WO2016101107A1 - 传输指示信息的方法和装置 - Google Patents

传输指示信息的方法和装置 Download PDF

Info

Publication number
WO2016101107A1
WO2016101107A1 PCT/CN2014/094540 CN2014094540W WO2016101107A1 WO 2016101107 A1 WO2016101107 A1 WO 2016101107A1 CN 2014094540 W CN2014094540 W CN 2014094540W WO 2016101107 A1 WO2016101107 A1 WO 2016101107A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signature
signature sequence
modulation constellation
indication information
Prior art date
Application number
PCT/CN2014/094540
Other languages
English (en)
French (fr)
Inventor
徐修强
王磊
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480082831.6A priority Critical patent/CN107079466B/zh
Priority to PCT/CN2014/094540 priority patent/WO2016101107A1/zh
Priority to EP14908678.7A priority patent/EP3226636B1/en
Publication of WO2016101107A1 publication Critical patent/WO2016101107A1/zh
Priority to US15/629,671 priority patent/US10135655B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2604Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0021Time-frequency-code in which codes are applied as a frequency-domain sequences, e.g. MC-CDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for transmitting indication information in the field of communications.
  • the Low Density Signature (LDS) technology is a typical non-orthogonal multiple access and transmission technology.
  • the LDS technology can also be called other names in the communication field.
  • This type of technology superimposes M (M is an integer not less than 1) data streams from one or more users onto N (N is an integer not less than 1) subcarriers, where each data stream is transmitted. The data is spread to N subcarriers by sparse spreading.
  • M is an integer not less than 1
  • N is an integer not less than 1 subcarriers, where each data stream is transmitted.
  • the data is spread to N subcarriers by sparse spreading.
  • M is an integer not less than 1
  • N is an integer not less than 1
  • this type of technology can effectively improve network capacity, including the number of users accessible to the system and spectrum efficiency. Therefore, as an important non-orthogonal access technology, LDS technology has attracted more and more attention and become an important alternative access technology for the evolution of wireless cellular networks in the future.
  • a terminal device transmits an uplink data stream by using a non-orthogonal multiple access technology
  • data transmission information such as a modulation constellation used for transmitting the uplink data stream
  • the selection and distribution of these data transmission information is usually done by network equipment, and the terminal equipment is not directly involved in this process. Therefore, after the network device allocates data transmission information such as a modulation constellation to the data stream to be transmitted of the terminal device, how to notify the terminal device of the allocated data transmission information is a technical problem to be solved.
  • the embodiments of the present invention provide a method and apparatus for transmitting indication information to solve the problem that a network device in a non-orthogonal multiple access system indicates data transmission information to a terminal device.
  • a method for transmitting indication information comprising: determining a first signature sequence and a first modulation constellation used by a terminal device to transmit an uplink data stream, each signature sequence being at least one zero element and at least one non- a multi-dimensional complex vector composed of zero elements, the signature sequence is used for adjusting the amplitude and phase of the modulation symbol obtained by constellation mapping the uplink data stream to the terminal device by using a modulation constellation; and determining to indicate the first signature sequence and The indication information of the first modulation constellation; the indication information is sent to the terminal device.
  • the determining, the information for indicating the first signature sequence and the first modulation constellation includes: determining that the first signature sequence belongs to the first signature a matrix, wherein each signature matrix is composed of two or more of the signature sequences; determining that the indication information comprises first signature matrix information, first signature sequence information, and first modulation constellation information, wherein the first signature matrix The information is used to indicate the first signature matrix, where the first signature sequence information is used to indicate the first signature sequence in the first signature matrix, and the first modulation constellation information is used to indicate the first modulation constellation.
  • the determining, the information for indicating the first signature sequence and the first modulation constellation includes: determining that the indication information includes second signature sequence information And the first modulation constellation information, wherein the second signature sequence information is used to indicate the second signature sequence, where the first modulation constellation information is used to indicate the first modulation constellation.
  • the first modulation constellation information includes modulation order information of the first modulation constellation.
  • the sending to the terminal device includes: sending an uplink scheduling grant message, a dedicated high layer control signaling, or a system broadcast message to the terminal device, where the uplink scheduling grant message, the dedicated high layer control signaling, and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the indication information is a bit string information.
  • the signature sequence is low density Sign the LDS sequence.
  • the signature sequence includes a quantity of zero elements greater than or equal to a number of non-zero elements.
  • a second aspect provides a method for transmitting indication information, the method comprising: receiving indication information sent by a network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting an uplink data stream, where
  • the signature sequence is a multi-dimensional complex vector composed of at least one zero element and at least one non-zero element, and the signature sequence is used for adjusting the amplitude and phase of the modulation symbol obtained by constellation mapping the uplink data stream to the terminal device using the modulation constellation. Determining the first signature sequence and the first modulation constellation according to the indication information; and transmitting the uplink data stream according to the first signature sequence and the first modulation constellation.
  • the indication information includes first signature matrix information, first signature sequence information, and first modulation constellation information, where the first signature matrix information is used by Instructing the first signature matrix, the first signature sequence information is used to indicate the first signature sequence in the first signature matrix, the first modulation constellation information is used to indicate the first modulation constellation; wherein, according to the indication Determining the first signature sequence and the first modulation constellation, the information comprising: determining the first signature in the first signature matrix according to the first signature matrix information, the first signature sequence information, and the first modulation constellation information And a sequence of the first modulation constellation, wherein each signature matrix consists of two or more of the signature sequences.
  • the indication information includes second signature sequence information and first modulation constellation information, where the second signature sequence information is used to indicate the first signature a sequence, the first modulation constellation information is used to indicate the first modulation constellation; wherein determining the first signature sequence and the first modulation constellation according to the indication information comprises: according to the second signature sequence information and the first The constellation information is modulated to determine the first signature sequence and the first modulation constellation.
  • the first modulation constellation information includes a modulation order information of the first modulation constellation interest.
  • the receiving network device sends The indication information includes: receiving an uplink scheduling grant message sent by the network device, dedicated high-layer control signaling, or a system broadcast message, where the uplink scheduling grant message, the dedicated high-layer control signaling, and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the indication information is a bit string information.
  • the signature sequence is low density Sign the LDS sequence.
  • the signature sequence includes a quantity of zero elements greater than or equal to a number of non-zero elements.
  • the third aspect provides an apparatus for transmitting indication information
  • the apparatus includes: a first determining module, configured to determine a first signature sequence and a first modulation constellation used by the terminal device to send an uplink data stream, where each signature sequence is at least a multi-dimensional complex vector consisting of a zero element and at least one non-zero element, the signature sequence is used for adjusting the amplitude and phase of the modulation symbol obtained by constellation mapping the uplink data stream to the terminal device using the modulation constellation;
  • the module is configured to determine indication information for indicating the first signature sequence and the first modulation constellation determined by the first determining module, and the sending module is configured to send the indication information determined by the second determining module to the terminal device.
  • the second determining module includes: a first determining unit, configured to determine that the first signature sequence belongs to a first signature matrix, where each signature matrix And the second determining unit is configured to determine that the indication information includes first signature matrix information, first signature sequence information, and first modulation constellation information, wherein the first signature matrix The information is used to indicate the first signature matrix, where the first signature sequence information is used to indicate the first signature sequence in the first signature matrix, and the first modulation constellation information is used to indicate the first modulation constellation.
  • the second determining module includes: a third determining unit, configured to determine that the indication information includes second signature sequence information and first modulation constellation information, The second signature sequence information is used to indicate the second signature sequence, where the first modulation constellation information is used to indicate the first modulation constellation.
  • the first modulation constellation information determined by the second determining module includes the first modulation constellation Modulation order information.
  • the sending module is specifically used to And sending, to the terminal device, an uplink scheduling grant message, a dedicated high-layer control signaling, or a system broadcast message, where the uplink scheduling grant message, the dedicated high-layer control signaling, and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the second determining module determines
  • the indication information is bit string information.
  • the signature sequence is low density Sign the LDS sequence.
  • the signature sequence includes a quantity of zero elements greater than or equal to a number of non-zero elements.
  • the device is a network device.
  • the fourth aspect provides an apparatus for transmitting indication information
  • the apparatus includes: a receiving module, configured to receive indication information sent by a network device, where the indication information is used to indicate a first signature sequence and a first a modulation constellation, each signature sequence being a multi-dimensional complex vector consisting of at least one zero element and at least one non-zero element, the signature sequence being used for performing modulation symbol constellation mapping on the uplink data stream using a modulation constellation by the terminal device Amplitude and phase adjustment; a determining module, configured to determine the first signature sequence and the first modulation constellation according to the indication information received by the receiving module, and a sending module, configured to send according to the first signature sequence and the first modulation constellation determined by the determining module The upstream data stream.
  • the indication information received by the receiving module includes first signature matrix information, first signature sequence information, and first modulation constellation information, where the a signature matrix information is used to indicate a first signature matrix, where the first signature sequence information is used to indicate the first signature sequence in the first signature matrix, where the first modulation constellation information is used to indicate the first modulation constellation;
  • the determining module includes: a first determining unit, configured to determine, according to the first signature matrix information, the first signature sequence information, and the first modulation constellation information, the first signature sequence in the first signature matrix and the A first modulation constellation, wherein each signature matrix consists of two or more of the signature sequences.
  • the indication information received by the receiving module includes second signature sequence information and first modulation constellation information, where the second signature sequence information is used Instructing the first signature sequence, the first modulation constellation information is used to indicate the first modulation constellation; wherein the determining module comprises: a second determining unit, configured to use the second signature sequence information and the first modulation constellation information Determining the first signature sequence and the first modulation constellation.
  • the first modulation constellation information received by the receiving module includes the modulation of the first modulation constellation Order information.
  • the receiving module is specifically used to And receiving the uplink scheduling grant message, the dedicated high-layer control signaling, or the system broadcast message sent by the network device, where the uplink scheduling grant message, the dedicated high-layer control signaling, and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the receiving module receives the The indication information is bit string information.
  • the signature sequence is low density Sign the LDS sequence.
  • the signature sequence includes a quantity of zero elements greater than or equal to a number of non-zero elements.
  • the device is a terminal device.
  • an apparatus for transmitting indication information comprising a processor, a memory, a bus system, and a transmitter, wherein the processor, the memory, and the transmitter are connected by the bus system, the memory is used for And storing, by the processor, an instruction stored in the memory to control the transmitter to send a signal; wherein the processor is configured to: determine a first signature sequence and a first modulation constellation used by the terminal device to send the uplink data stream, and each The signature sequence is a multi-dimensional complex vector composed of at least one zero element and at least one non-zero element, and the signature sequence is used for adjusting the amplitude and phase of the modulation symbol obtained by constellation mapping the uplink data stream to the terminal device using the modulation constellation. And determining indication information for indicating the first signature sequence and the first modulation constellation; the transmitter is configured to: send the indication information to the terminal device.
  • the determining, by the processor, the indication information for indicating the first signature sequence and the first modulation constellation including: determining that the first signature sequence belongs to a signature matrix, wherein each signature matrix is composed of two or more of the signature sequences; determining that the indication information comprises first signature matrix information, first signature sequence information, and first modulation constellation information, wherein the first The signature matrix information is used to indicate the first signature matrix, the first signature sequence information is used to indicate the first signature sequence in the first signature matrix, and the first modulation constellation information is used to indicate the first modulation constellation.
  • the determining, by the processor, the indication information for indicating the first signature sequence and the first modulation constellation including: determining that the indication information includes the second signature Sequence information and first modulation constellation information, wherein the second signature sequence information is used to indicate the second signature sequence, the first modulation constellation information is used to indicate the first modulation constellation.
  • the first modulation constellation information determined by the processor includes the modulation of the first modulation constellation Order information.
  • the transmitter is to the terminal The device sends the indication information, including: sending an uplink scheduling grant message, a dedicated high layer control signaling, or a system broadcast message to the terminal device, where the uplink scheduling grant message, the dedicated high layer control signaling, and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the processor determines the The indication information is bit string information.
  • the signature sequence is low density Sign the LDS sequence.
  • the signature sequence includes a quantity of zero elements greater than or equal to a number of non-zero elements.
  • the device is a network device.
  • an apparatus for transmitting indication information comprising a processor, a memory, a bus system, a receiver, and a transmitter, wherein the processor, the memory, the receiver, and the transmitter pass the bus Connected to a system for storing instructions for executing instructions stored in the memory to control the receiver to receive signals and controlling the transmitter to transmit signals; wherein the receiver is configured to: receive an indication sent by the network device Information indicating the first signature sequence and the first modulation constellation for transmitting the uplink data stream, each signature sequence being a multi-dimensional complex vector composed of at least one zero element and at least one non-zero element, the signature sequence is used by the signature sequence Modulating the amplitude and phase of the modulation symbol obtained by performing constellation mapping on the uplink data stream by using the modulation constellation on the terminal device; the processor is configured to: determine the first signature sequence and the first modulation constellation according to the indication information; The transmitter is configured to: send the uplink number according to the first signature sequence and the first modulation constellation Flow.
  • the receiver receives The indication information includes first signature matrix information, first signature sequence information, and first modulation constellation information, wherein the first signature matrix information is used to indicate a first signature matrix, where the first signature sequence information is used to indicate the first a first signature sequence in a signature matrix, the first modulation constellation information is used to indicate the first modulation constellation; wherein the processor determines the first signature sequence and the first modulation constellation according to the indication information, including: Determining, according to the first signature matrix information, the first signature sequence information, and the first modulation constellation information, the first signature sequence and the first modulation constellation in the first signature matrix, where each signature matrix consists of two One or more of the signature sequences.
  • the indication information received by the receiver includes second signature sequence information and first modulation constellation information, where the second signature sequence information is used Instructing the first signature sequence, the first modulation constellation information is used to indicate the first modulation constellation; wherein the determining, by the processor, the first signature sequence and the first modulation constellation according to the indication information, including: according to the second The signature sequence information and the first modulation constellation information determine the first signature sequence and the first modulation constellation.
  • the first modulation constellation information determined by the processor includes the modulation of the first modulation constellation Order information.
  • the receiver receives the network device
  • the indication information that is sent includes: receiving an uplink scheduling grant message sent by the network device, dedicated high-layer control signaling, or a system broadcast message, where the uplink scheduling grant message, the dedicated high-layer control signaling, and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the receiver receives the The indication information is bit string information.
  • the signature sequence is a low density Sign the LDS sequence.
  • the number of zero elements included in the signature sequence is greater than or equal to the number of non-zero elements.
  • the device is a terminal device.
  • the method and device for transmitting indication information according to the foregoing technical solution, the determining, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determining to indicate the first signature sequence And indicating information of the first modulation constellation, and transmitting the indication information to the terminal device, so that the terminal device can determine the first signature sequence and the first modulation constellation allocated by the network device, and adopt the first signature sequence and the first modulation
  • the constellation carries out data transmission, thereby effectively increasing the network capacity of the system.
  • FIG. 1 is a schematic architectural diagram of a communication system to which an embodiment of the present invention is applied.
  • 2a and 2b are schematic coding schematic diagrams of a non-orthogonal multiple access system.
  • FIG. 3 is a schematic flowchart of a method for transmitting indication information according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a method of determining indication information according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a method for transmitting indication information according to another embodiment of the present invention.
  • FIG. 6 is another schematic flowchart of a method for transmitting indication information according to another embodiment of the present invention.
  • FIG. 7 is still another schematic flowchart of a method for transmitting indication information according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of an apparatus for transmitting indication information according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a second determining module in accordance with an embodiment of the present invention.
  • FIG. 10 is another schematic block diagram of a second determining module according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of an apparatus for transmitting indication information according to another embodiment of the present invention.
  • Figure 12 is a schematic block diagram of a determination module in accordance with an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of an apparatus for transmitting indication information according to still another embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of an apparatus for transmitting indication information according to still another embodiment of the present invention.
  • the technical solutions of the embodiments of the present invention may be applied to various communication systems based on non-orthogonal multiple access technologies, such as LDS systems.
  • LDS may also be referred to as other names in the field of communications;
  • the technical solution of the embodiment can be applied to a multi-carrier transmission system using a non-orthogonal multiple access technology, for example, Orthogonal Frequency Division Multiplexing (OFDM) is adopted. ), Filter Bank Multi-Carrier (FBMC), Generalized Frequency Division Multiplexing (GFDM), Filtered Orthogonal Frequency Division Multiplexing (Filtered-OFDM) , referred to as "F-OFDM" system, etc.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FBMC Filter Bank Multi-Carrier
  • GFDM Generalized Frequency Division Multiplexing
  • Filtered-OFDM Filtered Orthogonal Frequency Division Multiplexing
  • F-OFDM Filtered Orthogonal Frequency Division Multiplexing
  • the terminal device may communicate with one or more core networks via a radio access network (Radio Access Network, hereinafter referred to as "RAN”), and the terminal device may be referred to as an access terminal.
  • RAN Radio Access Network
  • UE User Equipment
  • subscriber unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal Digital) Assistant, referred to as "PDA” for short, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and terminal devices in future 5G networks.
  • SSIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • the network device may be used to communicate with the terminal device, and the network device may be a Global System of Mobile communication (“GSM”) system or a code division multiple access (Code Division).
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Multiple Access
  • a base station (NodeB, abbreviated as "NB") in the system of the “Wideband Code Division Multiple Access” (WCDMA) system, and may also be an evolved base station in a Long Term Evolution (LTE) system.
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a base station device in a future 5G network.
  • FIG. 1 shows a schematic architectural diagram of a communication system to which an embodiment of the present invention is applied.
  • the communication system 100 can include a network device 102, which can include one or more antenna groups, each of which can include one or more antennas.
  • a network device 102 can include one or more antenna groups, each of which can include one or more antennas.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • an additional group may include antennas 112 and 114.
  • two antennas are shown for each antenna group in Figure 1, it should be understood that each antenna group may have more or fewer antennas.
  • Network device 102 may additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer, solution) Tuner, demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain may include multiple components related to signal transmission and reception (eg, processor, modulator, multiplexer, solution) Tuner, demultiplexer or antenna, etc.).
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal device 116 and terminal device 122. However, it will be appreciated that network device 102 can communicate with any number of terminal devices similar to terminal device 116 or 122.
  • Terminal devices 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment.
  • terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to terminal device 116 over forward link 118 and receive information from terminal device 116 over reverse link 120.
  • terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to terminal device 122 over forward link 124 and receive information from terminal device 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than the reverse link 120, and the forward link 124 can utilize the reverse link.
  • 126 different frequency bands for example, in a Time Division Duplex (“TDD”) system and a Full Duplex system, the forward link 118 and the reverse link 120 can use a common The frequency band, forward link 124 and reverse link 126 may also use a common frequency band.
  • TDD Time Division Duplex
  • the forward link 118 and the reverse link 120 can use a common The frequency band, forward link 124 and reverse link 126 may also use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of network device 102.
  • the antenna group can be designed to communicate with terminal devices in sectors of the network device 102 coverage area.
  • the transmit antenna of network device 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
  • the network device 102 uses beamforming to transmit signals to the randomly dispersed terminal devices 116 and 122 in the relevant coverage area, the network device 102 uses a single antenna to transmit signals to all of its terminal devices. Mobile devices are subject to less interference.
  • network device 102, terminal device 116, or terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device can encode the data for transmission.
  • the wireless communication transmitting device may acquire (eg, generate, receive from other communication devices, or store in memory, etc.) a certain number of data bits to be transmitted over the channel to the wireless communication receiving device.
  • Such data bits may be included in a transport block (or multiple transport blocks) of data that may be segmented to produce multiple code blocks.
  • the communication system is a non-orthogonal multiple access system, for example, the system is an LDS system, such as a base station, such as a user equipment.
  • LDS system such as a base station
  • user equipment such as a user equipment.
  • the embodiment of the present invention is described by taking only the LDS system, the base station, and the user equipment as an example, but the present invention is not limited thereto.
  • FIG. 1 shows a communication system to which an embodiment of the present invention is applied, such as an LDS system, which will be briefly described below in connection with FIG. 2a and FIG. 2b, for a transmitter of a non-orthogonal multiple access system such as an LDS system.
  • LDS system a communication system to which an embodiment of the present invention is applied
  • FIG. 2a and FIG. 2b a transmitter of a non-orthogonal multiple access system
  • LDS system a non-orthogonal multiple access system
  • a resource unit can be a subcarrier, or a resource element (Resource Element, referred to as "RE"), or an antenna port.
  • RE Resource Element
  • the bipartite graph is sequentially represented by s1 to s6.
  • the data combination of the six data streams to be transmitted, and the modulation symbols transmitted on the four resource elements in the bipartite graph are sequentially represented by x1 to x4.
  • the data combination of each data stream is transmitted by the constellation mapping and the amplitude and phase adjustment, and the modulation symbols are transmitted on two or more resource units, and simultaneously transmitted by each resource unit.
  • a modulation symbol is a superposition of adjusted data from two or more data streams via respective constellation mappings and adjusted modulation symbols of amplitude and phase.
  • the data combination s3 of the data stream 3 may be transmitted with non-zero modulation symbols on the resource unit 1 and the resource unit 2 after the constellation mapping and the adjustment of the amplitude and phase, and the modulation symbol x3 transmitted by the resource unit 3 is the data stream. 2.
  • the data (b1, b2) of the data stream is subjected to constellation mapping, and the modulation symbol is q, and each element in the signature sequence, that is, an adjustment factor, is used to perform phase and amplitude on the modulation symbol q.
  • the adjustments are made to obtain the modulation symbols transmitted on each resource unit, which are q*s 1 , q*s 2 , q*s 3 , and q*s 4 , respectively .
  • FIG. 1 The application scenario and the coding principle of the embodiment of the present invention are described above with reference to FIG. 1, FIG. 2a and FIG. 2b.
  • a method for transmitting indication information according to an embodiment of the present invention will be described below from the network device side with reference to FIG. 3 and FIG.
  • the method 200 includes:
  • S210 Determine a first signature sequence and a first modulation constellation used by the terminal device to send an uplink data stream, where each signature sequence is a multi-dimensional complex vector composed of at least one zero element and at least one non-zero element, where the signature sequence is used for the terminal.
  • the apparatus adjusts the amplitude and phase of the modulation symbols obtained by performing constellation mapping on the uplink data stream by using a modulation constellation;
  • S220 Determine indication information used to indicate the first signature sequence and the first modulation constellation.
  • the network device allocates or specifies a signature sequence and a modulation constellation for the uplink data stream to be sent by the terminal device; in order for the terminal device to know the signature assigned by the network device a sequence and a first modulation constellation, the network device can determine the indication And transmitting the indication information to the terminal device, where the indication information is used to indicate the signature sequence used by the terminal device to send the uplink data stream and the modulation constellation.
  • the terminal device may determine, according to the indication information, the signature sequence and the modulation constellation used for sending the uplink data stream, and send the uplink data stream according to the signature sequence and the modulation constellation.
  • the terminal device can be determined to determine the signature sequence and the modulation constellation allocated by the network device, thereby enabling the non-orthogonal multiple access system to operate normally.
  • the method for transmitting the indication information in the embodiment of the present invention determines, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determines to indicate the first signature sequence and the first modulation constellation.
  • the indication information is sent to the terminal device, so that the terminal device can determine the first signature sequence and the first modulation constellation allocated by the network device, and use the first signature sequence and the first modulation constellation to transmit data. This can effectively increase the network capacity of the system.
  • a non-orthogonal multiple access technology such as LDS technology transmits a plurality of different data streams on the same resource unit by using a Signature Sequence, that is, multiple different data stream multiplexing.
  • the same resource unit in which different data streams use different signature sequences, thereby achieving the purpose of improving resource utilization.
  • the data stream can come from the same terminal device or from different terminal devices.
  • the signature sequence may be represented as a multi-dimensional complex vector, and the number of dimensions of the complex vector may be two or more dimensions, and the signature sequence may be composed of at least one zero element and at least one non-zero element.
  • the complex vector of each dimension of the signature sequence may represent a resource unit, and the corresponding element may be understood as an adjustment factor for adjusting the amplitude and phase of the modulation symbol obtained by constellation of the data of the data stream, for example, the adjustment method
  • the modulation symbol obtained by mapping the data of the data stream by constellation may be multiplied by the above adjustment factor.
  • the modulation symbols adjusted by multiple adjustment factors are transmitted on the corresponding resource units, thereby realizing the extended transmission of data on multiple resource units.
  • the data may be binary bit data or multi-dimensional data
  • the resource unit may be a resource unit of a time domain, a frequency domain, a spatial domain, a time-frequency domain, a spatio-temporal domain, and a time-frequency spatial domain.
  • the coding principle of the non-orthogonal multiple access technique can be exemplified by using FIG. 2b.
  • the signature sequence can be expressed as:
  • the data (b1, b2) of the data stream is conspicuously mapped to a q, and each element in the signature sequence, that is, an adjustment factor, is used to adjust the phase and amplitude of q to obtain each resource unit.
  • the transmitted modulation symbols are q*s 1 , q*s 2 , q*s 3 , and q*s 4 , respectively .
  • signature sequence can be expressed as follows:
  • s n,m denotes an element in the signature matrix
  • m and n are natural numbers
  • N rows respectively represent N resource units in one coding unit
  • M represents one
  • the M signature sequences may form a signature matrix
  • the signature matrix may have the following form, for example:
  • the signature matrix is composed of one or more signature sequences, which are multi-dimensional complex vectors composed of at least one zero element and at least one non-zero element, and the signature sequence is used for a terminal device or a network.
  • the device uses the modulation constellation to adjust the amplitude and phase of the modulation symbols obtained by constelling the data stream.
  • a method 220 of determining indication information in accordance with an embodiment of the present invention will be described in detail below with reference to FIG.
  • the determining information for indicating the first signature sequence and the first modulation constellation includes:
  • S221 Determine that the first signature sequence belongs to a first signature matrix, where each signature matrix is composed of two or more signature sequences;
  • the indication information includes first signature matrix information, first signature sequence information, and first modulation constellation information, where the first signature matrix information is used to indicate the first signature matrix, where the first signature sequence information is used And indicating the first signature sequence in the first signature matrix, the first modulation constellation information is used to indicate the first modulation constellation.
  • the network device and the terminal device may store a pre-designed signature matrix, a signature sequence, and a modulation constellation, or the network device and the terminal device may store a pre-designed signature matrix and a modulation constellation, where the signature The column of the matrix is the signature sequence. Therefore, in the embodiment of the present invention, the corresponding signature sequence is also stored while storing the signature matrix.
  • the network device sends an uplink data flow allocation or a specified signature sequence and a modulation constellation for the terminal device, and the network device may determine that the signature sequence is the first signature sequence in the first signature matrix, and the network device may determine the The modulation constellation is a first modulation constellation; thus, the network device may determine, according to the first signature sequence and the first modulation constellation, that the indication information includes the first signature matrix information, the first signature sequence information, and the first modulation constellation information.
  • the indication information may be composed of three logical information segments, wherein the logical information segment 1 may carry the first signature matrix information for indicating the first signature matrix included in the indication information; the logical information segment 2 may carry the The first signature sequence information is used to indicate the first signature sequence in the first signature matrix.
  • the logical information segment 3 can carry the first modulation constellation information to indicate the first modulation constellation included in the indication information.
  • each piece of logical information of the indication information may be continuously or non-continuously appearing in the instruction in which the indication information is located in any sequence, which is not limited by the embodiment of the present invention.
  • the terminal device receives the instruction or the message carrying the indication information, for example, according to the logical information segment 1 therein, it can be known which signature matrix the uplink to-be-sent data stream will use for transmission; according to the logical information segment 2, the uplink can be learned.
  • the data stream to be transmitted will be transmitted using which signature sequence in the signature matrix indicated by the logical information segment 1; according to the logical information segment 3 therein, it can be known which modulation order or which modulation constellation the uplink to-be-transmitted data stream will use for transmission.
  • the terminal device can send the uplink data stream according to the finally determined signature sequence and the modulation constellation, that is, the terminal device can perform constellation mapping on the uplink data stream, and adjust the amplitude and phase of the modulation symbol obtained after constellation mapping, thereby
  • the non-orthogonal multiple access system can operate normally and can effectively increase the network capacity of the system.
  • each modulation constellation may correspond to a modulation order. Therefore, the logical information segment 3 may further indicate, by means of indicating a modulation order, a modulation constellation used by the terminal device to uplink the data stream to be sent; The terminal device can learn the modulation order corresponding to the uplink data stream to be sent according to the logical information segment 3, so that the modulation constellation corresponding to the modulation order can be determined, so that the uplink data stream can be transmitted.
  • the first modulation constellation information includes modulation order information of the first modulation constellation.
  • each logical information segment indicates an index value
  • it is necessary to establish an index relationship of the related related information on the network device and the terminal device side in advance for example, a signature matrix index value and a signature matrix.
  • An index relationship, an index relationship between the signature sequence index value and the signature sequence in each signature matrix, and an index relationship between the modulation constellation index value and each modulation constellation, etc. so that the network device and the terminal device can be indexed according to the logical information segment.
  • the value uniquely determines the corresponding signature matrix, signature sequence, and modulation constellation through a pre-established correlation index relationship.
  • the network device and the terminal device may pre-store the signature matrix by using various methods.
  • a simple and straightforward method is to store all the zero elements and non-zero included therein according to the foregoing manner. element:
  • the embodiment of the present invention only uses the above example as an example to describe the storage of the signature matrix, but it should be understood that the embodiment of the present invention is not limited thereto, and the network device and the terminal device may further store the signature matrix by other methods.
  • the indication information may include only the first signature sequence information and the first modulation constellation.
  • the indication information may include only the first signature matrix information and the first modulation constellation information; for example, for example, for example, when the adjustment constellation for the uplink transmission data of the terminal device determined by the network device uses a fixed modulation constellation by default, the indication information may include only the first signature matrix information and the first signature sequence information.
  • the network device can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • FIG. 4 also illustrates another embodiment of a method 220 of determining indication information in accordance with an embodiment of the present invention.
  • the determining information for indicating the first signature sequence and the first modulation constellation includes:
  • the indication information includes the second signature sequence information and the first modulation constellation information, where the second signature sequence information is used to indicate the second signature sequence, where the first modulation constellation information is used to indicate the first modulation constellation .
  • the network device and the terminal device may store a pre-designed signature sequence and a modulation constellation.
  • the network device sends the uplink data stream allocation or the specified signature sequence and the modulation constellation for the terminal device, and the network device may determine that the signature sequence is the second signature sequence, and may determine that the modulation constellation is the first modulation constellation; Therefore, the network device may determine, according to the second signature sequence and the first modulation constellation, that the indication information includes the second signature sequence information and the first modulation constellation information.
  • the indication information may be composed of two logical information segments, where the logical information segment 1 may carry the second signature sequence information, and is used to indicate the second signature sequence included in the indication information; the logical information segment 2 may carry the The first modulation constellation information is used to indicate the first modulation constellation included in the indication information.
  • each piece of logical information of the indication information may be continuously or non-continuously appearing in the instruction in which the indication information is located in any sequence, which is not limited by the embodiment of the present invention.
  • the terminal device after the terminal device receives the instruction or the message carrying the indication information, for example, according to the logical information segment 1 therein, it can be known which signature sequence the uplink to-be-sent data stream will use for transmission; according to the logical information segment 2, the uplink can be learned. Which modulation order or modulation constellation will be used for the data stream to be transmitted.
  • the terminal device can send the uplink data stream according to the finally determined signature sequence and the modulation constellation, that is, the terminal device can perform constellation mapping on the uplink data stream, and adjust the amplitude and phase of the modulation symbol obtained after constellation mapping, thereby
  • the non-orthogonal multiple access system can operate normally and can effectively increase the network capacity of the system.
  • each modulation constellation may correspond to a modulation order. Therefore, the logical information segment 2 may also indicate a modulation constellation used by the terminal device to transmit the data stream to be sent by indicating the modulation order; The terminal device can learn the modulation order corresponding to the uplink data stream to be sent according to the logical information segment 2, so that the modulation constellation corresponding to the modulation order can be determined, so that the uplink data stream can be transmitted.
  • the first modulation constellation information includes modulation order information of the first modulation constellation.
  • each logical information segment indicates an index value
  • the index relationship of the signature sequence in the matrix, the index relationship between the modulation constellation index value and each modulation constellation, the index relationship of the modulation order index value and each modulation order or the index relationship with each modulation constellation, etc. so that the network
  • the device and the terminal device are capable of uniquely determining the corresponding signature sequence and the modulation constellation through the pre-established correlation index relationship according to the index value indicated by the logical information segment.
  • the network device and the terminal device may pre-store the signature sequence by using various methods.
  • a simple and straightforward method is to store all the zero elements and non-zero included therein according to the foregoing manner. element:
  • the embodiment of the present invention only uses the above example as an example to describe the storage of the signature sequence, but it should be understood that the present invention
  • the embodiment is not limited thereto, and the network device and the terminal device may further store the signature sequence in advance by other methods.
  • the indication information may only include the first modulation constellation information; for example, when the adjustment constellation determined by the network device for the uplink transmission data of the terminal device uses a fixed modulation constellation or a fixed modulation order by default, the indication information may include only the second signature sequence information.
  • the network device can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • the present invention is only described by taking the embodiment shown in FIG. 4 as an example. However, the present invention is not limited thereto, and other methods may be used to indicate to the terminal device the signature sequence and modulation constellation allocated or specified by the network device.
  • the method for transmitting the indication information in the embodiment of the present invention determines, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determines to indicate the first signature sequence and the first modulation constellation.
  • the indication information is sent to the terminal device, so that the terminal device can determine the first signature sequence and the first modulation constellation allocated by the network device, and use the first signature sequence and the first modulation constellation to transmit data. This can effectively increase the network capacity of the system.
  • the network device can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • the network device may send the indication information to the terminal device in multiple manners.
  • the network device may indicate the terminal device in a dynamic or semi-static manner through a downlink control channel; the network device may also pass the data channel.
  • the terminal device is indicated in a semi-static manner; the network device can also indicate the terminal device in a static manner through a broadcast channel or a data channel.
  • the sending the indication information to the terminal device includes: sending an uplink scheduling grant message, a dedicated high layer control signaling, or a system broadcast message to the terminal device, the uplink scheduling authorization message, the The dedicated high layer control signaling and the system broadcast message include the indication information.
  • the terminal device when the terminal device needs to use the non-orthogonal multiple access technology to send the uplink data stream, the terminal device may send an uplink scheduling request to the network device, for requesting the network device to allocate or Specify the signature sequence and modulation constellation, as well as other system resources and parameters such as frequency resources, transmit power, coded modulation scheme, and so on.
  • the network device may allocate the data stream to be sent by the terminal device according to the data buffer status periodically reported by the terminal device or the related information (such as the channel state information of the user). Or, the signature sequence and the modulation constellation, and other system resources and parameters are specified, and the signature sequence and the modulation constellation used to indicate the allocation or designation are carried along with other system resources and parameters in the uplink scheduling grant message and sent to the terminal device.
  • the terminal device may use the signature sequence and the modulation constellation indicated by the uplink scheduling grant message, and other system resources and parameters, and use the non-orthogonal multiple access technology to send the uplink data. flow.
  • the indication information used to indicate the signature sequence and the modulation constellation may be carried in the uplink scheduling grant message as part of the downlink control information (Downlink Control Information, referred to as “DCI”), and the downlink physical control channel is used.
  • DCI Downlink Control Information
  • a Physical Downlink Control Channel (“PDCCH”) in a Long Term Evolution (“LTE”) system is sent to the terminal in a dynamic or semi-peritent manner. device.
  • PDCCH Physical Downlink Control Channel
  • LTE Long Term Evolution
  • the indication information used to indicate the signature sequence and the modulation constellation may be carried in a Radio Resource Control (RRC) connection establishment message or an RRC connection reconfiguration message, and through the downlink physical data channel.
  • RRC Radio Resource Control
  • the physical downlink shared channel (Physical Downlink Shared Channel, referred to as "PDSCH”) in the LTE system is sent to the terminal device in a semi-static manner.
  • PDSCH Physical Downlink Shared Channel
  • the dedicated high layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message. It should be understood that the embodiment of the present invention only uses the dedicated high-layer control signaling, including the RRC connection setup message and the RRC connection reconfiguration message, as an example, but the present invention is not limited thereto, and other dedicated high-layer control signaling may be used to the terminal device. Send the indication.
  • the indication information used to indicate the signature sequence and the modulation constellation may be carried in a system broadcast message, such as a Master Information Block (MIB) or a System Information Block in an LTE system.
  • MIB Master Information Block
  • SIB System Information Block
  • PBCH Physical Broadcast Channel
  • PDSCH physical downlink shared channel
  • the network device sends the indication information to the terminal device in at least one of a bit string manner and a table manner.
  • the indication information is bit string information.
  • the logical information segment in the indication information may have multiple implementation methods, including but not limited to the following:
  • Method 1 The logical information segment uses an independent bit string or bit bitmap to implement the information indication function.
  • ceil ( ⁇ ) means round up.
  • An value of the bit bitmap represents an index value of the indicated information, and the terminal device can determine, according to the index value represented by the bit bitmap, a pre-established index relationship, a possibility that uniquely corresponds to the index value. .
  • the three logical information segments in the indication information are all implemented by independent bit strings or bit bitmaps, but in reality, all logical information segments are not required to use the same implementation manner. . Therefore, in actual application, a part of the logical information segment may use an independent bit bitmap to implement its information indicating function, and other logical information segments may be implemented in other manners, and the embodiment of the present invention is not limited thereto.
  • Method 2 Merging indication of multiple logical information segments
  • the merge indication of the logical information segments can generally be implemented in the form of a table.
  • the table may have the form that the table includes multiple columns, one of which is a comprehensive index column, and each index value corresponds to a combination of information indicated by a plurality of logical information segments; except for the comprehensive index column, each of the other columns in the table
  • Each of the logical information segments may be respectively used to indicate a possibility of the information indicated by the corresponding logical information segment, and the value may be an index value, or may be specific content indicated, such as a signature matrix, a signature sequence, a modulation constellation, Adjust the order and so on.
  • the network device and the terminal device can establish a correspondence between the comprehensive index value and all possible combinations of information indicated by the plurality of logical information segments.
  • the network device sends the comprehensive index value to the terminal device by using the indication information.
  • the terminal device can obtain a possibility that the information indicated by each logical information segment uniquely corresponds by looking up the table.
  • the indication information includes the first signature matrix information, the first signature sequence information, and the first modulation constellation information as an example.
  • a form of the table for implementing the indication information is as shown in Table 1:
  • the merge indication table of the plurality of logical information segments may be composed of 4 columns, the first column is a comprehensive index column (for example, referred to as an LDS index column in this example), and the other 3 columns respectively correspond to the indication information.
  • 3 logical pieces of information are an index value
  • i, j, k may be an index value of each logical information segment indication information, or may be a specific content of the corresponding information, for example, a signature matrix, a signature sequence, and a modulation constellation stored according to the foregoing form. Wait.
  • Manner 3 The information segment merges with the information segment with other indication functions in the message or instruction where the indication information is located.
  • the table may have the following form: the table includes a plurality of columns, wherein one column is a comprehensive index column, and each index value represents a combination of the contents indicated by the other columns; in addition to the comprehensive index column, at least one column in the table corresponds to the implementation of the present invention.
  • a logical information segment in the indication information represents a possibility of the content indicated by the corresponding logical information segment, and the value may be an index value, or may be specific content indicated, such as a signature matrix, a signature sequence, Modulation constellation, adjustment order, etc.
  • At least one of the other columns of the table corresponds to an information segment having other information (different from the information indicated by the logical information segment in the indication information in the embodiment of the present invention) indicating a function, such as an information segment indicating a transport block size, indicating redundant The remaining version of the information section and so on.
  • the network device and the terminal device can establish a correspondence between the comprehensive index and all possible combinations of the information indicated by the logical information segment in the indication information and the information segment indicated by the information segment having the other information indicating function. relationship.
  • the network device sends the comprehensive index value to the terminal device by using the indication information, and the terminal device can obtain, according to the comprehensive index value, a unique correspondence corresponding to the information indicated by the logical information segment in the indication information in the embodiment of the present invention. Possible, and the possibility that the information indicated by the information segment with other information indicating functions uniquely corresponds.
  • the pieces of logical information in the indication information are all logical concepts. If the information or the instruction in which the information is located, for example, an uplink scheduling grant message, an RRC connection setup message, an RRC connection reconfiguration message, a broadcast message, etc., the information segment or the bit string implements the information indication of a certain logical information segment in the foregoing embodiment.
  • the information segment or bit string is an implementation of the corresponding logical information segment in the above embodiment.
  • the information segment or bit string herein may be any part of all the bits used to compose the message or instruction in which the information is indicated, including the information bit and the school. The check is performed, for example, a Cyclic Redundancy Check (CRC) bit that is scrambled by a Radio Network Temporary Identity ("RNTI”) of the terminal device.
  • CRC Cyclic Redundancy Check
  • the various implementations of the indication information are described in detail above.
  • the LTE system using the non-orthogonal multiple access technology is taken as an example to describe the specific application of the embodiment of the present invention in the LTE system.
  • the network device sends the following information segment for each uplink transmission block to be transmitted by the terminal device (the transport block is equivalent to the data or data stream in the embodiment of the present invention) to indicate the corresponding information by using the uplink scheduling grant message. :
  • Modulation coding scheme and redundancy version information segment 5 bits, used to indicate the transport block size, modulation order, and redundancy version number;
  • the new data indicates the information segment: 1 bit, which is used to indicate whether the transport block is retransmitted data or new data.
  • the one or more logical information segments described in the embodiment of the present invention are also required to be delivered, and the information segment is sent to each of the transport blocks of the terminal device. Indicates the signature sequence and/or modulation constellation.
  • the network device may send the following information segment to the transport block of the terminal device by using the uplink scheduling grant message to indicate the corresponding information:
  • a signature matrix indication information segment L 7 bits, used to indicate a signature matrix used for transmitting the transport block;
  • Signature sequence indication information segment L 8 bits, used to indicate the signature sequence used to transmit the transport block;
  • a modulation coding scheme and a redundancy version information segment 5 bits indicating the transport block size, modulation order and redundancy version number;
  • New data indication information segment 1 bit, used to indicate whether the transport block is retransmitted data or new data.
  • the terminal device may, according to the corresponding signature matrix indication information segment, learn which signature matrix to use to send the transport block according to the corresponding signature matrix;
  • the corresponding signature sequence indicates the information segment, and it can be known which one of the signature matrix is used to transmit the transport block; further, according to the modulation and coding scheme and the redundancy version information segment, the modulation order used for transmitting the transport block can be known.
  • a modulation constellation corresponding to the modulation order, so that the terminal device can transmit the transport block according to the signature sequence and the modulation constellation.
  • the network device may send the following information segment to the transport block of the terminal device by using the uplink scheduling grant message to indicate the corresponding information:
  • a modulation coding scheme and a redundancy version information segment 5 bits indicating the transport block size, modulation order and redundancy version number;
  • New data indication information segment 1 bit, used to indicate whether the transport block is retransmitted data or new data.
  • the terminal device After receiving, by the terminal device, the uplink scheduling grant message, for each transport block, according to the corresponding signature sequence indication information segment, it may be known which signature sequence to use to transmit the transport block; further, according to the modulation and coding scheme and the redundancy version.
  • the information segment can know the modulation order used to transmit the transport block, and the modulation constellation corresponding to the modulation order, so that the terminal device can transmit the transport block according to the signature sequence and the modulation constellation.
  • the network device further Other pieces of information may be sent to indicate the signature sequence and the modulation constellation.
  • the signature sequence is a low density signature LDS sequence.
  • the signature sequence includes a number of zero elements greater than or equal to the number of non-zero elements.
  • the method for transmitting the indication information in the embodiment of the present invention determines, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determines to indicate the first signature sequence and the first modulation constellation. Instructions and send the indication to the terminal device And the terminal device is configured to determine the first signature sequence and the first modulation constellation allocated by the network device, and transmit the data by using the first signature sequence and the first modulation constellation, thereby effectively improving the network capacity of the system.
  • the network device can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • FIG. 3 and FIG. 4 a method for transmitting indication information according to an embodiment of the present invention is described in detail from the perspective of a network device.
  • an embodiment according to the present invention will be described with reference to FIG. 5 to FIG. The method of transmitting the indication information.
  • the method 300 for transmitting indication information may be performed, for example, by a terminal device in a communication system, such as a user equipment. As shown in FIG. 5, the method 300 includes:
  • S310 Receive indication information sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting an uplink data stream, where each signature sequence is composed of at least one zero element and at least one non-zero element. a multi-dimensional complex vector, the signature sequence is used for adjusting the amplitude and phase of the modulation symbol obtained by constelling the uplink data stream by using the modulation constellation by the terminal device;
  • S320 Determine the first signature sequence and the first modulation constellation according to the indication information.
  • the network device allocates or specifies a signature sequence and a modulation constellation for the uplink data stream to be sent by the terminal device; in order for the terminal device to know the signature assigned by the network device The sequence and the first modulation constellation, the network device may determine the indication information, and send the indication information to the terminal device, where the indication information is used to indicate the signature sequence used by the terminal device to send the uplink data stream and the modulation constellation.
  • the terminal device may determine, according to the indication information, the signature sequence and the modulation constellation used for sending the uplink data stream, and send the uplink data stream according to the signature sequence and the modulation constellation.
  • the terminal device can be determined to determine the signature sequence and the modulation constellation allocated by the network device, thereby enabling the non-orthogonal multiple access system to operate normally.
  • the apparatus for transmitting the indication information of the embodiment of the present invention receives, by the terminal device, indication information that is sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting the uplink data stream, according to the The indication information is determined to be used by the terminal device to send the uplink data stream.
  • the first signature sequence and the first modulation constellation and transmitting the uplink data stream by using the first signature sequence and the first modulation constellation, so that the first signature sequence and the first The modulation constellation transmits data, thereby effectively improving the network capacity of the system, including increasing the number of accessible users and spectrum efficiency of the system.
  • the signature matrix is composed of one or more signature sequences, which are multi-dimensional complex vectors composed of at least one zero element and at least one non-zero element, and the signature sequence is used for the terminal device or
  • the network device uses the modulation constellation to adjust the amplitude and phase of the modulation symbols obtained by constelling the data stream.
  • a method 320 of determining the first signature sequence and the first modulation constellation based on the indication information in accordance with an embodiment of the present invention will be described in detail below with reference to FIGS. 6 and 7.
  • the indication information includes first signature matrix information, first signature sequence information, and first modulation constellation information, where the first signature matrix information is used to indicate a first signature matrix, where the first signature sequence information is used to indicate the first signature matrix
  • the first signature sequence, the first modulation constellation information is used to indicate the first modulation constellation
  • the determining the first signature sequence and the first modulation constellation according to the indication information includes:
  • the network device and the terminal device may store a pre-designed signature matrix, a signature sequence, and a modulation constellation, or the network device and the terminal device may store a pre-designed signature matrix and a modulation constellation, where the signature The column of the matrix is the signature sequence. Therefore, in the embodiment of the present invention, the corresponding signature sequence is also stored while storing the signature matrix.
  • the network device sends an uplink data flow allocation or a specified signature sequence and a modulation constellation for the terminal device, and the network device may determine that the signature sequence is the first signature sequence in the first signature matrix, and the network device may determine the The modulation constellation is a first modulation constellation; thus, the network device may determine, according to the first signature sequence and the first modulation constellation, that the indication information includes the first signature matrix information, the first signature sequence information, and the first modulation constellation information.
  • the indication information may be composed of three logical information segments, wherein the logical information segment 1 may carry the first signature matrix information for indicating the first signature matrix included in the indication information; the logical information segment 2 may carry the The first signature sequence information is used to indicate the first signature sequence in the first signature matrix.
  • the logical information segment 3 can carry the first modulation constellation information to indicate the first modulation constellation included in the indication information.
  • each piece of logical information of the indication information may be continuously or non-continuously appearing in the instruction in which the indication information is located in any sequence, which is not limited by the embodiment of the present invention.
  • the terminal device receives the instruction or the message carrying the indication information, for example, according to the logical information segment 1 therein, it can be known which signature matrix the uplink to-be-sent data stream will use for transmission; according to the logical information segment 2, the uplink can be learned.
  • the data stream to be transmitted will be transmitted using which signature sequence in the signature matrix indicated by the logical information segment 1; according to the logical information segment 3 therein, it can be known which modulation order or which modulation constellation the uplink to-be-transmitted data stream will use for transmission.
  • the terminal device can send the uplink data stream according to the finally determined signature sequence and the modulation constellation, that is, the terminal device can perform constellation mapping on the uplink data stream, and adjust the amplitude and phase of the modulation symbol obtained after constellation mapping, thereby
  • the non-orthogonal multiple access system can operate normally and can effectively increase the network capacity of the system.
  • each modulation constellation may correspond to a modulation order. Therefore, the logical information segment 3 may further indicate, by means of indicating a modulation order, a modulation constellation used by the terminal device to uplink the data stream to be sent; The terminal device can learn the modulation order corresponding to the uplink data stream to be sent according to the logical information segment 3, so that the modulation constellation corresponding to the modulation order can be determined, so that the uplink data stream can be transmitted.
  • the first modulation constellation information includes modulation order information of the first modulation constellation.
  • each logical information segment indicates an index value
  • it is necessary to establish an index relationship of the related related information on the network device and the terminal device side in advance for example, a signature matrix index value and a signature matrix.
  • An index relationship, an index relationship between the signature sequence index value and the signature sequence in each signature matrix, and an index relationship between the modulation constellation index value and each modulation constellation, etc. so that the network device and the terminal device can be indexed according to the logical information segment.
  • the value uniquely determines the corresponding signature matrix, signature sequence, and modulation constellation through a pre-established correlation index relationship.
  • the network device and the terminal device may pre-store the signature matrix by using various methods.
  • a simple and straightforward method is to store all the zero elements and non-zero included therein according to the foregoing manner. element:
  • the embodiment of the present invention only uses the above example as an example to describe the storage of the signature matrix, but it should be understood that the embodiment of the present invention is not limited thereto, and the network device and the terminal device may further store the signature matrix by other methods.
  • the indication information may include only the first signature sequence information and the first modulation constellation.
  • the indication information may include only the first signature matrix information and the first modulation constellation information; for example, for example, for example, when the adjustment constellation for the uplink transmission data of the terminal device determined by the network device uses a fixed modulation constellation by default, the indication information may include only the first signature matrix information and the first signature sequence information.
  • the foregoing method can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • FIG. 7 illustrates another embodiment of a method 320 of determining the first signature sequence and the first modulation constellation based on the indication information, in accordance with an embodiment of the present invention.
  • the indication information includes: second signature sequence information and first modulation constellation information, where the second signature sequence information is used to indicate the first signature sequence, The first modulation constellation information is used to indicate the first modulation constellation;
  • the determining the first signature sequence and the first modulation constellation according to the indication information includes:
  • the network device and the terminal device may store a pre-designed signature sequence and a modulation constellation.
  • the network device sends the uplink data stream allocation or the specified signature sequence and the modulation constellation for the terminal device, and the network device may determine that the signature sequence is the second signature sequence, and may determine that the modulation constellation is the first modulation constellation; Therefore, the network device may determine, according to the second signature sequence and the first modulation constellation, that the indication information includes the second signature sequence information and the first modulation constellation information.
  • the indication information may be composed of two logical information segments, where the logical information segment 1 may carry the second signature sequence information, and is used to indicate the second signature sequence included in the indication information; the logical information segment 2 may carry the The first modulation constellation information is used to indicate the first modulation constellation included in the indication information.
  • each piece of logical information of the indication information may be continuously or non-continuously appearing in the instruction in which the indication information is located in any sequence, which is not limited by the embodiment of the present invention.
  • the terminal device after the terminal device receives the instruction or the message carrying the indication information, for example, according to the logical information segment 1 therein, it can be known which signature sequence the uplink to-be-sent data stream will use for transmission; according to the logical information segment 2, the uplink can be learned. Which modulation order or modulation constellation will be used for the data stream to be transmitted.
  • the terminal device can send the uplink data stream according to the finally determined signature sequence and the modulation constellation, that is, the terminal device can perform constellation mapping on the uplink data stream, and adjust the amplitude and phase of the modulation symbol obtained after constellation mapping, thereby
  • the non-orthogonal multiple access system can operate normally and can effectively increase the network capacity of the system.
  • each modulation constellation may correspond to a modulation order. Therefore, the logical information segment 2 may also indicate a modulation constellation used by the terminal device to transmit the data stream to be sent by indicating the modulation order; The terminal device can learn the modulation order corresponding to the uplink data stream to be sent according to the logical information segment 2, so that the modulation constellation corresponding to the modulation order can be determined, so that the uplink data stream can be transmitted.
  • the first modulation constellation information includes modulation order information of the first modulation constellation.
  • each logical information segment indicates an index value
  • the index relationship of the signature sequence in the matrix, the index relationship between the modulation constellation index value and each modulation constellation, the index relationship of the modulation order index value and each modulation order or the index relationship with each modulation constellation, etc. so that the network
  • the device and the terminal device are capable of uniquely determining the corresponding signature sequence and the modulation constellation through the pre-established correlation index relationship according to the index value indicated by the logical information segment.
  • the network device and the terminal device may pre-store the signature sequence by using various methods.
  • a simple and straightforward method is to store all the zero elements and non-zero included therein according to the foregoing manner. element:
  • the embodiment of the present invention only uses the above example as an example to describe the storage of the signature sequence, but it should be understood that the embodiment of the present invention is not limited thereto, and the network device and the terminal device may further store the signature sequence by other methods.
  • the indication information may only include the second modulation constellation information; for example, when the adjustment constellation determined by the network device for the uplink transmission data of the terminal device uses a fixed modulation constellation or a fixed modulation order by default, the indication information may include only the second signature sequence information.
  • the foregoing method can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream, and thus the foregoing method can not only effectively improve the network capacity of the system. Quantity can also save system overhead.
  • the present invention is only described by taking the embodiments shown in FIG. 6 and FIG. 7 as an example. However, the present invention is not limited thereto, and other methods may be used to indicate to the terminal device the signature sequence and modulation constellation allocated or specified by the network device. .
  • the indication information sent by the receiving network device includes: receiving an uplink scheduling grant message, a dedicated high-layer control signaling, or a system broadcast message sent by the network device, the uplink scheduling authorization message, the The dedicated high layer control signaling and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the network device sends the indication information to the terminal device by using at least one of a bit string mode and a table mode.
  • the indication information is bit string information.
  • the signature sequence is a low density signature LDS sequence.
  • the signature sequence includes a number of zero elements greater than or equal to the number of non-zero elements.
  • the apparatus for transmitting the indication information of the embodiment of the present invention receives, by the terminal device, indication information that is sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting the uplink data stream, according to the The indication information determines a first signature sequence and a first modulation constellation used by the terminal device to send the uplink data stream, and uses the first signature sequence and the first modulation constellation to transmit the uplink data stream, so that the terminal device and the network device
  • the first signature sequence and the first modulation constellation can be used for data transmission, thereby effectively improving the network capacity of the system, including improving the number of accessible users and spectrum efficiency of the system.
  • the foregoing method can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • FIG. 8 illustrates an apparatus 500 for transmitting indication information in accordance with an embodiment of the present invention. As shown in FIG. 8, the apparatus 500 includes:
  • the first determining module 510 is configured to determine a first signature sequence and a first modulation constellation used by the terminal device to send the uplink data stream, where each signature sequence is a multi-dimensional complex vector composed of at least one zero element and at least one non-zero element, the signature The sequence is used to adjust the amplitude and phase of the modulation symbol obtained by performing constellation mapping on the uplink data stream by using the modulation constellation to the terminal device;
  • a second determining module 520 configured to determine indication information for indicating the first signature sequence and the first modulation constellation determined by the first determining module 510;
  • the sending module 530 is configured to send the indication information that is determined by the second determining module 520 to the terminal device.
  • the apparatus for transmitting indication information determines, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determines to indicate the first signature sequence and the first modulation constellation.
  • the indication information is sent to the terminal device, so that the terminal device can determine the first signature sequence and the first modulation constellation allocated by the network device, and use the first signature sequence and the first modulation constellation to transmit data. This can effectively increase the network capacity of the system.
  • the second determining module 520 includes:
  • a first determining unit 521 configured to determine that the first signature sequence belongs to a first signature matrix, where each signature matrix is composed of two or more of the signature sequences;
  • the second determining unit 522 is configured to determine that the indication information includes first signature matrix information, first signature sequence information, and first modulation constellation information, where the first signature matrix information is used to indicate the first signature matrix, where A signature sequence information is used to indicate the first signature sequence in the first signature matrix, and the first modulation constellation information is used to indicate the first modulation constellation.
  • the second determining module 520 includes:
  • the third determining unit 523 is configured to determine that the indication information includes second signature sequence information and first modulation constellation information, where the second signature sequence information is used to indicate the second signature sequence, where the first modulation constellation information is used The first modulation constellation is indicated.
  • the first modulation star determined by the second determining module 520 The seat information includes modulation order information of the first modulation constellation.
  • the sending module 530 is specifically configured to: send an uplink scheduling grant message, a dedicated high-layer control signaling, or a system broadcast message to the terminal device, the uplink scheduling authorization message, and the dedicated high-level control message.
  • the system and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the indication information determined by the second determining module 520 is bit string information.
  • the signature sequence is a low density signature LDS sequence.
  • the signature sequence includes a number of zero elements greater than or equal to the number of non-zero elements.
  • the device 500 is a network device.
  • the apparatus 500 for transmitting indication information may correspond to the network device in the method embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the apparatus 500 are respectively implemented to implement FIG.
  • the corresponding processes of the respective methods 200 in FIG. 4 are not described herein for the sake of brevity.
  • the apparatus for transmitting indication information determines, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determines to indicate the first signature sequence and the first modulation constellation.
  • the indication information is sent to the terminal device, so that the terminal device can determine the first signature sequence and the first modulation constellation allocated by the network device, and use the first signature sequence and the first modulation constellation to transmit data. This can effectively increase the network capacity of the system.
  • the device according to the embodiment of the present invention can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • an apparatus for transmitting indication information according to an embodiment of the present invention is described in detail from a network device side, and a transmission according to an embodiment of the present invention will be described in detail from the terminal device side with reference to FIG. 11 and FIG. A device that indicates information.
  • FIG. 11 shows an apparatus 600 for transmitting indication information in accordance with an embodiment of the present invention. As shown in FIG. 11, the apparatus 600 includes:
  • the receiving module 610 is configured to receive indication information sent by the network device, where the indication information is used to refer to a first signature sequence and a first modulation constellation for transmitting an uplink data stream, each signature sequence being a multi-dimensional complex vector consisting of at least one zero element and at least one non-zero element, the signature sequence being used to use a modulation constellation for the terminal device Adjusting the amplitude and phase of the modulation symbols obtained by performing constellation mapping on the uplink data stream;
  • a determining module 620 configured to determine the first signature sequence and the first modulation constellation according to the indication information received by the receiving module 610;
  • the sending module 630 is configured to send the uplink data stream according to the first signature sequence determined by the determining module 620 and the first modulation constellation.
  • the apparatus for transmitting the indication information of the embodiment of the present invention receives, by the terminal device, indication information that is sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting the uplink data stream, according to the The indication information determines a first signature sequence and a first modulation constellation used by the terminal device to send the uplink data stream, and uses the first signature sequence and the first modulation constellation to transmit the uplink data stream, so that the terminal device and the network device
  • the first signature sequence and the first modulation constellation can be used for data transmission, thereby effectively improving the network capacity of the system, including improving the number of accessible users and spectrum efficiency of the system.
  • the indication information received by the receiving module 610 includes first signature matrix information, first signature sequence information, and first modulation constellation information, where the first The signature matrix information is used to indicate the first signature matrix, the first signature sequence information is used to indicate the first signature sequence in the first signature matrix, and the first modulation constellation information is used to indicate the first modulation constellation;
  • the determining module 620 includes: a first determining unit 621, configured to determine, according to the first signature matrix information, the first signature sequence information, and the first modulation constellation information, the first signature in the first signature matrix And a sequence of the first modulation constellation, wherein each signature matrix consists of two or more of the signature sequences.
  • the indication information received by the receiving module 610 includes second signature sequence information and first modulation constellation information, where the second signature sequence information is used to indicate The first signature sequence, the first modulation constellation information is used to indicate the first modulation constellation;
  • the determining module 620 includes: a second determining unit 622, configured to determine the first signature sequence and the first modulation constellation according to the second signature sequence information and the first modulation constellation information.
  • the first modulation constellation information received by the receiving module 610 includes modulation order information of the first modulation constellation.
  • the receiving module 610 is specifically configured to: receive an uplink scheduling grant message, a dedicated high-layer control signaling, or a system broadcast message sent by the network device, the uplink scheduling authorization message, and the dedicated high-layer control
  • the signaling and the system broadcast message include the indication information.
  • the dedicated high-layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the indication information received by the receiving module 610 is bit string information.
  • the signature sequence is a low density signature LDS sequence.
  • the signature sequence includes a quantity of zero elements greater than or equal to the number of non-zero elements.
  • the device 600 is a terminal device.
  • apparatus 600 for transmitting indication information may correspond to the terminal apparatus in the method embodiment of the present invention, and the above and other operations and/or functions of the respective modules in the apparatus 600 are respectively implemented to implement FIG. 5.
  • the corresponding processes of the respective methods 300 in FIG. 7 are not described herein again for the sake of brevity.
  • the apparatus for transmitting the indication information of the embodiment of the present invention receives, by the terminal device, indication information that is sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting the uplink data stream, according to the The indication information determines a first signature sequence and a first modulation constellation used by the terminal device to send the uplink data stream, and uses the first signature sequence and the first modulation constellation to transmit the uplink data stream, so that the terminal device and the network device
  • the first signature sequence and the first modulation constellation can be used for data transmission, thereby effectively improving the network capacity of the system, including improving the number of accessible users and spectrum efficiency of the system.
  • the device can receive the signature matrix and the modulation constellation used by the network device to send the uplink data stream with less information, so that the device can not only effectively improve the network capacity of the system, but also save system overhead. .
  • an embodiment of the present invention further provides an apparatus 800 for transmitting indication information, where the apparatus 800 includes a processor 810, a memory 820, a bus system 830, and a transmitter 840.
  • the processor 810, the memory 820, and the transmitter 840 are connected by a bus system 830, where the memory 820 is used to store instructions, and the processor 810 is configured to execute instructions stored in the memory 820 to control
  • the transmitter 840 sends a signal;
  • the processor 810 is configured to: determine a first signature sequence used by the terminal device to send the uplink data stream, and a first modulation constellation, where each signature sequence is a multi-dimensional complex vector composed of at least one zero element and at least one non-zero element. And the signature sequence is used to adjust the amplitude and phase of the modulation symbol obtained by performing constellation mapping on the uplink data stream by using the modulation constellation; and determining indication information used to indicate the first signature sequence and the first modulation constellation;
  • the transmitter 840 is configured to: send the indication information to the terminal device.
  • the apparatus for transmitting indication information determines, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determines to indicate the first signature sequence and the first modulation constellation.
  • the indication information is sent to the terminal device, so that the terminal device can determine the first signature sequence and the first modulation constellation allocated by the network device, and use the first signature sequence and the first modulation constellation to transmit data. This can effectively increase the network capacity of the system.
  • the processor 810 may be a central processing unit (“CPU"), and the processor 810 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of the memory 820 may also include a non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 820, and the processor 810 reads the information in the memory 820 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 810 determines indication information for indicating the first signature sequence and the first modulation constellation, including:
  • each signature matrix is composed of two or more of the signature sequences
  • Determining the indication information includes first signature matrix information, first signature sequence information, and first modulation constellation information, wherein the first signature matrix information is used to indicate the first signature matrix, where the first signature sequence information is used to indicate the The first signature sequence in the first signature matrix, the first modulation constellation information is used to indicate the first modulation constellation.
  • the processor 810 determines indication information for indicating the first signature sequence and the first modulation constellation, including:
  • Determining the indication information includes the second signature sequence information and the first modulation constellation information, wherein the second signature sequence information is used to indicate the second signature sequence, where the first modulation constellation information is used to indicate the first modulation constellation.
  • the first modulation constellation information determined by the processor 810 includes modulation order information of the first modulation constellation.
  • the sending, by the transmitter 840, the indication information is sent to the terminal device, including:
  • the dedicated high layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the indication information determined by the processor 810 is bit string information.
  • the signature sequence is a low density signature LDS sequence.
  • the signature sequence includes a number of zero elements greater than or equal to the number of non-zero elements.
  • the device 800 is a network device.
  • the apparatus 800 for transmitting indication information may correspond to the network device and the apparatus 500 in the embodiment of the present invention, and may correspond to a corresponding body in the method according to the embodiment of the present invention, and the apparatus
  • the above and other operations and/or functions of the various modules in 800 The corresponding processes of the respective methods in FIG. 3 to FIG. 4 can be implemented separately, and are not described herein for brevity.
  • the apparatus for transmitting indication information determines, by the network device, the first signature sequence and the first modulation constellation used by the terminal device to send the uplink data stream, and determines to indicate the first signature sequence and the first modulation constellation.
  • the indication information is sent to the terminal device, so that the terminal device can determine the first signature sequence and the first modulation constellation allocated by the network device, and use the first signature sequence and the first modulation constellation to transmit data. This can effectively increase the network capacity of the system.
  • the device according to the embodiment of the present invention can use less information to indicate that the terminal device sends the signature matrix and the modulation constellation used by the uplink data stream. Therefore, the foregoing method can not only effectively improve the network capacity of the system, but also save system overhead.
  • an embodiment of the present invention further provides an apparatus 900 for transmitting indication information, where the apparatus 900 includes a processor 910, a memory 920, a bus system 930, a receiver 940, and a transmitter 950.
  • the processor 910, the memory 920, the receiver 940, and the transmitter 950 are connected by a bus system 930 for storing instructions for executing instructions stored in the memory 920 to control the receiver 940 to receive. Signaling, and controlling the transmitter 950 to send a signal;
  • the receiver 940 is configured to: receive indication information sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting an uplink data stream, where each signature sequence is at least one zero element and a multi-dimensional complex vector composed of at least one non-zero element, the signature sequence is used for adjusting the amplitude and phase of the modulation symbol obtained by performing constellation mapping on the uplink data stream by using the modulation constellation by the terminal device;
  • the processor 910 is configured to: determine the first signature sequence and the first modulation constellation according to the indication information;
  • the transmitter 950 is configured to: send the uplink data stream according to the first signature sequence and the first modulation constellation.
  • the apparatus for transmitting the indication information of the embodiment of the present invention receives, by the terminal device, indication information that is sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting the uplink data stream, according to the The indication information determines a first signature sequence and a first modulation constellation used by the terminal device to send the uplink data stream, and uses the first signature sequence and the first modulation constellation to transmit the uplink data stream, so that the terminal device and the network device
  • the first signature sequence and the first modulation constellation can be used for data transmission, thereby effectively improving the network capacity of the system. Volume, including the number of accessible users and spectrum efficiency of the boost system.
  • the processor 910 may be a central processing unit (“CPU"), and the processor 910 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 920 can include read only memory and random access memory and provides instructions and data to the processor 910. A portion of the memory 920 may also include a non-volatile random access memory. For example, the memory 920 can also store information of the device type.
  • the bus system 930 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 930 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 910 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 920, and the processor 910 reads the information in the memory 920 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the indication information received by the receiver 940 includes first signature matrix information, first signature sequence information, and first modulation constellation information, where the first signature matrix information is used to indicate the first a signature matrix, the first signature sequence information is used to indicate the first signature sequence in the first signature matrix, where the first modulation constellation information is used to indicate the first modulation constellation;
  • the processor 910 determines the first signature sequence and the first modulation constellation according to the indication information, including:
  • each signature matrix consists of two One or more of the signature sequences.
  • the indication information received by the receiver 940 includes second signature sequence information and first modulation constellation information, where the second signature sequence information is used to indicate the first signature sequence, where the A modulation constellation information is used to indicate the first modulation constellation;
  • the processor 910 determines the first signature sequence and the first modulation constellation according to the indication information, including:
  • the first modulation constellation information determined by the processor 910 includes modulation order information of the first modulation constellation.
  • the receiver 940 receives the indication information sent by the network device, including:
  • the dedicated high layer control signaling includes a radio resource control RRC connection setup message and an RRC connection reconfiguration message.
  • the indication information received by the receiver 940 is bit string information.
  • the signature sequence is a low density signature LDS sequence.
  • the signature sequence includes a number of zero elements greater than or equal to the number of non-zero elements.
  • the device 900 is a terminal device.
  • the apparatus 900 for transmitting indication information may correspond to the terminal apparatus and the apparatus 600 in the embodiment of the present invention, and may correspond to a corresponding body in the method according to the embodiment of the present invention, and the apparatus
  • the above and other operations and/or functions of the respective modules in the 900 are respectively implemented in order to implement the respective processes of the respective methods in FIG. 5 to FIG. 7.
  • no further details are provided herein.
  • the apparatus for transmitting the indication information of the embodiment of the present invention receives, by the terminal device, indication information that is sent by the network device, where the indication information is used to indicate a first signature sequence and a first modulation constellation for transmitting the uplink data stream, according to the The indication information determines a first signature sequence and a first modulation constellation used by the terminal device to send the uplink data stream, and uses the first signature sequence and the first modulation constellation to transmit the uplink data stream, so that the terminal device and the network device
  • the first signature sequence and the first modulation constellation can be used for data transmission, thereby effectively improving the network capacity of the system, including improving the number of accessible users and spectrum efficiency of the system.
  • the device can receive the signature matrix and the modulation constellation used by the network device to send the uplink data stream with less information, so that the device can not only effectively improve the network capacity of the system, but also save system overhead. .
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (for example, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (for example, a CD (Compact Disk), a DVD (Digital Versatile Disk). Etc.), smart cards and flash memory devices (eg, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drivers, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, without limitation, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输指示信息的方法和装置。该方法包括:确定终端设备发送上行数据流使用的第一签名序列和第一调制星座;确定用于指示该第一签名序列和第一调制星座的指示信息;向该终端设备发送该指示信息。本发明实施例的传输指示信息的方法和装置,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。

Description

传输指示信息的方法和装置 技术领域
本发明涉及通信领域,尤其涉及通信领域中传输指示信息的方法和装置。
背景技术
随着无线蜂窝网络的持续演进,广泛应用于第三代(3rd-Generation,简称为“3G”)和***(4th-Generation,简称为“4G”)移动通信***的正交多址接入技术,如码分多址(Code Division Multiple Access,简称为“CDMA”)技术和正交频分多址(Orthogonal Frequency Multiple Access,简称为“OFDMA”)技术,已经逐渐无法满足人们对蜂窝网络日益提升的容量需求,如海量接入和频谱效率的持续提升等。与此同时,非正交的多址接入技术的研究和应用正逐渐引起业界和学术界越来越多的关注,人们希望未来的无线蜂窝网络,如第五代(5th-Generation,简称为“5G”)移动通信***,能够借助非正交的多址接入技术有效的解决容量提升的问题。
低密度签名(Low Density Signature,简称为“LDS”)技术是一种典型的非正交多址接入和传输技术,当然该LDS技术在通信领域还可以被称为其他名称。该类技术将来自一个或多个用户的M(M为不小于1的整数)个数据流叠加到N(N为不小于1的整数)个子载波上进行发送,其中每个数据流的每个数据都通过稀疏扩频的方式扩展到N个子载波上。当M的取值大于N时,该类技术可以有效地提升网络容量,包括***可接入用户数和频谱效率等。因此,LDS技术作为一种重要的非正交接入技术,已经引起越来越多的关注,并成为未来无线蜂窝网络演进的重要备选接入技术。
在诸如LDS***的非正交多址接入***中,终端设备使用非正交多址接入技术发送上行数据流时,需要知道发送该上行数据流所使用的调制星座等数据传输信息,而这些数据传输信息的选择与分配通常由网络设备完成,终端设备并不直接参与这一过程。因此,网络设备在为终端设备的待发送数据流分配好调制星座等数据传输信息后,如何将分配好的数据传输信息告知终端设备是亟待解决的技术问题。
发明内容
有鉴于此,本发明实施例提供了一种传输指示信息的方法和装置,以解决非正交多址接入***中网络设备向终端设备指示数据传输信息的问题。
第一方面,提供了一种传输指示信息的方法,该方法包括:确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对该终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;确定用于指示该第一签名序列和第一调制星座的指示信息;向该终端设备发送该指示信息。
结合第一方面,在第一方面的第一种可能的实现方式中,该确定用于指示该第一签名序列和第一调制星座的指示信息,包括:确定该第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的该签名序列组成;确定该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示该第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座。
结合第一方面,在第一方面的第二种可能的实现方式中,该确定用于指示该第一签名序列和第一调制星座的指示信息,包括:确定该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第二签名序列,该第一调制星座信息用于指示该第一调制星座。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,该第一调制星座信息包括该第一调制星座的调制阶数信息。
结合第一方面或第一方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,该向该终端设备发送该指示信息,包括:向该终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,该指示信息为比特串信息。
结合第一方面或第一方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第一方面的第七种可能的实现方式中,该签名序列为低密度签名LDS序列。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,该签名序列包括的零元素的数量大于或等于非零元素的数量。
第二方面,提供了一种传输指示信息的方法,该方法包括:接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;根据该指示信息确定该第一签名序列和该第一调制星座;根据该第一签名序列和该第一调制星座发送该上行数据流。
结合第二方面,在第二方面的第一种可能的实现方式中,该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座;其中,该根据该指示信息确定该第一签名序列和该第一调制星座,包括:根据该第一签名矩阵信息、该第一签名序列信息和该第一调制星座信息,确定该第一签名矩阵中的该第一签名序列以及该第一调制星座,其中,每个签名矩阵由两个或两个以上的该签名序列组成。
结合第二方面,在第二方面的第二种可能的实现方式中,该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第一签名序列,该第一调制星座信息用于指示该第一调制星座;其中,该根据该指示信息确定该第一签名序列和该第一调制星座,包括:根据该第二签名序列信息和该第一调制星座信息,确定该第一签名序列以及该第一调制星座。
结合第二方面的第一种或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,该第一调制星座信息包括该第一调制星座的调制阶数信 息。
结合第二方面或第二方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第二方面的第四种可能的实现方式中,该接收网络设备发送的指示信息,包括:接收该网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
结合第二方面或第二方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,该指示信息为比特串信息。
结合第二方面或第二方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第二方面的第七种可能的实现方式中,该签名序列为低密度签名LDS序列。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,该签名序列包括的零元素的数量大于或等于非零元素的数量。
第三方面,提供了一种传输指示信息的装置,该装置包括:第一确定模块,用于确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对该终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;第二确定模块,用于确定用于指示该第一确定模块确定的该第一签名序列和第一调制星座的指示信息;发送模块,用于向该终端设备发送该第二确定模块确定的该指示信息。
结合第三方面,在第三方面的第一种可能的实现方式中,该第二确定模块包括:第一确定单元,用于确定该第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的该签名序列组成;第二确定单元,用于确定该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示该第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座。
结合第三方面,在第三方面的第二种可能的实现方式中,该第二确定模块包括:第三确定单元,用于确定该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第二签名序列,该第一调制星座信息用于指示该第一调制星座。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,该第二确定模块确定的该第一调制星座信息包括该第一调制星座的调制阶数信息。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第三方面的第四种可能的实现方式中,该发送模块具体用于:向该终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
结合第三方面或第三方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,该第二确定模块确定的该指示信息为比特串信息。
结合第三方面或第三方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第三方面的第七种可能的实现方式中,该签名序列为低密度签名LDS序列。
结合第三方面的第七种可能的实现方式,在第三方面的第八种可能的实现方式中,该签名序列包括的零元素的数量大于或等于非零元素的数量。
结合第三方面或第三方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第三方面的第九种可能的实现方式中,该装置为网络设备。
第四方面,提供了一种传输指示信息的装置,该装置包括:接收模块,用于接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整; 确定模块,用于根据该接收模块接收的该指示信息确定该第一签名序列和该第一调制星座;发送模块,用于根据该确定模块确定的该第一签名序列和该第一调制星座发送该上行数据流。
结合第四方面,在第四方面的第一种可能的实现方式中,该接收模块接收的该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座;其中,该确定模块包括:第一确定单元,用于根据该第一签名矩阵信息、该第一签名序列信息和该第一调制星座信息,确定该第一签名矩阵中的该第一签名序列以及该第一调制星座,其中,每个签名矩阵由两个或两个以上的该签名序列组成。
结合第四方面,在第四方面的第二种可能的实现方式中,该接收模块接收的该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第一签名序列,该第一调制星座信息用于指示该第一调制星座;其中,该确定模块包括:第二确定单元,用于根据该第二签名序列信息和该第一调制星座信息,确定该第一签名序列以及该第一调制星座。
结合第四方面的第一种或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,该接收模块接收的该第一调制星座信息包括该第一调制星座的调制阶数信息。
结合第四方面或第四方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第四方面的第四种可能的实现方式中,该接收模块具体用于:接收该网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
结合第四方面或第四方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第四方面的第六种可能的实现方式中,该接收模块接收的该指示信息为比特串信息。
结合第四方面或第四方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第四方面的第七种可能的实现方式中,该签名序列为低密度签名LDS序列。
结合第四方面的第七种可能的实现方式,在第四方面的第八种可能的实现方式中,该签名序列包括的零元素的数量大于或等于非零元素的数量。
结合第四方面或第四方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第四方面的第九种可能的实现方式中,该装置为终端设备。
第五方面,提供了一种传输指示信息的装置,该装置包括处理器、存储器、总线***和发送器,其中,该处理器、该存储器和该发送器通过该总线***相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该发送器发送信号;其中,该处理器用于:确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对该终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;以及确定用于指示该第一签名序列和第一调制星座的指示信息;该发送器用于:向该终端设备发送该指示信息。
结合第五方面,在第五方面的第一种可能的实现方式中,该处理器确定用于指示该第一签名序列和第一调制星座的指示信息,包括:确定该第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的该签名序列组成;确定该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示该第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座。
结合第五方面,在第五方面的第二种可能的实现方式中,该处理器确定用于指示该第一签名序列和第一调制星座的指示信息,包括:确定该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第二签名序列,该第一调制星座信息用于指示该第一调制星座。
结合第五方面的第一种或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,该处理器确定的该第一调制星座信息包括该第一调制星座的调制阶数信息。
结合第五方面或第五方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第五方面的第四种可能的实现方式中,该发送器向该终端设备发送该指示信息,包括:向该终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
结合第五方面的第四种可能的实现方式,在第五方面的第五种可能的实现方式中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
结合第五方面或第五方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第五方面的第六种可能的实现方式中,该处理器确定的该指示信息为比特串信息。
结合第五方面或第五方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第五方面的第七种可能的实现方式中,该签名序列为低密度签名LDS序列。
结合第五方面的第七种可能的实现方式,在第五方面的第八种可能的实现方式中,该签名序列包括的零元素的数量大于或等于非零元素的数量。
结合第五方面或第五方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第五方面的第九种可能的实现方式中,该装置为网络设备。
第六方面,提供了一种传输指示信息的装置,该装置包括处理器、存储器、总线***、接收器和发送器,其中,该处理器、该存储器、该接收器和该发送器通过该总线***相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制该接收器接收信号,并控制该发送器发送信号;其中,该接收器用于:接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;该处理器用于:根据该指示信息确定该第一签名序列和该第一调制星座;该发送器用于:根据该第一签名序列和该第一调制星座发送该上行数据流。
结合第六方面,在第六方面的第一种可能的实现方式中,该接收器接收 的该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座;其中,该处理器根据该指示信息确定该第一签名序列和该第一调制星座,包括:根据该第一签名矩阵信息、该第一签名序列信息和该第一调制星座信息,确定该第一签名矩阵中的该第一签名序列以及该第一调制星座,其中,每个签名矩阵由两个或两个以上的该签名序列组成。
结合第六方面,在第六方面的第二种可能的实现方式中,该接收器接收的该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第一签名序列,该第一调制星座信息用于指示该第一调制星座;其中,该处理器根据该指示信息确定该第一签名序列和该第一调制星座,包括:根据该第二签名序列信息和该第一调制星座信息,确定该第一签名序列以及该第一调制星座。
结合第六方面的第一种或第二种可能的实现方式,在第六方面的第三种可能的实现方式中,该处理器确定的该第一调制星座信息包括该第一调制星座的调制阶数信息。
结合第六方面或第六方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第六方面的第四种可能的实现方式中,该接收器接收网络设备发送的指示信息,包括:接收该网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
结合第六方面的第四种可能的实现方式,在第六方面的第五种可能的实现方式中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
结合第六方面或第六方面的第一种至第五种可能的实现方式中的任一种可能的实现方式,在第六方面的第六种可能的实现方式中,该接收器接收的该指示信息为比特串信息。
结合第六方面或第六方面的第一种至第六种可能的实现方式中的任一种可能的实现方式,在第六方面的第七种可能的实现方式中,该签名序列为低密度签名LDS序列。
结合第六方面的第七种可能的实现方式,在第六方面的第八种可能的实 现方式中,该签名序列包括的零元素的数量大于或等于非零元素的数量。
结合第六方面或第六方面的第一种至第八种可能的实现方式中的任一种可能的实现方式,在第六方面的第九种可能的实现方式中,该装置为终端设备。
基于上述技术方案,本发明实施例的传输指示信息的方法和装置,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是应用本发明实施例的一种通信***的示意性构架图。
图2a和2b是非正交多址接入***的示意性编码原理图。
图3是根据本发明实施例的传输指示信息的方法的示意性流程图。
图4是根据本发明实施例的确定指示信息的方法的示意性流程图。
图5是根据本发明另一实施例的传输指示信息的方法的示意性流程图。
图6是根据本发明另一实施例的传输指示信息的方法的另一示意性流程图。
图7是根据本发明另一实施例的传输指示信息的方法的再一示意性流程图。
图8是根据本发明实施例的传输指示信息的装置的示意性框图。
图9是根据本发明实施例的第二确定模块的示意性框图。
图10是根据本发明实施例的第二确定模块的另一示意性框图。
图11是根据本发明另一实施例的传输指示信息的装置的示意性框图。
图12是根据本发明实施例的确定模块的示意性框图。
图13是根据本发明再一实施例的传输指示信息的装置的示意性框图。
图14是根据本发明再一实施例的传输指示信息的装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种基于非正交多址接入技术的通信***,例如LDS***,当然LDS在通信领域也可以被称为其他名称;进一步地,本发明实施例的技术方案可以应用于采用非正交多址接入技术的多载波传输***,例如采用非正交多址接入技术正交频分复用(Orthogonal Frequency Division Multiplexing,简称为“OFDM”)、滤波器组多载波(Filter Bank Multi-Carrier,简称为“FBMC”)、通用频分复用(Generalized Frequency Division Multiplexing,简称为“GFDM”)、滤波正交频分复用(Filtered-OFDM,简称为“F-OFDM”)***等。还应理解,本发明实施例仅以采用LDS技术的通信***为例进行说明,但本发明实施例并不限于此。
还应理解,在本发明实施例中,终端设备可以经无线接入网(Radio Access Network,简称为“RAN”)与一个或多个核心网进行通信,该终端设备可称为接入终端、用户设备(User Equipment,简称为“UE”)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。
还应理解,在本发明实施例中,网络设备可用于与终端设备通信,该网络设备可以是全球移动通讯(Global System of Mobile communication,简称为“GSM”)***或码分多址(Code Division Multiple Access,简称为“CDMA”)中的基站(Base Transceiver Station,简称为“BTS”),也可以是宽带码分多 址(Wideband Code Division Multiple Access,简称为“WCDMA”)***中的基站(NodeB,简称为“NB”),还可以是长期演进(Long Term Evolution,简称为“LTE”)***中的演进型基站(Evolutional Node B,简称为“eNB”或“eNodeB”),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的基站设备等。
图1示出了应用本发明实施例的一种通信***的示意性构架图。如图1所示,该通信***100可以包括网络设备102,该网络设备102可以包括一个或多个天线组,每个天线组可以包括一个或多个天线。例如,一个天线组可以包括天线104和106,另一个天线组可以包括天线108和110,附加组可以包括天线112和114。虽然图1中对于每个天线组示出了2个天线,但应理解每个天线组可以具有更多的或更少的天线。网络设备102可以附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位***、PDA和/或用于在无线通信***100上进行通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路118向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(Frequency Division Duplex,简称为“FDD”)***中,前向链路118可利用与反向链路120不同的频带,前向链路124可利用与反向链路126不同的频带;再例如,在时分双工(Time Division Duplex,简称为“TDD”)***和全双工(Full Duplex)***中,前向链路118和反向链路120可以使用共同的频带,前向链路124和反向链路126也可以使用共同的频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路118和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
应理解,该通信***为非正交多址接入***,例如该***为LDS***,该网络设备例如为基站,该终端设备例如为用户设备。本发明实施例仅以LDS***、基站和用户设备为例进行说明,但本发明并不限于此。
图1示出了应用本发明实施例的一种通信***,该通信***例如为LDS***,下面将结合图2a和图2b,简述诸如LDS***的非正交多址接入***的发送端的编码原理。
如图2a所示,以6个数据流复用4个资源单元为例进行说明,即M=6,且N=4,其中,M为正整数,表示数据流的数量;N为正整数,表示资源单元的数量。一个资源单元可以为一个子载波,或者为一个资源粒子(Resource Element,简称为“RE”),或者为一个天线端口。其中,6个数据流组成一个分组,4个资源单元组成一个编码单元。
在图2a所示的二分图中,数据流和资源单元之间有连线表示至少存在该数据流的一种数据组合,该数据组合经星座映射以及幅度和相位的调整后在该资源单元上发送非零调制符号,而数据流和资源单元之间没有连线则表示该数据流的所有可能的数据组合经星座映射以及幅度和相位的调整后在该资源单元上发送的调制符号都为零调制符号。数据流的数据组合可以按照如下阐述进行理解,例如,在二进制比特数据流中,00、01、10、11为两比特数据的所有可能数据组合。为了描述方便,用s1至s6依次表示该二分图 中6个数据流待发送的数据组合,用x1至x4依次表示该二分图中4个资源单元上发送的调制符号。
从该二分图中可以看出,每个数据流的数据组合经星座映射以及幅度和相位的调整后会在两个或两个以上的资源单元上发送调制符号,同时,每个资源单元发送的调制符号是来自两个或两个以上的数据流的数据组合经各自星座映射以及幅度和相位的调整后的调制符号的叠加。例如,数据流3的待发送数据组合s3经星座映射以及幅度和相位的调整后可能会在资源单元1和资源单元2上发送非零调制符号,而资源单元3发送的调制符号x3是数据流2、数据流4和数据流6的待发送数据组合s2、s4和s6分别经各自星座映射以及幅度和相位的调整后得到的非零调制符号的叠加。由于数据流的数量可以大于资源单元的数量,因而该非正交多址接入***可以有效地提升网络容量,包括***的可接入用户数和频谱效率等。
进一步地,如图2b所示,数据流的数据(b1,b2)经星座映射后得到的调制符号为q,使用签名序列中的每一个元素,即调整因子,对调制符号q进行相位和幅度的调整,得到每个资源单元上发送的调制符号,分别为q*s1、q*s2、q*s3和q*s4
上文中结合图1、图2a和图2b描述了本发明实施例的应用场景以及编码原理,下面将结合图3和图4,从网络设备侧描述根据本发明实施例的传输指示信息的方法。
图3示出了根据本发明实施例的传输指示信息的方法200,该方法200例如可以由非正交多址接入***中的网络设备执行,该网络设备例如为基站。如图3所示,该方法200包括:
S210,确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对该终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
S220,确定用于指示该第一签名序列和第一调制星座的指示信息;
S230,向该终端设备发送该指示信息。
具体地,在诸如LDS***的非正交多址接入***中,网络设备为终端设备的待发送上行数据流分配或指定签名序列和调制星座;为了让终端设备获知网络设备分配好的该签名序列和第一调制星座,网络设备可以确定指示 信息,并向终端设备发送该指示信息,该指示信息用于指示终端设备发送上行数据流使用的该签名序列和该调制星座。终端设备接收到网络设备发送的该指示信息后,可以根据该指示信息确定发送上行数据流使用的该签名序列和该调制星座,并能够根据该签名序列和该调制星座发送上行数据流。由此,通过网络设备与终端设备之间的信息交互,可以使得终端设备确定网络设备分配的签名序列和调制星座,从而能够使得非正交多址接入***正常运行。
因此,本发明实施例的传输指示信息的方法,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
在本发明实施例中,诸如LDS技术的非正交多址接入技术,借助签名序列(Signature Sequence)在相同的资源单元上传输多个不同的数据流,即多个不同的数据流复用相同的资源单元,其中不同的数据流使用的签名序列可以不同,从而达到提升资源的利用率的目的。该数据流可以来自同一个终端设备也可以来自不同的终端设备。
其中,签名序列可以表示为多维复数向量,该复数向量的维数可以为两维或两维以上,该签名序列可以由至少一个零元素和至少一个非零元素组成。签名序列的每一维复数向量可以代表一个资源单元,相应的元素可以理解为调整因子,用于对数据流的数据经星座映射后得到的调制符号进行幅度和相位的调整,例如,该调整方法可以为将数据流的数据经星座映射后得到的调制符号与上述调整因子进行相乘。经多个调整因子调整后的调制符号会在相应的资源单元上进行发送,以此实现数据在多个资源单元上的扩展发送。该数据可以为二进制比特数据或者多元数据,该资源单元可以是时域、频域、空域、时频域、时空域、时频空域的资源单元。
结合前文描述,非正交多址接入技术的编码原理可以用图2b进行举例阐释。在图2b所示的例子中,签名序列可以表示为:
Figure PCTCN2014094540-appb-000001
其中,该签名序列表示的多维复数向量的维数为4,代表4个资源单元,并且该签名序列的4个元素中,至少存在一组i和j,1≤i≠j≤4,使得si=0且sj≠0。数据流的数据(b1,b2)经星座映射后得到的调制符号为q,使用该签名序列中的每一个元素,即调整因子,对q进行相位和幅度的调整后,得到每个资源单元上的发送的调制符号,分别为q*s1、q*s2、q*s3和q*s4
更一般地,签名序列可以表示为如下形式:
Figure PCTCN2014094540-appb-000002
其中,sn,m表示该签名矩阵中的元素,m和n为自然数,且1≤n≤N,1≤m≤M,N行分别表示一个编码单元中的N个资源单元,M表示一个分组中复用的数据流的数量,sn,m=α*exp(j*β),1≤n≤N,1≤m≤M,α和β可以为任意实数,M和N为大于1的整数,且至少存在一组i和j,1≤i≠j≤N,使得si,m=0且sj,m≠0。
在非正交多址接入***中,M个上述签名序列可以组成一个签名矩阵,该签名矩阵例如可以具有如下形式:
Figure PCTCN2014094540-appb-000003
因此,在本发明实施例中,签名矩阵由一个或多个签名序列组成,该签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备或网络设备使用调制星座对数据流进行星座映射后得到的调制符号进行幅度和相位的调整。
还应理解,在应用本发明实施例时,还需要假设非正交多址接入***中的网络设备和终端设备都存储预先设计的以下部分或全部内容:
(1)一个或多个签名矩阵:
Figure PCTCN2014094540-appb-000004
其中sn,m=α*exp(j*β),1≤n≤N,1≤m≤M,α和β可以为任意实数,M和N均为大于1的整数,且对于每一个m,1≤m≤M,至少存在一组im和jm,1≤im≠jm≤M, 使得sim,m=0且sjm,m≠0;
(2)一个或多个签名序列:
Figure PCTCN2014094540-appb-000005
其中1≤m≤M;
(3)一个或多个调制星座:{q1,q2,…,qQm},其中Qm≥2,每个调制星座对应一种调制阶数。
下文中将结合图4,详细描述根据本发明实施例的确定指示信息的方法220。
如图4所示,在本发明实施例中,可选地,该确定用于指示该第一签名序列和第一调制星座的指示信息,包括:
S221,确定该第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的该签名序列组成;
S222,确定该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示该第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座。
具体而言,在本发明实施例中,网络设备和终端设备可以存储预先设计的签名矩阵、签名序列以及调制星座,或者网络设备和终端设备可以存储预先设计的签名矩阵和调制星座,其中,签名矩阵的列即为签名序列,因而,在本发明实施例中,在存储签名矩阵的同时也存储了对应的签名序列。
在本发明实施例中,网络设备为终端设备发送上行数据流分配或指定签名序列和调制星座,网络设备可以确定该签名序列为第一签名矩阵中的第一签名序列,并且网络设备可以确定该调制星座为第一调制星座;由此,网络设备可以根据该第一签名序列和该第一调制星座,确定指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息。例如,该指示信息可以由3个逻辑信息段组成,其中,逻辑信息段1可以承载该第一签名矩阵信息,用于指示该指示信息包括的该第一签名矩阵;逻辑信息段2可以承载该第一签名序列信息,用于指示该第一签名矩阵中的该第一签名序列;逻辑信息段3可以承载该第一调制星座信息,用于指示该指示信息包括的该第一调制星座。
应理解,在本发明实施例中,指示信息的各逻辑信息段可以以任意一种先后顺序连续地或非连续地出现在指示信息所在的指令中,本发明实施例对此并不限定。
相应地,终端设备接收到承载该指示信息的指令或消息后,例如根据其中的逻辑信息段1,可以获知上行待发送数据流将使用哪个签名矩阵进行发送;根据其中逻辑信息段2可以获知上行待发送数据流将使用逻辑信息段1指示的签名矩阵中的哪个签名序列进行发送;根据其中的逻辑信息段3可以获知上行待发送数据流将使用哪种调制阶数或哪个调制星座进行发送。由此,终端设备能够根据最终确定的签名序列和调制星座发送上行数据流,即终端设备能够对上行数据流进行星座映射,并对星座映射后得到的调制符号进行幅度和相位的调整,从而使得非正交多址接入***能够正常运行,并能够有效地提升***的网络容量。
在本发明实施例中,每种调制星座可以对应一种调制阶数,因而,逻辑信息段3还可以通过指示调制阶数的方式来指示终端设备上行待发送数据流所使用的调制星座;相应地,终端设备可以根据逻辑信息段3获知上行待发送数据流对应的调制阶数,从而能够确定与该调制阶数一一对应调制星座,从而可以进行上行数据流的发送。
即在本发明实施例中,可选地,该第一调制星座信息包括该第一调制星座的调制阶数信息。
应理解,在本发明实施例中,如果各逻辑信息段指示的是索引值,则需要预先在网络设备和终端设备侧建立一致的相关信息的索引关系,例如,签名矩阵索引值与签名矩阵的索引关系、签名序列索引值与每个签名矩阵中的签名序列的索引关系以及调制星座索引值与每个调制星座的索引关系等,以使得网络设备和终端设备能够根据逻辑信息段所指示的索引值,通过预先建立的相关索引关系,唯一地确定相对应的签名矩阵、签名序列和调制星座。
还应理解,在本发明实施例中,网络设备和终端设备可以采用多种方法预先存储签名矩阵,一种简单直接的方法是,按照前文所述的形式存储其中包括的所有零元素和非零元素:
Figure PCTCN2014094540-appb-000006
本发明实施例仅以上述例子为例说明签名矩阵的存储,但应理解,本发明实施例并不限于此,网络设备和终端设备还可以采用其它方法预先存储签名矩阵。
还应理解,本发明实施例仅以上述方案为例进行说明,但本发明并不限于此。例如,当网络设备确定的用于终端设备上行发送数据的签名序列都属于同一个签名矩阵,或都默认采用同一个签名矩阵时,该指示信息可以仅仅包括第一签名序列信息和第一调制星座信息;又例如,当网络设备确定的用于终端设备上行发送数据的签名序列都默认采用固定序号的签名序列时,该指示信息可以仅仅包括第一签名矩阵信息和第一调制星座信息;再例如,当网络设备确定的用于终端设备上行发送数据的调整星座都默认采用固定的调制星座时,该指示信息可以仅仅包括第一签名矩阵信息和第一签名序列信息。
由此,网络设备可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
图4还示出了根据本发明实施例的确定指示信息的方法220的另一实施例。如图4所示,在本发明实施例中,可选地,该确定用于指示该第一签名序列和第一调制星座的指示信息,包括:
S223,确定该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第二签名序列,该第一调制星座信息用于指示该第一调制星座。
具体而言,在本发明实施例中,网络设备和终端设备可以存储预先设计的签名序列以及调制星座。在本发明实施例中,网络设备为终端设备发送上行数据流分配或指定签名序列以及调制星座,网络设备可以确定该签名序列为第二签名序列,并可以确定该调制星座为第一调制星座;由此,网络设备可以根据该第二签名序列和该第一调制星座,确定该指示信息包括第二签名序列信息和第一调制星座信息。
例如,该指示信息可以由2个逻辑信息段组成,其中,逻辑信息段1可以承载该第二签名序列信息,用于指示该指示信息包括的该第二签名序列;逻辑信息段2可以承载该第一调制星座信息,用于指示该指示信息包括的该第一调制星座。
应理解,在本发明实施例中,指示信息的各逻辑信息段可以以任意一种先后顺序连续地或非连续地出现在指示信息所在的指令中,本发明实施例对此并不限定。
相应地,终端设备接收到承载该指示信息的指令或消息后,例如根据其中的逻辑信息段1,可以获知上行待发送数据流将使用哪个签名序列进行发送;根据其中逻辑信息段2可以获知上行待发送数据流将使用哪种调制阶数或哪个调制星座进行发送。由此,终端设备能够根据最终确定的签名序列和调制星座发送上行数据流,即终端设备能够对上行数据流进行星座映射,并对星座映射后得到的调制符号进行幅度和相位的调整,从而使得非正交多址接入***能够正常运行,并能够有效地提升***的网络容量。
在本发明实施例中,每种调制星座可以对应一种调制阶数,因而,逻辑信息段2还可以通过指示调制阶数的方式来指示终端设备上行待发送数据流所使用的调制星座;相应地,终端设备可以根据逻辑信息段2获知上行待发送数据流对应的调制阶数,从而能够确定与该调制阶数一一对应调制星座,从而可以进行上行数据流的发送。
即在本发明实施例中,可选地,该第一调制星座信息包括该第一调制星座的调制阶数信息。
应理解,在本发明实施例中,如果各逻辑信息段指示的是索引值,则需要预先在网络设备和终端设备侧建立一致的相关信息的索引关系,例如,签名序列索引值与每个签名矩阵中的签名序列的索引关系、调制星座索引值与每个调制星座的索引关系、调制阶数索引值与每个调制阶数的索引关系或与每个调制星座的索引关系等,以使得网络设备和终端设备能够根据逻辑信息段所指示的索引值,通过预先建立的相关索引关系,唯一地确定相对应的签名序列和调制星座。
还应理解,在本发明实施例中,网络设备和终端设备可以采用多种方法预先存储签名序列,一种简单直接的方法是,按照前文所述的形式存储其中包括的所有零元素和非零元素:
Figure PCTCN2014094540-appb-000007
本发明实施例仅以上述例子为例说明签名序列的存储,但应理解,本发 明实施例并不限于此,网络设备和终端设备还可以采用其它方法预先存储签名序列。
还应理解,本发明实施例仅以上述方案为例进行说明,但本发明并不限于此。例如,当网络设备确定的用于终端设备上行发送数据的签名序列都属于同一个签名序列,或都默认采用同一个签名序列时,该指示信息可以仅仅包括第一调制星座信息;再例如,当网络设备确定的用于终端设备上行发送数据的调整星座都默认采用固定的调制星座或固定的调制阶数时,该指示信息可以仅仅包括第二签名序列信息。
由此,网络设备可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
应理解,本发明仅以图4所示的实施例为例进行说明,但本发明并不限于此,还可以采用其它方法向终端设备指示网络设备分配或指定的签名序列和调制星座。
因此,本发明实施例的传输指示信息的方法,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
此外,网络设备可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
在本发明实施例中,网络设备可以采用多种方式向终端设备发送该指示信息,例如,网络设备可以通过下行的控制信道以动态或半静态的方式指示终端设备;网络设备也可以通过数据信道以半静态的方式指示终端设备;网络设备还可以通过广播信道或数据信道以静态的方式指示终端设备。
可选地,在本发明实施例中,该向该终端设备发送该指示信息,包括:向该终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
具体地,在本发明实施例中,例如,终端设备需要使用非正交多址接入技术发送上行数据流时,终端设备可以向网络设备发送上行调度请求,用于请求网络设备为其分配或指定签名序列和调制星座,以及其他***资源和参数,例如频率资源、发送功率、编码调制方案等。
网络设备接收到终端设备的上行调度请求后,可以根据终端设备周期性或非周期性上报的数据缓存状态以及其它相关信息(例如用户的信道状态信息等),为终端设备的待发送数据流分配或指定签名序列和调制星座,以及其他***资源和参数,并将用于指示分配或指定好的签名序列和调制星座,连同其他***资源和参数携带在上行调度授权消息中下发给终端设备。
终端设备接收到网络设备下发的上行调度授权消息后,可以使用该上行调度授权消息所指示的签名序列和调制星座,以及其他***资源和参数,使用非正交多址接入技术发送上行数据流。
在上述流程中,用于指示签名序列和调制星座的指示信息可以作为下行控制信息(Downlink Control Information,简称为“DCI”)的一部分,携带在上行调度授权消息中,通过下行的物理控制信道,例如长期演进(Long Term Evolution,简称为“LTE”)***中的物理下行控制信道(Physical Downlink Control Channel,简称为“PDCCH”),以动态或半静态(Semi-Persistent)的方式下发给终端设备。
又例如,用于指示签名序列和调制星座的指示信息可以携带在无线资源控制(Radio Resource Control,简称为“RRC”)连接建立消息或RRC连接重配置消息中,并通过下行的物理数据信道,例如LTE***中的物理下行共享信道(Physical Downlink Shared Channel,简称为“PDSCH”),以半静态的方式下发给终端设备。
可选地,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。应理解,本发明实施例仅以专用高层控制信令包括RRC连接建立消息和RRC连接重配置消息为例进行说明,但本发明并不限于此,还可以采用其它专用高层控制信令向终端设备发送该指示信息。
再例如,用于指示签名序列和调制星座的指示信息可以携带在***广播消息中,例如LTE***中的主信息块(Master Information Block,简称为“MIB”)或***信息块(System Information Block,简称为“SIB”),通过下行的物理广播信道或物理数据信道,例如LTE***中的物理广播信道 (Physical Broadcast Channel,简称为“PBCH”)或物理下行共享信道PDSCH,以静态的方式下发给终端设备。
在本发明实施例中,网络设备通过比特串方式和表格方式中的至少一种方式,向终端设备发送该指示信息。可选地,该指示信息为比特串信息。
具体而言,在本发明实施例中,指示信息中的逻辑信息段可以有多种实现方法,包括但不限于以下几种:
方法一:逻辑信息段使用独立的比特串或比特位图实现信息指示功能
假设上文所述的实施例中,指示信息中的某逻辑信息段所指示的信息(例如该逻辑信息段用于指示签名矩阵)最多有K种可能(例如共有K个签名矩阵),则该逻辑信息段可以用L=ceil(log2(K))个比特组成的比特位图
Figure PCTCN2014094540-appb-000008
来表示,ceil(·)表示向上取整。该比特位图的一个取值代表所指示信息的一个索引值,终端设备可以根据该比特位图所表示的索引值,并通过预先建立的索引关系,确定与该索引值唯一对应的一种可能。
例如,以指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息为例进行说明,假设网络设备和终端设备侧都存储有K1≥1个签名矩阵,其中,每个签名矩阵包括的签名序列的数量最多为K2≥1个签名序列,并且存储的调制星座的数量有K3≥1个,则可以分别用由Li=ceil(log2(Ki))个比特组成的比特位图
Figure PCTCN2014094540-appb-000009
来表示并实现逻辑信息段i的信息指示功能,即指示Ki≥1种可能中的一种,其中i=1,2,3,ceil(·)表示向上取整。例如,当L1=2,L2=4,L3=3时,指示信息的一种可能为
Figure PCTCN2014094540-appb-000010
该指示信息可以由2+4+3=9个比特组成,并指示如下信息:签名矩阵索引1所对应的签名矩阵,签名序列索引6所对应的该签名矩阵中的签名序列,以及调制星座索引(或调制阶数索引)4所对应的调制星座。
应理解,在上述例子中,指示信息中的3个逻辑信息段都是用独立的比特串或比特位图实现信息指示功能,然而实际上并不要求所有的逻辑信息段都使用相同的实现方式。因此,实际应用时,可能部分逻辑信息段使用独立的比特位图实现其信息指示功能,而其他逻辑信息段使用其他方式实现,本发明实施例并不限于此。
还应理解,以上仅以本发明其中一个具体实施例为例进行说明,需要注 意的是,该方法同样可以用于实现本发明其他实施例的指示信息中的逻辑信息段。
方式二:多个逻辑信息段的合并指示
逻辑信息段的合并指示一般可以基于表格的形式实现。该表格可以具有如下形式:表格包括多列,其中一列为综合索引列,每个索引值对应多个逻辑信息段所指示信息的一种组合;除综合索引列外,表格中的其他每一列都可以分别对应一个逻辑信息段,用以指示相应逻辑信息段所指示信息的一种可能,其取值可以是索引值,也可以是所指示的具体内容,例如签名矩阵、签名序列、调制星座、调整阶数等。
通过上述表格,网络设备和终端设备可以建立综合索引值与多个逻辑信息段所指示信息的所有可能组合的对应关系。网络设备通过指示信息,向终端设备发送综合索引值;终端设备根据该综合索引值,通过查表即可获知各逻辑信息段所指示信息唯一对应的一种可能。
仍以指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息为例进行说明,用于实现该指示信息的表格的一种形式如表一所示:
表一
Figure PCTCN2014094540-appb-000011
如上表一所示,多个逻辑信息段的合并指示表格可以由4列组成,第一列为综合索引列(例如,在该例子中称之为LDS索引列),其他3列分别对应指示信息中的3个逻辑信息段。其中,m为索引值,i,j,k可以是各逻辑信息段指示信息的索引值,也可以是对应信息的具体内容,例如根据上文所述形式存储的签名矩阵、签名序列、调制星座等。
应理解,上述示例是将指示信息中的所有逻辑信息段进行合并指示,而实际上,并不要求所有的逻辑信息段都使用相同的实现方式,因此,在实际应用时,可能部分逻辑信息段使用合并指示的方式实现其信息指示功能,而 其他逻辑信息段使用其他方式实现,本发明实施例并不限于此。
还应理解,以上仅以本发明其中一个具体实施例为例进行说明,需要注意的是,该方法同样可以用于实现本发明其他实施例的指示信息中的逻辑信息段。
方式三:逻辑信息段与指示信息所在消息或指令中具有其他指示功能的信息段合并指示
该方式一般也基于表格的形式实现。该表格可以具有如下形式:表格包括多列,其中一列为综合索引列,每个索引值代表其他各列所指示内容的一种组合;除综合索引列外,表格中至少有一列对应本发明实施例所述的指示信息中的一个逻辑信息段,代表相应逻辑信息段所指示内容的一种可能,其取值可以是索引值,也可以是所指示的具体内容,例如签名矩阵、签名序列、调制星座、调整阶数等。
表格的其他列中的至少一列对应具有其他信息(不同于本发明实施例所述指示信息中的逻辑信息段所指示的信息)指示功能的信息段,例如指示传输块大小的信息段、指示冗余版本的信息段等。
通过上述表格,网络设备和终端设备可以建立综合索引与本发明实施例所述指示信息中的逻辑信息段所指示的信息以及具有其他信息指示功能的信息段所指示的信息的所有可能组合的对应关系。网络设备通过指示信息,向终端设备发送综合索引值;终端设备可以根据该综合索引值,通过查表即可获知本发明实施例所述指示信息中的逻辑信息段所指示信息唯一对应的一种可能,以及具有其他信息指示功能的信息段所指示信息唯一对应的一种可能。
应理解,以上仅以本发明其中一个具体实施例为例进行说明,需要注意的是,该方法同样可以用于实现本发明其他实施例的指示信息中的逻辑信息段。
还应理解,在本发明实施例中,指示信息中的逻辑信息段均为逻辑概念。如果指示信息所在的消息或指令中,例如上行调度授权消息、RRC连接建立消息、RRC连接重配置消息、广播消息等,某信息段或比特串实现了上述实施例中某逻辑信息段的信息指示功能,则应理解或认为该信息段或比特串是上述实施例中相应逻辑信息段的一种实现。这里的信息段或比特串可以是用于组成指示信息所在消息或指令的全部比特中的任何部分,包括信息位和校 验位,例如经终端设备的无线网络临时标识(Radio Network Temporary Identity,简称为“RNTI”)加扰的循环冗余校验(Cyclic Redundancy Check,简称为“CRC”)位等。
上文中详细描述了指示信息的各种实现方式,下面将以采用非正交多址接入技术的LTE***为例,详细描述本发明实施例在该LTE***中的具体应用。
在LTE***中,网络设备通过上行调度授权消息为终端设备的每个上行待发送的传输块(该传输块等价于本发明实施例中的数据或数据流)发送以下信息段来指示相应信息:
调制编码方案和冗余版本信息段:5个比特,用于指示该传输块大小、调制阶数和冗余版本号;
新数据指示信息段:1个比特,用于指示该传输块是否为重传数据或新数据。
当LTE***引入非正交多址接入技术后,在为终端设备的每个传输块下发上述信息段的同时,还需要下发本发明实施例所述的一个或多个逻辑信息段,指示签名序列和/或调制星座。以下给出本发明几种实施例在采用非正交多址接入技术的LTE***中的应用。
对于指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息的实施例,网络设备可以通过上行调度授权消息为终端设备的传输块发送以下信息段来指示相应信息:
传输块i,i=1或2:
-签名矩阵指示信息段:L7个比特,用于指示发送该传输块所使用的签名矩阵;
-签名序列指示信息段:L8个比特,用于指示发送该传输块所使用的签名序列;
-调制编码方案和冗余版本信息段:5个比特,用于指示该传输块大小、调制阶数和冗余版本号;
-新数据指示信息段:1个比特,用于指示该传输块是否为重传数据或新数据。
终端设备接收并解码该上行调度授权消息后,针对每个传输块,可以根据对应的签名矩阵指示信息段获知将使用哪个签名矩阵发送该传输块;根据 对应的签名序列指示信息段,可以获知将使用所述签名矩阵中的哪个签名序列发送该传输块;进一步地,根据调制编码方案和冗余版本信息段可以获知发送该传输块所使用的调制阶数,以及与该调制阶数具有对应关系的调制星座,从而终端设备可以根据该签名序列和调制星座发送该传输块。
对于指示信息包括第二签名序列信息和第一调制星座信息的实施例,网络设备可以通过上行调度授权消息为终端设备的传输块发送以下信息段来指示相应信息:
传输块i,i=1或2:
-签名序列指示信息段:L9个比特,用于指示发送该传输块所使用的签名序列;
-调制编码方案和冗余版本信息段:5个比特,用于指示该传输块大小、调制阶数和冗余版本号;
-新数据指示信息段:1个比特,用于指示该传输块是否为重传数据或新数据。
终端设备接收并解码该上行调度授权消息后,针对每个传输块,根据对应的签名序列指示信息段,可以获知将使用哪个签名序列发送该传输块;进一步地,根据调制编码方案和冗余版本信息段可以获知发送该传输块所使用的调制阶数,以及与该调制阶数具有对应关系的调制星座,从而终端设备可以根据该签名序列和调制星座发送该传输块。
应理解,上文中仅描述本发明实施例在该LTE***中的几种可能的具体应用,但本发明并不限于此,在采用非正交多址接入技术的LTE***中,网络设备还可以发送其它信息段来指示签名序列和调制星座。
在本发明实施例中,可选地,该签名序列为低密度签名LDS序列。进一步地,可选地,该签名序列包括的零元素的数量大于或等于非零元素的数量。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的传输指示信息的方法,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信 息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
此外,网络设备可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
上文中结合图3和图4,从网络设备的角度详细描述了根据本发明实施例的传输指示信息的方法,下面将结合图5至图7,从终端设备的角度描述根据本发明实施例的传输指示信息的方法。
如图5所示,根据本发明实施例的传输指示信息的方法300例如可以由通信***中的终端设备执行,该终端设备例如为用户设备。如图5所示,该方法300包括:
S310,接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
S320,根据该指示信息确定该第一签名序列和该第一调制星座;
S330,根据该第一签名序列和该第一调制星座发送该上行数据流。
具体地,在诸如LDS***的非正交多址接入***中,网络设备为终端设备的待发送上行数据流分配或指定签名序列和调制星座;为了让终端设备获知网络设备分配好的该签名序列和第一调制星座,网络设备可以确定指示信息,并向终端设备发送该指示信息,该指示信息用于指示终端设备发送上行数据流使用的该签名序列和该调制星座。终端设备接收到网络设备发送的该指示信息后,可以根据该指示信息确定发送上行数据流使用的该签名序列和该调制星座,并能够根据该签名序列和该调制星座发送上行数据流。由此,通过网络设备与终端设备之间的信息交互,可以使得终端设备确定网络设备分配的签名序列和调制星座,从而能够使得非正交多址接入***正常运行。
因此,本发明实施例的传输指示信息的装置,通过终端设备接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,以根据该指示信息确定用于终端设备发送上行数据流使 用的第一签名序列和第一调制星座,并采用该第一签名序列和第一调制星座进行上行数据流的传输,使得终端设备与网络设备之间能够采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量,包括提升***的可接入用户数和频谱效率等。
应理解,在本发明实施例中,签名矩阵由一个或多个签名序列组成,该签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备或网络设备使用调制星座对数据流进行星座映射后得到的调制符号进行幅度和相位的调整。
还应理解,在应用本发明实施例时,还需要假设非正交多址接入***中的网络设备和终端设备都存储预先设计的以下部分或全部内容:
(1)一个或多个签名矩阵:
Figure PCTCN2014094540-appb-000012
其中sn,m=α*exp(j*β),1≤n≤N,1≤m≤M,α和β可以为任意实数,M和N均为大于1的整数,且对于每一个m,1≤m≤M,至少存在一组im和jm,1≤im≠jm≤M,使得sim,m=0且sjm,m≠0;
(2)一个或多个签名序列:
Figure PCTCN2014094540-appb-000013
其中1≤m≤M;
(3)一个或多个调制星座:{q1,q2,…,qQm},其中Qm≥2,每个调制星座对应一种调制阶数。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
下文中将结合图6和图7,详细描述根据本发明实施例的根据该指示信息确定该第一签名序列和该第一调制星座的方法320。
如图6所示,在本发明实施例中,可选地,该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中 的该第一签名序列,该第一调制星座信息用于指示该第一调制星座;
其中,该根据该指示信息确定该第一签名序列和该第一调制星座,包括:
S321,根据该第一签名矩阵信息、该第一签名序列信息和该第一调制星座信息,确定该第一签名矩阵中的该第一签名序列以及该第一调制星座,其中,每个签名矩阵由两个或两个以上的该签名序列组成。
具体而言,在本发明实施例中,网络设备和终端设备可以存储预先设计的签名矩阵、签名序列以及调制星座,或者网络设备和终端设备可以存储预先设计的签名矩阵和调制星座,其中,签名矩阵的列即为签名序列,因而,在本发明实施例中,在存储签名矩阵的同时也存储了对应的签名序列。
在本发明实施例中,网络设备为终端设备发送上行数据流分配或指定签名序列和调制星座,网络设备可以确定该签名序列为第一签名矩阵中的第一签名序列,并且网络设备可以确定该调制星座为第一调制星座;由此,网络设备可以根据该第一签名序列和该第一调制星座,确定指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息。例如,该指示信息可以由3个逻辑信息段组成,其中,逻辑信息段1可以承载该第一签名矩阵信息,用于指示该指示信息包括的该第一签名矩阵;逻辑信息段2可以承载该第一签名序列信息,用于指示该第一签名矩阵中的该第一签名序列;逻辑信息段3可以承载该第一调制星座信息,用于指示该指示信息包括的该第一调制星座。
应理解,在本发明实施例中,指示信息的各逻辑信息段可以以任意一种先后顺序连续地或非连续地出现在指示信息所在的指令中,本发明实施例对此并不限定。
相应地,终端设备接收到承载该指示信息的指令或消息后,例如根据其中的逻辑信息段1,可以获知上行待发送数据流将使用哪个签名矩阵进行发送;根据其中逻辑信息段2可以获知上行待发送数据流将使用逻辑信息段1指示的签名矩阵中的哪个签名序列进行发送;根据其中的逻辑信息段3可以获知上行待发送数据流将使用哪种调制阶数或哪个调制星座进行发送。由此,终端设备能够根据最终确定的签名序列和调制星座发送上行数据流,即终端设备能够对上行数据流进行星座映射,并对星座映射后得到的调制符号进行幅度和相位的调整,从而使得非正交多址接入***能够正常运行,并能够有效地提升***的网络容量。
在本发明实施例中,每种调制星座可以对应一种调制阶数,因而,逻辑信息段3还可以通过指示调制阶数的方式来指示终端设备上行待发送数据流所使用的调制星座;相应地,终端设备可以根据逻辑信息段3获知上行待发送数据流对应的调制阶数,从而能够确定与该调制阶数一一对应调制星座,从而可以进行上行数据流的发送。
即在本发明实施例中,可选地,该第一调制星座信息包括该第一调制星座的调制阶数信息。
应理解,在本发明实施例中,如果各逻辑信息段指示的是索引值,则需要预先在网络设备和终端设备侧建立一致的相关信息的索引关系,例如,签名矩阵索引值与签名矩阵的索引关系、签名序列索引值与每个签名矩阵中的签名序列的索引关系以及调制星座索引值与每个调制星座的索引关系等,以使得网络设备和终端设备能够根据逻辑信息段所指示的索引值,通过预先建立的相关索引关系,唯一地确定相对应的签名矩阵、签名序列和调制星座。
还应理解,在本发明实施例中,网络设备和终端设备可以采用多种方法预先存储签名矩阵,一种简单直接的方法是,按照前文所述的形式存储其中包括的所有零元素和非零元素:
Figure PCTCN2014094540-appb-000014
本发明实施例仅以上述例子为例说明签名矩阵的存储,但应理解,本发明实施例并不限于此,网络设备和终端设备还可以采用其它方法预先存储签名矩阵。
还应理解,本发明实施例仅以上述方案为例进行说明,但本发明并不限于此。例如,当网络设备确定的用于终端设备上行发送数据的签名序列都属于同一个签名矩阵,或都默认采用同一个签名矩阵时,该指示信息可以仅仅包括第一签名序列信息和第一调制星座信息;又例如,当网络设备确定的用于终端设备上行发送数据的签名序列都默认采用固定序号的签名序列时,该指示信息可以仅仅包括第一签名矩阵信息和第一调制星座信息;再例如,当网络设备确定的用于终端设备上行发送数据的调整星座都默认采用固定的调制星座时,该指示信息可以仅仅包括第一签名矩阵信息和第一签名序列信息。
由此,上述方法可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
图7示出了根据本发明实施例的根据该指示信息确定该第一签名序列和该第一调制星座的方法320的另一实施例。如图7所示,在本发明实施例中,可选地,该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第一签名序列,该第一调制星座信息用于指示该第一调制星座;
其中,该根据该指示信息确定该第一签名序列和该第一调制星座,包括:
S322,根据该第二签名序列信息和该第一调制星座信息,确定该第一签名序列以及该第一调制星座。
具体而言,在本发明实施例中,网络设备和终端设备可以存储预先设计的签名序列以及调制星座。在本发明实施例中,网络设备为终端设备发送上行数据流分配或指定签名序列以及调制星座,网络设备可以确定该签名序列为第二签名序列,并可以确定该调制星座为第一调制星座;由此,网络设备可以根据该第二签名序列和该第一调制星座,确定该指示信息包括第二签名序列信息和第一调制星座信息。
例如,该指示信息可以由2个逻辑信息段组成,其中,逻辑信息段1可以承载该第二签名序列信息,用于指示该指示信息包括的该第二签名序列;逻辑信息段2可以承载该第一调制星座信息,用于指示该指示信息包括的该第一调制星座。
应理解,在本发明实施例中,指示信息的各逻辑信息段可以以任意一种先后顺序连续地或非连续地出现在指示信息所在的指令中,本发明实施例对此并不限定。
相应地,终端设备接收到承载该指示信息的指令或消息后,例如根据其中的逻辑信息段1,可以获知上行待发送数据流将使用哪个签名序列进行发送;根据其中逻辑信息段2可以获知上行待发送数据流将使用哪种调制阶数或哪个调制星座进行发送。由此,终端设备能够根据最终确定的签名序列和调制星座发送上行数据流,即终端设备能够对上行数据流进行星座映射,并对星座映射后得到的调制符号进行幅度和相位的调整,从而使得非正交多址接入***能够正常运行,并能够有效地提升***的网络容量。
在本发明实施例中,每种调制星座可以对应一种调制阶数,因而,逻辑信息段2还可以通过指示调制阶数的方式来指示终端设备上行待发送数据流所使用的调制星座;相应地,终端设备可以根据逻辑信息段2获知上行待发送数据流对应的调制阶数,从而能够确定与该调制阶数一一对应调制星座,从而可以进行上行数据流的发送。
即在本发明实施例中,可选地,该第一调制星座信息包括该第一调制星座的调制阶数信息。
应理解,在本发明实施例中,如果各逻辑信息段指示的是索引值,则需要预先在网络设备和终端设备侧建立一致的相关信息的索引关系,例如,签名序列索引值与每个签名矩阵中的签名序列的索引关系、调制星座索引值与每个调制星座的索引关系、调制阶数索引值与每个调制阶数的索引关系或与每个调制星座的索引关系等,以使得网络设备和终端设备能够根据逻辑信息段所指示的索引值,通过预先建立的相关索引关系,唯一地确定相对应的签名序列和调制星座。
还应理解,在本发明实施例中,网络设备和终端设备可以采用多种方法预先存储签名序列,一种简单直接的方法是,按照前文所述的形式存储其中包括的所有零元素和非零元素:
Figure PCTCN2014094540-appb-000015
本发明实施例仅以上述例子为例说明签名序列的存储,但应理解,本发明实施例并不限于此,网络设备和终端设备还可以采用其它方法预先存储签名序列。
还应理解,本发明实施例仅以上述方案为例进行说明,但本发明并不限于此。例如,当网络设备确定的用于终端设备上行发送数据的签名序列都属于同一个签名序列,或都默认采用同一个签名序列时,该指示信息可以仅仅包括第二调制星座信息;再例如,当网络设备确定的用于终端设备上行发送数据的调整星座都默认采用固定的调制星座或固定的调制阶数时,该指示信息可以仅仅包括第二签名序列信息。
由此,上述方法可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容 量,还能够节省***开销。
应理解,本发明仅以图6和图7所示的实施例为例进行说明,但本发明并不限于此,还可以采用其它方法向终端设备指示网络设备分配或指定的签名序列和调制星座。
可选地,在本发明实施例中,该接收网络设备发送的指示信息,包括:接收该网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
可选地,在本发明实施例中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
在本发明实施例中,网络设备通过比特串方式和表格方式中的至少一种方式,向终端设备发送该指示信息,如上文所述,为了简洁,在此不再赘述。可选地,该指示信息为比特串信息。
在本发明实施例中,可选地,该签名序列为低密度签名LDS序列。进一步地,可选地,该签名序列包括的零元素的数量大于或等于非零元素的数量。
应理解,网络设备侧描述的网络设备与终端设备的交互及相关特性、功能等与终端设备侧的相关特性、功能相应,为了简洁,在此不再赘述。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的传输指示信息的装置,通过终端设备接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,以根据该指示信息确定用于终端设备发送上行数据流使用的第一签名序列和第一调制星座,并采用该第一签名序列和第一调制星座进行上行数据流的传输,使得终端设备与网络设备之间能够采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量,包括提升***的可接入用户数和频谱效率等。
此外,上述方法可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
上文中结合图3至图7,详细描述了根据本发明实施例的传输指示信息的方法,下面将结合图8至图14,描述根据本发明实施例的传输指示信息的装置。
图8示出了根据本发明实施例的传输指示信息的装置500。如图8所示,该装置500包括:
第一确定模块510,用于确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对该终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
第二确定模块520,用于确定用于指示该第一确定模块510确定的该第一签名序列和第一调制星座的指示信息;
发送模块530,用于向该终端设备发送该第二确定模块520确定的该指示信息。
因此,本发明实施例的传输指示信息的装置,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
在本发明实施例中,可选地,如图9所示,该第二确定模块520包括:
第一确定单元521,用于确定该第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的该签名序列组成;
第二确定单元522,用于确定该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示该第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座。
可选地,在本发明实施例中,如图10所示,该第二确定模块520包括:
第三确定单元523,用于确定该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第二签名序列,该第一调制星座信息用于指示该第一调制星座。
在本发明实施例中,可选地,该第二确定模块520确定的该第一调制星 座信息包括该第一调制星座的调制阶数信息。
在本发明实施例中,可选地,该发送模块530具体用于:向该终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
在本发明实施例中,可选地,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
在本发明实施例中,可选地,该第二确定模块520确定的该指示信息为比特串信息。
在本发明实施例中,可选地,该签名序列为低密度签名LDS序列。
在本发明实施例中,可选地,该签名序列包括的零元素的数量大于或等于非零元素的数量。
在本发明实施例中,可选地,该装置500为网络设备。
应理解,根据本发明实施例的传输指示信息的装置500可对应于本发明方法实施例中的网络设备,并且该装置500中的各个模块的上述和其它操作和/或功能分别为了实现图3至图4中的各个方法200的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输指示信息的装置,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
此外,根据本发明实施例的装置可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
上文中结合图8至图10,从网络设备侧详细描述了根据本发明实施例的传输指示信息的装置,下面将结合图11和图12,从终端设备侧详细描述根据本发明实施例的传输指示信息的装置。
图11示出了根据本发明实施例的传输指示信息的装置600。如图11所示,该装置600包括:
接收模块610,用于接收网络设备发送的指示信息,该指示信息用于指 示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
确定模块620,用于根据该接收模块610接收的该指示信息确定该第一签名序列和该第一调制星座;
发送模块630,用于根据该确定模块620确定的该第一签名序列和该第一调制星座发送该上行数据流。
因此,本发明实施例的传输指示信息的装置,通过终端设备接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,以根据该指示信息确定用于终端设备发送上行数据流使用的第一签名序列和第一调制星座,并采用该第一签名序列和第一调制星座进行上行数据流的传输,使得终端设备与网络设备之间能够采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量,包括提升***的可接入用户数和频谱效率等。
在本发明实施例中,可选地,如图12所示,该接收模块610接收的该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座;
其中,该确定模块620包括:第一确定单元621,用于根据该第一签名矩阵信息、该第一签名序列信息和该第一调制星座信息,确定该第一签名矩阵中的该第一签名序列以及该第一调制星座,其中,每个签名矩阵由两个或两个以上的该签名序列组成。
在本发明实施例中,可选地,如图12所示,该接收模块610接收的该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第一签名序列,该第一调制星座信息用于指示该第一调制星座;
其中,该确定模块620包括:第二确定单元622,用于根据该第二签名序列信息和该第一调制星座信息,确定该第一签名序列以及该第一调制星座。
可选地,在本发明实施例中,该接收模块610接收的该第一调制星座信息包括该第一调制星座的调制阶数信息。
可选地,在本发明实施例中,该接收模块610具体用于:接收该网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
可选地,在本发明实施例中,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
可选地,在本发明实施例中,该接收模块610接收的该指示信息为比特串信息。
可选地,在本发明实施例中,该签名序列为低密度签名LDS序列。
可选地,在本发明实施例中,该签名序列包括的零元素的数量大于或等于非零元素的数量。
可选地,在本发明实施例中,该装置600为终端设备。
应理解,根据本发明实施例的传输指示信息的装置600可对应于本发明方法实施例中的终端设备,并且该装置600中的各个模块的上述和其它操作和/或功能分别为了实现图5至图7中的各个方法300的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输指示信息的装置,通过终端设备接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,以根据该指示信息确定用于终端设备发送上行数据流使用的第一签名序列和第一调制星座,并采用该第一签名序列和第一调制星座进行上行数据流的传输,使得终端设备与网络设备之间能够采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量,包括提升***的可接入用户数和频谱效率等。
此外,根据本发明实施例的装置可以接收网络设备采用更少的信息指示发送上行数据流使用的签名矩阵和调制星座,因而,该装置不仅能够有效地提升***的网络容量,还能够节省***开销。
如图13所示,本发明实施例还提供了一种传输指示信息的装置800,该装置800包括处理器810、存储器820、总线***830和发送器840。其中,处理器810、存储器820和发送器840通过总线***830相连,该存储器820用于存储指令,该处理器810用于执行该存储器820存储的指令,以控制发 送器840发送信号;
其中,该处理器810用于:确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对该终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;以及确定用于指示该第一签名序列和第一调制星座的指示信息;
该发送器840用于:向该终端设备发送该指示信息。
因此,本发明实施例的传输指示信息的装置,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
应理解,在本发明实施例中,该处理器810可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器810还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器820可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。存储器820的一部分还可以包括非易失性随机存取存储器。例如,存储器820还可以存储设备类型的信息。
该总线***830除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***830。
在实现过程中,上述方法的各步骤可以通过处理器810中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器820,处理器810读取存储器820中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该处理器810确定用于指示该第一签名序列和第一调制星座的指示信息,包括:
确定该第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的该签名序列组成;
确定该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示该第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座。
可选地,作为一个实施例,该处理器810确定用于指示该第一签名序列和第一调制星座的指示信息,包括:
确定该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第二签名序列,该第一调制星座信息用于指示该第一调制星座。
可选地,作为一个实施例,该处理器810确定的该第一调制星座信息包括该第一调制星座的调制阶数信息。
可选地,作为一个实施例,该发送器840向该终端设备发送该指示信息,包括:
向该终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
可选地,作为一个实施例,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
可选地,作为一个实施例,该处理器810确定的该指示信息为比特串信息。
可选地,作为一个实施例,该签名序列为低密度签名LDS序列。
可选地,作为一个实施例,该签名序列包括的零元素的数量大于或等于非零元素的数量。
可选地,作为一个实施例,该装置800为网络设备。
应理解,根据本发明实施例的传输指示信息的装置800可对应于本发明实施例中的网络设备以及装置500,并可以对应于执行根据本发明实施例的方法中的相应主体,并且该装置800中的各个模块的上述和其它操作和/或功 能分别为了实现图3至图4中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输指示信息的装置,通过网络设备确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,以及确定用于指示该第一签名序列和第一调制星座的指示信息,并向该终端设备发送该指示信息,使得终端设备能够确定网络设备分配的第一签名序列和第一调制星座,并采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量。
此外,根据本发明实施例的装置可以采用更少的信息指示终端设备发送上行数据流使用的签名矩阵和调制星座,因而,上述方法不仅能够有效地提升***的网络容量,还能够节省***开销。
如图14所示,本发明实施例还提供了一种传输指示信息的装置900,该装置900包括处理器910、存储器920、总线***930、接收器940和发送器950。其中,处理器910、存储器920、接收器940和发送器950通过总线***930相连,该存储器920用于存储指令,该处理器910用于执行该存储器920存储的指令,以控制接收器940接收信号,并控制发送器950发送信号;
其中,该接收器940用于:接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,该签名序列用于对终端设备使用调制星座对该上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
该处理器910用于:根据该指示信息确定该第一签名序列和该第一调制星座;
该发送器950用于:根据该第一签名序列和该第一调制星座发送该上行数据流。
因此,本发明实施例的传输指示信息的装置,通过终端设备接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,以根据该指示信息确定用于终端设备发送上行数据流使用的第一签名序列和第一调制星座,并采用该第一签名序列和第一调制星座进行上行数据流的传输,使得终端设备与网络设备之间能够采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容 量,包括提升***的可接入用户数和频谱效率等。
应理解,在本发明实施例中,该处理器910可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器910还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器920可以包括只读存储器和随机存取存储器,并向处理器910提供指令和数据。存储器920的一部分还可以包括非易失性随机存取存储器。例如,存储器920还可以存储设备类型的信息。
该总线***930除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线***930。
在实现过程中,上述方法的各步骤可以通过处理器910中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器920,处理器910读取存储器920中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,该接收器940接收的该指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,该第一签名矩阵信息用于指示第一签名矩阵,该第一签名序列信息用于指示该第一签名矩阵中的该第一签名序列,该第一调制星座信息用于指示该第一调制星座;
其中,该处理器910根据该指示信息确定该第一签名序列和该第一调制星座,包括:
根据该第一签名矩阵信息、该第一签名序列信息和该第一调制星座信息,确定该第一签名矩阵中的该第一签名序列以及该第一调制星座,其中,每个签名矩阵由两个或两个以上的该签名序列组成。
可选地,作为一个实施例,该接收器940接收的该指示信息包括第二签名序列信息和第一调制星座信息,其中,该第二签名序列信息用于指示该第一签名序列,该第一调制星座信息用于指示该第一调制星座;
其中,该处理器910根据该指示信息确定该第一签名序列和该第一调制星座,包括:
根据该第二签名序列信息和该第一调制星座信息,确定该第一签名序列以及该第一调制星座。
可选地,作为一个实施例,该处理器910确定的该第一调制星座信息包括该第一调制星座的调制阶数信息。
可选地,作为一个实施例,该接收器940接收网络设备发送的指示信息,包括:
接收该网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,该上行调度授权消息、该专用高层控制信令和该***广播消息包括该指示信息。
可选地,作为一个实施例,该专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
可选地,作为一个实施例,该接收器940接收的该指示信息为比特串信息。
可选地,作为一个实施例,该签名序列为低密度签名LDS序列。
可选地,作为一个实施例,该签名序列包括的零元素的数量大于或等于非零元素的数量。
可选地,作为一个实施例,该装置900为终端设备。
应理解,根据本发明实施例的传输指示信息的装置900可对应于本发明实施例中的终端设备以及装置600,并可以对应于执行根据本发明实施例的方法中的相应主体,并且该装置900中的各个模块的上述和其它操作和/或功能分别为了实现图5至图7中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的传输指示信息的装置,通过终端设备接收网络设备发送的指示信息,该指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,以根据该指示信息确定用于终端设备发送上行数据流使用的第一签名序列和第一调制星座,并采用该第一签名序列和第一调制星座进行上行数据流的传输,使得终端设备与网络设备之间能够采用该第一签名序列和该第一调制星座进行数据的传输,由此能够有效地提升***的网络容量,包括提升***的可接入用户数和频谱效率等。
此外,根据本发明实施例的装置可以接收网络设备采用更少的信息指示发送上行数据流使用的签名矩阵和调制星座,因而,该装置不仅能够有效地提升***的网络容量,还能够节省***开销。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本说明书中使用的术语“部件”、“模块”、“***”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地***、分布式***和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它***交互的互联网)的信号通过本地和/或远程进程来通信。
此外,本发明的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (58)

  1. 一种传输指示信息的方法,其特征在于,包括:
    确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,所述签名序列用于对所述终端设备使用调制星座对所述上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
    确定用于指示所述第一签名序列和第一调制星座的指示信息;
    向所述终端设备发送所述指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述确定用于指示所述第一签名序列和第一调制星座的指示信息,包括:
    确定所述第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的所述签名序列组成;
    确定所述指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,所述第一签名矩阵信息用于指示所述第一签名矩阵,所述第一签名序列信息用于指示所述第一签名矩阵中的所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座。
  3. 根据权利要求1所述的方法,其特征在于,所述确定用于指示所述第一签名序列和第一调制星座的指示信息,包括:
    确定所述指示信息包括第二签名序列信息和第一调制星座信息,其中,所述第二签名序列信息用于指示所述第二签名序列,所述第一调制星座信息用于指示所述第一调制星座。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一调制星座信息包括所述第一调制星座的调制阶数信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述向所述终端设备发送所述指示信息,包括:
    向所述终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,所述上行调度授权消息、所述专用高层控制信令和所述***广播消息包括所述指示信息。
  6. 根据权利要求5所述的方法,其特征在于,所述专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述指示 信息为比特串信息。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述签名序列为低密度签名LDS序列。
  9. 根据权利要求8所述的方法,其特征在于,所述签名序列包括的零元素的数量大于或等于非零元素的数量。
  10. 一种传输指示信息的方法,其特征在于,包括:
    接收网络设备发送的指示信息,所述指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,所述签名序列用于对终端设备使用调制星座对所述上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
    根据所述指示信息确定所述第一签名序列和所述第一调制星座;
    根据所述第一签名序列和所述第一调制星座发送所述上行数据流。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,所述第一签名矩阵信息用于指示第一签名矩阵,所述第一签名序列信息用于指示所述第一签名矩阵中的所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座;
    其中,所述根据所述指示信息确定所述第一签名序列和所述第一调制星座,包括:
    根据所述第一签名矩阵信息、所述第一签名序列信息和所述第一调制星座信息,确定所述第一签名矩阵中的所述第一签名序列以及所述第一调制星座,其中,每个签名矩阵由两个或两个以上的所述签名序列组成。
  12. 根据权利要求10所述的方法,其特征在于,所述指示信息包括第二签名序列信息和第一调制星座信息,其中,所述第二签名序列信息用于指示所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座;
    其中,所述根据所述指示信息确定所述第一签名序列和所述第一调制星座,包括:
    根据所述第二签名序列信息和所述第一调制星座信息,确定所述第一签名序列以及所述第一调制星座。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一调制星 座信息包括所述第一调制星座的调制阶数信息。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述接收网络设备发送的指示信息,包括:
    接收所述网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,所述上行调度授权消息、所述专用高层控制信令和所述***广播消息包括所述指示信息。
  15. 根据权利要求14所述的方法,其特征在于,所述专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述指示信息为比特串信息。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述签名序列为低密度签名LDS序列。
  18. 根据权利要求17所述的方法,其特征在于,所述签名序列包括的零元素的数量大于或等于非零元素的数量。
  19. 一种传输指示信息的装置,其特征在于,包括:
    第一确定模块,用于确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,所述签名序列用于对所述终端设备使用调制星座对所述上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
    第二确定模块,用于确定用于指示所述第一确定模块确定的所述第一签名序列和第一调制星座的指示信息;
    发送模块,用于向所述终端设备发送所述第二确定模块确定的所述指示信息。
  20. 根据权利要求19所述的装置,其特征在于,所述第二确定模块包括:
    第一确定单元,用于确定所述第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的所述签名序列组成;
    第二确定单元,用于确定所述指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,所述第一签名矩阵信息用于指示所述第一签名矩阵,所述第一签名序列信息用于指示所述第一签名矩阵中的所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座。
  21. 根据权利要求19所述的装置,其特征在于,所述第二确定模块包括:
    第三确定单元,用于确定所述指示信息包括第二签名序列信息和第一调制星座信息,其中,所述第二签名序列信息用于指示所述第二签名序列,所述第一调制星座信息用于指示所述第一调制星座。
  22. 根据权利要求20或21所述的装置,其特征在于,所述第二确定模块确定的所述第一调制星座信息包括所述第一调制星座的调制阶数信息。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,所述发送模块具体用于:向所述终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,所述上行调度授权消息、所述专用高层控制信令和所述***广播消息包括所述指示信息。
  24. 根据权利要求23所述的装置,其特征在于,所述专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
  25. 根据权利要求19至24中任一项所述的装置,其特征在于,所述第二确定模块确定的所述指示信息为比特串信息。
  26. 根据权利要求19至25中任一项所述的装置,其特征在于,所述签名序列为低密度签名LDS序列。
  27. 根据权利要求26所述的装置,其特征在于,所述签名序列包括的零元素的数量大于或等于非零元素的数量。
  28. 根据权利要求19至27中任一项所述的装置,其特征在于,所述装置为网络设备。
  29. 一种传输指示信息的装置,其特征在于,包括:
    接收模块,用于接收网络设备发送的指示信息,所述指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,所述签名序列用于对终端设备使用调制星座对所述上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
    确定模块,用于根据所述接收模块接收的所述指示信息确定所述第一签名序列和所述第一调制星座;
    发送模块,用于根据所述确定模块确定的所述第一签名序列和所述第一调制星座发送所述上行数据流。
  30. 根据权利要求29所述的装置,其特征在于,所述接收模块接收的所述指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,所述第一签名矩阵信息用于指示第一签名矩阵,所述第一签名序列信息用于指示所述第一签名矩阵中的所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座;
    其中,所述确定模块包括:第一确定单元,用于根据所述第一签名矩阵信息、所述第一签名序列信息和所述第一调制星座信息,确定所述第一签名矩阵中的所述第一签名序列以及所述第一调制星座,其中,每个签名矩阵由两个或两个以上的所述签名序列组成。
  31. 根据权利要求29所述的装置,其特征在于,所述接收模块接收的所述指示信息包括第二签名序列信息和第一调制星座信息,其中,所述第二签名序列信息用于指示所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座;
    其中,所述确定模块包括:第二确定单元,用于根据所述第二签名序列信息和所述第一调制星座信息,确定所述第一签名序列以及所述第一调制星座。
  32. 根据权利要求30或31所述的装置,其特征在于,所述接收模块接收的所述第一调制星座信息包括所述第一调制星座的调制阶数信息。
  33. 根据权利要求29至32中任一项所述的装置,其特征在于,所述接收模块具体用于:接收所述网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,所述上行调度授权消息、所述专用高层控制信令和所述***广播消息包括所述指示信息。
  34. 根据权利要求33所述的装置,其特征在于,所述专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
  35. 根据权利要求29至34中任一项所述的装置,其特征在于,所述接收模块接收的所述指示信息为比特串信息。
  36. 根据权利要求29至35中任一项所述的装置,其特征在于,所述签名序列为低密度签名LDS序列。
  37. 根据权利要求36所述的装置,其特征在于,所述签名序列包括的零元素的数量大于或等于非零元素的数量。
  38. 根据权利要求29至37中任一项所述的装置,其特征在于,所述装 置为终端设备。
  39. 一种传输指示信息的装置,其特征在于,包括处理器、存储器、总线***和发送器,其中,所述处理器、所述存储器和所述发送器通过所述总线***相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述发送器发送信号;
    其中,所述处理器用于:确定终端设备发送上行数据流使用的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,所述签名序列用于对所述终端设备使用调制星座对所述上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;以及确定用于指示所述第一签名序列和第一调制星座的指示信息;
    所述发送器用于:向所述终端设备发送所述指示信息。
  40. 根据权利要求39所述的装置,其特征在于,所述处理器确定用于指示所述第一签名序列和第一调制星座的指示信息,包括:
    确定所述第一签名序列属于第一签名矩阵,其中每个签名矩阵由两个或两个以上的所述签名序列组成;
    确定所述指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,所述第一签名矩阵信息用于指示所述第一签名矩阵,所述第一签名序列信息用于指示所述第一签名矩阵中的所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座。
  41. 根据权利要求39所述的装置,其特征在于,所述处理器确定用于指示所述第一签名序列和第一调制星座的指示信息,包括:
    确定所述指示信息包括第二签名序列信息和第一调制星座信息,其中,所述第二签名序列信息用于指示所述第二签名序列,所述第一调制星座信息用于指示所述第一调制星座。
  42. 根据权利要求40或41所述的装置,其特征在于,所述处理器确定的所述第一调制星座信息包括所述第一调制星座的调制阶数信息。
  43. 根据权利要求39至42中任一项所述的装置,其特征在于,所述发送器向所述终端设备发送所述指示信息,包括:
    向所述终端设备发送上行调度授权消息、专用高层控制信令或***广播消息,所述上行调度授权消息、所述专用高层控制信令和所述***广播消息包括所述指示信息。
  44. 根据权利要求43所述的装置,其特征在于,所述专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
  45. 根据权利要求39至44中任一项所述的装置,其特征在于,所述处理器确定的所述指示信息为比特串信息。
  46. 根据权利要求39至45中任一项所述的装置,其特征在于,所述签名序列为低密度签名LDS序列。
  47. 根据权利要求46所述的装置,其特征在于,所述签名序列包括的零元素的数量大于或等于非零元素的数量。
  48. 根据权利要求39至47中任一项所述的装置,其特征在于,所述装置为网络设备。
  49. 一种传输指示信息的装置,其特征在于,包括处理器、存储器、总线***、接收器和发送器,其中,所述处理器、所述存储器、所述接收器和所述发送器通过所述总线***相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制所述接收器接收信号,并控制所述发送器发送信号;
    其中,所述接收器用于:接收网络设备发送的指示信息,所述指示信息用于指示用于发送上行数据流的第一签名序列和第一调制星座,每个签名序列为至少一个零元素和至少一个非零元素组成的多维复数向量,所述签名序列用于对终端设备使用调制星座对所述上行数据流进行星座映射后得到的调制符号进行幅度和相位的调整;
    所述处理器用于:根据所述指示信息确定所述第一签名序列和所述第一调制星座;
    所述发送器用于:根据所述第一签名序列和所述第一调制星座发送所述上行数据流。
  50. 根据权利要求49所述的装置,其特征在于,所述接收器接收的所述指示信息包括第一签名矩阵信息、第一签名序列信息和第一调制星座信息,其中,所述第一签名矩阵信息用于指示第一签名矩阵,所述第一签名序列信息用于指示所述第一签名矩阵中的所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座;
    其中,所述处理器根据所述指示信息确定所述第一签名序列和所述第一调制星座,包括:
    根据所述第一签名矩阵信息、所述第一签名序列信息和所述第一调制星座信息,确定所述第一签名矩阵中的所述第一签名序列以及所述第一调制星座,其中,每个签名矩阵由两个或两个以上的所述签名序列组成。
  51. 根据权利要求49所述的装置,其特征在于,所述接收器接收的所述指示信息包括第二签名序列信息和第一调制星座信息,其中,所述第二签名序列信息用于指示所述第一签名序列,所述第一调制星座信息用于指示所述第一调制星座;
    其中,所述处理器根据所述指示信息确定所述第一签名序列和所述第一调制星座,包括:
    根据所述第二签名序列信息和所述第一调制星座信息,确定所述第一签名序列以及所述第一调制星座。
  52. 根据权利要求50或51所述的装置,其特征在于,所述处理器确定的所述第一调制星座信息包括所述第一调制星座的调制阶数信息。
  53. 根据权利要求49至52中任一项所述的装置,其特征在于,所述接收器接收网络设备发送的指示信息,包括:
    接收所述网络设备发送的上行调度授权消息、专用高层控制信令或***广播消息,所述上行调度授权消息、所述专用高层控制信令和所述***广播消息包括所述指示信息。
  54. 根据权利要求53所述的装置,其特征在于,所述专用高层控制信令包括无线资源控制RRC连接建立消息和RRC连接重配置消息。
  55. 根据权利要求49至54中任一项所述的装置,其特征在于,所述接收器接收的所述指示信息为比特串信息。
  56. 根据权利要求49至55中任一项所述的装置,其特征在于,所述签名序列为低密度签名LDS序列。
  57. 根据权利要求56所述的装置,其特征在于,所述签名序列包括的零元素的数量大于或等于非零元素的数量。
  58. 根据权利要求49至57中任一项所述的装置,其特征在于,所述装置为终端设备。
PCT/CN2014/094540 2014-12-22 2014-12-22 传输指示信息的方法和装置 WO2016101107A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480082831.6A CN107079466B (zh) 2014-12-22 2014-12-22 传输指示信息的方法和装置
PCT/CN2014/094540 WO2016101107A1 (zh) 2014-12-22 2014-12-22 传输指示信息的方法和装置
EP14908678.7A EP3226636B1 (en) 2014-12-22 2014-12-22 Method and device for transmitting indication information
US15/629,671 US10135655B2 (en) 2014-12-22 2017-06-21 Indication information transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/094540 WO2016101107A1 (zh) 2014-12-22 2014-12-22 传输指示信息的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/629,671 Continuation US10135655B2 (en) 2014-12-22 2017-06-21 Indication information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2016101107A1 true WO2016101107A1 (zh) 2016-06-30

Family

ID=56148852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094540 WO2016101107A1 (zh) 2014-12-22 2014-12-22 传输指示信息的方法和装置

Country Status (4)

Country Link
US (1) US10135655B2 (zh)
EP (1) EP3226636B1 (zh)
CN (1) CN107079466B (zh)
WO (1) WO2016101107A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624119B2 (en) * 2015-04-08 2020-04-14 Qualcomm Incorporated Transmission scheduling for contention based carrier
WO2017204471A1 (ko) * 2016-05-25 2017-11-30 엘지전자 주식회사 비직교 다중 접속 기법이 적용되는 무선통신시스템에서 경쟁 기반으로 상향링크 데이터를 전송하는 방법 및 장치
US11329691B2 (en) * 2016-08-11 2022-05-10 Mediatek Inc. Non-orthogonal multiple access wireless communications methods and apparatus thereof
US10206232B2 (en) 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
US10158555B2 (en) 2016-09-29 2018-12-18 At&T Intellectual Property I, L.P. Facilitation of route optimization for a 5G network or other next generation network
US10171214B2 (en) 2016-09-29 2019-01-01 At&T Intellectual Property I, L.P. Channel state information framework design for 5G multiple input multiple output transmissions
US10644924B2 (en) 2016-09-29 2020-05-05 At&T Intellectual Property I, L.P. Facilitating a two-stage downlink control channel in a wireless communication system
US10602507B2 (en) 2016-09-29 2020-03-24 At&T Intellectual Property I, L.P. Facilitating uplink communication waveform selection
US10355813B2 (en) 2017-02-14 2019-07-16 At&T Intellectual Property I, L.P. Link adaptation on downlink control channel in a wireless communications system
CN110266626A (zh) * 2018-03-12 2019-09-20 维沃移动通信有限公司 相位跟踪参考信号ptrs的传输方法、终端及网络设备
US11477738B2 (en) * 2018-09-28 2022-10-18 Ntt Docomo, Inc. Method and device for uplink power control
US20220173911A1 (en) * 2019-03-12 2022-06-02 Telefonaktiebolaget Lm Ericsson (Publ) Method and nodes for handling system information
US20220014411A1 (en) * 2020-07-13 2022-01-13 Huawei Technologies Co., Ltd. Methods, apparatus, and systems for configurable modulation in wireless communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029745A1 (ja) * 2005-09-07 2007-03-15 Sharp Kabushiki Kaisha 放送基地局装置、携帯端末装置、階層変調方式設定方法、放送システム、および階層変調方式設定プログラム
CN101541011A (zh) * 2008-03-20 2009-09-23 华为技术有限公司 一种协调方法、装置及用户设备
CN101621490A (zh) * 2009-08-13 2010-01-06 北京邮电大学 一种用于ofdm***的联合编码调制分集的方法
CN101640940A (zh) * 2008-07-30 2010-02-03 华为技术有限公司 多用户联合映射时指示调制编码方案的方法和基站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368717B (zh) 2009-03-09 2016-11-23 华为技术有限公司 多址接入通信***的方法和装置
WO2010102435A1 (en) 2009-03-09 2010-09-16 Huawei Technologies Co., Ltd. Method and apparatus of a multiple-access communication system
JP5785845B2 (ja) 2011-05-20 2015-09-30 株式会社Nttドコモ 受信装置、送信装置及び無線通信方法
US9356649B2 (en) * 2012-12-14 2016-05-31 Huawei Technologies Co., Ltd. System and method for low density spreading modulation detection
US10568121B2 (en) * 2013-03-08 2020-02-18 Huawei Technologies Co., Ltd. System and method for reduced signaling transmissions in a communications system
CN104158631B (zh) 2014-08-27 2018-04-10 北京邮电大学 一种数据流的发射方法及装置
US9930574B2 (en) * 2014-11-21 2018-03-27 Huawei Technologies Co., Ltd. System and method for link adaptation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029745A1 (ja) * 2005-09-07 2007-03-15 Sharp Kabushiki Kaisha 放送基地局装置、携帯端末装置、階層変調方式設定方法、放送システム、および階層変調方式設定プログラム
CN101541011A (zh) * 2008-03-20 2009-09-23 华为技术有限公司 一种协调方法、装置及用户设备
CN101640940A (zh) * 2008-07-30 2010-02-03 华为技术有限公司 多用户联合映射时指示调制编码方案的方法和基站
CN101621490A (zh) * 2009-08-13 2010-01-06 北京邮电大学 一种用于ofdm***的联合编码调制分集的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226636A4 *

Also Published As

Publication number Publication date
EP3226636A1 (en) 2017-10-04
EP3226636B1 (en) 2020-07-29
US20170288928A1 (en) 2017-10-05
CN107079466A (zh) 2017-08-18
CN107079466B (zh) 2020-03-10
US10135655B2 (en) 2018-11-20
EP3226636A4 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
WO2016101107A1 (zh) 传输指示信息的方法和装置
WO2016138632A1 (zh) 用于上行数据传输的方法和装置
WO2017041683A1 (zh) 用于上行数据传输的方法、网络设备和终端设备
WO2016101461A1 (zh) 传输指示信息的方法和装置
WO2019029240A1 (zh) 一种信号加扰、解扰方法及装置
WO2017000291A1 (zh) 传输上行数据的方法和设备
WO2016090588A1 (zh) 传输数据的方法、发送端设备和接收端设备
WO2016172875A1 (zh) 传输信息的方法、网络设备和终端设备
US10470188B2 (en) Transmission of one or more codebooks between network and terminal devices
WO2016134528A1 (zh) 传输下行控制信息的方法和装置
WO2016078082A1 (zh) 传输信息的方法、装置和设备
WO2016101108A1 (zh) 传输指示信息的方法和装置
TWI802668B (zh) 降低複雜度之極化編碼及解碼
WO2018126870A1 (en) Resource block waveform transmission structures for uplink communications
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
WO2018228522A1 (zh) 发送参考信号的方法、接收参考信号的方法和通信装置
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
WO2017133407A1 (zh) 信号传输方法和装置
US10271346B2 (en) Method for scheduling terminal device, and network device
WO2016070395A1 (zh) 传输信息的方法、接入点和用户设备
WO2018082365A1 (zh) 传输控制方法、装置及***存储介质
WO2017004819A1 (zh) 资源调度的方法、装置和设备
JP2020113990A (ja) アップリンクデータ伝送の方法および装置
WO2017148430A1 (zh) 传输信息的方法和装置
WO2018137234A1 (zh) 下行控制信息的传输方法、网络设备和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014908678

Country of ref document: EP