WO2016136313A1 - ターボチャージャ及びその製造方法 - Google Patents

ターボチャージャ及びその製造方法 Download PDF

Info

Publication number
WO2016136313A1
WO2016136313A1 PCT/JP2016/050856 JP2016050856W WO2016136313A1 WO 2016136313 A1 WO2016136313 A1 WO 2016136313A1 JP 2016050856 W JP2016050856 W JP 2016050856W WO 2016136313 A1 WO2016136313 A1 WO 2016136313A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner cylinder
turbocharger
turbine
exhaust guide
exhaust
Prior art date
Application number
PCT/JP2016/050856
Other languages
English (en)
French (fr)
Inventor
悟 横嶋
飯島 徹
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2016136313A1 publication Critical patent/WO2016136313A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a turbocharger mounted on a vehicle or the like and a manufacturing method thereof.
  • Patent Document 1 Various turbochargers that increase the intake air to the internal combustion engine using the flow of exhaust gas from the internal combustion engine have been proposed (Patent Document 1 below).
  • a twin turbo 100 shown in FIG. 5 includes a turbocharger 101 having a turbine that is rotated by exhaust from an internal combustion engine, an exhaust collecting pipe 102 that is arranged downstream of the turbocharger 101 and into which exhaust flows, and a turbocharger 101
  • the compressor 103 which takes in the external intake air by rotating a turbine, and the bellows pipe 104 arrange
  • turbocharger 101 Since high temperature exhaust gas flows into the turbocharger 101 from the internal combustion engine, the turbocharger 101 is displaced by thermal expansion. However, since the bellows tube 104 is disposed on the downstream side of the turbocharger 101, displacement due to thermal expansion of the turbocharger 101 is allowed (see FIG. 6).
  • exhaust from an internal combustion engine flows into the turbocharger 101, whereby the turbine disposed in the turbocharger 101 rotates.
  • the rotation of the turbine disposed in the turbocharger 101 is transmitted to the turbine disposed in the compressor 103 via the shaft.
  • the intake air is sent to the internal combustion engine by rotating the turbine disposed in the compressor 103 and taking in the intake air.
  • the exhaust gas flowing into the turbocharger 101 flows into the exhaust collecting pipe 102 via the bellows pipe 104, and the exhaust gas flows into an exhaust pipe (not shown).
  • the bellows tube 104 disposed on the downstream side of the turbocharger 101 is required to use a high-performance member that can withstand high-temperature exhaust from the internal combustion engine. Therefore, there has been a problem that the manufacturing cost of the turbocharger 101 becomes very high.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a turbocharger that can easily and inexpensively manufacture a turbine housing that can absorb thermal expansion, and a method for manufacturing the same.
  • a turbocharger is a turbocharger including a turbine disposed in an exhaust passage, a turbine housing covering a turbine wheel of the turbine, and an exhaust pipe connecting flange disposed on the downstream side of the turbine housing.
  • An exhaust guide portion is provided between the turbine housing and the flange, and one of the exhaust guide portion and one end of the turbine housing, and the other end of the exhaust guide portion and the flange are combined.
  • the elements in the combination are fixed by welding, and the elements in the other combination are assembled slidably.
  • the turbocharger manufacturing method of the present invention includes a turbine disposed in the exhaust passage, a turbine housing that covers a turbine wheel of the turbine, and an exhaust guide portion and a flange disposed on the downstream side of the turbine housing.
  • This is a method of manufacturing a turbocharger.
  • the method of manufacturing a turbocharger according to the present invention is configured by fixing the turbine housing and the exhaust guide part by welding to form an exhaust guide part integrated with the turbine housing, and the exhaust guide part integrated with the turbine housing is used as a flange. It is characterized by inserting.
  • the flange and the exhaust guide portion are fixed by welding to form an exhaust guide portion integrated with the flange, and the turbine housing is provided in the exhaust guide portion integrated with the flange. It is characterized by inserting.
  • FIG. 1 is an enlarged cross-sectional view of a turbocharger showing a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a turbocharger showing a second embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view of a turbocharger showing a third embodiment of the present invention.
  • FIG. 4 is an enlarged cross-sectional view of a turbocharger showing a fourth embodiment of the present invention.
  • FIG. 5 is an overall view of a conventional twin turbo equipped with a turbocharger.
  • FIG. 6 is a partially enlarged view of the conventional twin turbo shown in FIG.
  • a turbocharger 1 according to the first embodiment will be described with reference to FIG.
  • the turbocharger 1 of the first embodiment includes a center housing (not shown), a turbine housing body 2 and a compressor housing (not shown).
  • a compressor housing (not shown) is fixed to one end side of a center housing (not shown), and a turbine housing body 2 is fixed to the other end side.
  • the turbine housing body 2 includes an inner cylinder 5 (turbine housing) in which an exhaust passage 27 is formed by a plurality of thin plate members, an inner cylinder fixing portion 11 to which the inner cylinder 5 is fixed, and a downstream side of the exhaust passage 27.
  • An exhaust pipe connecting flange 14 disposed, a turbine 3 disposed in the exhaust flow path 27, and a bearing 9 that supports the turbine 3 are provided. Further, an exhaust guide portion 15 is provided between the inner cylinder 5 and the flange 14.
  • the turbine 3 includes a shaft 17 that is rotatably supported by the turbine housing body 2 and a blade portion 19 (turbine wheel) that is fixed to one end of the shaft 17.
  • the inner cylinder 5 is formed by joining a first inner cylinder divided body 21 (thin plate member) and a second inner cylinder divided body 23 (thin plate member) by welding.
  • the first inner cylinder divided body 21 includes one end side 21a fixed to the inner cylinder fixing portion 11 of the turbine housing body 2 by welding, and the other end side 21b bonded to the second inner cylinder divided body 23 by welding. ing.
  • the second inner cylinder divided body 23 includes one end side 23a joined to the other end side 21b of the first inner cylinder divided body 21 by welding, and the other end side 23b inserted into the exhaust guide portion 15, and has one end A sliding portion 31 and a bent portion 29 are provided between the side 23a and the other end side 23b.
  • the sliding portion 31 is formed in a linear shape from the other end side 23 b of the second inner cylinder divided body 23. Further, a bent portion 29 is provided on the turbine housing body 2 side of the sliding portion 31, and the bent portion 29 is formed so as to be bent from the sliding portion 31.
  • butted portions 22 and 24 are provided to stand on the other end side 21b of the first inner cylinder divided body 21 and one end side 23a of the second inner cylinder divided body 23, respectively.
  • the butted portion 22 formed on the first inner cylinder divided body 21 and the butted portion 24 formed on the second inner cylinder divided body 23 are brought into contact with each other, and the end of the butted portion 22 and the end of the butted portion 24 are welded.
  • the inner cylinder 5 is sealed, and an exhaust passage 27 and a scroll chamber 25 are formed inside.
  • the scroll chamber 25 into which exhaust gas flows from an internal combustion engine (not shown) is formed so that the cross-sectional area on the upstream side is large and the cross-sectional area decreases toward the downstream side, and communicates with the exhaust flow path 27.
  • the exhaust passage 27 is provided on the downstream side of the scroll chamber 25, the blade portion 19 of the turbine 3 is disposed, and the exhaust guide portion 15 is disposed on the downstream side of the exhaust passage 27.
  • the sliding portion 31 formed on the other end side 23b of the second inner cylinder divided body 23 is slidably inserted into one end portion 15a (one end side) of the exhaust guide portion 15, and is connected to the one end portion 15a and the second end portion 15a. Between the bent part 29 of the inner cylinder division body 23, it inserts so that the predetermined clearance S may be provided. That is, the predetermined gap S is a gap between the one end portion 15 a and the bent portion 29 in the insertion direction of the sliding portion 31.
  • the other end portion 15b (the other end side) of the exhaust guide portion 15 is fixed to the flange 14 by welding E.
  • An exhaust pipe (not shown) for discharging exhaust gas is connected to the flange 14.
  • the second inner cylinder divided body 23 is bent larger than the first inner cylinder divided body 21, a force for elastically returning to the direction opposite to the blade portion 19 of the turbine 3 is always applied by the exhaust heat. Further, when the exhaust guide portion 15 and the second inner cylinder divided body 23 slide, the second inner cylinder divided body 23 tends to slide in the opposite direction to the blade portion 19 of the turbine 3. Contact between the first inner cylinder divided body 21 and the second inner cylinder divided body 23 to be formed and the blade portion 19 can be prevented.
  • a compressor housing (not shown) is fixed to one end side of a center housing (not shown), and the turbine housing body 2 is fixed to the other end side of the center housing.
  • the turbine 3 in which the shaft 17 and the blade portion 19 are integrally assembled with the turbine housing body 2 is inserted into the turbine housing body 2 in which the bearing 9 is disposed.
  • the one end side 21a of the first inner cylinder divided body 21 of the inner cylinder 5 is joined to the inner cylinder fixing portion 11 of the turbine housing body 2 by welding.
  • the one end side 23a of the 2nd inner cylinder division body 23 is joined to the other end side 21b of the 1st inner cylinder division body 21 by welding, and the inner cylinder 5 is formed.
  • the other end side 23 b of the second inner cylinder divided body 23 is inserted into the exhaust guide portion 15, and the bent portion 29 provided in the second inner cylinder divided body 23 and one end portion 15 a of the exhaust guide portion 15
  • the other end side 23b of the second inner cylinder divided body 23 is inserted so as to be slidable with respect to the exhaust guide portion 15 so as to leave a gap S therebetween.
  • the other end portion 15b of the exhaust guide portion 15 is fixed to the flange 14 by welding E to constitute the exhaust guide portion 15 in which the flange 14 is integrated, and the exhaust guide portion in which the flange 14 is integrated.
  • the exhaust gas that has rotated the turbine 3 passes through the exhaust flow path 27 and flows into the exhaust guide portion 15.
  • the inner cylinder 5 forming the scroll chamber 25 and the exhaust passage 27 is displaced by thermal expansion. Since the sliding portion 31 is slidably inserted into the exhaust guide portion 15 on the downstream side, the sliding portion 31 slides on the inner periphery of the exhaust guide portion 15 to allow displacement of the inner cylinder 5. Yes.
  • the sliding portion 31 of the second inner cylinder divided body 23 is slidably inserted into the exhaust guide portion 15, the inner cylinder 5 is thermally expanded due to the heat of the exhaust.
  • the sliding portion 31 slides on the exhaust guide portion 15, displacement due to thermal expansion of the inner cylinder 5 can be allowed.
  • a predetermined gap S is provided between the one end portion 15a of the exhaust guide portion 15 and the bent portion 29 of the second inner cylinder divided body 23 of the inner cylinder 5. Even when the cylinder 5 is displaced due to thermal expansion, since the gap S is provided, displacement due to thermal expansion of the inner cylinder 5 can be allowed while preventing leakage of exhaust gas.
  • the exhaust guide portion 15 is inserted into the inner cylinder 5 and no joining is performed between the inner cylinder 5 and the exhaust guide portion 15, the manufacturing process can be facilitated. That is, the turbocharger housing part A that can absorb thermal expansion can be manufactured easily and at low cost.
  • one end 15 a (one end side) of the exhaust guide portion 15 and the other end side 23 b of the second inner cylinder divided body 23 of the inner cylinder 5 are welded E. While being fixed, the other end portion 15b (the other end side) of the exhaust guide portion 15 is inserted into the hole portion 14a of the flange 14 and is slidably attached.
  • a predetermined gap S ⁇ b> 2 is provided between the hole portion 14 a of the flange 14 and the bent portion 29 of the second inner cylinder divided body 23.
  • the predetermined gap S ⁇ b> 2 is a gap between the hole portion 14 a of the flange 14 and the bent portion 29 in the insertion direction of the exhaust guide portion 15.
  • the other end portion 15b (the other end side) of the exhaust guide portion 15 is slidably inserted into the hole portion 14a of the flange 14, so that the inner cylinder 5 is thermally expanded by the heat of the exhaust. Even in this case, by allowing the other end portion 15b (the other end side) to slide with the hole portion 14a of the flange 14, the displacement due to the thermal expansion of the inner cylinder 5 is allowed while preventing leakage of exhaust gas. Can do.
  • the predetermined gap S2 is provided between the hole 14a of the flange 14 and the bent portion 29 of the second inner cylinder divided body 23 of the inner cylinder 5, the inner cylinder 5 Even when is displaced due to thermal expansion, since the gap S2 is provided, displacement due to thermal expansion of the inner cylinder 5 can be allowed while preventing leakage of exhaust gas.
  • the exhaust guide integrated with the inner cylinder 5 by fixing the one end 15 a of the exhaust guide 15 and the other end 23 b of the second inner cylinder divided body 23 of the inner cylinder 5 by welding E.
  • the other end portion 15 b of the exhaust guide portion 15 that is integrated with the inner cylinder 5 is inserted into the hole portion 14 a of the flange 14. Therefore, the turbocharger housing part A in which the inner cylinder 5 as the turbine housing, the exhaust guide part 15 and the flange 14 are integrally formed can be manufactured easily and at low cost.
  • the other end portion 15 b (the other end side) of the exhaust guide portion 15 is inserted into the hole portion 14 a of the flange 14, and the other end portion 15 b (the other end side) and the flange 14 are joined. Since this is not performed, the manufacturing process can be facilitated. That is, the turbocharger housing part A that can absorb thermal expansion can be manufactured easily and at low cost.
  • the other end side 23 b of the second inner cylinder divided body 23 of the inner cylinder 5 is inserted into one end portion 15 a (one end side) of the exhaust guide portion 15.
  • the other end portion 15b (the other end side) of the exhaust guide portion 15 and the flange 14 are fixed by welding E.
  • An outer cylinder 7 is provided so as to cover the inner cylinder 5 with a predetermined distance from the inner cylinder 5.
  • the outer cylinder 7 has one end fixed to the outer cylinder fixing portion 13 of the turbine housing body 2 by welding and the other end fixed to the flange 14 by welding E.
  • the outer cylinder 7 is connected to the inner cylinder 5. It is provided so as to cover the inner cylinder 5 with a predetermined interval. Further, the abutting portions 22 and 24 of the inner cylinder 5 protrude outward from the inner cylinder insertion portion 8 provided in the outer cylinder 7.
  • Other configurations are the same as those in the first embodiment.
  • the outer cylinder 7 is provided so as to cover the inner cylinder 5, even if the exhaust gas leaks from the gap between the inner cylinder 5 and the exhaust guide portion 15, the inner cylinder 5 and the outer cylinder 7. It is possible to prevent the exhaust gas from leaking out of the outer cylinder 7 by being filled with the exhaust gas.
  • the outer cylinder 7 covers the inner cylinder 5 with a predetermined gap between the outer cylinder 7 and the inner cylinder 5, the inner cylinder 5 can be protected and insulated at the same time, and the rigidity as the turbine housing can be increased. .
  • the one end 15 a (one end side) of the exhaust guide portion 15 and the other end 23 b of the second inner cylinder divided body 23 of the inner cylinder 5 are welded E. While being fixed, the other end portion 15b (the other end side) of the exhaust guide portion 15 is inserted into the hole portion 14a of the flange 14 and is slidably attached.
  • An outer cylinder 7 is provided so as to cover the inner cylinder 5 with a predetermined distance from the inner cylinder 5.
  • the outer cylinder 7 has one end fixed to the outer cylinder fixing portion 13 of the turbine housing body 2 by welding and the other end fixed to the flange 14 by welding E.
  • the outer cylinder 7 is connected to the inner cylinder 5. It is provided so as to cover the inner cylinder 5 with a predetermined interval. Further, the abutting portions 22 and 24 of the inner cylinder 5 protrude outward from the inner cylinder insertion portion 8 provided in the outer cylinder 7.
  • Other configurations are the same as those in the second embodiment described above.
  • the outer cylinder 7 is provided so as to cover the inner cylinder 5, even if the exhaust gas leaks from the gap between the inner cylinder 5 and the exhaust guide portion 15, the inner cylinder 5 and the outer cylinder 7. It is possible to prevent the exhaust gas from leaking out of the outer cylinder 7 by being filled with the exhaust gas.
  • the outer cylinder 7 covers the inner cylinder 5 at a predetermined interval from the inner cylinder 5, the outer cylinder 7 can be insulated while being protected, and the rigidity as the turbine housing can be increased.
  • the inner cylinder is comprised from the 1st inner cylinder division body and the 2nd inner cylinder division body, you may form an inner cylinder with a single member.
  • the turbine housing is slidably inserted into the exhaust guide portion or the exhaust guide portion into the hole of the flange, even when the turbine housing is thermally expanded due to the heat of the exhaust.
  • the turbine housing or the exhaust guide portion slides, displacement due to thermal expansion of the turbine housing can be allowed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Exhaust Silencers (AREA)

Abstract

 排気流路27内に配置されるタービン3と、タービン3のタービンホイール19を覆うタービンハウジング5と、タービンハウジング5の下流側に配置される排気管接続用のフランジ14とを備えたターボチャージャ1であって、タービンハウジング5とフランジ14との間に排気ガイド部15を有し、排気ガイド部15の一端側15aとタービンハウジング5の組合せ、及び、排気ガイド部15の他端側とフランジ14の組合せのうち、いずれか一方の組合せ内の要素同士を溶接Eにより固定し、他方の組合せ内の要素同士を摺動自在に組み立てた。

Description

ターボチャージャ及びその製造方法
 本発明は、車両等に搭載されるターボチャージャ及びその製造方法に関する。
 内燃機関からの排気の流れを利用し、内燃機関への吸気を増加させるターボチャージャは種々提案されている(下記特許文献1)。
 図5に示すツインターボ100は、内燃機関からの排気によって回転するタービンを有するターボチャージャ101と、ターボチャージャ101の下流側に配置されて排気が流入する排気集合管102と、ターボチャージャ101内のタービンが回転することによって外部からの吸気を取り入れるコンプレッサ103と、ターボチャージャ101と排気集合管102との間に配置される蛇腹管104とを備えている。
 ターボチャージャ101には、内燃機関から高温の排気が流入するため、ターボチャージャ101が熱膨張によって変位する。しかし、ターボチャージャ101の下流側に蛇腹管104が配置されていることにより、ターボチャージャ101の熱膨張による変位が許容される(図6参照)。
 図5に示すツインターボ100では、図示しない内燃機関からの排気がターボチャージャ101に流入することによって、ターボチャージャ101内に配置されたタービンが回転する。ターボチャージャ101内に配置されたタービンの回転を、シャフトを介してコンプレッサ103内に配置されるタービンに伝達する。そしてコンプレッサ103内に配置されるタービンを回転させて吸気を取り入れることによって内燃機関へ吸気を送っている。
 また、ターボチャージャ101に流入した排気は、蛇腹管104を介して排気集合管102へ流入し、図示しない排気管へ排気が流れている。
特開2002-364373号公報
 しかしながら、前述のターボチャージャ101の下流側に配置される蛇腹管104には、内燃機関からの高温の排気に耐えることのできる高性能な部材を用いることが求められる。そのため、ターボチャージャ101の製造コストが非常に高くなってしまうという問題があった。
 本発明は、前述の課題を解決すべくなされたものであり、熱膨張を吸収することができるタービンハウジングを簡単かつ低コストで製造することができるターボチャージャ及びその製造方法を提供することを目的とする。
 本発明のターボチャージャは、排気流路内に配置されるタービンと、タービンのタービンホイールを覆うタービンハウジングと、タービンハウジングの下流側に配置される排気管接続用のフランジとを備えたターボチャージャであって、タービンハウジングとフランジの間に排気ガイド部を有し、この排気ガイド部の一端側とタービンハウジングの組合せ、及び、排気ガイド部の他端側とフランジの組合せのうち、いずれか一方の組合せ内の要素同士を溶接により固定し、他方の組合せ内の要素同士を摺動自在に組み立てたことを特徴とする。
 また、本発明のターボチャージャの製造方法は、排気流路内に配置されるタービンと、タービンのタービンホイールを覆うタービンハウジングと、タービンハウジングの下流側に配置される排気ガイド部及びフランジとを備えたターボチャージャの製造方法である。本発明のターボチャージャの製造方法は、タービンハウジングと排気ガイド部と溶接により固定して、タービンハウジングと一体化された排気ガイド部を構成し、タービンハウジングと一体化された排気ガイド部をフランジに挿入することを特徴とする。又は、本発明のターボチャージャの製造方法は、フランジと排気ガイド部と溶接により固定して、フランジと一体化された排気ガイド部を構成し、フランジと一体化された排気ガイド部にタービンハウジングを挿入することを特徴とする。
図1は、本発明の第1実施形態を示すターボチャージャの拡大断面図である。 図2は、本発明の第2実施形態を示すターボチャージャの拡大断面図である。 図3は、本発明の第3実施形態を示すターボチャージャの拡大断面図である。 図4は、本発明の第4実施形態を示すターボチャージャの拡大断面図である。 図5は、ターボチャージャを備える従来のツインターボの全体図である。 図6は、図5に示す従来のツインターボの一部拡大図である。
 以下、本発明の実施形態について、図1~図4を用いて詳細に説明する。
 〔第1実施形態〕
 図1を用いて第1実施形態のターボチャージャ1について説明する。
 図1に示すように、第1実施形態のターボチャージャ1は、図示しないセンタハウジングと、タービンハウジング本体2と、図示しないコンプレッサハウジングとを備えている。
 図示しないセンタハウジングの一端側には、図示しないコンプレッサハウジングが固定され、他端側には、タービンハウジング本体2が固定されている。
 タービンハウジング本体2は、複数の薄板部材によって排気流路27が形成される内筒5(タービンハウジング)と、内筒5が固定される内筒固定部11と、排気流路27の下流側に配置される排気管接続用のフランジ14と、排気流路27内に配置されるタービン3と、タービン3を支持するベアリング9を備えている。また、内筒5とフランジ14との間に排気ガイド部15を有している。
 タービン3は、タービンハウジング本体2に回転自在支持されるシャフト17と、シャフト17の一端側に固定される羽根部19(タービンホイール)とを備えている。
 内筒5は、第1内筒分割体21(薄板部材)と第2内筒分割体23(薄板部材)とが溶接により接合されることによって形成されている。
 第1内筒分割体21は、タービンハウジング本体2の内筒固定部11に溶接により固定される一端側21aと、第2内筒分割体23に溶接により接合される他端側21bとを備えている。
 第2内筒分割体23は、第1内筒分割体21の他端側21bに溶接により接合される一端側23aと、排気ガイド部15内へ挿入される他端側23bとを備え、一端側23aと他端側23bの間には、摺動部31と折曲部29が設けられている。
 摺動部31は、第2内筒分割体23の他端側23bから直線形状に形成されている。また、摺動部31のタービンハウジング本体2側には折曲部29が設けられ、摺動部31から湾曲するように折曲部29が形成されている。
 また、第1内筒分割体21の他端側21b及び第2内筒分割体23の一端側23aには、それぞれ突き合わせ部22,24が立設するようにして設けられている。第1内筒分割体21に形成される突き合わせ部22と第2内筒分割体23に形成される突き合わせ部24とを当接し、突き合わせ部22の端部と突き合わせ部24の端部を溶接により接合することにより内筒5が密閉され、内部に排気流路27とスクロール室25が形成される。
 図示しない内燃機関から排気が流入するスクロール室25は、上流側の断面積が広く、下流側へ向かうにつれて断面積が小さくなるように形成されており、排気流路27と連通している。
 排気流路27は、スクロール室25の下流側に設けられており、タービン3の羽根部19が配置され、排気流路27の下流側には、排気ガイド部15が配置されている。
 第2内筒分割体23の他端側23bに形成される摺動部31は、排気ガイド部15の一端部15a(一端側)に摺動自在に挿入されており、一端部15aと第2内筒分割体23の折曲部29との間には、所定の隙間Sが設けられるように挿入されている。すなわち、所定の隙間Sは、摺動部31の挿入方向における一端部15aと折曲部29の間の隙間である。
 また、排気ガイド部15の他端部15b(他端側)は、フランジ14に溶接Eにより固定されている。このフランジ14には排気を吐出する図示しない排気管が接続される。
 なお、第2内筒分割体23は、第1内筒分割体21より大きく曲がっているため、排気熱により常にタービン3の羽根部19と反対方向へ弾性復帰しようとする力が作用する。また、排気ガイド部15と第2内筒分割体23が摺動する際、第2内筒分割体23はタービン3の羽根部19と反対方向に摺動する傾向があるため、内筒5を形成する第1内筒分割体21、第2内筒分割体23と、羽根部19との接触を防止することができる。
 次に、ターボチャージャ1の製造方法について説明する。
 まず、図示しないセンタハウジングの一端側に図示しないコンプレッサハウジングを固定し、センタハウジングの他端側にタービンハウジング本体2を固定する。
 タービンハウジング本体2にシャフト17と羽根部19を一体に組付けたタービン3を、ベアリング9が配置されたタービンハウジング本体2に挿入する。
 次に、タービンハウジング本体2の内筒固定部11に内筒5の第1内筒分割体21の一端側21aを溶接により接合する。そして、第1内筒分割体21の他端側21bに第2内筒分割体23の一端側23aを溶接により接合し、内筒5を形成する。
 次に、第2内筒分割体23の他端側23bを排気ガイド部15に挿入し、第2内筒分割体23に設けられた折曲部29と排気ガイド部15の一端部15aとの間に隙間Sを空けた状態となるように、排気ガイド部15に対して摺動自在に、第2内筒分割体23の他端側23bを挿入する。
 この際、排気ガイド部15の他端部15bを、フランジ14に溶接Eにより固定して、フランジ14が一体化された排気ガイド部15を構成し、このフランジ14が一体化された排気ガイド部15の一端部15a内に内筒5の第2内筒分割体23の他端側23bを挿入することによって、タービンハウジングとしての内筒5と排気ガイド部15とフランジ14を一体に形成したターボチャージャハウジング部Aを簡単かつ低コストで製造することができる。
 以上により、ターボチャージャ1の組付けが完了する。
 次に、ターボチャージャ1の動作について説明する。
 図示しない内燃機関から排気がスクロール室25へ流入し、スクロール室25の上流側から下流側へ排気が流れる際に、タービン3の羽根部19を回転させる。
 タービン3の羽根部19が回転することによって、羽根部19に固定されたシャフト17が回転し、図示しない他端側に配置されるコンプレッサハウジング内に配置されるタービン3を回転させている。
 タービン3を回転させた排気は、排気流路27を通り、排気ガイド部15へと排気が流れる。
 内燃機関からスクロール室25及び排気流路27へ排気が流入することによって、スクロール室25及び排気流路27を形成する内筒5が熱膨張によって変位するが、内筒5の他端側23bの摺動部31が摺動自在に下流側の排気ガイド部15に挿入されているため、摺動部31が排気ガイド部15の内周と摺動することによって内筒5の変位を許容している。
 本実施形態によれば、第2内筒分割体23の摺動部31が排気ガイド部15に摺動自在に挿入されているため、排気の熱により内筒5が熱膨張した場合であっても、摺動部31が排気ガイド部15と摺動することによって、内筒5の熱膨張による変位を許容することができる。
 また、本実施形態では、排気ガイド部15の一端部15aと内筒5の第2内筒分割体23の折曲部29との間には、所定の隙間Sが設けられているため、内筒5が熱膨張により変位した場合であっても、隙間Sが設けられているため、排気の漏れを防止しつつ、内筒5の熱膨張による変位を許容することができる。
 さらに、内筒5に排気ガイド部15を挿入し、内筒5と排気ガイド部15の間で接合を行わないため、製造工程を容易にすることができる。すなわち、熱膨張を吸収することができるターボチャージャハウジング部Aを簡単かつ低コストで製造することができる。
 〔第2実施形態〕
 次に、図2を用いて第2実施形態のターボチャージャ1について説明する。なお、上記した第1実施形態と同様の構成については説明を省略する。
 図2に示すように、第2実施形態のターボチャージャ1では、排気ガイド部15の一端部15a(一端側)と内筒5の第2内筒分割体23の他端側23bを溶接Eにより固定すると共に、排気ガイド部15の他端部15b(他端側)をフランジ14の孔部14a内に挿入して摺動自在に取り付けてある。
 フランジ14の孔部14aと第2内筒分割体23の折曲部29との間には、所定の隙間S2が設けられている。所定の隙間S2は、排気ガイド部15の挿入方向におけるフランジ14の孔部14aと折曲部29の間の隙間である。
 なお、他の構成は、上記した第1実施形態と同様の構成である。
 これにより、第1実施形態と同様の作用・効果を奏する。
 本実施形態によれば、排気ガイド部15の他端部15b(他端側)がフランジ14の孔部14a内に摺動自在に挿入されているため、排気の熱により内筒5が熱膨張した場合であっても、他端部15b(他端側)がフランジ14の孔部14aと摺動することによって、排気の漏れを防止しつつ、内筒5の熱膨張による変位を許容することができる。
 また、本実施形態では、フランジ14の孔部14aと内筒5の第2内筒分割体23の折曲部29との間には、所定の隙間S2が設けられているため、内筒5が熱膨張により変位した場合であっても、隙間S2が設けられているため、排気の漏れを防止しつつ、内筒5の熱膨張による変位を許容することができる。
 さらに、本実施形態では、排気ガイド部15の一端部15aと内筒5の第2内筒分割体23の他端側23bを溶接Eにより固定して、内筒5と一体化された排気ガイド部15を構成し、この内筒5と一体化された排気ガイド部15の他端部15bをフランジ14の孔部14a内に挿入している。そのため、タービンハウジングとしての内筒5と排気ガイド部15とフランジ14を一体に形成したターボチャージャハウジング部Aを簡単かつ低コストで製造することができる。
 また、本実施形態では、排気ガイド部15の他端部15b(他端側)をフランジ14の孔部14a内に挿入し、他端部15b(他端側)とフランジ14の間で接合を行わないため、製造工程を容易にすることができる。すなわち、熱膨張を吸収することができるターボチャージャハウジング部Aを簡単かつ低コストで製造することができる。
 〔第3実施形態〕
 次に、図3を用いて第3実施形態のターボチャージャ1について説明する。なお、上記した第1実施形態と同様の構成については説明を省略する。
 図3に示すように、第3実施形態のターボチャージャ1では、排気ガイド部15の一端部15a(一端側)内に内筒5の第2内筒分割体23の他端側23bを挿入して摺動自在に取り付けると共に、排気ガイド部15の他端部15b(他端側)とフランジ14を溶接Eにより固定してある。また、内筒5と所定間隔を空けて内筒5を覆うように設けられる外筒7が設けられている。
 すなわち、外筒7は、一端側をタービンハウジング本体2の外筒固定部13に溶接により固定され、他端側をフランジ14に溶接Eにより固定されており、外筒7は、内筒5と所定の間隔を空けて、内筒5を覆うように設けられている。また、内筒5の突き合わせ部22,24は、外筒7に設けられた内筒挿通部8より外側に突出している。なお、他の構成は、上記した第1実施形態と同様の構成である。
 これにより、第1実施形態と同様の作用・効果を奏する。
 加えて、内筒5を覆うようにして外筒7が設けられているので、内筒5と排気ガイド部15との隙間から排気が漏れた場合であっても、内筒5と外筒7との間に排気が充填されて、外筒7の外に排気が漏れることを防止することができる。このように、外筒7は、内筒5との間に所定間隔を空けて内筒5を覆うため、内筒5を保護すると同時に断熱し、かつ、タービンハウジングとしての剛性を高めることができる。
 〔第4実施形態〕
 次に、図4を用いて第4実施形態のターボチャージャ1について説明する。なお、上述した第2実施形態と同様の構成については説明を省略する。
 図3に示すように、第4実施形態のターボチャージャ1では、排気ガイド部15の一端部15a(一端側)と内筒5の第2内筒分割体23の他端側23bを溶接Eにより固定すると共に、排気ガイド部15の他端部15b(他端側)をフランジ14の孔部14a内に挿入して摺動自在に取り付けてある。また、内筒5と所定間隔を空けて内筒5を覆うように設けられる外筒7が設けられている。
 すなわち、外筒7は、一端側をタービンハウジング本体2の外筒固定部13に溶接により固定され、他端側をフランジ14に溶接Eにより固定されており、外筒7は、内筒5と所定の間隔を空けて内筒5を覆うように設けられている。また、内筒5の突き合わせ部22,24は、外筒7に設けられた内筒挿通部8より外側に突出している。なお、他の構成は、上記した第2実施形態と同様の構成である。
 これにより、第2実施形態と同様の作用・効果を奏する。
 加えて、内筒5を覆うようにして外筒7が設けられているので、内筒5と排気ガイド部15との隙間から排気が漏れた場合であっても、内筒5と外筒7との間に排気が充填されて、外筒7の外に排気が漏れることを防止することができる。このように、外筒7は、内筒5と所定間隔を空けて内筒5を覆うため、内筒5を保護すると同時に断熱し、かつ、タービンハウジングとしての剛性を高めることができる。
 なお、前述の各実施形態によれば、内筒は第1内筒分割体と第2内筒分割体とから構成されているが、単一の部材によって内筒を形成しても良い。
 以上の本発明の実施形態は、本発明の理解を容易にするために記載された単なる例示に過ぎず、本発明は当該実施形態に限定されるものではない。本発明の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。
 本出願は、2015年2月25日に出願された日本国特許願第2015-035091号に基づく優先権を主張しており、これらの出願の全内容が参照により本明細書に組み込まれる。
 本発明によれば、タービンハウジングが排気ガイド部に、或いは、排気ガイド部がフランジの孔部に摺動自在に挿入されているため、排気の熱によりタービンハウジングが熱膨張した場合であっても、タービンハウジング或いは排気ガイド部が摺動することによって、タービンハウジングの熱膨張による変位を許容することができる。
 1 ターボチャージャ
 3 タービン
 5 内筒(タービンハウジング)
 7 外筒(タービンハウジング)
 14 フランジ
 14a 孔部
 15 排気ガイド部
 15a 一端部(一端側)
 15b 他端部(他端側)
 19 羽根部(タービンホイール)
 21,23 内筒分割体(薄板部材)
 27 排気流路
 A ターボチャージャハウジング部
 E 溶接部分(溶接)

Claims (5)

  1.  排気流路(27)内に配置されるタービン(3)と、前記タービン(3)のタービンホイール(19)を覆うタービンハウジング(5)と、前記タービンハウジング(5)の下流側に配置される排気管接続用のフランジ(14)とを備えたターボチャージャ(1)であって、
     前記タービンハウジング(5)と前記フランジ(14)との間に排気ガイド部(15)を有し、
      前記排気ガイド部(15)の一端側(15a)と前記タービンハウジング(5)の組合せ、及び、前記排気ガイド部(15)の他端側(15b)と前記フランジ(14)の組合せのうち、
     一方の組合せ内の要素同士を溶接(E)により固定し、他方の組合せ内の要素同士を摺動自在に組み立てたこと
    を特徴とするターボチャージャ。
  2.  請求項1に記載のターボチャージャ(1)であって、
     前記排気ガイド部(15)の一端側(15a)と前記タービンハウジング(5)を摺動自在に組み立てると共に、前記排気ガイド部(15)の他端側(15b)と前記フランジ(14)を溶接(E)により固定したこと
    を特徴とするターボチャージャ。
  3.  請求項1に記載のターボチャージャ(1)であって、
     前記排気ガイド部(15)の一端側(15a)と前記タービンハウジング(5)を溶接(E)により固定すると共に、前記排気ガイド部(15)の他端側(15b)と前記フランジ(14)の孔部(14a)を摺動自在に組み立てたこと
    を特徴とするターボチャージャ。
  4.  請求項1乃至3のいずれか一項に記載のターボチャージャ(1)であって、
     前記タービンハウジング(5)を、複数の薄板部材(21,23)より成る内筒(5)によって構成し、
     前記内筒(5)との間に所定間隔を空けて該内筒(5)を覆う外筒(7)を更に有すること
    を特徴とするターボチャージャ。
  5.  排気流路(27)内に配置されるタービン(3)と、前記タービン(3)のタービンホイール(19)を覆うタービンハウジング(5)と、前記タービンハウジング(5)の下流側に配置される排気ガイド部(15)及びフランジ(14)とを備えたターボチャージャ(1)の製造方法であって、
     前記タービンハウジング(5)と前記排気ガイド部(15)と溶接(E)により固定して、前記タービンハウジング(5)と一体化された排気ガイド部(15)を構成し、前記タービンハウジング(5)と一体化された排気ガイド部(15)を前記フランジ(14)に挿入すること、又は
     前記フランジ(14)と前記排気ガイド部(15)と溶接(E)により固定して、前記フランジ(14)と一体化された排気ガイド部(15)を構成し、前記フランジ(14)と一体化された排気ガイド部(15)に前記タービンハウジング(5)を挿入すること
    を特徴とするターボチャージャの製造方法。
PCT/JP2016/050856 2015-02-25 2016-01-13 ターボチャージャ及びその製造方法 WO2016136313A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015035091A JP2016156329A (ja) 2015-02-25 2015-02-25 ターボチャージャ及びその製造方法
JP2015-035091 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016136313A1 true WO2016136313A1 (ja) 2016-09-01

Family

ID=56788335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050856 WO2016136313A1 (ja) 2015-02-25 2016-01-13 ターボチャージャ及びその製造方法

Country Status (2)

Country Link
JP (1) JP2016156329A (ja)
WO (1) WO2016136313A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602098A (en) * 2020-12-17 2022-06-22 Cummins Ltd Turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017103980A1 (de) * 2017-02-27 2018-08-30 Man Diesel & Turbo Se Turbolader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004871A (ja) * 2000-04-19 2002-01-09 Aisin Takaoka Ltd 過給機のタービンハウジング
JP2005147139A (ja) * 2003-11-13 2005-06-09 Benteler Automobiltechnik Gmbh 内燃機関のターボ過給機のためのハウジング装置
JP2010285989A (ja) * 2009-06-10 2010-12-24 Benteler Automobiltechnik Gmbh タービンハウジング
JP2013526673A (ja) * 2010-05-21 2013-06-24 ベンテラー アウトモビールテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 排ガスターボチャージャ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512058B2 (ja) * 2006-04-04 2010-07-28 トヨタ自動車株式会社 タービンハウジング
DE102010019404B4 (de) * 2010-05-04 2012-01-05 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Turboladergehäuses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004871A (ja) * 2000-04-19 2002-01-09 Aisin Takaoka Ltd 過給機のタービンハウジング
JP2005147139A (ja) * 2003-11-13 2005-06-09 Benteler Automobiltechnik Gmbh 内燃機関のターボ過給機のためのハウジング装置
JP2010285989A (ja) * 2009-06-10 2010-12-24 Benteler Automobiltechnik Gmbh タービンハウジング
JP2013526673A (ja) * 2010-05-21 2013-06-24 ベンテラー アウトモビールテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング 排ガスターボチャージャ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602098A (en) * 2020-12-17 2022-06-22 Cummins Ltd Turbine

Also Published As

Publication number Publication date
JP2016156329A (ja) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6126246B2 (ja) タービンハウジング
JP6580122B2 (ja) ターボチャージャ
JP5710452B2 (ja) ターボチャージャ
JP5338991B1 (ja) タービンハウジング及び排気タービン過給機
WO2013125580A1 (ja) ターボチャージャ
JP4512058B2 (ja) タービンハウジング
JP5531159B2 (ja) 排ガスターボチャージャ
JP6542246B2 (ja) 可変容量型過給機
JP6331736B2 (ja) 可変ノズルユニット及び可変容量型過給機
JP6752979B2 (ja) タービンハウジング及びこれを備えた過給機
JP6793851B2 (ja) ターボチャージャ
US8951007B2 (en) Turbine housing for an exhaust gas turbocharger and method for producing turbine housing
US10385765B2 (en) Variable geometry turbocharger
WO2014070438A1 (en) Belly band seal with underlapping ends
JP2015503708A (ja) 排気ターボチャージャ
WO2016136313A1 (ja) ターボチャージャ及びその製造方法
JP6325479B2 (ja) ターボチャージャ
JP2015117645A (ja) 可変ノズルユニット及び可変容量型過給機
JP6638594B2 (ja) 過給機
JP6322038B2 (ja) ターボチャージャ
JP5769469B2 (ja) シール構造
JP2015224570A (ja) ターボチャージャ
JP6756008B2 (ja) ターボチャージャ
JP2019094904A (ja) タービンハウジング
JP2019094834A (ja) タービンハウジング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755063

Country of ref document: EP

Kind code of ref document: A1