4, that is, disposed adjacent to the first metal arm 3.
  • the adjustment of the high frequency resonant frequency can be realized by adjusting the inductance value of the inductor 7, and the shape and structure of the metal arm are not modified, thereby ensuring the versatility of the processing die.
  • the metal arm needs to be newly fabricated, and in the above embodiment of the present application, By adjusting the size of the first inductor 7, the flow is simplified, and the tunable frequency range and accuracy are improved.
  • the antenna coupling piece 5 is disposed between the feed source 2 and the first metal branch 3 arm, one side of the antenna coupling piece 5 is connected to the feed source 2, and the antenna coupling piece 5 is further One side is coupled to the first metal arm 3 .
  • the antenna device may further include: a second capacitor 9.
  • the second capacitor 9 is disposed between the antenna coupling piece 5 and the first metal arm 3.
  • the specification parameter of the second capacitor 9, that is, the capacitance value, can be adaptively selected according to the requirement of the coupling strength.
  • the first tuning device 6 is disposed between the antenna coupling piece 5 and the first metal arm 3, and is respectively connected to the antenna coupling piece 5 and the first metal arm 3.
  • the first tuning device 6 may include: a first trace 61 and a first capacitor 62.
  • the first trace 61 may be an elongated trace composed of at least one wire that satisfies the first set length and/or the first set shape.
  • the antenna coupling piece 5, the first wiring 61, the first capacitor 62, and the first metal arm are sequentially connected in order.
  • the first capacitor 62 can be additionally fine-tuned, making it easier to find the best matching position and matching value.
  • the first trace 61 may be equivalent to one inductor, in other words, an inductor equivalent to the first trace may be used instead of the first trace 61.
  • the first trace 61 acts not only as an inductor, but the first trace 61 can also participate in radiation of the antenna at the same time.
  • the shape of the first trace 61 can affect the current distribution of the antenna system, for example, A first trace 61 of a certain shape is disposed between the object A and the object B, the set shape is such that a part of the first trace 61 is close to the object A, and the other part is close to the object B, then The coupling strength between the object A and the object B is greatly enhanced.
  • the shape and length of the first trace 61 may be set according to a specific situation.
  • An example of several alternative shapes and lengths of the first trace 61 is given below in conjunction with FIGS. 3a-3d. Those skilled in the art can also design other different shapes, thicknesses, and lengths in the understanding of the present application.
  • the first trace of the present embodiment is not to be construed as limiting the present application.
  • FIG. 3a is a schematic structural diagram of a first trace in some embodiments of the present application.
  • the first capacitor 62 having a capacitance value of 2.35 pF when the first capacitor 62 having a capacitance value of 2.35 pF is selected, at least one width may be selected.
  • the 0.15 mm wire constitutes a first trace 61 having a length of 18 mm.
  • the shape of the first trace 61 may be a first set shape as shown in FIG. 3a, that is, similar to an S-shape.
  • One end of the first trace 61 is directly connected to the antenna coupling piece 5, and the other end is connected to the first capacitor 62.
  • FIG. 3b is a schematic structural diagram of still another first trace in some embodiments of the present application.
  • the first capacitor 62 having a capacitance value of 1 pF when the first capacitor 62 having a capacitance value of 1 pF is selected, at least one wire having a width of 0.1 mm may be selected to form the first trace 61 having a length of 24 mm.
  • the shape of the first trace 61 may be a second set shape as shown in FIG. 3b, that is, an annular shape formed by a clockwise rounding from the start end to the end.
  • the first end of the first trace 61 is coupled to the antenna coupling piece 5, and the end is connected to the first capacitor 62.
  • FIG. 3c is a schematic structural diagram of still another first trace in some embodiments of the present application.
  • the first capacitor 62 having a capacitance value of 0.5 pF when the first capacitor 62 having a capacitance value of 0.5 pF is selected, at least one wire having a width of 0.15 mm may be selected to form the first trace 61 having a length of 42 mm.
  • the shape of the first trace 61 may be a third set shape as shown in FIG. 3c, that is, a shape including a plurality of saw teeth.
  • One end of the first trace 61 is directly connected to the antenna coupling piece 5, and the other end is connected to the first capacitor 62.
  • FIG. 3d is a schematic structural diagram of another first trace in some embodiments of the present application.
  • the first capacitor 62 having a capacitance value of 0.5 pF when the first capacitor 62 having a capacitance value of 0.5 pF is selected, at least one wire having a width of 0.1 mm may be selected to form the first trace 61 having a length of 40 mm.
  • the shape of the first trace 61 may be a fourth set shape as shown in FIG. 3c, that is, an annular shape formed by a counterclockwise rotation from the start end to the end.
  • the first end of the first trace 61 is coupled to the antenna coupling piece 5, and the end is connected to the first capacitor 62.
  • the first capacitor 62 may be a coupling capacitor of a lumped capacitor or a double-layer trace. This embodiment of the present application does not limit this.
  • an optional range of the first trace 61 and the first capacitor 62 may be as follows: an equivalent inductance value of the first trace 61 (ie, the first trace is to be After the 61 is set to set the length and shape, the range of the equivalent inductance value corresponding to the first trace 61 is: any value between 10 and 47 nH; corresponding to the first trace 61 Value,
  • the capacitance value of the first capacitor 62 may range from any value between 0.5 and 4.7 pF. It should be apparent to those skilled in the art that the specific values can be optimized according to actual conditions.
  • the first trace 61 having an equivalent inductance value of 10 nH (for example, the equivalent inductance of the first trace 61 having a width of 0.15 mm and a length of 19 mm is about 10 nH) and the capacitance value is 2.3 pF.
  • the first capacitor 62 is matched for use, and the first tuning device 6 (equivalent to the LC series resonant circuit device) is disposed between the main board 1 and the first metal arm 3.
  • Smith chart Smith diagram
  • the corresponding impedance curve is a thick solid curve in FIG.
  • the first tuning device 6 is equivalent to a capacitor, at a high frequency point of the low frequency band.
  • the first tuning device 6 is equivalent to an inductance, and the corresponding impedance curve is a broken line curve in FIG. 4, which significantly increases the bandwidth of the low frequency band.
  • the antenna device may further include: a third capacitor 10 and/or a second inductor 11 .
  • the third capacitor 10 is disposed between the antenna coupling piece 5 and the main board 1; the second inductor 11 is disposed between the antenna coupling piece 5 and the main board 1.
  • at least one of the third capacitor 10 and the second inductor 11 may be disposed between the antenna coupling piece 5 and the main board 1.
  • the high frequency impedance matching is further optimized by the third capacitance 10 and/or the second inductance 11 disposed between the antenna coupling piece 5 and the main board 1.
  • the antenna device may further include: a second tuning device 12.
  • the second tuning device 12 includes: a second trace 121 composed of at least one wire that satisfies a second set length and/or a second set shape, and a third inductor 122.
  • the antenna coupling piece 5, the second wire 121, the third inductor 122, and the first metal arm 3 are sequentially connected in order.
  • the shape and length of the second traces 121 may be set in any suitable manner according to actual conditions. For details, refer to the setting of the first trace 61.
  • the arrangement of the second tuning device 12 further offsets the effect of the antenna coupling piece 5 on the low frequency, so that the high frequency signal and the low frequency signal are more independent of each other, do not affect each other during tuning, and are easier to tune.
  • a 1.2 pF coupling capacitor may be selected as the second capacitor, but the 1.2 pF coupling capacitor may have a negative effect on the low frequency.
  • the second tuning device 12 having an equivalent inductance of 27 nH can be selected (that is, the equivalent inductance of the second trace 121 and the third inductor 122 in series is 27 nH) is set in the first metal.
  • the coupling capacitance of 1.2pF is parallel with the equivalent inductance of 27nH, and the equivalent of low frequency is 0.04pF, which is reduced from 1.2pF to 0.04pF, the influence is smaller, and the influence on the low frequency is reduced. .
  • the 1.2pF coupling capacitor is connected in parallel with the equivalent inductance of 27nH, which is equivalent to 1pF for high frequencies and does not affect high frequencies.
  • the main path of the low frequency resonance may be: the first metal arm 3 - connecting the wire between the first metal arm 3 and the first capacitor 62 - the first capacitance 62 - First Trace 61 - Antenna Coupler 5 - Feed 2.
  • the main path of the high frequency resonance may be: a second metal arm 4-space coupling - a first metal arm 3 - an antenna coupling piece 5 - a feed 2 .
  • the tuning of the high frequency and low frequency is more independent and does not affect each other, making it easier to find the best matching position and matching value.
  • capacitors and inductors involved in this embodiment may be lumped elements or distributed elements of any suitable parameter specification. This embodiment does not limit this.
  • the distributed matching antenna device includes: a main board, a feed, a first metal arm, a second metal arm, an antenna coupling piece, a first tuning device, and a first inductor.
  • the antenna coupling piece is disposed between the feed source and the first metal arm
  • a first tuning device is further disposed between the antenna coupling piece and the first metal arm
  • a tuning device can separate the low frequency signal and keep the high frequency signal on the coupling piece, avoiding mutual interference between high and low frequencies during the debugging process, and the high and low frequencies are relatively independent, achieving high and low frequency balance, and achieving high and low frequency independence. Tuning.
  • the first tuning device can be equivalent to an LC series resonant circuit device. At a low frequency point of the low frequency band, the first tuning device can be equivalent to a capacitor, and at a high frequency point of the low frequency band, the first tuning device can be equivalent.
  • the bandwidth is expanded and the impedance matching of the antenna is improved.
  • the antenna device employing the first tuning device and the first inductance constitutes a distributed matching network in which, in addition to the specifications of the distributed components, such as the first tuning device and the first inductor, In addition to the adjustment of the parameters, the position of the distributed components can also be adjusted. By adjusting the distributed component values and/or the position of the distributed components, it is easier to find the best matching position and matching value, which improves the matching efficiency. .

Landscapes

  • Support Of Aerials (AREA)

Abstract

本申请提供了一种分布式匹配的天线装置,包括:主板、馈源、第一金属支臂、第二金属支臂、天线耦合片和第一调谐装置,所述第一金属支臂和所述第二金属支臂设置在同一直线上,所述第一金属支臂的末端和所述第二支臂的末端之间存在设定间隔;所述第一金属支臂的长度大于所述第二金属支臂的长度;所述天线耦合片设置在所述馈源和所述第一金属支臂之间,所述天线耦合片的一侧与所述馈源连接,所述天线耦合片的另一侧与所述第一金属支臂耦合连接;所述第一调谐装置设置在所述天线耦合片和所述第一金属支臂之间,分别与所述天线耦合片和所述第一金属支臂连接。

Description

分布式匹配的天线装置
相关申请的交叉引用
本申请主张在2015年5月11日在中国提交的中国专利申请号No.201510237447.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,特别是涉及一种分布式匹配的天线装置。
背景技术
移动终端正趋于薄型化和强金属质感发展,而薄型化和强金属质感的手持终端设备无疑给天线的设计带来了巨大的挑战。在薄型化和强金属质感的手持终端设备设计过程中,如何保证高质量的天线信号一直是困扰业界的难题。
为了保证薄型化和强金属质感的手持终端设备中的天线信号的质量,通常采用的设计方案是:在薄型化和强金属质感的手持终端设备中设置耦合馈入式天线装置。具体的,采用一个金属件安装在手机壳体的正表面,天线分支一与所述金属件电连接,天线分支二与天线分支一耦合,主板通过天线连接器与天线分支一和天线分支二连接,形成一个“回型”的天线回路,以解决手握手机时,通信性能下降的问题。
然而,所述耦合馈入式天线装置仍存在诸多问题,在天线信号调谐时,高低频之间存在干扰,高低频难以同时兼顾。例如,先将高频调谐至最佳匹配值然后再开始进行低频调谐,然而,由于高低频之间的相互干扰,在低频调谐过程中,高频会受到其影响,高频难以保持在最佳匹配值。可见,在现有的方案中,由于高低频之间的相互干扰,难以保持高低频的最佳匹配位置和匹配值。而且,为了低频调适,天线分支二一般设置在靠内的位置(靠近天线分支一的内侧),两者互相影响,不利于辐射,低频带宽质量差。
发明内容
本申请提供一种分布式匹配的天线装置,以解决相关技术中高低频调谐相互干扰难以同时兼顾、低频带宽质量差的问题。
本申请公开了一种分布式匹配的天线装置,包括:主板、馈源、第一金属支臂、第二金属支臂、天线耦合片和第一调谐装置;
其中,
所述第一金属支臂和所述第二金属支臂设置在同一直线上,所述第一金属支臂的末端和所述第二支臂的末端之间存在设定间隔;所述第一金属支臂的长度大于所述第二金属支臂的长度;
所述天线耦合片设置在所述馈源和所述第一金属支臂之间,所述天线耦合片的一侧与所述馈源连接,所述天线耦合片的另一侧与所述第一金属支臂耦合连接;
所述第一调谐装置设置在所述天线耦合片和所述第一金属支臂之间,分别与所述天线耦合片和所述第一金属支臂连接。
可选的,所述第一调谐装置包括:
由至少一条金属丝组成的、具有第一设定长度和/或第一设定形状的第一走线,和,第一电容;
所述天线耦合片、第一走线、第一电容和所述第一金属支臂按顺序依次连接。
可选的,所述第一电容包括:集总电容或双层走线的耦合电容。
可选的,所述第一走线的等效电感值在10nH至47nH之间;
相应地,所述第一电容的电容值在0.5pF至4.7pF之间。
可选的,所述天线装置还包括:第二电容;
所述第二电容设置在所述第一金属支臂和所述天线耦合片之间。
可选的,所述天线装置还包括:设置在所述天线耦合片和所述主板之间的第三电容和/或设置在所述天线耦合片和所述主板之间的第二电感。
可选的,所述天线装置还包括:第二调谐装置;
所述第二调谐装置包括:由至少一条金属丝组成的、具有第二设定长度和/或第二设定形状的第二走线,和,第三电感;
所述天线耦合片、所述第二走线、所述第三电感和所述第一金属支臂按顺序依次连接。
可选的,所述天线装置还包括:第一电感;
所述第二金属支臂通过所述第一电感与所述主板连接。
可选的,所述第一设定形状包括环形,锯齿形,和S型。
可选的,所述第二设定形状包括环形,锯齿形,和S型。
可选的,所述天线装置还包括金属边框;
所述主板设置在所述金属边框内;其中,所述金属边框包括一短边;
所述金属边框的短边上设置有断点,所述断点将所述金属边框的短边分割为长度不等的第一部分和第二部分;其中,所述第一部分的长度大于所述第二部分的长度,所述第一部分为所述第一金属支臂,所述第二部分为所述第二金属支臂。
可选的,所述天线装置还包括非金属边框;
所述主板设置在所述非金属边框内;
所述第一金属支臂和所述第二金属支臂固定在所述非金属边框的设定位置处。
本申请提供了一种分布式匹配的天线装置,包括:主板、馈源、第一金属支臂、第二金属支臂、天线耦合片、第一调谐装置和第一电感;其中,所述天线耦合片设置在所述馈源和所述第一金属支臂之间,所述天线耦合片和所述第一金属支臂之间还设置有第一调谐装置,通过第一调谐装置可以分离出低频信号,而将高频信号保留在耦合片上,避免了调试过程中高低频之间的相互干扰,高低频相对独立,实现了对高低频的兼顾,可以实现高低频的独立调谐。
进一步地,第一调谐装置可以等效为一个LC串联谐振电路装置,在低频 段的低频点,第一调谐装置可以等效为电容,在低频段的高频点,第一调谐装置可以等效为电感,拓展了带宽,提高了天线的阻抗匹配度。
此外,采用第一调谐装置和所述第一电感的天线装置组成了分布式匹配网络,在所述分布式匹配网络中,除了可以对分布式元件,如第一调谐装置和第一电感的规格参数进行调节之外,还可以对分布式元件的位置进行调节,通过对分布式元件值和/或分布式元件位置的协调调节,更加容易找到最佳的匹配位置和匹配值,提高了匹配效率。
附图说明
图1是本申请一些实施例中一种分布式匹配的天线装置的结构示意图;
图2是本申请一些实施例中一种分布式匹配的天线装置的结构示意图;
图3a是本申请一些实施例中一种第一走线的结构示意图;
图3b是本申请一些实施例中又一种第一走线的结构示意图;
图3c是本申请一些实施例中再一种第一走线的结构示意图;
图3d是本申请一些实施例中另一种第一走线的结构示意图;
图4是本申请一些实施例中一种史密斯圆图。
具体实施方式
下面结合附图和具体实施方式对本申请作进一步详细的说明。
参照图1,示出了本申请一些实施例中一种分布式匹配的天线装置的结构示意图。在这些实施例中,所述分布式的天线装置包括:主板1、馈源2、第一金属支臂3、第二金属支臂4、天线耦合片5和第一调谐装置6。
如图1所示,第一金属支臂3和所述第二金属支臂4设置在同一直线上,所述第一金属支臂3的末端和所述第二支臂4的末端之间存在一设定间隔。需要说明的是,所述设定间隔可以理解为是天线参数调谐过程中通常设置的断点。所述第一金属支臂3的长度大于所述第二金属支臂4的长度。长度较长的第一金属支臂3用于产生低频谐振和高频二次谐振,长度较短的第二金属臂4 用于产生高频谐振。
所述天线耦合片5设置在所述馈源2和所述第一金属支臂3之间,所述天线耦合片5的一侧与所述馈源2连接,所述天线耦合片5的另一侧与所述第一金属支臂3耦合连接。所述第一调谐装置6设置在所述天线耦合片5和所述第一金属支臂3之间,分别与所述天线耦合片5和所述第一金属支臂3连接。所述第一调谐装置6可以是一个LC串联谐振电路装置,拓展了带宽,提高了天线的阻抗匹配度。同时,通过第一调谐装置6可以分离出低频信号,将高频信号保留在耦合片5上,避免了调试过程中高、低频信号的相互影响,可以实现高频和低频信号的独立调试,不用同时兼顾,简化了调试操作,可以更便捷、快速地将参数调试至标准要求。
综上所述,在上述实施例中,所述分布式匹配的天线装置包括:主板、馈源、第一金属支臂、第二金属支臂、天线耦合片和第一调谐装置;其中,所述天线耦合片设置在所述馈源和所述第一金属支臂之间,所述天线耦合片和所述第一金属支臂之间还设置有第一调谐装置,通过第一调谐装置可以分离出低频信号,而将高频信号保留在耦合片上,避免了调试过程中高低频之间的相互干扰,高低频在各自的调试过程中相对独立,实现了对高低频的兼顾,可以实现高低频的独立调谐。
进一步地,第一调谐装置可以包括一个LC串联谐振电路装置,在低频段的低频点,第一调谐装置可以等效为电容,在低频段的高频点,第一调谐装置可以等效为电感,拓展了带宽,提高了天线的阻抗匹配度。
参照图2,示出了本申请一些实施例中一种分布式匹配的天线装置的结构示意图。在这些实施例中,所述分布式匹配的天线装置包括:主板1、馈源2、第一金属支臂3、第二金属支臂4、天线耦合片5、第一调谐装置6和第一电感7。
如图2所示,可选的,所述天线装置还包括:边框8。所述主板1设置在所述边框8内。需要说明的是,所述边框8可以是金属边框,也可以是非金属 边框。所述边框8可以是任意一种适当的形状,例如,长方形边框。
下面基于图2,以所述边框8为长方形边框为例进行说明。
若所述边框8是金属边框,则可以选择所述边框8的其中一条短边81来设置所述第一金属支臂3和所述第二金属支臂4。可选的,可以在所述短边81上设置断点82,所述断点82将所述短边81分割为长度不等两部分,长度较长的第一部分可以作为所述第一金属支臂3,长度较短的第二部分可以作为所述第二金属支臂4。
若所述边框8是非金属边框,则可以利用天线或天线片制作所述第一金属支臂3和所述第二金属支臂4。也即,可以以天线或天线片作为加工材料,分别加工得到满足长度和形状要求的第一金属支臂3和所述第二金属支臂4。然后,将加工得到的第一金属支臂3和第二金属支臂4分别固定在所述边框8内的设定位置处,例如,可以固定在图2所示的短边81的上方。需要说明的是,在固定所述第一金属支臂3和所述第二金属支臂时,需要保证固定后的第一金属支臂3和第二金属支臂4在同一直线上,两者的末端相对设置,且两者末端之间的间隔距离要满足断点的要求。
需要说明的是,在上述实施例中,所述第一金属支臂3的长度大于所述第二金属支臂4的长度。
在上述实施例中,所述第二金属支臂4通过所述第一电感7与所述主板1连接。换而言之,所述第一电感7设置在所述第二金属支臂4与所述主板1之间。可选的,在设置时,所述第一电感7设置在所述第二金属支臂4的末端位置处,即靠近所述第一金属支臂3设置。在上述实施例中,通过调节所述电感7的电感值即可以实现对高频谐振频率的调节,不用修改金属支臂的形状结构,保证了加工模具的通用性。特别是当需要通过加长所述第二金属支臂4的长度来保持高频谐振频率的值时,若采用相关技术中的方案,则需要重新制作金属支臂,而在本申请上述实施例中,通过调节所述第一电感7的大小即可实现,简化了流程,且提高了可调谐的频率范围和精准度。
所述天线耦合片5设置在所述馈源2和所述第一金属支3臂之间,所述天线耦合片5的一侧与所述馈源2连接,所述天线耦合片5的另一侧与所述第一金属支臂3耦合连接。可选的,为了保证天线耦合片5与所述第一金属支臂3之间的耦合强度,所述天线装置还可以包括:第二电容9。所述第二电容9设置在天线耦合片5和所述第一金属支臂3之间,所述第二电容9的规格参数,即电容值可以根据耦合强度的需求来适应性的选择。
所述第一调谐装置6设置在所述天线耦合片5和所述第一金属支臂3之间,分别与所述天线耦合片5和所述第一金属支臂3连接。可选的,如图2所示,所述第一调谐装置6可以包括:第一走线61和第一电容62。其中,所述第一走线61可以是:由至少一条金属丝组成的、满足第一设定长度和/或第一设定形状的细长走线。所述天线耦合片5、第一走线61、第一电容62和所述第一金属支臂按顺序依次连接。其中,所述第一电容62可以进行额外地微调,更容易找到最佳的匹配位置和匹配值。
在本实施例中,所述第一走线61可以等效于一个电感,换而言之,可以使用等效于所述第一走线的电感来代替所述第一走线61。当然,所述第一走线61的作用不仅仅是电感,所述第一走线61还可以同时参与天线的辐射,所述第一走线61的形状可以影响天线***的电流分布,例如,将某一设定形状的第一走线61设置在物体A和物体B之间,所述设定形状使得所述第一走线61的其中一部分靠近物体A,另一部分靠近物体B,则可以大幅度增强物体A和物体B之间的耦合强度。在实际应用时,可以根据具体情况来设置所述第一走线61的形状和长度。下面结合图3a-3d,给出了第一走线61的几种可选的形状和长度的示例,本领域技术人员在理解本申请思路的情况下,还可以设计其他不同形状、粗细、长短的第一走线,本实施例内容不应理解为对本申请的限制。
如图3a,示出了本申请一些实施例中一种第一走线的结构示意图。可选的,当选用电容值为2.35pF的第一电容62时,则可以选用至少一根宽度为 0.15mm的金属丝组成长度为18mm的第一走线61。其中,所述第一走线61的形状可以是如图3a所示的第一设定形状,即类似S型形状。所述第一走线61的一端与所述天线耦合片5直接连接,另一端则与所述第一电容62连接。
如图3b,示出了本申请一些实施例中又一种第一走线的结构示意图。可选的,当选用电容值为1pF的第一电容62时,则可以选用至少一根宽度为0.1mm的金属丝组成长度为24mm的第一走线61。其中,所述第一走线61的形状可以是如图3b所示的第二设定形状,即起始端至末端顺时针环绕形成的环状形状。所述第一走线61的起始端与所述天线耦合片5耦合连接,末端则与所述第一电容62连接。
如图3c,示出了本申请一些实施例中再一种第一走线的结构示意图。可选的,当选用电容值为0.5pF的第一电容62时,则可以选用至少一根宽度为0.15mm的金属丝组成长度为42mm的第一走线61。其中,所述第一走线61的形状可以是如图3c所示的第三设定形状,即包含多个锯齿的形状。所述第一走线61的一端与所述天线耦合片5直接连接,另一端则与所述第一电容62连接
如图3d,示出了本申请一些实施例中另一种第一走线的结构示意图。可选的,当选用电容值为0.5pF的第一电容62时,则可以选用至少一个宽度为0.1mm的金属丝组成长度为40mm的第一走线61。其中,所述第一走线61的形状可以是如图3c所示的第四设定形状,即起始端至末端逆时针环绕形成的环状形状。所述第一走线61的起始端与所述天线耦合片5耦合连接,末端则与所述第一电容62连接。
需要说明的是,所述第一电容62可以是集总电容或双层走线的耦合电容。本申请实施例对此不作限制。在本申请实施例中,一种可选的第一走线61和第一电容62的取值范围可以如下:第一走线61的等效电感值(也即,将所述第一走线61设置为设定长度和形状之后,所述第一走线61所对应的等效电感值)的范围是:10至47nH之间的任一取值;对应于所述第一走线61的取值, 所述第一电容62的电容值的取值范围可以是:0.5至4.7pF之间的任一取值。本领域技术人员应当明了的是,具体的取值可以根据实际情况进行优化。
例如,可选的,等效电感值为10nH的第一走线61(如,宽为0.15mm、长为19mm的第一走线61的等效电感约为10nH)可以与电容值为2.3pF的第一电容62匹配使用,组成所述第一调谐装置6(等效于LC串联谐振电路装置)设置在所述主板1和所述第一金属支臂3之间。
参照图4,示出了本申请一些实施例中一种史密斯圆图(Smith图)。
在本申请实施例中,当第一金属支臂3与天线耦合片5之间没有串联第一调谐装置6时,对应的阻抗曲线为图4中的粗实线曲线。当第一金属支臂3与天线耦合片5之间串联第一调谐装置6后,在低频段的低频点,所述第一调谐装置6等效为电容,在低频段的高频点,所述第一调谐装置6等效为电感,对应的阻抗曲线为图4中的虚线曲线,明显提高了低频段的带宽。
在本申请实施例中,可选的,所述天线装置还可以包括:第三电容10和/或第二电感11。其中,所述第三电容10设置在所述天线耦合片5和所述主板1之间;所述第二电感11设置在所述天线耦合片5和所述主板1之间。换而言之,可以从第三电容10和第二电感11中选择至少一个设置在所述天线耦合片5和所述主板1之间。通过设置在所述天线耦合片5和所述主板1之间的第三电容10和/或第二电感11进一步优化了高频的阻抗匹配。
在本申请实施例中,可选的,所述天线装置还可以包括:第二调谐装置12。所述第二调谐装置12包括:由至少一条金属丝组成的、满足第二设定长度和/或第二设定形状的第二走线121,和,第三电感122。所述天线耦合片5、所述第二走线121、所述第三电感122和所述第一金属支臂3按顺序依次连接。需要说明的是,所述第二走线121的形状和长度可以根据实际情况采用任意一种适当的方式设置,具体可以参照上述第一走线61的设置。所述第二调谐装置12的设置进一步抵消了天线耦合片5对低频的影响,使得高频信号和低频信号相互之间更加独立,在调谐的时候不会相互影响,更易调谐。
例如,在本申请实施例中,为了满足高频要求,可以选择1.2pF的耦合电容作为所述第二电容,但所述1.2pF的耦合电容会对低频产生负作用。此时,可以选择等效电感为27nH的第二调谐装置12(也即,所述第二走线121和所述第三电感122串联后的等效电感为27nH)设置在所述第一金属支臂3和所述主板1之间,1.2pF的耦合电容与27nH的等效电感并联,对低频等效为0.04pF,由1.2pF降为0.04pF,影响变小,降低了对低频的影响。而且,对于高频,1.2pF的耦合电容与27nH的等效电感并联,对高频等效为1pF,不会影响高频。
在本申请实施例中,如上所述,可选的,低频谐振的主要路径可以为:第一金属支臂3-连接第一金属支臂3和第一电容62之间的导线-第一电容62-第一走线61-天线耦合片5-馈源2。高频谐振的主要路径可以为:第二金属臂4-空间耦合-第一金属臂3-天线耦合片5-馈源2。高频和低频的调谐更加独立,互不影响,更容易找到各自最佳的匹配位置和匹配值。
需要说明的是,本实施例中所涉及的电容和电感可以是任意一种适当参数规格的集总元件或分布式元件。本实施例对此不作限制。
综上所述,在本实施例中,所述分布式匹配的天线装置包括:主板、馈源、第一金属支臂、第二金属支臂、天线耦合片、第一调谐装置和第一电感;其中,所述天线耦合片设置在所述馈源和所述第一金属支臂之间,所述天线耦合片和所述第一金属支臂之间还设置有第一调谐装置,通过第一调谐装置可以分离出低频信号,而将高频信号保留在耦合片上,避免了调试过程中高低频之间的相互干扰,高低频相对独立,实现了对高低频的兼顾,可以实现高低频的独立调谐。
进一步地,第一调谐装置可以等效为一个LC串联谐振电路装置,在低频段的低频点,第一调谐装置可以等效为电容,在低频段的高频点,第一调谐装置可以等效为电感,拓展了带宽,提高了天线的阻抗匹配度。
此外,采用第一调谐装置和所述第一电感的天线装置组成了分布式匹配网络,在所述分布式匹配网络中,除了可以对分布式元件,如第一调谐装置和第一电感的规格参数进行调节之外,还可以对分布式元件的位置进行调节,通过对分布式元件值和/或分布式元件位置的协调调节,更加容易找到最佳的匹配位置和匹配值,提高了匹配效率。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
以上对本申请所提供的一种分布式匹配的天线装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (12)

  1. 一种分布式匹配的天线装置,包括:主板、馈源、第一金属支臂、第二金属支臂、天线耦合片和第一调谐装置;
    其中,
    所述第一金属支臂和所述第二金属支臂设置在同一直线上,所述第一金属支臂的末端和所述第二支臂的末端之间存在设定间隔;所述第一金属支臂的长度大于所述第二金属支臂的长度;
    所述天线耦合片设置在所述馈源和所述第一金属支臂之间,所述天线耦合片的一侧与所述馈源连接,所述天线耦合片的另一侧与所述第一金属支臂耦合连接;
    所述第一调谐装置设置在所述天线耦合片和所述第一金属支臂之间,分别与所述天线耦合片和所述第一金属支臂连接。
  2. 如权利要求1所述的天线装置,其中,所述第一调谐装置包括:
    由至少一条金属丝组成的、具有第一设定长度和/或第一设定形状的第一走线,和,第一电容;
    所述天线耦合片、第一走线、第一电容和所述第一金属支臂按顺序依次连接。
  3. 如权利要求2所述的天线装置,其中,所述第一电容包括:集总电容或双层走线的耦合电容。
  4. 如权利要求2所述的天线装置,其中,
    所述第一走线的等效电感值在10nH至47nH之间;
    相应地,所述第一电容的电容值在0.5pF至4.7pF之间。
  5. 如权利要求1所述的天线装置,还包括:第二电容;
    所述第二电容设置在所述第一金属支臂和所述天线耦合片之间。
  6. 如权利要求1所述的天线装置,还包括:设置在所述天线耦合片和所 述主板之间的第三电容和/或设置在所述天线耦合片和所述主板之间的第二电感。
  7. 如权利要求1所述的天线装置,还包括:第二调谐装置;
    所述第二调谐装置包括:由至少一条金属丝组成的、具有第二设定长度和/或第二设定形状的第二走线,和,第三电感;
    所述天线耦合片、所述第二走线、所述第三电感和所述第一金属支臂按顺序依次连接。
  8. 如权利要求1所述的天线装置,还包括:第一电感;
    所述第二金属支臂通过所述第一电感与所述主板连接。
  9. 如权利要求2所述的天线装置,其中,所述第一设定形状包括环形,锯齿形,和S型。
  10. 如权利要求7所述的天线装置,其中,所述二设定形状包括环形,锯齿形,和S型。
  11. 如权利要求1-10任一权利要求所述的天线装置,还包括:金属边框;
    所述主板设置在所述金属边框内;其中,所述金属边框包括一短边;
    所述金属边框的短边上设置有断点,所述断点将所述金属边框的短边分割为长度不等的第一部分和第二部分;其中,所述第一部分的长度大于所述第二部分的长度,所述第一部分为所述第一金属支臂,所述第二部分为所述第二金属支臂。
  12. 如权利要求1-10任一权利要求所述的天线装置,还包括:非金属边框;
    所述主板设置在所述非金属边框内;
    所述第一金属支臂和所述第二金属支臂固定在所述非金属边框的设定位置处。
PCT/CN2016/081624 2015-05-11 2016-05-11 分布式匹配的天线装置 WO2016180328A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510237447.5 2015-05-11
CN201510237447.5A CN105826687B (zh) 2015-05-11 2015-05-11 一种分布式匹配的天线装置

Publications (1)

Publication Number Publication Date
WO2016180328A1 true WO2016180328A1 (zh) 2016-11-17

Family

ID=56514331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081624 WO2016180328A1 (zh) 2015-05-11 2016-05-11 分布式匹配的天线装置

Country Status (2)

Country Link
CN (1) CN105826687B (zh)
WO (1) WO2016180328A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038752A (zh) * 2020-09-02 2020-12-04 惠州Tcl移动通信有限公司 一种低频天线组件及其移动终端
CN112713384A (zh) * 2020-12-09 2021-04-27 宇龙计算机通信科技(深圳)有限公司 一种天线结构和移动终端
CN113140891A (zh) * 2021-04-25 2021-07-20 维沃移动通信有限公司 伸缩式电子设备的天线结构和伸缩式电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611565B (zh) * 2017-09-13 2020-11-10 维沃移动通信有限公司 一种gps-wifi天线及移动终端
CN109119752B (zh) * 2018-08-13 2022-03-04 瑞声科技(新加坡)有限公司 天线***及移动终端

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151613A (zh) * 2013-01-31 2013-06-12 广东欧珀移动通信有限公司 一种移动终端的耦合馈入式天线装置
CN103178358A (zh) * 2011-12-21 2013-06-26 芬兰脉冲公司 可切换的分集天线设备和方法
CN103296385A (zh) * 2013-05-29 2013-09-11 上海安费诺永亿通讯电子有限公司 一种可调式多频天线***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368575A (zh) * 2011-09-08 2012-03-07 广东欧珀移动通信有限公司 一种内置二次辐射天线
CN203103509U (zh) * 2013-01-31 2013-07-31 广东欧珀移动通信有限公司 一种移动终端的耦合馈入式天线装置
CN103326124B (zh) * 2013-05-29 2015-04-01 上海安费诺永亿通讯电子有限公司 可调式的多频天线***
GB2516869A (en) * 2013-08-02 2015-02-11 Nokia Corp Wireless communication
CN203466292U (zh) * 2013-08-27 2014-03-05 上海安费诺永亿通讯电子有限公司 一种适用于具有金属框结构移动终端的多频天线
CN103811864B (zh) * 2014-01-25 2016-08-17 惠州硕贝德无线科技股份有限公司 一种金属边框双频耦合天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178358A (zh) * 2011-12-21 2013-06-26 芬兰脉冲公司 可切换的分集天线设备和方法
CN103151613A (zh) * 2013-01-31 2013-06-12 广东欧珀移动通信有限公司 一种移动终端的耦合馈入式天线装置
CN103296385A (zh) * 2013-05-29 2013-09-11 上海安费诺永亿通讯电子有限公司 一种可调式多频天线***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038752A (zh) * 2020-09-02 2020-12-04 惠州Tcl移动通信有限公司 一种低频天线组件及其移动终端
CN112038752B (zh) * 2020-09-02 2023-10-03 惠州Tcl移动通信有限公司 一种低频天线组件及其移动终端
CN112713384A (zh) * 2020-12-09 2021-04-27 宇龙计算机通信科技(深圳)有限公司 一种天线结构和移动终端
CN113140891A (zh) * 2021-04-25 2021-07-20 维沃移动通信有限公司 伸缩式电子设备的天线结构和伸缩式电子设备

Also Published As

Publication number Publication date
CN105826687B (zh) 2018-10-19
CN105826687A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2016180328A1 (zh) 分布式匹配的天线装置
US10389012B2 (en) Antenna system and communication device containing the same
TWI624999B (zh) 天線結構及具有該天線結構的無線通訊裝置
US8144072B2 (en) Multi-band antenna for notebook computer
US11688930B2 (en) Antenna apparatus and mobile terminal
US10498031B2 (en) Antenna system and mobile terminal
US9887451B2 (en) Antenna structure and wireless communication device using same
EP3188313B1 (en) Multi-band antenna and communication terminal
EP2851997A1 (en) Printed circuit board antenna and printed circuit board
CN210576465U (zh) 一种电子设备
TW201517389A (zh) 天線結構及具有該天線結構的無線通訊裝置
CN107317096B (zh) 一种电子设备
JP2016136711A (ja) アンテナ構造及びこのアンテナ構造を備える無線通信装置
WO2016045459A1 (zh) 移动终端天线装置及移动终端
TWI553959B (zh) 具多重邊界條件的槽孔天線
US10224610B2 (en) Mobile computing device antenna
TW201810798A (zh) 具有窄接地面淨空區之天線元件的通訊裝置
WO2015039435A1 (zh) 一种多频天线及终端
TW201941493A (zh) 天線結構
TWI594589B (zh) 射頻匹配電路及無線通訊裝置
WO2015014200A1 (zh) 一种印制天线和终端设备
CN109841954B (zh) 天线结构及具有该天线结构的无线通信装置
TWI539669B (zh) 通訊裝置
US11374312B2 (en) Antenna device and terminal
CN210092334U (zh) 一种天线结构以及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792178

Country of ref document: EP

Kind code of ref document: A1