WO2016151965A1 - ハイブリッド式作業車両 - Google Patents

ハイブリッド式作業車両 Download PDF

Info

Publication number
WO2016151965A1
WO2016151965A1 PCT/JP2015/085580 JP2015085580W WO2016151965A1 WO 2016151965 A1 WO2016151965 A1 WO 2016151965A1 JP 2015085580 W JP2015085580 W JP 2015085580W WO 2016151965 A1 WO2016151965 A1 WO 2016151965A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
output
hydraulic
vehicle
Prior art date
Application number
PCT/JP2015/085580
Other languages
English (en)
French (fr)
Inventor
金子 悟
一雄 石田
徳孝 伊藤
伊君 高志
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201580077779.XA priority Critical patent/CN107428336B/zh
Priority to JP2017507342A priority patent/JP6434128B2/ja
Priority to KR1020177025493A priority patent/KR20170117151A/ko
Priority to EP15886517.0A priority patent/EP3275753B1/en
Priority to US15/560,936 priority patent/US10207700B2/en
Publication of WO2016151965A1 publication Critical patent/WO2016151965A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/17Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/422Drive systems for bucket-arms, front-end loaders, dumpers or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid work vehicle.
  • a wheel loader as a vehicle that is expected to have a relatively large fuel consumption reduction effect when hybridized.
  • a conventional wheel loader transmits and receives engine power to a tire via a torque converter (torque converter) and a transmission (T / M) and travels with a bucket portion of a hydraulic working unit attached to the front of the vehicle. It is a work vehicle that excavates and transports etc.
  • torque converter torque converter
  • T / M transmission
  • the traveling drive portion of such a wheel loader it is possible to improve the power transmission efficiency of the traveling portion including the torque converter and the transmission to the power transmission efficiency by electricity. Further, since the wheel loader repeats the starting and stopping traveling operations frequently during the work, when the traveling drive part is electrified, regenerative power recovery during braking can be expected from the traveling motor.
  • the wheel loader when excavating an object such as a gravel mountain with a wheel loader, first, the wheel loader is advanced relative to the object to be excavated, and the bucket is inserted into the object to be excavated to load gravel and the like. Go backwards while lifting the bucket.
  • the present invention has been made based on the above-described matters, and an object of the present invention is to provide a hybrid work vehicle in which a travel drive unit is electrified, by limiting the output of the power storage device to the required power of the vehicle.
  • An object of the present invention is to provide a hybrid work vehicle with high work efficiency even when output power is limited.
  • the present application includes a plurality of means for solving the above-described problems.
  • a power source including an engine and a power storage device, a generator motor connected to the output shaft of the engine, wheels, A hydraulic pump connected to a rotating shaft of the generator motor, and a traveling unit that has a traveling motor that drives the wheels, an inverter that transfers electric power from the power storage device to each of the generator motor and the traveling motor.
  • a hydraulic working section having a plurality of hydraulic actuators driven by pressure oil supplied from the hydraulic pump, an operation lever device for commanding driving of the plurality of hydraulic actuators, and controlling the number of revolutions of the engine
  • the operation determination unit for determining the current operation state of the vehicle, the engine output value and the power storage device output value are input, the power of the travel unit and the hydraulic pressure are input.
  • a control unit having a power calculation unit that calculates and controls the power of the working unit, wherein the control unit is configured such that the operation determination unit indicates a current operation state of the vehicle by combining the traveling unit and the hydraulic working unit.
  • the output of the traveling unit is set so that the power calculation unit has a preset ratio distribution of the total value of the output value of the engine and the output value of the power storage device.
  • the output of the hydraulic working unit is calculated and controlled.
  • the work efficiency is improved.
  • a high-hybrid work vehicle can be provided.
  • FIG. 1 is a system configuration diagram of a wheel loader to which a first embodiment of a hybrid work vehicle of the present invention is applied. It is a typical system block diagram of the conventional wheel loader. It is a block diagram of the control apparatus which comprises 1st Embodiment of the hybrid type work vehicle of this invention. It is a block diagram which shows the structure of the hybrid control apparatus which comprises 1st Embodiment of the hybrid type work vehicle of this invention. It is a schematic diagram which shows the power flow of the hybrid system in 1st Embodiment of the hybrid type work vehicle of this invention. It is a schematic diagram explaining the V-shaped excavation loading work which is an example of the work pattern of a wheel loader.
  • FIG. 1 is a system configuration diagram of a hybrid wheel loader to which the first embodiment of the hybrid work vehicle of the present invention is applied
  • FIG. 2 is a typical system configuration diagram of a conventional wheel loader
  • FIG. 3 is a diagram of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the hybrid control device constituting the first embodiment of the hybrid work vehicle of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the control device constituting the first embodiment of the hybrid work vehicle. is there.
  • the hybrid wheel loader shown in FIG. 1 includes an engine 1 and a power storage device 11 as power sources, and as a main drive unit, an electrified traveling unit (wheel portion) and a front hydraulic working unit (lift / bucket portion). And have.
  • the traveling unit of the hybrid wheel loader includes a generator motor (motor / generator (M / G)) 6 connected to the output shaft of the engine 1, an inverter 7 that controls the generator motor 6, and four wheels 61.
  • Body 60, traveling motor 9 that is attached to propeller shaft 8 of traveling body 60 and drives four wheels 61, inverter 10 that controls traveling motor 9, and step-up / step-down control of the output voltage of power storage device 11 are performed.
  • a DCDC converter 12 and a control device 200 are provided.
  • the hydraulic working section of the hybrid wheel loader includes a variable displacement hydraulic pump 4 connected to the rotating shaft of the generator motor 6, a working device 50 having a bucket and a lift arm (not shown) and attached to the front of the vehicle body.
  • a hydraulic actuator bucket cylinder 51, lift cylinder 52 and steering cylinder 53 driven by pressure oil supplied from the hydraulic pump 4 via the control valve 55, and for driving the hydraulic actuators 51, 52, 53
  • An operation device operation lever device 56 and a steering wheel (not shown)) that outputs an operation signal according to the operation amount is provided.
  • the bucket cylinder 51 and the lift cylinder 52 are driven based on an operation signal (hydraulic signal) output in accordance with the operation amount of the operation lever device 56 installed in the cab.
  • the lift cylinder 52 is attached to a lift arm fixed to the front of the vehicle body so as to be rotatable, and expands and contracts based on an operation signal from the operation lever device 56 to rotate the lift arm up and down.
  • the bucket cylinder 51 is attached to a bucket that is rotatably fixed to the tip of the lift arm, and expands and contracts based on an operation signal from the operation lever device 56 to rotate the bucket up and down.
  • the steering cylinder 53 is driven based on an operation signal (hydraulic signal) output in accordance with the steering amount of a steering wheel (not shown) installed in the cab.
  • the steering cylinder 53 is connected to each wheel 61 and expands and contracts based on an operation signal from the steering wheel to change the steering angle of the wheel 61.
  • a speed sensor 62 for detecting the rotational speed is disposed in the vicinity of the wheel 61.
  • the power storage device 11 is preferably a large capacity power storage device such as a lithium battery or an electric double layer capacitor.
  • the power storage device 11 according to the present embodiment performs a step-up / step-down control of the system voltage of the DC bus unit by the DCDC converter 12, and the DC power is transferred between the inverters 7 and 10 (that is, the generator motor 6 and the travel motor 9). Give and receive.
  • the hybrid type wheel loader configured as described above, work corresponding to the purpose is performed by appropriately supplying pressure oil from the variable displacement hydraulic pump 4 to the work device 50 for performing excavation work such as earth and sand. . Further, the traveling operation of the traveling body 60 is performed by driving the traveling motor 9 mainly using the power generated by the generator motor 6 by the power of the engine 1. At that time, the power storage device 11 absorbs regenerative power generated by the traveling motor 9 during vehicle braking, or performs output assist for the engine 1 by supplying the stored power to the generator motor 6 or the traveling motor 9. This contributes to reduction of vehicle energy consumption and downsizing of the engine 1. Note that the hybrid system targeted by the present invention is not limited to the configuration example of FIG. 1, and can be applied to various system configurations such as a traveling unit parallel type.
  • the conventional wheel loader shown in FIG. 2 has a traveling part (wheel part) and a front hydraulic working part (lift / bucket part) as main drive parts, but a torque converter (torque converter) 2 and a transmission.
  • the power of the engine 1 is transmitted to the wheel 61 via (T / M) 3 to travel, and the working device 50 driven by the hydraulic pump 4 excavates and transports earth and sand. Since the power transmission efficiency of the torque converter is inferior to the power transmission efficiency by electricity, if the traveling drive portion of the wheel loader shown in FIG. 2 is motorized (including a parallel hybrid configuration), the power transmission efficiency from the engine 1 is improved. Is possible.
  • the wheel loader in operation frequently repeats the start / stop travel operation, when the travel drive part is electrified as described above, it is possible to recover the regenerative power during braking from the travel motor 9. become.
  • the fuel consumption can generally be reduced by several tens of percent.
  • the hybrid wheel loader of the present embodiment includes a hybrid control device 20 that is a controller that controls the energy flow, power flow, and the like of the entire hybrid system shown in FIG.
  • a hydraulic control device 21 that controls the control valve (C / V) 55 and the hydraulic pump 4
  • an engine control device 22 that controls the engine 1
  • an inverter control device 23 that controls the inverters 7 and 10
  • a DCDC converter A converter control device 24 for controlling 12 is mounted.
  • Each of the control devices 20, 21, 22, 23, and 24 includes a storage device (RAM, ROM, etc.) (not shown) in which processing contents and processing results are stored, and a process for executing the processing stored in the storage device A device (CPU or the like) (not shown) is provided. Further, the control devices 20, 21, 22, 23, and 24 are connected to each other via a CAN (Controller Area ⁇ Network), and transmit and receive command values and state quantities of the respective devices. As shown in FIG. 3, the hybrid control device 20 is positioned above each controller of the hydraulic control device 21, the engine control device 22, the inverter control device 23, and the converter control device 24, and controls the entire system. A specific operation command is given to each of the other control devices 21 to 24 so that the entire system exhibits the highest work performance.
  • CAN Controller Area ⁇ Network
  • each of the control devices 20 to 24 shown in FIG. 3 shows only a controller necessary for controlling each drive part of the hybrid system shown in FIG. In order to actually establish the vehicle, a monitor and an information system controller are required in addition, but they are not shown because they are not directly related to the present invention. Further, as shown in FIG. 3, each of the control devices 20 to 24 does not need to be separate from other control devices, and two or more control functions may be mounted on a certain control device.
  • the hybrid control device 20 includes an operation determination unit 30 that determines the current operation content of the wheel loader, and a power calculation unit 31 that distributes the output of the engine 1 and the output of the power storage device 11 to each drive unit.
  • An engine control unit 32 that determines a rotational speed command of the engine 1 according to a required output value of the entire vehicle, an M / G control unit 33 that determines a torque command of the generator motor 6 according to a power generation request value, Calculated from the hydraulic control unit 34 for calculating the tilt angle command value of the hydraulic pump 4 from the power demand value of the hydraulic pump 4 calculated from the operation amount of the lever device 56, the accelerator / brake pedal operation amount and the current vehicle speed.
  • a travel control unit 35 is provided that calculates a torque command of the travel motor 9 from the travel power request value.
  • the hybrid control device 20 includes an operation signal output from the operation lever device 56, an amount of depression of an accelerator pedal and a brake pedal installed in the cab, and an F / for selecting forward or backward as the traveling direction of the vehicle.
  • the rotational speed of the traveling motor 9 output from is input.
  • the accelerator pedal controls the number of revolutions of the engine 1, and the brake pedal controls a braking device (not shown) of the wheel 61.
  • various state quantities such as voltage and current of the power storage device 11 and power limit values are input from the power storage device 11 to the power calculation unit 31 so that the state of the power storage device 11 does not become an abnormal state such as overdischarge or overcharge.
  • charge / discharge control is performed.
  • the hybrid system in the present embodiment has the engine 1 and the power storage device 11 as a power source for driving the vehicle.
  • the power calculation unit 31 of the hybrid control device 20 mainly uses the engine 1 and the power storage device 11 for the required power of the vehicle corresponding to the sum of the required power value Pf of the work device 50 and the required power value Prun of the electric motor 9 for traveling.
  • the final power of the traveling unit and the power of the hydraulic working unit are determined according to the state.
  • FIG. 5 is a schematic diagram showing a power flow of the hybrid system in the first embodiment of the hybrid work vehicle of the present invention.
  • Pmg_in and Pmg_out indicate the input power and output power of the generator motor 6, respectively.
  • Pe and Pc indicate the output value of the engine 1 and the output value of the power storage device 11, respectively.
  • the power calculation unit 31 of the hybrid control device 20 in the present embodiment uses the engine output Pe and the power storage device output Pc as the output Pf of the work device 50 and the traveling motor according to the following formulas (1) and (2). 9, and the final power and hydraulic work of the traveling unit according to the current operation content of the wheel loader determined by the operation determination unit 30 and the states of the engine 1 and the power storage device 11. Determine the power of the department.
  • the hybrid control device 20 gives command values to the working device 50 and the traveling motor 9 according to the final power of the traveling unit and the power of the hydraulic working unit.
  • Pf Pe ⁇ Pmg_in (1)
  • Prun Pmg_out + Pc (2)
  • the wheel loader which is the subject of the present invention has several basic operation patterns, and the hybrid control device 20 needs to operate the vehicle optimally according to those operations.
  • the most typical work pattern is V-shaped excavation loading work.
  • FIG. 6 is a schematic diagram for explaining the V-shaped excavation and loading work, which is an example of the work pattern of the wheel loader.
  • the V-shaped excavation and loading work is a main operation pattern that occupies about 70% or more of the actual work of the wheel loader. This is because the wheel loader is advanced with respect to the object to be excavated, such as gravel mountain, the bucket is inserted into the object to be excavated, and the excavation work to load the transport object such as gravel into the bucket and the completion of the excavation work. Later, while lifting the bucket, the vehicle moves backward to return to the original position, redirects the traveling direction of the wheel loader to the transport vehicle, and moves forward to raise the bucket to the vessel's vessel, and gravel in the bucket.
  • the wheel loader repeatedly performs the excavation and loading work while drawing the V-shaped locus in this way.
  • FIG. 7 is a schematic diagram for explaining the traveling unit power and the hydraulic working unit power during excavation work in the first embodiment of the hybrid work vehicle of the present invention.
  • the hybrid wheel loader particularly for the excavation work, it is necessary to appropriately perform power distribution between the traveling unit power and the hydraulic working unit power of the work device 50 shown in FIG.
  • the traveling unit power is excessively distributed with respect to the hydraulic working unit power
  • the hybrid wheel loader will thrust the bucket too far into the excavation object, such as excessive gravel. Place the goods in the bucket.
  • the hydraulic working unit power is relatively small with respect to the traveling unit power, there is a possibility that the bucket cannot be lifted up.
  • the traveling unit power is excessively distributed with respect to the hydraulic working unit power
  • the hybrid wheel loader does not thrust the bucket into the excavation object so much and the hydraulic working unit power is relatively large with respect to the traveling unit power. Therefore, there is a possibility that the rising speed of the bucket becomes large. As a result, it is considered that the transported goods cannot be efficiently loaded.
  • the hybrid wheel loader it is effective to set the power of the traveling unit and the hydraulic working unit power of the working device 50 in advance so as to be optimally distributed in order to increase working efficiency during the excavation work described above. is there. It is considered that the optimum distribution ratio of the traveling section power and the hydraulic working section power is determined most effectively from the work performance in the actual vehicle, but it is not fixed to a specific distribution ratio and is allowed to some extent. It does not matter even if it has a fluctuation range. However, in excavation work, it is clear that work efficiency decreases if power distribution is biased to either the traveling part or the hydraulic work part.
  • the hybrid wheel loader in order to improve the working efficiency, it is necessary to optimally distribute the power between the traveling unit and the hydraulic working unit according to the working state at that time.
  • the hybrid wheel loader according to the present embodiment includes an operation determination unit 30 and a power calculation unit 31 in the hybrid control device 20 in order to realize such an operation.
  • FIG. 8 is a block diagram showing the input / output relationship between the operation determination unit and the power calculation unit constituting the first embodiment of the hybrid work vehicle of the present invention.
  • the operation determination unit 30 includes information on the operation and work of the vehicle, that is, the operation amount of the operation lever device 56, the depression amount of the accelerator pedal and the brake pedal, the switch signal of the F / R switch, and the rotation of the electric motor 9 for traveling. The number, the vehicle speed, and the bucket position signal are input.
  • the operation determination unit 30 determines the current operation content of the wheel loader based on the input information. Further, the operation determination unit 30 outputs the determined operation content of the wheel loader, the hydraulic power request value Pf, and the travel power request value Prun to the power calculation unit 31.
  • the power calculation unit 31 receives an output restriction signal from the power storage device 11 and an engine output signal from the engine 1. The power calculation unit 31 determines the final power of the traveling unit and the power of the hydraulic working unit according to these input signals.
  • FIG. 9 is a block diagram showing the configuration and processing contents of the operation determination unit constituting the first embodiment of the hybrid work vehicle of the present invention.
  • the operation determination unit 30 includes a hydraulic power request calculation unit 40, a travel power request calculation unit 41, and an operation calculation unit 42.
  • the hydraulic power request calculation unit 40 inputs the operation amount of the operation lever device 56 and the vehicle speed, and calculates the hydraulic power request value Pf.
  • the calculation method for example, the operation of the working device 50 according to the operation amount is defined, and the power of the hydraulic pump 4 that can realize the operation is determined.
  • the method for determining the power of the hydraulic pump 4 is not particularly limited.
  • the power magnitude is determined in advance according to the operation amount of the operation lever device 56, and the table is searched in the control device. In this case, there is an advantage that a tuning operation can be easily performed.
  • the travel power request calculation unit 41 inputs the accelerator pedal and brake pedal depression amounts, the F / R switch switch signal, the rotational speed of the travel motor 9, and the vehicle speed, and calculates the travel power request value Prun.
  • the calculation method here may also be determined by determining power corresponding to each pedal depression amount in the same manner as the hydraulic power requirement value Pf and performing a table search or the like in the control device.
  • the operation calculation unit 42 receives the vehicle speed, the bucket position signal, the hydraulic power request value Pf calculated by the hydraulic power request calculation unit 40, and the travel power request value Prun calculated by the travel power request calculation unit 41.
  • the operation content of the wheel loader is determined. Specifically, each input value is compared with a threshold value of the hydraulic power requirement value Pf for a preset vehicle speed, a threshold value of the traveling power requirement value Prun, and a threshold value of the bucket position. It is determined that it is excavation work on the condition that all exceeded the threshold value.
  • the excavation work of the wheel loader is a combined operation of the traveling unit and the working unit in which the bucket position is lowered to advance the vehicle and raise the working device 50. Therefore, as described above, the excavation work of the wheel loader is determined by monitoring the bucket position, the acceleration state of the vehicle, and the hydraulic power request value Pf and the travel power request value Prun requested by the operator's operation. It becomes possible to do.
  • an output limit signal from the power storage device 11 and an engine output signal from the engine 1 are input to the power calculation unit 31.
  • the power calculation unit 31 first performs the above-described proper distribution with respect to the hydraulic power request value Pf, the travel power request value Prun, and the engine output.
  • the traveling unit power and the working unit power are determined.
  • the final traveling unit power and the hydraulic working unit power are determined and output by multiplying by a coefficient corresponding to the limit value.
  • the power of the traveling unit and the hydraulic working unit is distributed at an appropriate ratio.
  • work efficiency during excavation work is improved. For example, if the output ratio of the traveling unit and hydraulic working unit during excavation is set in advance to 6: 4 to 4: 6, etc., and the excavation object (ground) is hard, compare it with the output of the hydraulic working unit. When the output of the traveling unit is increased and the object to be excavated (natural ground) is soft, the output of the hydraulic working unit is increased compared to the output of the traveling unit.
  • the output from the power storage device 11 is limited when the temperature of the lithium battery rises and exceeds the threshold value, or when the output current value exceeds the threshold value. Limit battery output when exceeded.
  • the power calculation unit 31 shown in FIG. 8 inputs the operation content (excavation work) of the wheel loader, the travel power request value Prun, and the hydraulic power request value Pf. Therefore, instead of limiting only the traveling unit power command, the hydraulic working unit power command is also adjusted so as to maintain an appropriate ratio between the traveling unit power and the hydraulic working unit power set in advance. As a result, a decrease in work efficiency in excavation work can be prevented.
  • the tilt angle of the variable displacement hydraulic pump 4 from the hydraulic control unit 34 of the hybrid control device 20 shown in FIG. Control is performed to lower the value.
  • FIG. 10 is a flowchart showing the processing procedure of the hybrid control device constituting the first embodiment of the hybrid work vehicle of the present invention.
  • the operation determination unit 30 of the hybrid control device 20 determines whether or not the current work content of the wheel loader is excavation work (step S100). Specifically, in the motion calculation unit 42 of the motion determination unit 30, the vehicle speed, the bucket position signal, the hydraulic power request value Pf, and the travel power request value Prun are input, and the input signal and each predetermined threshold value are respectively input. By comparing, it is determined whether or not the current operation content of the wheel loader is excavation work. The operation determination unit 30 proceeds to (Step S101) when the current operation content of the wheel loader is determined to be excavation work, and ends the process otherwise.
  • the power calculation unit 31 of the hybrid control device 20 determines whether or not the output limitation of the power storage device 11 has occurred (step S101). Specifically, the power calculation unit 31 makes a determination based on the presence or absence of an output restriction command signal from the power storage device. For example, the output restriction command is output when the temperature of the lithium battery rises and exceeds a threshold value, or when the value of the output current exceeds the threshold value. If the power calculation unit 31 determines that the output limitation of the power storage device 11 has occurred, the power calculation unit 31 proceeds to (Step S102), and otherwise ends the processing.
  • the power calculation unit 31 of the hybrid control device 20 limits the traveling unit power (step S102). Specifically, the power calculation unit 31 limits the travel power request value Prun according to the output limit amount from the power storage device 11 and outputs the travel power request value Prun as a travel unit power command.
  • the power calculation unit 31 of the hybrid control device 20 limits the hydraulic working unit power so that the ratio between the traveling unit power and the hydraulic working unit power is set in advance (step S103). More specifically, the power calculation unit 31 determines the hydraulic working unit power by limiting the hydraulic power request value Pf so as to have a predetermined power ratio with the output limited travel unit power command, and the hydraulic working unit power command. Output as.
  • the power ratio between the traveling unit and the hydraulic working unit can be optimally controlled even when the power storage device 11 is limited in output. This makes it possible to improve the work efficiency under the output restriction.
  • the hybrid is achieved by limiting the output of the power storage device 11 to the required power of the vehicle. Even when the output power of the system is limited, a hybrid work vehicle with high work efficiency can be provided.
  • FIG. 11 is a flowchart showing the processing procedure of the hybrid control device constituting the second embodiment of the hybrid work vehicle of the present invention.
  • the configuration and operation method of the hybrid work vehicle in the present embodiment are substantially the same as those in the first embodiment.
  • the first embodiment is directed to a hybrid system that includes a large-capacity power storage device 11 and is designed on the assumption that the power of the power storage device 11 is used in normal operation (the engine 1 is downsized).
  • the second embodiment is different from the second embodiment in that it includes an engine 1 having a somewhat large capacity, and the power of the power storage device 11 is intended for a hybrid system that is used only for assisting when the power of the engine 1 is insufficient.
  • FIG. 11 is a flowchart showing the processing procedure of the hybrid control device constituting the second embodiment of the hybrid work vehicle of the present invention.
  • the operation determination unit 30 of the hybrid control device 20 determines whether or not the current work content of the wheel loader is excavation work (step S110). Specifically, in the motion calculation unit 42 of the motion determination unit 30, the vehicle speed, the bucket position signal, the hydraulic power request value Pf, and the travel power request value Prun are input, and the input signal and each predetermined threshold value are respectively input. By comparing, it is determined whether or not the current operation content of the wheel loader is excavation work. The operation determination unit 30 proceeds to (Step S111) when the current operation content of the wheel loader is determined to be excavation work, and ends the process otherwise.
  • the power calculation unit 31 of the hybrid control device 20 determines whether or not the output limitation of the power storage device 11 has occurred (step S111). Specifically, the power calculation unit 31 makes a determination based on the presence or absence of an output restriction command signal from the power storage device. For example, the output restriction command is output when the temperature of the lithium battery rises and exceeds a threshold value, or when the value of the output current exceeds the threshold value. The power calculation unit 31 proceeds to (Step S112) when determining that the output restriction of the power storage device 11 has occurred, and ends the process otherwise.
  • the power calculation unit 31 of the hybrid control device 20 determines whether or not the engine 1 can output the output restriction of the power storage device 11 (step S112). Specifically, in the power calculation unit 31, whether or not the engine 1 can output the limit for the output limit from the power storage device 11 (whether or not the current output of the engine 1 has a margin) is determined. judge. The power calculation unit 31 proceeds to (step S113) when it is determined that the engine 1 can output the output restriction of the power storage device 11, and proceeds to (step S115) otherwise.
  • the power calculation unit 31 of the hybrid control device 20 compensates the output by the engine 1 and determines the traveling unit power (step S113). Specifically, by increasing the output of the engine 1, the traveling unit power is determined while compensating for the output limit of the power storage device 11.
  • Step S112 when it is determined that the engine 1 cannot output the output of the power storage device 11, the power calculation unit 31 of the hybrid control device 20 limits the travel unit power (Step S115). Specifically, the power calculation unit 31 limits the travel power request value Prun according to the output limit amount from the power storage device 11 and outputs the travel power request value Prun as a travel unit power command.
  • the power calculation unit 31 of the hybrid control device 20 limits the hydraulic working unit power so that the ratio between the traveling unit power and the hydraulic working unit power is set in advance (step S114). Specifically, in the power calculation unit 31, the hydraulic power request value Pf is adjusted so that the predetermined power ratio with the travel unit power command whose output is limited or the output compensated travel unit power command and the hydraulic work unit power is adjusted. Is output as a hydraulic work unit power command.
  • the wheel loader even when the power storage device 11 is limited in output, the wheel loader has high work efficiency without limiting the power of the vehicle itself. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

車両の要求動力に対して、蓄電装置の出力制限等によりハイブリッドシステムの出力パワーが制限される場合においても、作業効率の高いハイブリッド式作業車両を提供する。 走行用電動機(9)を有する走行部と、油圧ポンプ(4)を有する油圧作業部と、操作レバー装置の操作量とアクセルペダル及びブレーキペダルの踏み込み量と車速とを入力し、現在の車両の動作状態を判定する動作判定部(30)と,エンジン(1)の出力値と蓄電装置(11)の出力値とを入力し、走行部の動力と油圧作業部の動力とを算出し制御する動力演算部(31)とを有する制御装置(20)とを備え、動作判定部(30)が現在の車両の動作状態を走行部と油圧作業部との複合動作である掘削作業であると判定したとき、動力演算部(31)がエンジン(1)の出力値(Pe)と蓄電装置(11)の出力値(Pc)の合計値を、予め設定された比率配分となるように、走行部の出力(Prun)と油圧作業部の出力(Pf)を算出し制御する。

Description

ハイブリッド式作業車両
 本発明は、ハイブリッド式作業車両に関する。
 近年、環境問題、原油高騰などの点から、各工業製品に対して省エネ志向が強まっている。これまでディーゼルエンジンによる油圧駆動システムが中心であった建設車両、作業用車両等の分野においても、その傾向にあり、電動化による高効率化、省エネルギー化の事例が増加してきている。例えば、前述の建設車両や作業用車両の駆動部分を電動化、すなわち駆動源を電動機とした場合、排気ガスの低減のほか、エンジンの高効率駆動(ハイブリッド機の場合)、動力伝達効率の向上、回生電力の回収など多くの省エネルギー効果が期待できる。このため、油圧ショベル、エンジン式フォークリフトなどにおいて、ディーゼルエンジンと電気モータを組み合わせた「ハイブリッド車両」が製品化されて始めている。
 このような駆動部分を電動化した建設車両、作業用車両の中で、ハイブリッド化した場合に比較的大きな燃費低減効果が見込まれる車両としてホイールローダがある。従来のホイールローダは、例えば、トルクコンバータ(トルコン)およびトランスミッション(T/M)を介してエンジンの動力をタイヤに伝えて走行を行いながら、車両前方に取り付けられた油圧作業部のバケット部分で土砂等を掘削・運搬する作業用車両である。このようなホイールローダの走行駆動部分を電動化した場合、トルコン及びトランスミッション等からなる走行部分の動力伝達効率を電気による動力伝達効率まで向上させることが可能となる。さらにホイールローダでは、作業中、頻繁に発進・停止の走行動作を繰り返すため、走行駆動部分を電動化した場合には、走行用の電動機から制動時の回生電力回収が見込める。
 このようなハイブリッド化したホイールローダにおいて、油圧ポンプと走行用電動機へのパワー配分に起因する乗り心地の悪化を抑制するために、エンジン及び蓄電装置から供給されるパワーを適切に制御するものが開示されている(例えば、特許文献1参照)。具体的には、作業車両の要求パワーがハイブリッドシステムの出力可能パワーより大きいとき、油圧ポンプの実際の油圧パワーを要求値まで制限をかけながら増加させると共に、この制限以下の値で走行パワーを要求値から減少させている。
特開2013-39875号公報
 上記従来技術では、作業車両の要求パワーがハイブリッドシステムの出力可能パワーより大きいときに、油圧パワーを要求値まで制限をかけながら増加させると共に、蓄電装置からの走行パワーを要求値から制限値以下の値で減少させている。このため、このような出力パワーの制限が発生すると、作業車両における走行パワーに対する油圧パワーの比率が増加することになる。
 ところで、ホイールローダで砂利山等の掘削対象物を掘削する場合、まず、ホイールローダを掘削対象物に対して前進させ、バケットを掘削対象物に突っ込むような形で貫入させて、砂利等を積み込んだバケットをリフトアップしながら後進する。この掘削作業において、掘削対象物へバケットを貫入させる際に、ホイールローダの走行出力を制御することが重要であり、バケットをリフトアップする際には油圧出力を制御することが重要になる。具体的には、適切な走行出力で掘削対象物に突っ込みバケットを貫入させる必要がある。走行出力が小さいと、バケットが掘削対象物に十分貫入されないため作業効率が低下する。
 上述した従来技術のハイブリッドホイールローダの場合、出力パワーの制限が発生すると、油圧パワーは増加させるが走行パワーは減少させる。従って、掘削作業において、出力パワーの制限が発生すると、走行パワーが減少するので、掘削対象物へバケットを貫入させる際の動力が不足してしまう。この結果、バケットに運搬物を十分積み込むことができなくなるので、作業効率の低下を招くことが考えられる。
 本発明は、上述の事柄に基づいてなされたもので、その目的は、走行駆動部を電動化したハイブリッド式作業車両において、車両の要求動力に対して、蓄電装置の出力制限等によりハイブリッドシステムの出力パワーが制限される場合においても、作業効率の高いハイブリッド式作業車両を提供することにある。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、エンジンと蓄電装置とからなる動力源と、前記エンジンの出力軸に連結された発電電動機と,車輪と,前記車輪を駆動する走行用電動機と,前記発電電動機及び前記走行用電動機のそれぞれに前記蓄電装置からの電力を授受するインバータとを有する走行部と、前記発電電動機の回転軸に連結された油圧ポンプと,前記油圧ポンプから供給される圧油によって駆動される複数の油圧アクチュエータと,前記複数の油圧アクチュエータの駆動を指令する操作レバー装置とを有する油圧作業部と、前記エンジンの回転数を制御するアクセルペダルと、前記車輪の制動装置を制御するブレーキペダルと、前記操作レバー装置の操作量と前記アクセルペダル及び前記ブレーキペダルの踏み込み量と車速とを入力し、現在の車両の動作状態を判定する動作判定部と,前記エンジンの出力値と前記蓄電装置の出力値とを入力し、前記走行部の動力と前記油圧作業部の動力とを算出し制御する動力演算部とを有する制御装置とを備え、前記制御装置は、前記動作判定部が現在の車両の動作状態を前記走行部と前記油圧作業部との複合動作である掘削作業であると判定したとき、前記動力演算部が前記エンジンの出力値と前記蓄電装置の出力値の合計値を、予め設定された比率配分となるように、前記走行部の出力と前記油圧作業部の出力を算出し制御することを特徴とする。
 本発明によれば、走行駆動部を電動化したハイブリッド式作業車両において、車両の要求動力に対して、蓄電装置の出力制限等によりハイブリッドシステムの出力パワーが制限される場合においても、作業効率の高いハイブリッド式作業車両を提供することができる。
本発明のハイブリッド式作業車両の第1の実施の形態を適用するホイールローダのシステム構成図である。 従来のホイールローダの代表的なシステム構成図である。 本発明のハイブリッド式作業車両の第1の実施の形態を構成する制御装置の構成図である。 本発明のハイブリッド式作業車両の第1の実施の形態を構成するハイブリッド制御装置の構成を示すブロック図である。 本発明のハイブリッド式作業車両の第1の実施の形態におけるハイブリッドシステムのパワーフローを示す模式図である。 ホイールローダの作業パターンの一例であるV字掘削積込作業を説明する模式図である。 本発明のハイブリッド式作業車両の第1の実施の形態における掘削作業時の走行部パワーと油圧作業部パワーとを説明する模式図である。 本発明のハイブリッド式作業車両の第1の実施の形態を構成する動作判定部と動力演算部の入出力関係を示すブロック図である。 本発明のハイブリッド式作業車両の第1の実施の形態を構成する動作判定部の構成と処理内容を示すブロック図である。 本発明のハイブリッド式作業車両の第1の実施の形態を構成するハイブリッド制御装置の処理手順を示すフローチャート図である。 本発明のハイブリッド式作業車両の第2の実施の形態を構成するハイブリッド制御装置の処理手順を示すフローチャート図である。
 以下、ハイブリッド式作業車両としてハイブリッド式ホイールローダを例にとって本発明の実施の形態を図面を用いて説明する。
 図1は本発明のハイブリッド式作業車両の第1の実施の形態を適用するハイブリッド式ホイールローダのシステム構成図、図2は従来のホイールローダの代表的なシステム構成図、図3は本発明のハイブリッド式作業車両の第1の実施の形態を構成する制御装置の構成図、図4は本発明のハイブリッド式作業車両の第1の実施の形態を構成するハイブリッド制御装置の構成を示すブロック図である。
 図1に示すハイブリッド式ホイールローダは、動力源として、エンジン1と蓄電装置11を備え、主な駆動部として、電動化した走行部(ホイール部分)とフロントの油圧作業部(リフト/バケット部分)とを有している。ハイブリッド式ホイールローダの走行部は、エンジン1の出力軸に連結された発電電動機(モータ/ジェネレータ(M/G))6と、発電電動機6を制御するインバータ7と、4つの車輪61を有する走行体60と、走行体60のプロペラシャフト8に取り付けられ4つの車輪61を駆動する走行用電動機9と、走行用電動機9を制御するインバータ10と、蓄電装置11の出力電圧の昇圧降圧制御を行うDCDCコンバータ12と、制御装置200とを備えている。
 ハイブリッド式ホイールローダの油圧作業部は、発電電動機6の回転軸に連結された可変容量型の油圧ポンプ4と、バケット及びリフトアーム(図示せず)を有し車体前方に取り付けられた作業装置50と、コントロールバルブ55を介して油圧ポンプ4から供給される圧油によって駆動される油圧アクチュエータ(バケットシリンダ51、リフトシリンダ52及びステアリングシリンダ53)と、油圧アクチュエータ51,52,53を駆動するための操作信号を操作量に応じて出力する操作装置(操作レバー装置56及び図示しないステアリングホイール)とを備えている。
 バケットシリンダ51及びリフトシリンダ52は、キャブ内に設置された操作レバー装置56の操作量に応じて出力される操作信号(油圧信号)に基づいて駆動される。リフトシリンダ52は、車体前方に回動可能に固定されたリフトアームに取り付けられており、操作レバー装置56からの操作信号に基づいて伸縮してリフトアームを上下に回動させる。バケットシリンダ51は、リフトアームの先端に回動可能に固定されたバケットに取り付けられており、操作レバー装置56からの操作信号に基づいて伸縮してバケットを上下に回動させる。ステアリングシリンダ53は、キャブ内に設置されたステアリングホイール(図示せず)の操舵量に応じて出力される操作信号(油圧信号)に基づいて駆動される。ステアリングシリンダ53は、各車輪61に連結されており、ステアリングホイールからの操作信号に基づいて伸縮して車輪61の舵角を変更する。車輪61の近傍には、回転速度を検出する速度センサ62が配置されている。
 蓄電装置11としては、リチウム電池もしくは電気二重層キャパシタといった大容量の蓄電装置が好ましい。本実施の形態における蓄電装置11は、DCDCコンバータ12によってDCバス部のシステム電圧の昇降圧制御を行い、インバータ7,10(すなわち、発電電動機6及び走行用電動機9)との間で直流電力の授受を行う。
 上記のように構成されるハイブリッド式ホイールローダでは、土砂などの掘削作業を行うための作業装置50に可変容量型の油圧ポンプ4から適宜圧油を供給することで目的に応じた作業を実施する。また、走行体60の走行動作は、主にエンジン1の動力により発電電動機6で発電した電力を利用し、走行用電動機9を駆動することにより行う。その際、蓄電装置11では、車両制動時に走行用電動機9が発生する回生電力を吸収したり、発電電動機6又は走行用電動機9に蓄電電力を供給することでエンジン1に対する出力アシストを行ったりすることで、車両の消費エネルギー低減とエンジン1の小型化に寄与する。なお、本発明が対象とするハイブリッドシステムは、図1の構成例に限られるものではなく、走行部パラレル型等の多様なシステム構成にも適用可能である。
 図2に示す従来のホイールローダは、主な駆動部として、走行部(ホイール部分)とフロントの油圧作業部(リフト/バケット部分)とを有しているが、トルクコンバータ(トルコン)2およびトランスミッション(T/M)3を介してエンジン1の動力を車輪61に伝えて走行を行い、さらに油圧ポンプ4によって駆動される作業装置50で土砂等を掘削・運搬する。トルコンの動力伝達効率は電気による動力伝達効率より劣るため、図2に示したホイールローダの走行駆動部分を電動化(パラレル式ハイブリッド構成も含む)すると、エンジン1からの動力伝達効率を向上させることが可能となる。さらに、作業中のホイールローダでは頻繁に発進・停止の走行動作が繰り返されるため、上記のように走行駆動部分を電動化した場合には走行用電動機9から制動時の回生電力の回収が見込めるようになる。このようにホイールローダの駆動装置の一部を電動化してハイブリッド化すると、一般に燃料消費量を数10%程度低減可能になる。
 図3に示すように、本実施の形態のハイブリッド式ホイールローダには、制御装置200として、図1に示したハイブリッドシステム全体のエネルギーフローやパワーフロー等の制御を行うコントローラであるハイブリッド制御装置20と、コントロールバルブ(C/V)55や油圧ポンプ4を制御する油圧制御装置21と、エンジン1の制御を行うエンジン制御装置22と、インバータ7,10を制御するインバータ制御装置23と、DCDCコンバータ12を制御するコンバータ制御装置24が搭載されている。
 各制御装置20,21,22,23,24は、処理内容や処理結果が記憶される記憶装置(RAM、ROM等)(図示せず)と、当該記憶装置に記憶された処理を実行する処理装置(CPU等)(図示せず)を備えている。また、各制御装置20,21,22,23,24は、CAN(Controller Area Network)を介して互いに接続されており、相互に各機器の指令値及び状態量を送受信している。ハイブリッド制御装置20は、図3に示すように、油圧制御装置21、エンジン制御装置22、インバータ制御装置23及びコンバータ制御装置24の各コントローラの上位に位置し、システム全体の制御を行っており、システム全体が最高の作業性能を発揮するように他の各制御装置21~24に具体的動作の指令を与える。
 なお、図3に示した各制御装置20~24は、図1に示すハイブリッドシステムの各駆動部分を制御するために必要なコントローラのみを示している。実際車両を成立させる上では、その他にモニタや情報系のコントローラが必要となってくるが、それらは本発明と直接的な関係が無いため図示していない。また、各制御装置20~24は、図3に示すように他の制御装置と別体である必要はなく、ある1つの制御装置に2つ以上の制御機能を実装しても構わない。
 ハイブリッド制御装置20は、図4に示すように、ホイールローダの現在の動作内容を判定する動作判定部30と、エンジン1の出力と蓄電装置11の出力を各駆動部に分配する動力演算部31と、車両全体の要求出力値に応じてエンジン1の回転数指令を決定するエンジン制御部32と、発電要求値に応じて発電電動機6のトルク指令を決定するM/G制御部33と、操作レバー装置56の操作量等から演算された油圧ポンプ4の動力要求値から油圧ポンプ4の傾転角指令値を演算する油圧制御部34と、アクセル/ブレーキペダル操作量及び現在の車速から演算された走行動力要求値から走行用電動機9のトルク指令を演算する走行制御部35を備えている。
 ハイブリッド制御装置20には、操作レバー装置56から出力された操作信号と、キャブ内に設置されたアクセルペダル及びブレーキペダルの踏み込み量と、車両の進行方向として前進又は後退を選択するためのF/Rスイッチから出力され当該スイッチ位置(前進又は後退)を示すスイッチ信号(F/R信号)と、速度センサ62によって検出された車輪61の回転速度から演算される車両速度(車速)と、インバータ10から出力される走行用電動機9の回転数とが入力されている。なお、アクセルペダルはエンジン1の回転数を制御するものであり、ブレーキペダルは車輪61の制動装置(図示せず)を制御するものである。また、蓄電装置11から蓄電装置11の電圧や電流などの各種状態量や電力制限値を動力演算部31に入力して、蓄電装置11の状態が過放電や過充電のような異常状態とならないように充放電制御が実施される。
 このように、本実施の形態におけるハイブリッドシステムは、車両を駆動するための動力源としてエンジン1ならびに蓄電装置11を有している。ハイブリッド制御装置20の動力演算部31は、主に作業装置50の動力要求値Pfと走行用電動機9の動力要求値Prunの和に相当する車両の要求動力に対して、エンジン1及び蓄電装置11の状態に応じて、最終的な走行部のパワーと油圧作業部のパワーとを決定する。
 図5は本発明のハイブリッド式作業車両の第1の実施の形態におけるハイブリッドシステムのパワーフローを示す模式図である。ここで、Pmg_in、Pmg_outは、それぞれ発電電動機6の入力パワー及び出力パワーを示している。また、Pe、Pcは、それぞれエンジン1の出力値及び蓄電装置11の出力値を示している。ここで、本実施の形態におけるハイブリッド制御装置20の動力演算部31は、下記式(1)及び(2)にしたがって、エンジン出力Peと蓄電装置出力Pcを作業装置50の出力Pfと走行用電動機9の出力Prunに分配する処理を行うと共に、動作判定部30が判定したホイールローダの現在の動作内容と、エンジン1及び蓄電装置11の状態に応じて、最終的な走行部のパワーと油圧作業部のパワーとを決定する。ハイブリッド制御装置20は、この最終的な走行部のパワーと油圧作業部のパワーに応じて作業装置50及び走行電動機9に指令値を与える。
  Pf  = Pe - Pmg_in …式(1)
  Prun = Pmg_out + Pc …式(2)
 ところで、本発明で対象としているホイールローダには、いくつかの基本的動作パターンがあり、ハイブリッド制御装置20は、それらの動作に応じて車両を最適に稼動させる必要がある。例えば、最も代表的な作業パターンとしては、V字掘削積込作業がある。
 図6はホイールローダの作業パターンの一例であるV字掘削積込作業を説明する模式図である。V字掘削積込作業は実際のホイールローダの作業全体に対して、約7割以上を占める主な動作パターンである。これは、ホイールローダを砂利山などの掘削対象物に対して前進させ、バケットを掘削対象物に突っ込むような形で貫入させて、砂利等の運搬物をバケットに積み込む掘削作業と、掘削作業終了後にバケットをリフトしながら後進して元の位置に戻り、ホイールローダの進行方向を運搬車両へ向け直して、前進してバケットを運搬車両のベッセルまで上昇させる積車走行作業と、バケット内の砂利等の運搬物を放土することで、運搬車両に積み込むダンプ作業と、ダンプ作業終了後に後進して元の位置に戻り、ホイールローダの進行方向を砂利山などの掘削対象物へ向け直す空車走行作業とからなる。ホイールローダは、このようにV字軌跡を描きながら、掘削積込作業を繰り返し行なう。
 図7は本発明のハイブリッド式作業車両の第1の実施の形態における掘削作業時の走行部パワーと油圧作業部パワーとを説明する模式図である。ハイブリッド式ホイールローダで行なうV字掘削積込作業のうち、特に掘削作業については、図7に示す走行部パワーと作業装置50の油圧作業部パワーとの動力配分を適正に行う必要がある。例えば、上述した掘削作業を行なう際に、油圧作業部パワーに対して走行部パワーを過大に配分すると、ハイブリッド式ホイールローダは、バケットを掘削対象物に突っ込みすぎることになり、過重な砂利等の運搬物をバケットに乗せる。このとき、油圧作業部パワーが走行部パワーに対して相対的に小さくなっているので、バケットをリフトアップできなくなる可能性が生じる。一方、油圧作業部パワーに対して走行部パワーを過小に配分すると、ハイブリッド式ホイールローダは、バケットを掘削対象物にあまり突っ込めなくなると共に、油圧作業部パワーが走行部パワーに対して相対的に大きくなっているため、バケットの上昇速度が大きくなる可能性が生じる。この結果、運搬物を効率よく積み込めなくなることが考えられる。
 このため、ハイブリッド式ホイールローダにおいては、上述した掘削作業時には、作業効率を上げるため、走行部のパワーと作業装置50の油圧作業部パワーを予め最適な分配となるように設定することが有効である。なお、この走行部パワーと油圧作業部パワーの最適配分率は、実車両での作業性能から決定することが最も有効と考えられるが、ある特定の分配比率に固定されるものではなく、ある程度許容される変動幅を有していてもかまわない。但し、掘削作業において、走行部、油圧作業部のいずれかに偏ったパワー配分を設定すると作業効率が低下することは明らかである。
 このようにハイブリッド式ホイールローダにおいては、作業効率の向上を図るために、その時々の作業状態に応じて、走行部と油圧作業部の最適なパワー配分が必要になる。本実施の形態におけるハイブリッド式ホイールローダは、このような動作を実現するために、ハイブリッド制御装置20内に動作判定部30と動力演算部31とを備えている。
 図8は本発明のハイブリッド式作業車両の第1の実施の形態を構成する動作判定部と動力演算部の入出力関係を示すブロック図である。動作判定部30には、車両の動作および作業に関する情報、すなわち、操作レバー装置56の操作量と、アクセルペダル及びブレーキペダル踏み込み量と、F/Rスイッチのスイッチ信号と、走行用電動機9の回転数と、車速と、バケット位置の信号とが入力されている。動作判定部30は、これらの入力情報に基づいてホイールローダの現在の動作内容を判定する。また、動作判定部30からは、判定したホイールローダの動作内容と油圧動力要求値Pfと走行動力要求値Prunとが動力演算部31へ出力される。動力演算部31には、上述した信号の他に蓄電装置11からの出力制限信号と、エンジン1からのエンジン出力信号とが入力されている。動力演算部31は、これらの入力信号に応じて、最終的な走行部のパワーと油圧作業部のパワーとを決定する。
 図9は本発明のハイブリッド式作業車両の第1の実施の形態を構成する動作判定部の構成と処理内容を示すブロック図である。図9に示すように動作判定部30は、油圧動力要求演算部40と走行動力要求演算部41と動作演算部42とを備えている。
 油圧動力要求演算部40は、操作レバー装置56の操作量及び車速を入力し、油圧動力要求値Pfを演算する。ここでの演算方法については、例えば、操作量に応じた作業装置50の動作を規定し、その動作が実現できる油圧ポンプ4のパワーを決定する。この油圧ポンプ4のパワーの決定方法に関しては、特に限定されるものではないが、例えば、操作レバー装置56の操作量に応じて予めパワーの大きさを決めておき、制御装置の中でテーブル検索等を行って決定するものでも良く、この場合、チューニング作業等が容易に行えるというメリットがある。
 走行動力要求演算部41は、アクセルペダル及びブレーキペダル踏み込み量、F/Rスイッチのスイッチ信号、走行用電動機9の回転数、及び車速を入力し、走行動力要求値Prunを演算する。ここでの演算方法についても、油圧動力要求値Pfと同様に各ペダル踏み込み量に応じたパワーを決めておき、制御装置の中でテーブル検索等を行って決定するものでも良い。
 動作演算部42は、車速と、バケット位置の信号と、油圧動力要求演算部40で算出した油圧動力要求値Pfと、走行動力要求演算部41で算出した走行動力要求値Prunとを入力し、ホイールローダの動作内容を判定する。具体的には、各入力値と、予め設定された車速に対する油圧動力要求値Pfの閾値と、走行動力要求値Prunの閾値と、バケット位置の閾値とを、各々比較し、これらの入力値がすべて閾値を上回ったことを条件にして、掘削作業であると判定する。
 上述したようにホイールローダの掘削作業は、バケット位置を低くして車両を前進させ、作業装置50を上昇させるという走行部と作業部の複合動作である。このため、上述したように、バケット位置と車両の加速状態と、オペレータの操作により要求されている油圧動力要求値Pfと走行動力要求値Prunとを監視することで、ホイールローダの掘削作業を判定することが可能となる。
 図8に戻り、動力演算部31には、動作判定部30が出力した信号以外に、蓄電装置11からの出力制限信号と、エンジン1からのエンジン出力信号とが入力されている。動力演算部31は、例えば、動作内容が掘削作業であるという信号が入力された場合には、まず、油圧動力要求値Pfと走行動力要求値Prunとエンジン出力に対して、上述した適正配分となるようにして走行部パワーと作業部パワーを決定する。そして、例えば、蓄電装置11からの出力制限信号がある場合には、その制限値に応じた係数を乗算することにより、最終的な走行部パワーと油圧作業部パワーを決定し出力する。このことにより、ホイールローダの掘削作業時には、走行部と油圧作業部とのパワーが適切な比率で配分される。この結果、掘削作業時の作業効率が向上する。例えば、掘削時の走行部と油圧作業部の出力比を予め6:4~4:6等に設定し、掘削対象物(地山)が固い場合には、油圧作業部の出力に比較して走行部の出力を大きくし、掘削対象物(地山)が柔らかい場合には、走行部の出力に比較して油圧作業部の出力を大きくする。
 蓄電装置11からの出力制限としては、例えば、ハイブリッドシステムを構成する蓄電装置11にリチウム電池を使用した場合、リチウム電池の温度が上昇して閾値を超えたときや、出力電流の値が閾値を超えたときなどに電池出力を制限する。このようなときに、本実施の形態においては、図8に示す動力演算部31が、ホイールローダの動作内容(掘削作業)と走行動力要求値Prunと油圧動力要求値Pfとを入力しているため、走行部パワー指令のみを制限するのではなく、予め設定された走行部パワーと油圧作業部パワーの適切な比率を保持するように油圧作業部パワー指令も調整する。この結果、掘削作業における作業効率の低下が防止できる。
 なお、油圧作業部パワー指令が制限された場合には、例えば、図4に示すハイブリッド制御装置20の油圧制御部34から油圧制御装置21を介して、可変容量型の油圧ポンプ4の傾転角度を下げる制御がなされる。
 次に、動作判定部30と動力演算部31による処理内容を図を用いて説明する。図10は本発明のハイブリッド式作業車両の第1の実施の形態を構成するハイブリッド制御装置の処理手順を示すフローチャート図である。
 ハイブリッド制御装置20の動作判定部30は、現在のホイールローダの作業内容が掘削作業か否かを判定する(ステップS100)。具体的には、動作判定部30の動作演算部42において、車速とバケット位置の信号と油圧動力要求値Pfと走行動力要求値Prunとを入力し、入力信号と予め定めた各閾値とを各々比較することで、ホイールローダの現在の動作内容が掘削作業か否かを判定する。動作判定部30は、ホイールローダの現在の動作内容が掘削作業と判定した場合は、(ステップS101)へ進み、それ以外の場合は、処理終了とする。
 ハイブリッド制御装置20の動力演算部31は、蓄電装置11の出力制限が発生しているか否かを判定する(ステップS101)。具体的には、動力演算部31において、蓄電装置からの出力制限指令信号の有無で判定する。例えば、リチウム電池の温度が上昇して閾値を超えた場合や、出力電流の値が閾値を超えた場合などに、出力制限指令が出力される。動力演算部31は、蓄電装置11の出力制限が発生していると判定した場合は、(ステップS102)へ進み、それ以外の場合は、処理終了とする。
 ハイブリッド制御装置20の動力演算部31は、走行部パワーの制限を実施する(ステップS102)。具体的には、動力演算部31において、蓄電装置11からの出力制限量に応じて、走行動力要求値Prunを制限して、走行部パワー指令として出力する。
 ハイブリッド制御装置20の動力演算部31は、予め設定された走行部パワーと油圧作業部パワーの比率となるように油圧作業部パワーの制限を実施する(ステップS103)。具体的には、動力演算部31において、出力制限された走行部パワー指令と所定のパワー比率となるように油圧動力要求値Pfを制限して油圧作業部パワーを決定し、油圧作業部パワー指令として出力する。
 以上の処理を実行することにより、蓄電装置11に出力制限が発生した場合においても、走行部と油圧作業部のパワー比率を最適に制御することができる。このことにより、出力制限下における作業効率を向上させることが可能となる。
 上述した本発明のハイブリッド式作業車両の第1の実施の形態によれば、走行駆動部を電動化したハイブリッド式作業車両において、車両の要求動力に対して、蓄電装置11の出力制限等によりハイブリッドシステムの出力パワーが制限される場合においても、作業効率の高いハイブリッド式作業車両を提供することができる。
 以下、本発明のハイブリッド式作業車両の第2の実施の形態を図面を用いて説明する。図11は本発明のハイブリッド式作業車両の第2の実施の形態を構成するハイブリッド制御装置の処理手順を示すフローチャート図である。
 本実施の形態におけるハイブリッド式作業車両は、その構成及び運用方法は第1の実施の形態と大略同様である。第1の実施の形態は、大容量の蓄電装置11を備え、通常の動作において蓄電装置11のパワーを使用する前提で設計した(エンジン1を小型化した)ハイブリッドシステムを対象としているのに対し、第2の実施の形態は、ある程度大きな容量のエンジン1を備え、蓄電装置11のパワーはエンジン1のパワーが不足した時にアシストするだけに使用するハイブリッドシステムを対象とする点が異なる。
 本実施の形態における、動作判定部30と動力演算部31による処理内容を図を用いて説明する。図11は本発明のハイブリッド式作業車両の第2の実施の形態を構成するハイブリッド制御装置の処理手順を示すフローチャート図である。
 ハイブリッド制御装置20の動作判定部30は、現在のホイールローダの作業内容が掘削作業か否かを判定する(ステップS110)。具体的には、動作判定部30の動作演算部42において、車速とバケット位置の信号と油圧動力要求値Pfと走行動力要求値Prunとを入力し、入力信号と予め定めた各閾値とを各々比較することで、ホイールローダの現在の動作内容が掘削作業か否かを判定する。動作判定部30は、ホイールローダの現在の動作内容が掘削作業と判定した場合は、(ステップS111)へ進み、それ以外の場合は、処理終了とする。
 ハイブリッド制御装置20の動力演算部31は、蓄電装置11の出力制限が発生しているか否かを判定する(ステップS111)。具体的には、動力演算部31において、蓄電装置からの出力制限指令信号の有無で判定する。例えば、リチウム電池の温度が上昇して閾値を超えた場合や、出力電流の値が閾値を超えた場合などに、出力制限指令が出力される。動力演算部31は、蓄電装置11の出力制限が発生していると判定した場合は、(ステップS112)へ進み、それ以外の場合は、処理終了とする。
 ハイブリッド制御装置20の動力演算部31は、蓄電装置11の出力制限に対しエンジン1で出力可能か否かを判定する(ステップS112)。具体的には、動力演算部31において、蓄電装置11からの出力制限量に対してその制限分をエンジン1で出力可能か否か(現在のエンジン1の出力に余裕があるか否か)を判定する。動力演算部31は、蓄電装置11の出力制限に対しエンジン1で出力可能と判定した場合は、(ステップS113)へ進み、それ以外の場合は、(ステップS115)へ進む。
 ハイブリッド制御装置20の動力演算部31は、エンジン1で出力を補償し走行部パワーを決定する(ステップS113)。具体的には、エンジン1の出力を上昇させることで、蓄電装置11の出力制限分を補償しながら走行部パワーを決定する。
 (ステップS112)において、蓄電装置11の出力制限に対しエンジン1で出力可能ではないと判定した場合、ハイブリッド制御装置20の動力演算部31は、走行部パワーの制限を実施する(ステップS115)。具体的には、動力演算部31において、蓄電装置11からの出力制限量に応じて、走行動力要求値Prunを制限して、走行部パワー指令として出力する。
 ハイブリッド制御装置20の動力演算部31は、予め設定された走行部パワーと油圧作業部パワーの比率となるように油圧作業部パワーの制限を実施する(ステップS114)。具体的には、動力演算部31において、出力制限された走行部パワー指令または出力補償された走行部パワー指令と所定のパワー比率となるように油圧動力要求値Pfを調整して油圧作業部パワーを決定し、油圧作業部パワー指令として出力する。
 上述した本発明のハイブリッド式作業車両の第2の実施の形態によれば、上述した第1の実施の形態と同様の効果を得ることができる。
 また、上述した本発明のハイブリッド式作業車両の第2の実施の形態によれば、蓄電装置11に出力制限が発生した場合においても、車両自体のパワーを制限することなく作業効率の高いホイールローダを提供することができる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 1…エンジン、2…トルクコンバータ、3…トランスミッション(T/M)、4…油圧ポンプ、6…モータジェネレータ(M/G)、7…インバータ、8…プロペラシャフト、9…走行用電動機、10…インバータ、11…蓄電装置、12…DCDCコンバータ、20…ハイブリッド制御装置、21…エンジン制御装置、22…コンバータ制御装置、23…油圧制御装置、24…インバータ制御装置、30…動作判定部、31…動力演算部、32…エンジン制御部、33…M/G制御部、34…油圧制御部、35…走行制御部、40…油圧動力要求演算部、41…走行動力要求演算部、42…動作演算部、50…作業装置、60…走行体、61…車輪、200…制御装置、Pf…油圧動力要求値、Prun…走行動力要求値

Claims (4)

  1.  エンジンと蓄電装置とからなる動力源と、
     前記エンジンの出力軸に連結された発電電動機と,車輪と,前記車輪を駆動する走行用電動機と,前記発電電動機及び前記走行用電動機のそれぞれに前記蓄電装置からの電力を授受するインバータとを有する走行部と、
     前記発電電動機の回転軸に連結された油圧ポンプと,前記油圧ポンプから供給される圧油によって駆動される複数の油圧アクチュエータと,前記複数の油圧アクチュエータの駆動を指令する操作レバー装置とを有する油圧作業部と、
     前記エンジンの回転数を制御するアクセルペダルと、
     前記車輪の制動装置を制御するブレーキペダルと、
     前記操作レバー装置の操作量と前記アクセルペダル及び前記ブレーキペダルの踏み込み量と車速とを入力し、現在の車両の動作状態を判定する動作判定部と,前記エンジンの出力値と前記蓄電装置の出力値とを入力し、前記走行部の動力と前記油圧作業部の動力とを算出し制御する動力演算部とを有する制御装置とを備え、
     前記制御装置は、前記動作判定部が現在の車両の動作状態を前記走行部と前記油圧作業部との複合動作である掘削作業であると判定したとき、前記動力演算部が前記エンジンの出力値と前記蓄電装置の出力値の合計値を、予め設定された比率配分となるように、前記走行部の出力と前記油圧作業部の出力を算出し制御する
     ことを特徴とするハイブリッド式作業車両。
  2.  請求項1に記載のハイブリッド式作業車両において、
     前記制御装置の動力演算部は、前記蓄電装置からの出力制限信号をさらに入力し、
     前記制御装置は、前記動作判定部が現在の車両の動作状態を前記走行部と前記油圧作業部との複合動作である掘削作業であると判定したとき、前記動力演算部が前記出力制限信号に応じて前記走行部の出力を制限し、前記制限された走行部の出力の大きさに応じて前記油圧作業部の出力を算出し制御する
     ことを特徴とするハイブリッド式作業車両。
  3.  請求項1に記載のハイブリッド式作業車両において、
     前記制御装置の動力演算部は、前記蓄電装置からの出力制限信号をさらに入力し、
     前記制御装置は、前記動作判定部が現在の車両の動作状態を前記走行部と前記油圧作業部との複合動作である掘削作業であると判定したとき、前記動力演算部が前記出力制限信号の分を前記エンジンの出力の増加で補償し、前記エンジンの出力値と前記蓄電装置の出力値の合計値を、予め設定された比率配分となるように、前記走行部の出力と前記油圧作業部の出力を算出し制御する
     ことを特徴とするハイブリッド式作業車両。
  4.  請求項1乃至3のいずれか1項に記載のハイブリッド式作業車両において、
     車両の進行方向として前進又は後退を選択するための前後進スイッチをさらに備え、
     前記動作判定部は、前記前後進スイッチの信号と、前記車速に替えて前記インバータからの前記走行用電動機の回転数を入力した
     ことを特徴とするハイブリッド式作業車両。
PCT/JP2015/085580 2015-03-25 2015-12-18 ハイブリッド式作業車両 WO2016151965A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580077779.XA CN107428336B (zh) 2015-03-25 2015-12-18 混合动力式作业车辆
JP2017507342A JP6434128B2 (ja) 2015-03-25 2015-12-18 ハイブリッド式作業車両
KR1020177025493A KR20170117151A (ko) 2015-03-25 2015-12-18 하이브리드식 작업 차량
EP15886517.0A EP3275753B1 (en) 2015-03-25 2015-12-18 Hybrid working vehicle
US15/560,936 US10207700B2 (en) 2015-03-25 2015-12-18 Hybrid type work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-062996 2015-03-25
JP2015062996 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016151965A1 true WO2016151965A1 (ja) 2016-09-29

Family

ID=56977118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085580 WO2016151965A1 (ja) 2015-03-25 2015-12-18 ハイブリッド式作業車両

Country Status (6)

Country Link
US (1) US10207700B2 (ja)
EP (1) EP3275753B1 (ja)
JP (1) JP6434128B2 (ja)
KR (1) KR20170117151A (ja)
CN (1) CN107428336B (ja)
WO (1) WO2016151965A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037869A1 (en) * 2017-08-25 2019-02-28 Volvo Construction Equipment Ab DRIVE SYSTEM AND METHOD FOR CONTROLLING A DRIVE SYSTEM OF A CONSTRUCTION MACHINE
JP2020153158A (ja) * 2019-03-20 2020-09-24 日立建機株式会社 ホイールローダ
US20210372079A1 (en) * 2019-02-15 2021-12-02 Sumitomo Heavy Industries, Ltd. Shovel and system
WO2022034825A1 (ja) * 2020-08-11 2022-02-17 日立建機株式会社 作業車両

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012610B2 (ja) * 2018-06-19 2022-01-28 株式会社クボタ 電力制御装置
CN109183894A (zh) * 2018-11-13 2019-01-11 唐山鼎石汽车制造有限公司 电动装载机液压泵的安装结构
EP3992043A4 (en) * 2019-06-28 2023-07-12 Kubota Corporation WORK MACHINERY
CN114148178B (zh) * 2020-09-08 2023-07-11 株洲变流技术国家工程研究中心有限公司 一种电传动***的控制方法及***
CN113459831A (zh) * 2021-08-03 2021-10-01 山东临工工程机械有限公司 电动车辆电机交互控制方法及其装置和电动车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009381A (ja) * 2003-06-18 2005-01-13 Hitachi Constr Mach Co Ltd ハイブリッド式建設機械
WO2012114782A1 (ja) * 2011-02-22 2012-08-30 日立建機株式会社 ホイールローダ
JP2013039875A (ja) * 2011-08-16 2013-02-28 Hitachi Constr Mach Co Ltd 作業車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005237178A (ja) * 2004-02-23 2005-09-02 Kobelco Contstruction Machinery Ltd 作業機械の動力源装置
JP4524679B2 (ja) * 2006-03-15 2010-08-18 コベルコ建機株式会社 ハイブリッド建設機械
US7779616B2 (en) * 2008-06-03 2010-08-24 Deere & Company Vehicle with electric hybrid powering of external loads and engine-off capability
JP5220679B2 (ja) * 2009-04-20 2013-06-26 住友重機械工業株式会社 ハイブリッド型作業機械及びハイブリッド型作業機械の制御方法
JP2013056629A (ja) * 2011-09-08 2013-03-28 Kanzaki Kokyukoki Manufacturing Co Ltd 作業車両のハイブリッド駆動システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005009381A (ja) * 2003-06-18 2005-01-13 Hitachi Constr Mach Co Ltd ハイブリッド式建設機械
WO2012114782A1 (ja) * 2011-02-22 2012-08-30 日立建機株式会社 ホイールローダ
JP2013039875A (ja) * 2011-08-16 2013-02-28 Hitachi Constr Mach Co Ltd 作業車両

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037869A1 (en) * 2017-08-25 2019-02-28 Volvo Construction Equipment Ab DRIVE SYSTEM AND METHOD FOR CONTROLLING A DRIVE SYSTEM OF A CONSTRUCTION MACHINE
US20210372079A1 (en) * 2019-02-15 2021-12-02 Sumitomo Heavy Industries, Ltd. Shovel and system
JP2020153158A (ja) * 2019-03-20 2020-09-24 日立建機株式会社 ホイールローダ
JP7085510B2 (ja) 2019-03-20 2022-06-16 日立建機株式会社 ホイールローダ
WO2022034825A1 (ja) * 2020-08-11 2022-02-17 日立建機株式会社 作業車両
JP2022032174A (ja) * 2020-08-11 2022-02-25 日立建機株式会社 作業車両
JP7130018B2 (ja) 2020-08-11 2022-09-02 日立建機株式会社 作業車両

Also Published As

Publication number Publication date
CN107428336A (zh) 2017-12-01
KR20170117151A (ko) 2017-10-20
CN107428336B (zh) 2019-08-06
EP3275753A4 (en) 2018-11-07
US20180079404A1 (en) 2018-03-22
JP6434128B2 (ja) 2018-12-05
EP3275753B1 (en) 2020-05-20
JPWO2016151965A1 (ja) 2018-02-15
US10207700B2 (en) 2019-02-19
EP3275753A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6434128B2 (ja) ハイブリッド式作業車両
US9598838B2 (en) Hybrid work vehicle with load dependent target state of charge
JP5676739B2 (ja) ホイールローダ
JP6324072B2 (ja) ハイブリッド式ホイールローダ
WO2013024869A1 (ja) 作業車両
JP6433687B2 (ja) ハイブリッド式ホイールローダ
KR101834598B1 (ko) 하이브리드식 건설 기계
US7519462B2 (en) Crowd force control in electrically propelled machine
KR101942674B1 (ko) 하이브리드 건설 기계
WO2014175195A1 (ja) ハイブリッド式作業車両
US11993919B2 (en) Work vehicle
US20240157809A1 (en) Systems and methods for a hydraulic system
JP2014231297A (ja) ハイブリッド作業機械
JP6042303B2 (ja) 作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025493

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017507342

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560936

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015886517

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE