WO2016075925A1 - Ni合金クラッド鋼板及びその製造方法 - Google Patents

Ni合金クラッド鋼板及びその製造方法 Download PDF

Info

Publication number
WO2016075925A1
WO2016075925A1 PCT/JP2015/005593 JP2015005593W WO2016075925A1 WO 2016075925 A1 WO2016075925 A1 WO 2016075925A1 JP 2015005593 W JP2015005593 W JP 2015005593W WO 2016075925 A1 WO2016075925 A1 WO 2016075925A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
base material
alloy
less
steel sheet
Prior art date
Application number
PCT/JP2015/005593
Other languages
English (en)
French (fr)
Inventor
横田 智之
俊一 橘
洋太 黒沼
仁 末吉
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016558886A priority Critical patent/JP6354853B2/ja
Priority to MYPI2017701551A priority patent/MY183024A/en
Priority to KR1020177011546A priority patent/KR101967678B1/ko
Priority to CN201580059754.7A priority patent/CN107075645B/zh
Priority to EP15859180.0A priority patent/EP3219820B1/en
Publication of WO2016075925A1 publication Critical patent/WO2016075925A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/005Alloys based on nickel or cobalt with Manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/383Cladded or coated products
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention is excellent in a laminated material composed of a Ni alloy having excellent corrosion resistance such as Alloy 825 and Alloy 625, and DWTT (Drop Weight Tear Test) characteristics (that is, brittle fracture propagation stop performance evaluated by DWTT).
  • the present invention relates to a Ni alloy clad steel plate having a base material made of carbon steel or low alloy steel and a method for producing the same.
  • a clad steel plate is a steel plate formed by bonding together a laminated material made of stainless steel or Ni alloy and a base material made of low alloy steel or the like.
  • the clad steel plate is obtained by metallographically joining dissimilar metals, and unlike the plating, there is no fear of peeling.
  • the clad steel sheet can be provided with new characteristics that cannot be achieved with a single metal or alloy.
  • the clad steel plate by selecting a laminated material that has a function suitable for the purpose of each use environment, the clad steel plate exhibits a function equivalent to that of a solid material (where the total thickness is like the metal structure of the laminated material). be able to. Furthermore, high toughness and high strength can be imparted to the clad steel plate by applying carbon steel or low alloy steel suitable for severe environments such as high toughness and high strength to the base material composed of the clad steel plate.
  • the clad steel sheet uses less alloying elements than solid wood, can ensure the same corrosion resistance as solid wood, and can ensure the same strength and toughness as carbon steel and low alloy steel. , It has the advantage that economics and functionality are compatible.
  • clad steel using a laminated material made of stainless steel or Ni alloy is considered to be a very useful functional steel material, and in recent years its needs have been increasing in various industrial fields.
  • Ni alloy clad steel plate which is one of clad steel plates
  • Alloy 825 and Alloy 625 are typical.
  • the Ni alloy clad steel sheet can be preferably used for pipeline applications because of its excellent corrosion resistance.
  • the base material is required to be more excellent in low temperature toughness, in particular, the propagation stop property of brittle fracture, and the laminated material is required to be superior in corrosion resistance than before.
  • Ni alloys such as Alloy 625 have a high deformation resistance in the hot state, and have a problem that the bondability with the base material is lower than that of general stainless steel.
  • As a method for solving this problem there is a method of rolling down at a higher temperature in clad rolling.
  • increasing the bondability and increasing the DWTT performance are in a trade-off relationship.
  • Ni alloys for example, Alloy 625
  • carbides and intermetallic compounds are precipitated due to the thermal history when the clad steel plate is manufactured.
  • Precipitated carbides include MC, M 6 C, M 23 C 6 (M represents a metal element), and intermetallic compounds include a Laves phase, a ⁇ phase, and a ⁇ ′′ phase.
  • M represents a metal element
  • intermetallic compounds include a Laves phase, a ⁇ phase, and a ⁇ ′′ phase.
  • MC is mainly NbC, and the precipitation of MC does not greatly affect the corrosion resistance.
  • the precipitation of intermetallic compounds in Alloy 625 is slower than the precipitation of carbides, and is unlikely to cause deterioration of corrosion resistance. Therefore, it is M 6 C and M 23 C 6 that cause the corrosion resistance degradation of Alloy 625.
  • M 6 C, M 23 C 6 has a precipitation nose in the temperature range of 700 to 900 ° C., contains corrosion-resistant elements Cr, Mo, and Ni, and precipitates along the grain boundary. Become. Usually, if it is a solid material, a solution treatment can be performed after rolling and a precipitate can be made into a solid solution. However, in the case of a clad steel plate, if it is heated and held at such a high temperature that precipitates melt, the crystal grains of the low alloy steel as a base material become coarse and the mechanical properties are significantly deteriorated.
  • Patent Document 1 and Patent Document 2 disclose a clad steel manufactured by quenching and tempering and a method for producing the same, which achieves the strength and low-temperature toughness of a base material composed of the clad steel.
  • the corrosion resistance deteriorates when held in a specific temperature range, it is preferable not to perform the quenching or tempering treatment in order to achieve high corrosion resistance.
  • the manufacturing method which has a quenching tempering process there exists a limit in improving low temperature toughness, especially the propagation stop performance of a brittle fracture.
  • TMCP Thermo-Mechanical control process
  • Patent Document 3 a low alloy steel containing Nb in the range of 0.08 to 0.15% by mass is used, the rolling ratio at 1000 ° C. or less is set to 3 or more, and the rolling end temperature is 900 ° C.
  • a method for producing a clad steel plate made of stainless steel or Ni alloy at a temperature of ⁇ 1000 ° C. using TMCP is described.
  • Patent Document 4 as in Patent Document 3, 0.08 mass% or more of Nb is contained, and in order to further improve the sour resistance performance (resistance to hydrogen-induced cracking and sulfide stress corrosion cracking), S is set to 0.0. Constructed from a base material composed of a low alloy steel treated with addition of Ca at 001 mass% or less, and a stainless steel or nickel alloy produced under the conditions of a total rolling reduction ratio of 5 or more and a rolling end temperature of 850 ° C. to 1000 ° C. The manufacturing method in TMCP of the clad steel plate which has the laminated material made is described.
  • Patent Document 3 and Patent Document 4 paying attention to the fact that Nb expands the non-recrystallization temperature region of austenite to a significantly high temperature region, even if this is actively added and the clad rolling is finished at a higher temperature, the controlled rolling effect It is devised so that the DWTT performance can be ensured by (structural refinement effect). In other words, it is a method that makes full use of the merits of the TMCP process to achieve both DWTT performance, bondability, and corrosion resistance.
  • the present invention has been made in order to solve the above-mentioned problems, and its purpose is to test a base material containing a large amount of Nb in a clad steel plate having a laminated material composed of a Ni alloy such as Alloy 825 or Alloy 625.
  • a Ni alloy clad steel sheet with stable DWTT performance brittle fracture propagation stop performance
  • a ductile fracture surface ratio of 85% or more a method for producing the same There is to do.
  • Ni alloy clad steel plate is different from solid Ni alloy and solid low alloy steel in three ways: ensuring corrosion resistance of laminated materials, ensuring mechanical properties of base materials such as DWTT performance, and ensuring bondability as a composite material. It is required to satisfy the characteristics at the same time.
  • the inventors examined the optimization of the rolling end temperature in clad rolling in order to ensure the corrosion resistance of the laminated material.
  • the heating temperature of the clad rolling and the rolling conditions was studied.
  • bondability examination was made on the appropriateness of the slab heating temperature of the clad rolling, the temperature range of the hot rolling, and the reduction ratio at that time. And the conditions which satisfy
  • the importance of the slab heating temperature has been found in the base material rolling performed prior to the clad rolling, for which attention has not been paid conventionally.
  • the present invention has been completed based on such knowledge, and the gist thereof is as follows.
  • a base material composed of a low alloy steel containing 0.070% or less and the balance Fe and inevitable impurities, and the average particle size of the bainite structure of the base material is 30 ⁇ m or less Characteristic Ni alloy clad steel sheet.
  • the base material is further, in mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.00.
  • a method for producing a clad steel sheet according to any one of (1) to (3) In the base metal rolling performed prior to the clad rolling, the slab heating temperature is set to 1000 ° C. to 1100 ° C., and in the clad rolling, the slab heated to 1050 ° C. to 1200 ° C.
  • Production of a Ni alloy clad steel sheet comprising: an accelerated cooling step for accelerated cooling under conditions of 3 ° C./s or higher and a cooling stop temperature of 600 ° C. or lower; and a cooling step for cooling after the accelerated cooling step.
  • Ni alloy clad steel plate having a base material composed of carbon steel or low alloy steel containing 0.040 to 0.10% by mass of Nb, excellent base material DWTT performance is stabilized. As well as good bondability and corrosion resistance.
  • the base material is, by mass, C: 0.020 to 0.10%, Si: 0.10 to 0.50%, Mn: 0.75 to 1.80%, P: 0.015% or less, S : 0.0030% or less, Nb: 0.040 to 0.10%, Ti: 0.005 to 0.030%, N: 0.0010 to 0.0060%, Al: 0.070% or less .
  • C 0.020 to 0.10%
  • C is an effective component that improves the strength of steel.
  • the C content is less than 0.020%, the strength as a general welding steel becomes insufficient.
  • the C content exceeds 0.10%, the toughness of the base material and the weld heat affected zone of the base material is deteriorated. Further, it is desirable to reduce the C content from the viewpoint of weldability. Therefore, the upper limit of the C content is 0.10%.
  • the preferred C content is 0.020 to 0.080%. More preferably, it is in the range of 0.030 to 0.080%.
  • Si 0.10 to 0.50% Si is added for deoxidation during steelmaking. Si is a component necessary for securing the strength of the base material. For this reason, it is necessary to make Si content 0.10% or more. On the other hand, if the Si content exceeds 0.50%, the toughness and workability of the base metal are adversely affected, so the Si content is in the range of 0.10 to 0.50%. From the viewpoint of deoxidation effect and toughness, the range is preferably 0.20 to 0.40%.
  • Mn 0.75 to 1.80% Mn is a component effective for ensuring the strength and toughness of the base material. From the viewpoint of securing strength and toughness, the Mn content needs to be 0.75% or more. On the other hand, if the Mn content exceeds 1.80%, the toughness and weldability are adversely affected. Therefore, the Mn content is in the range of 0.75 to 1.80%. Preferably, it is in the range of 1.00 to 1.70%.
  • the P content should be 0.015% or less. Preferably it is 0.010% or less.
  • the lower limit of the P content is preferably about 0.001%.
  • S 0.0030% or less
  • S is an element that may be included as an inevitable impurity even if it is not actively added.
  • the S content is 0.0030% or less in order to ensure low temperature toughness.
  • the lower limit of the S content is preferably about 0.0003%.
  • Nb 0.040 to 0.10%
  • Nb exerts a fine graining effect through a pinning effect due to precipitates and expansion of a non-recrystallized region due to solute Nb.
  • the strength and toughness of the base material and the DWTT performance can be improved by the above effects and actions.
  • the Nb content is less than 0.040%, the effect cannot be exhibited effectively.
  • the Nb content exceeds 0.10%, the effect is saturated. In some cases, the formation of coarse Nb inclusions may degrade the DWTT performance. Therefore, the Nb content is in the range of 0.040 to 0.10%. Preferably, it is in the range of 0.050 to 0.080%.
  • Ti forms TiN to suppress grain growth during slab heating or to suppress grain growth in the weld heat affected zone, resulting in refinement of the microstructure, resulting in the strength of the base material and the base metal.
  • N 0.0010 to 0.0060% N precipitates as TiN and is effective in improving the toughness of the weld heat affected zone. If the N content is less than 0.0010%, the effect is reduced, so the lower limit is made 0.0010%. However, if the N content exceeds 0.0060%, the solute N increases and the toughness of the weld heat affected zone decreases. Considering the improvement of HAZ toughness due to fine precipitation of TiN corresponding to the Ti content, the N content is set in the range of 0.0010 to 0.0060%. Preferably it is 0.0020 to 0.0050% of range.
  • Al 0.070% or less
  • Al is an important element for deoxidation in the steelmaking process, and has an effect on improving the toughness of the weld heat affected zone.
  • the Al content is set to 0.070% or less.
  • the Al content is preferably 0.010% or more.
  • the base material is further, in mass%, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0 1% or less, Ca: one or more selected from 0.0010 to 0.0050% may be contained.
  • Cu 0.50% or less Cu is one of elements effective for improving toughness and increasing strength. However, if the Cu content exceeds 0.50%, weldability may be hindered. Therefore, when Cu is contained, the Cu content is set to 0.50% or less. Preferably, it is 0.10 to 0.40% of range.
  • Ni 0.50% or less
  • Ni is one of elements effective for improving toughness and increasing strength.
  • the Ni content exceeds 0.50%, the effect is saturated, and the inclusion of Ni increases the production cost.
  • Ni content shall be 0.50% or less of range.
  • it is 0.10 to 0.40% of range.
  • Cr 0.50% or less Cr is an element effective for improving toughness and increasing strength. On the other hand, if the Cr content exceeds 0.50%, the toughness of the weld heat affected zone may be deteriorated. Therefore, when Cr is contained, the Cr content is set to a range of 0.50% or less. Preferably, it is in the range of 0.05% to 0.35%.
  • Mo 0.50% or less Mo is an element that stably improves the strength and toughness of the base material. However, when the Mo content exceeds 0.50%, the effect is saturated, and the excessive Mo content reduces the weld heat affected zone toughness and weldability. For this reason, when it contains Mo, Mo content shall be 0.50% or less of range. From the viewpoint of the strength of the base metal and toughness, the preferable Mo content is in the range of 0.05 to 0.35%.
  • V 0.10% or less
  • V is an element that improves the strength of the base material.
  • the toughness may decrease due to precipitation of carbonitride.
  • V content shall be 0.10% or less of range.
  • the preferred V content is in the range of 0.02 to 0.05%.
  • Ca 0.0010 to 0.0050%
  • Ca has the effect of controlling the form of the sulfide inclusions and improving the toughness of the base material and the toughness of the weld heat affected zone of the base material.
  • the Ca content needs to be 0.0010% or more.
  • the Ca content is in the range of 0.0010 to 0.0050%.
  • it is 0.0020 to 0.0030% of range.
  • Amount of precipitated Nb contained in the base material 0.040 to 0.070%
  • the amount of Nb precipitates in the base material in the slab stage after base metal rolling and before clad rolling is particularly appropriate, then in the base material of the clad steel plate obtained by clad rolling under the conditions described in the present invention. It was found that the amount of precipitated Nb was 0.040 to 0.070%. That is, if the amount of precipitated Nb contained in the clad steel plate finally obtained through the base metal rolling and the clad rolling is 0.040% or more, the pinning effect of the heated austenite grains during heating during the clad rolling can be achieved.
  • the precipitated Nb refers to Nb contained in a precipitate such as a composite precipitate such as NbC, NbN, or (NbTi) (CN). If it exceeds 0.070%, the effect may be saturated or lowered due to an increase in coarse precipitates. Therefore, the amount of precipitated Nb contained in the base material is preferably 0.040 to 0.070%. The amount of precipitated Nb can be measured by the method described in the examples.
  • Average grain size of bainite structure is 30 ⁇ m or less
  • the refinement of the structure is made through the austenite grain pinning effect by precipitates and non-recrystallized zone expansion / non-recrystallized zone rolling by solute Nb.
  • the former is important first. As a result, excellent DWTT performance can be obtained if the average grain size of the bainite of the base material structure is 30 ⁇ m or less.
  • the measurement method of the average particle diameter of a bainite structure is an EBSD (Electron Back Scattering Diffraction, Electron Back Scattering Diffraction) method, and recognizes a particle having an orientation difference of 15 degrees or more as one grain, and performs weighted averaging on the area. Is the method.
  • EBSD Electron Back Scattering Diffraction, Electron Back Scattering Diffraction
  • the structure of the base material contains bainite in an area ratio of 90% or more.
  • phases other than bainite include ferrite and martensite.
  • the laminated material is made of a Ni alloy.
  • the Ni alloy is an alloy containing Ni as a main component.
  • Ni is a main element of the high Ni alloy and is an element that improves the corrosion resistance. In particular, Ni significantly improves the stress corrosion cracking resistance in a sour environment. Corrosion resistance is further improved by the combined effect of Cr and Mo.
  • the Ni content of the laminated material of the present invention is preferably 38% or more.
  • components other than Ni in the Ni alloy include C, Si, Mn, P, S, Cr, Mo, Fe, Al, Ti, Nb, Ta, and the like.
  • Ni alloys such as Alloy 825, Alloy 625, and Monel can be used.
  • the slab heating temperature is set to 1000 ° C to 1100 ° C.
  • (NbTi) (CN) is dissolved, and during heating during clad rolling, the pinning effect of the heated austenite grains is reduced, and the initial austenite grains are coarse. Become.
  • the bainite structure after clad rolling becomes coarse and the DWTT performance is lowered. Therefore, the slab heating temperature at the time of rolling the base material is set to 1100 ° C. or less.
  • the slab heating temperature is less than 1000 ° C., a rolling load is applied and the austenite grain size reducing effect is reduced.
  • slab heating temperature shall be 1000 degreeC or more.
  • the slab is finished at a rolling finish temperature of 900 ° C. or higher up to a required thickness of about 100 mm as a clad rolling material.
  • the rolling end temperature is preferably lower from the viewpoint of refining the structure of the material. However, if the rolling finishing temperature is too low, the plate thickness is large and the rolling load becomes excessive, so 800 ° C. or higher is preferable.
  • Clad rolling has a hot rolling process and an accelerated cooling process.
  • the slab heated to 1050 ° C. to 1200 ° C. in the hot rolling process has a rolling reduction ratio in the temperature range of 2.0 to 900 ° C. at a steel plate surface temperature of 950 ° C. or higher and 40 to 40 ° C. % Or more, and the rolling end temperature is 750 ° C. or higher.
  • the accelerated cooling step is performed under the conditions of a cooling rate of 3 ° C./s or more and a cooling stop temperature of 600 ° C. or less. Among the above conditions, the cumulative rolling reduction in the temperature range of 900 ° C.
  • temperature shall mean the steel plate surface temperature.
  • the slab heating temperature is 1050 ° C. or more and 1200 ° C. or less.
  • the slab heating temperature is set to 1050 ° C. or higher in order to sufficiently dissolve the laminated material during heating and to secure a sufficient reduction ratio in a high temperature region as will be described later.
  • the slab heating temperature is preferably high.
  • the slab heating temperature exceeds 1200 ° C.
  • the hot ductility of the Ni alloy deteriorates and material cracking occurs during rolling.
  • the slab heating temperature exceeds 1200 ° C.
  • the toughness is deteriorated due to the coarsening of crystal grains of the base material. Therefore, from the viewpoint of corrosion resistance, low temperature toughness, and bondability, the slab heating temperature is set to a range of 1050 ° C. or more and 1200 ° C. or less.
  • the rolling ratio when the steel sheet surface temperature is 950 ° C. or higher is 2.0 or higher.
  • the clad steel can be secured by rolling in a high temperature range.
  • the reason why rolling in the high temperature range is important is that the difference in deformation resistance between the Ni alloy, which is the laminated material, and the low alloy steel, which is the base material, is small. This is because element interdiffusion easily proceeds at the boundary between the laminated material and the base material.
  • Ni alloy has a higher deformation resistance than austenitic stainless steel, it requires a higher reduction ratio at a higher temperature than in the case of an austenitic stainless clad steel sheet.
  • the preferable temperature range is 1000 ° C. or higher, and the preferable reduction ratio is 2.5 or higher.
  • the upper limit of the reduction ratio is not particularly limited, but is preferably 8 or less from the viewpoint of productivity. Normally, “rolling at 950 ° C. or higher” is rolling performed at 950 ° C. or higher and 1100 ° C. or lower.
  • the cumulative rolling reduction in the temperature range of 900 ° C. or lower is 40% or more, and the rolling end temperature is 750 ° C. or higher.
  • the austenite grains are expanded, and the bainite that is transformed by the subsequent accelerated cooling is refined and the toughness is increased. improves.
  • the cumulative rolling reduction is preferably 50% or more because it ensures more stable DWTT performance.
  • rolling completion temperature is 800 degreeC or more from a viewpoint of ensuring more stable bondability.
  • the cooling rate is 3 ° C./s or more and the cooling stop temperature is 600 ° C. or less.
  • the cooling stop temperature is preferably 350 ° C. or higher.
  • the cooling rate greatly affects the corrosion resistance.
  • carbide precipitates in the laminated material in the cooling process immediately after rolling, and the corrosion resistance deteriorates.
  • the upper limit of a cooling rate is not specifically limited, Usually, it is 50 degrees C / s or less.
  • the cooling rate means an average cooling rate.
  • the air cooling process is a process of cooling after the accelerated cooling process.
  • the cooling may be performed at a cooling rate of 10 to 30 ° C./min.
  • the base material and the base material composed of the clad steel of the present invention are adjusted to the above component ranges and can be melted by a conventional method or the like.
  • An assembly slab for clad rolling is efficiently manufactured in the form of a base material / lamination material / lamination material / matrix. In consideration of warping during cooling, it is desirable that the base materials and the laminated materials have the same thickness. Of course, it goes without saying that it is not necessary to limit to the assembly method described above.
  • the average particle size of the bainite structure of the base material was measured by the EBSD method by recognizing one having an orientation difference of 15 degrees or more as one grain and performing weighted averaging on the area.
  • the mechanical properties of the base material were evaluated by a tensile test and a DWTT test by collecting a tensile test piece and a DWTT test piece in accordance with API-5L standard (API: American Petroleum Institute, American Petroleum Institute).
  • API-5L standard API: American Petroleum Institute, American Petroleum Institute.
  • the test temperature was set to ⁇ 25 ° C., and a ductile fracture surface ratio of 85% or more was excellent in the low temperature toughness of the base material.
  • the corrosion resistance test of the laminated material was based on the 65 volume% nitric acid corrosion test (Huey test) method of JIS G0573 stainless steel.
  • a test piece was immersed in a boiled 65% nitric acid solution for 48 hours, the corrosion rate (g / (m 2 ⁇ h)) was calculated from the weight change before and after the test, and a new boiled 65% nitric acid solution was obtained. Immerse the same specimen in again. This 48-hour immersion test was repeated 5 times, and the corrosion resistance was evaluated from the average value of the 5 corrosion rates. Evaluation criteria judged that the thing of 0.75g / (m ⁇ 2 > * h) or less has favorable corrosion resistance.
  • the bondability as a clad steel was performed based on the shear strength test described in the test method of clad steel of JIS G0601: 2012. The evaluation standard was determined to be good bondability when the shear strength (shear stress) was 300 MPa or more.
  • Table 4 shows the overall evaluation of the test results.
  • Table 1 shows the component composition of the base material.
  • Steel No. A1 to A6 are invention examples belonging to the scope of the present invention.
  • Steel No. B1 and B2 are comparative examples in which Nb is outside the scope of the invention.
  • Alloy 625 having the component composition shown in Table 2 was used as the bonding material.
  • Table 3 shows the manufacturing conditions of the clad steel plate using the base material having the composition shown in Table 1 and Alloy 625 having the composition shown in Table 2.
  • Production Method No. E1 to E10 are invention examples belonging to the scope of the invention under any of the production conditions of heating, rolling and cooling.
  • the production method No. F1 to F6 are comparative examples in which any of the production conditions of heating, rolling and cooling is outside the scope of the invention.
  • Table 4 shows the test results of the various clad steels produced.
  • the table shows the results of the tensile test and drop weight test of the base material, the average crystal grain size, the shear test result, and the corrosion test result of the laminated material.
  • Example No. Examples 1 to 15 are invention examples in which all the tests cleared the target value.
  • all the inventive examples have a ductile fracture surface ratio of 85% or more, it can be said that the ductile fracture surface ratio is stably 85% or more.
  • Comparative Example No. Nos. 16 and 17 indicate that the chemical composition of the base material is outside the scope of the invention. For 18 to 23, since any of the production conditions was out of the scope of the invention, various test results did not reach the target values.
  • the amount of precipitated Nb contained in the base material was determined by electrolysis of the base material in 10% AA electrolyte solution (10% acetylacetone-1% tetramethylammonium chloride-methyl alcohol electrolyte solution). Using a spectroscopic analysis method, the amount of Nb contained in the extraction residue was analyzed, and the amount of Nb that was a precipitate was calculated. The average particle size of the bainite structure of the base material was the same as in Example 1. Further, the tensile test and the DWTT test were also performed in the same manner as in Example 1.
  • Table 5 shows the test results of the various clad steels produced.
  • the table shows the results of the tensile test and drop weight test of the base material, the amount of precipitated Nb, and the average crystal grain size.
  • Example No. 24 to 29 are invention examples in which all the tests cleared the target value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

 Alloy825やAlloy625などのNi合金の合せ材を有するクラッド鋼板において、Nbを多量に含有する母材の、試験温度-25℃でのDWTT性能(脆性破壊伝播停止性能)が、安定的に、延性破面率で85%以上になるとともに、耐食性と接合性にも優れるNi合金クラッド鋼板及びその製造方法を提供する。 Ni合金の合せ材と、特定の成分組成からなる低合金鋼の母材と、を有し、母材のベイナイト組織の平均粒径が30μm以下であることを特徴とする、母材DWTT特性に優れるNi合金クラッド鋼板とする。

Description

Ni合金クラッド鋼板及びその製造方法
 本発明は、Alloy825やAlloy625など耐食性に優れたNi合金から構成される合せ材と、DWTT(Drop Weight Tear Test、落重試験)特性(すなわち、DWTTで評価される脆性破壊伝播停止性能)に優れた炭素鋼や低合金鋼から構成される母材と、を有するNi合金クラッド鋼板およびその製造方法に関する。
 クラッド鋼板とは、ステンレス鋼やNi合金から構成される合せ材と、低合金鋼等から構成される母材とを張り合わせてなる鋼板である。クラッド鋼板は、異種金属を金属学的に接合させたもので、めっきとは異なり剥離する心配がない。また、クラッド鋼板には、単一の金属や合金では達し得ない新たな特性を付与することができる。
 クラッド鋼板によれば、使用環境毎の目的に合った機能を有する合せ材を選択することにより、無垢材(全厚が合せ材の金属組織のような場合をいう)と同等の機能を発揮させることができる。さらに、クラッド鋼板から構成される母材に、高靭性、高強度といった厳しい環境に適した炭素鋼や低合金鋼を適用することで、高靭性や高強度をクラッド鋼板に付与することができる。
 このように、クラッド鋼板は、無垢材よりも合金元素の使用量が少なく、かつ、無垢材と同等の耐食性能を確保でき、さらに炭素鋼や低合金鋼と同等の強度や靭性を確保できるため、経済性と機能性が両立できるという利点を有する。
 以上から、ステンレス鋼やNi合金から構成される合せ材を用いたクラッド鋼は非常に有益な機能性鋼材であると考えられており、近年そのニーズが各種産業分野で益々高まっている。
 クラッド鋼板の1つであるNi合金クラッド鋼板の合せ材としてはAlloy825やAlloy625が代表的である。Ni合金クラッド鋼板は、優れた耐食性能から、パイプライン用途として好ましく用いることができる。
 近年、難採掘環境と呼ばれる領域においてもエネルギー資源開発が進んでいる。このような環境では、母材は今まで以上に低温靭性、特に脆性破壊の伝播停止特性に優れることが求められ、合せ材は今まで以上に耐食性に優れることが求められる。
 しかしながら、特にAlloy625などのNi合金は、熱間での変形抵抗が高く、母材との接合性が一般のステンレス鋼と比較して低いという問題がある。この問題を解決する方法として、クラッド圧延においてより高温域で圧下するという方法がある。ところが、DWTT性能を確保するためには、組織微細化のため、クラッド圧延においてできるだけ低温で仕上げることが必要である。上記の通り、接合性を高めることと、DWTT性能を高めることとは、二律背反の関係となる。
 また、Ni合金の中でも例えばAlloy625には、クラッド鋼板製造時の熱履歴によって炭化物や金属間化合物が析出する。析出する炭化物としては、MC、MC、M23(Mは金属元素を表す)などがあり、金属間化合物としては、Laves相、δ相、γ’’相がある。このうち、MCは主としてNbCであり、MCの析出は耐食性に大きな影響を与えない。また、Alloy625中における金属間化合物の析出は炭化物の析出よりも遅く、耐食性劣化の原因となりにくい。従って、Alloy625の耐食性劣化を引き起こすのはMCおよびM23である。MC、M23は700~900℃の温度域に析出ノーズが存在し、耐食元素であるCr、Mo、Niを含有し、粒界に沿って析出するため、鋭敏化の原因となる。通常、無垢材であれば圧延後に溶体化処理を施し析出物を固溶させることができる。しかし、クラッド鋼板の場合には析出物が溶け込むような高温に加熱保持すると、母材である低合金鋼の結晶粒が粗大化し、機械的特性が著しく悪化するという問題がある。
 このような背景から、以下に示すようなクラッド鋼板およびクラッド鋼板の製造方法が開示されている。
 特許文献1および特許文献2には、クラッド鋼から構成される母材の強度と低温靭性を達成する、焼入れ焼戻し処理で製造されたクラッド鋼およびその製造方法が開示されている。しかしながら、上述したように、特定の温度域で保持されると耐食性の劣化が生じるため、高耐食性を達成するためには、焼入れ処理や焼戻し処理を行わない方が好ましい。また、焼入れ焼戻し処理を有する製造方法では、低温靭性、特に脆性破壊の伝播停止性能を向上させるのには限界がある。
 そこで、合せ材の耐食性と母材の低温靭性を向上させるための手段としてTMCP(Thermo-Mechanical control process)プロセスを適用することが好ましい。
 特許文献3には、母材にNbを0.08~0.15質量%の範囲で含有した低合金鋼を用いて、1000℃以下での圧下比を3以上とし、圧延終了温度を900℃~1000℃としたステンレス鋼またはNi合金を合せ材としたクラッド鋼板のTMCPでの製造方法が記載されている。
 特許文献4には、特許文献3と同様、Nbを0.08質量%以上含有し、さらに耐サワー性能(水素誘起割れおよび硫化物応力腐食割れに対する抵抗)を向上させる観点で、Sを0.001質量%以下としてCa添加処理した低合金鋼から構成される母材と、全圧下比5以上、圧延終了温度を850℃~1000℃とする条件で製造してなるステンレス鋼またはニッケル合金から構成される合せ材とを有するクラッド鋼板のTMCPでの製造方法が記載されている。
 特許文献3や特許文献4では、Nbがオーステナイトの未再結晶温度領域を著しく高温域まで拡げることに着目して、これを積極的に添加し、クラッド圧延をより高温で仕上げても制御圧延効果(組織微細化効果)によるDWTT性能確保できるよう工夫している。いわば、TMCPプロセスのメリットを十分に生かして、DWTT性能と接合性、耐食性の両立を図った方法である。ところが、Nbをこのように多量に添加すると、母材圧延時やクラッド圧延時の加熱温度や圧延条件によってNb炭窒化物の固溶状態が大きく変化し、最終的なクラッド鋼板の強度やDWTT性能が大きく変化することが懸念される。
特開2006-328460号公報 特開2004-149821号公報 特開平5-261567号公報 特開平7-246481号公報
 本発明は上記課題を解決するためになされたものであり、その目的は、Alloy825やAlloy625などのNi合金から構成される合せ材を有するクラッド鋼板において、Nbを多量に含有する母材の、試験温度-25℃でのDWTT性能(脆性破壊伝播停止性能)が、安定的に、延性破面率で85%以上になるとともに、耐食性と接合性にも優れるNi合金クラッド鋼板及びその製造方法を提供することにある。
 Ni合金クラッド鋼板は、無垢のNi合金や無垢の低合金鋼と異なり、合せ材の耐食性の確保、DWTT性能等の母材の機械的特性の確保、複合材料としての接合性の確保の3つの特性を同時に満たすことが求められる。発明者らは、かかる事情に鑑み、合せ材の耐食性確保のために、クラッド圧延での圧延終了温度の適正化を検討した。また、母材の機械的特性、特にDWTT性能の確保のためには、母材の成分と圧延条件、クラッド圧延の加熱温度と圧延条件の適正化を検討した。また、接合性については、クラッド圧延のスラブ加熱温度と熱間圧延の温度範囲とその際の圧下比等の適性化について検討した。そして、以上の検討から全ての特性を満足する条件を知見した。特に本発明では、従来注意が払われることのなかった、クラッド圧延に先立って行われる母材圧延に際して、そのスラブ加熱温度の重要性が見出された。
 本発明は、このような知見に基づいて完成させたもので、その要旨は、以下の通りである。
 (1)Ni合金から構成される合せ材と、質量%で、C:0.020~0.10%、Si:0.10~0.50%、Mn:0.75~1.80%、P:0.015%以下、S:0.0030%以下、Nb:0.040~0.10%、Ti:0.005~0.030%、N:0.0010~0.0060%、Al:0.070%以下を含有し、残部Fe及び不可避的不純物からなる低合金鋼から構成される母材と、を有し、前記母材のベイナイト組織の平均粒径が30μm以下であることを特徴とするNi合金クラッド鋼板。
 (2)前記母材中に含まれる析出Nb量が、質量%で、0.040~0.070%であることを特徴とする(1)に記載のNi合金クラッド鋼板。
 (3)前記母材は、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.1%以下、Ca:0.0010~0.0050%のうちから選ばれる1種または2種以上を含有することを特徴とする(1)又は(2)に記載のNi合金クラッド鋼板。
 (4)(1)~(3)のいずれかに記載のクラッド鋼板の製造方法であって、
 クラッド圧延に先立って行われる母材圧延において、スラブ加熱温度を1000℃~1100℃とし、クラッド圧延において、1050℃~1200℃に加熱されたスラブを、鋼板表面温度950℃以上での圧下比を2.0以上、900℃以下の温度域における累積圧下率を40%以上、圧延終了温度を750℃以上とする条件で熱間圧延する熱間圧延工程と、前記熱間圧延工程後に、冷却速度3℃/s以上、冷却停止温度600℃以下とする条件で加速冷却する加速冷却工程と、前記加速冷却工程後に放冷する放冷工程と、を有することを特徴とするNi合金クラッド鋼板の製造方法。
 本発明によれば、Nbを質量%で0.040~0.10%含有した炭素鋼や低合金鋼から構成される母材を有するNi合金クラッド鋼板において、優れた母材DWTT性能を安定して確保するとともに、接合性や耐食性も良好にすることができる。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
 先ず、本発明における成分の限定範囲について詳細に説明する。各元素の%表示は特に記載が無い限り質量%を意味する。
 <母材>
 母材は、質量%で、C:0.020~0.10%、Si:0.10~0.50%、Mn:0.75~1.80%、P:0.015%以下、S:0.0030%以下、Nb:0.040~0.10%、Ti:0.005~0.030%、N:0.0010~0.0060%、Al:0.070%以下を含有する。
 C:0.020~0.10%
 Cは鋼の強度を向上させる有効な成分である。C含有量が0.020%未満では一般溶接用鋼として強度が不十分になる。一方、C含有量が0.10%を超えると、母材ならびに母材の溶接熱影響部の靭性の劣化を招く。また、溶接性の観点からC含有量の低減が望ましい。そこで、C含有量の上限を0.10%とする。なお、溶接性及びHAZ靭性の観点から、好ましいC含有量は0.020~0.080%である。より好ましくは0.030~0.080%の範囲である。
 Si:0.10~0.50%
 Siは製鋼時の脱酸のために添加される。また、Siは母材の強度確保に必要な成分である。このため、Si含有量を0.10%以上にすることが必要である。一方、Si含有量が0.50%を超えると、母材の靭性、加工性に悪影響を及ぼすためSi含有量は0.10~0.50%の範囲とする。脱酸の効果と靭性の観点から好ましくは0.20~0.40%の範囲である。
 Mn:0.75~1.80%
 Mnは母材の強度及び靭性の確保に有効な成分である。強度及び靭性確保の観点から、Mn含有量を0.75%以上とする必要がある。一方、Mn含有量が1.80%を超えると靭性、溶接性に悪影響を与える。そこで、Mn含有量は0.75~1.80%の範囲とする。好ましくは、1.00~1.70%の範囲である。
 P:0.015%以下
 母材及び母材の溶接熱影響部の靭性を確保するため、P含有量を極力低減することが望ましい。ただし、過度の脱Pはコスト上昇を招くためP含有量は0.015%以下であればよい。好ましくは0.010%以下である。なお、P含有量を過度に低減することは溶製コストの高騰につながり、経済的に不利となるので、P含有量の下限は0.001%程度とすることが好ましい。
 S:0.0030%以下
 Sは積極的に添加しなくても不可避的不純物として含まれる可能性がある元素である。本発明では、低温靭性を確保するためにS含有量を0.0030%以下とする。好ましくは0.0010%以下とする。なお、S含有量を過度に低減することは溶製コストの高騰につながり、経済的に不利となるので、S含有量の下限は0.0003%程度とすることが好ましい。
 Nb:0.040~0.10%
 Nbは析出物によるピニング効果と固溶Nbによる未再結晶域拡大を通じて細粒化作用を発揮する。上記効果や作用により、母材の強度および靭性、DWTT性能を向上させることができる。ただし、Nb含有量が0.040%未満ではその効果を有効に発揮することができない。一方、Nb含有量が0.10%を超えるとその効果が飽和する。場合によっては粗大なNb介在物が生成することによりむしろDWTT性能が劣化することがある。そこで、Nb含有量は0.040~0.10%の範囲とする。好ましくは、0.050~0.080%の範囲である。
 Ti:0.005~0.030%
 TiはTiNを形成してスラブ加熱時の粒成長を抑制したり、溶接熱影響部での粒成長を抑制したりし、結果としてミクロ組織の微細化をもたらして、母材の強度と、母材及び母材の溶接熱影響部の靭性を改善する効果がある。Ti含有量が0.005%未満では十分な効果が得られない。また、Ti含有量が0.030%を超えると、かえって上記効果が得られないのみならず、母材及び母材の溶接熱影響部の靭性が劣化する。したがって、Ti含有量は0.005~0.030%の範囲とする。好ましくは、0.010~0.020%の範囲である。
 N:0.0010~0.0060%
 NはTiNとして析出することで溶接熱影響部の靭性の向上に効果がある。N含有量が0.0010%未満では効果が薄れるため下限を0.0010%とする。しかしながらN含有量が0.0060%を超えると固溶Nが増大し溶接熱影響部の靭性の低下がおこる。Ti含有量と対応させるTiNの微細析出によるHAZ靭性の向上を考慮し、N含有量は0.0010~0.0060%の範囲とする。好ましくは0.0020~0.0050%の範囲である。
 Al:0.070%以下
 Alは、製鋼過程の脱酸用として重要な元素であるとともに、溶接熱影響部の靭性向上にも効力を有する。しかし、Al含有量が0.070%を超えても溶接熱影響部の靭性改善効果は飽和するので、Al含有量は0.070%以下とする。一方、溶接熱影響部の靭性改善効果を得るためには、Al含有量は0.010%以上が好ましい。
 母材は、上記成分以外に、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.1%以下、Ca:0.0010~0.0050%のうちから選ばれる1種または2種以上を含有してもよい。
 Cu:0.50%以下
 Cuは靭性の改善と強度の上昇に有効な元素の1つであるが、Cu含有量が0.50%を超えると溶接性を阻害することがある。そこで、Cuを含有する場合、Cu含有量は0.50%以下とする。好ましくは、0.10~0.40%の範囲である。
 Ni:0.50%以下
 Niは靭性の改善と強度の上昇に有効な元素の1つである。Ni含有量が0.50%を超えると効果が飽和し、また、Niの含有は製造コストを上昇させる。このため、Niを含有する場合、Ni含有量は0.50%以下の範囲とする。好ましくは、0.10~0.40%の範囲である。
 Cr:0.50%以下
 Crは靭性の改善と強度の上昇に有効な元素の1つである。一方、Cr含有量が0.50%を超えると溶接熱影響部の靭性を劣化させることがある。そこで、Crを含有する場合、Cr含有量は0.50%以下の範囲とする。好ましくは、0.05%~0.35%の範囲である。
 Mo:0.50%以下
 Moは母材の強度と靭性を安定的に向上させる元素である。しかし、Mo含有量が0.50%を超えると効果が飽和し、また、過剰なMoの含有は溶接熱影響部靭性や溶接性を低下させる。このため、Moを含有する場合、Mo含有量は0.50%以下の範囲とする。なお、母材強度と靭性の観点から、好ましいMo含有量は、0.05~0.35%の範囲である。
 V:0.10%以下
 Vは母材の強度を向上させる元素である。しかし、V含有量が0.10%を超えると炭窒化物の析出により靭性が低下する場合がある。このため、Vを含有する場合、V含有量は0.10%以下の範囲とする。なお、母材強度と靭性の観点から、好ましいV含有量は、0.02~0.05%の範囲である。
 Ca:0.0010~0.0050%
 Caは硫化物系介在物の形態を制御し母材の靭性と母材の溶接熱影響部の靭性を改善する効果がある。この効果を得るためにはCa含有量を0.0010%以上とすることが必要である。しかし、Ca含有量が0.0050%を超えると効果が飽和し、逆に清浄度を低下させ溶接熱影響部靭性を劣化させる。そこで、Caを含有する場合、Ca含有量は0.0010~0.0050%の範囲とする。好ましくは0.0020~0.0030%の範囲である。
 母材中に含まれる析出Nb量:0.040~0.070%
 母材DWTT性能を改善するには、基本的に組織の微細化が有効である。母材圧延後、クラッド圧延の前のスラブ段階の母材におけるNb析出物の量が特に適正であるならば、その後、本発明の記載の条件でクラッド圧延して得られるクラッド鋼板の母材における析出Nb量が0.040~0.070%になることが判明した。すなわち、母材圧延およびクラッド圧延を経て最終的に得られたクラッド鋼板中に含まれる析出Nb量が0.040%以上であれば、クラッド圧延の際の加熱時に、加熱オーステナイト粒のピニング効果が大きくなり、組織の微細化は達成されやすい。なお、析出Nbとは、NbC、NbN、或いは(NbTi)(CN)といった複合析出物などの析出物中に含まれるNbを指す。0.070%を超えると、粗大な析出物が増えることで効果が飽和あるいは低下する場合がある。このため、母材中に含まれる析出Nb量:0.040~0.070%とすることが好ましい。析出Nb量は、実施例に記載された方法により測定することができる。
 母材の組織:ベイナイト組織の平均粒径が30μm以下
 組織の微細化は、析出物によるオーステナイト粒ピニング効果と固溶Nbによる未再結晶域拡大・未再結晶域圧延を通じてなされるが、母材DWTT性能を改善するには、まずは前者が重要である。結果として、母材組織のベイナイトの平均粒径が30μm以下であれば優れたDWTT性能が得られる。なお、ベイナイト組織の平均粒径の測定方法はEBSD(Electron Back Scattering Diffraction、電子後方散乱回折)法にて、15度以上の方位差を持つものを一つの粒として認識し、面積で加重平均する方法である。
 なお、母材の組織はベイナイトを面積率で90%以上含むことが好ましい。また、ベイナイト以外の相としてはフェライト、マルテンサイト等が挙げられる。
 <合せ材>
 合せ材はNi合金から構成される。なお、Ni合金とは、Niを主成分として含む合金をいう。Niは高Ni合金の主要元素であり、耐食性を向上させる元素である。特に、Niはサワー環境での耐応力腐食割れ性を著しく改善する。CrとMoとの複合添加効果でさらに耐食性は向上する。本発明の合せ材のNi含有量は38%以上とするのが好ましい。また、Ni合金においてNi以外の成分としては、C、Si、Mn、P、S、Cr、Mo、Fe、Al、Ti、Nb、Ta等が挙げられる。具体例としては、Alloy825やAlloy625、モネルなどのNi合金を用いることができる。
 
 <製造方法>
 本発明のNi合金クラッド鋼板の製造方法について以下に述べる。Ni合金クラッド鋼板の製造方法において行う必須の処理は、母材圧延と、クラッド圧延である。
 母材圧延
 母材圧延の際に、スラブ加熱温度を1000℃以上1100℃以下とする。母材圧延時のスラブ加熱温度が1100℃を超えると(NbTi)(CN)が固溶し、クラッド圧延の際の加熱時に、加熱オーステナイト粒のピニング効果が小さくなって、初期オーステナイト粒が粗大となる。その結果、クラッド圧延後のベイナイト組織が粗大となってDWTT性能が低下する。従って、母材圧延時のスラブ加熱温度は1100℃以下とする。一方、スラブ加熱温度が1000℃未満では、圧延負荷がかかるうえ、オーステナイトの整粒化効果が小さくなる。このためスラブ加熱温度は1000℃以上とする。スラブは、クラッド圧延素材としての所要の厚み:100mm前後まで、圧延終了温度900℃以上で仕上げる。圧延終了温度は素材の組織微細化の観点からより低い方が好ましい。ただし、圧延仕上げ温度が低すぎると、板厚が大きく圧延荷重が過大となるため800℃以上が好ましい。
 クラッド圧延
 クラッド圧延は、熱間圧延工程と、加速冷却工程とを有する。本発明においては、熱間圧延工程が1050℃~1200℃に加熱されたスラブを、鋼板表面温度950℃以上での圧下比を2.0以上、900℃以下の温度域における累積圧下率を40%以上、圧延終了温度を750℃以上とする条件で行われる。また、本発明においては、加速冷却工程が、冷却速度3℃/s以上、冷却停止温度600℃以下とする条件で行われる。上記条件の中でも、熱間圧延工程における900℃以下の温度域における累積圧下率、圧延終了温度、これらに加えて加速冷却工程の条件は、「母材の強度、低温靭性、特に脆性破壊の伝播停止特性を改善するには、オーステナイト低温域での高圧下と圧延直後の水冷が有効である」という知見に基づき定められたものである。以下、これらの条件について説明する。なお、温度は鋼板表面温度を意味するものとする。
 上記の通り、熱間圧延工程において、スラブ加熱温度が1050℃以上1200℃以下である。加熱時に合せ材を十分溶体化するために、また、後述のように高温域で十分な圧下比を確保するために、スラブ加熱温度を1050℃以上にする。クラッド鋼の接合性の観点からは、スラブ加熱温度は高温である方が好ましい。しかし、スラブ加熱温度が1200℃を超えると、Ni合金の熱間延性が劣化して、圧延中に素材割れが生じる。また、スラブ加熱温度が1200℃を超えると、母材の結晶粒粗大化によって靭性劣化を招く。よって、耐食性、低温靭性、接合性の観点から、スラブ加熱温度は1050℃以上、1200℃以下の範囲とする。
 上記の通り、熱間圧延工程において、鋼板表面温度が950℃以上での圧下比が2.0以上である。クラッド鋼は高温域での圧延によって、接合性が確保される。高温域での圧延が重要な理由としては、合せ材であるNi合金と母材である低合金鋼の変形抵抗差が小さくなるため、圧延で理想的な接合界面となる点と、高温域では合せ材と母材との境界で元素相互拡散が進行しやすいためである。特に、Ni合金はオーステナイト系ステンレス鋼より変形抵抗が大きいことから、オーステナイト系ステンレスクラッド鋼板の場合より、高温での大きな圧下比が必要となる。よって、クラッド圧延用組立スラブを作製する段階で、組立スラブ内の真空度が10-4torr以上の高真空を確保する条件で、合せ材/母材界面で十分な金属接合を得るためには、950℃以上での圧下比(=(圧延前の板厚)÷(圧延後の板厚))が2.0以上であれば良い。接合性の確保のためには、好ましい温度範囲は1000℃以上であり、好ましい圧下比は2.5以上である。また、圧下比の上限は特に限定されないが製造性の観点で8以下が好ましい。なお、通常、「950℃以上での圧延」は、950℃以上1100℃以下で行われる圧延である。
 上記の通り、熱間圧延工程において、900℃以下の温度域での累積圧下率40%以上、圧延終了温度:750℃以上である。
 母材中のオーステナイト未再結晶域(900℃以下)にて累積圧下率が40%以上の圧延を行うことにより、オーステナイト粒が伸展し、その後の加速冷却で変態生成するベイナイトが微細化し靭性が向上する。累積圧下率は、より安定したDWTT性能を確保するという理由で50%以上であることが好ましい。
 また、圧延終了温度が750℃未満まで低下しすぎると、元素拡散の進行が生じにくく接合性の劣化に繋がり、また、合せ材中の炭化物の析出が促進し、耐食性が劣化する。また、より安定した接合性確保の観点から、圧延終了温度は800℃以上であることが好ましい。
 また、上記の通り、加速冷却工程において、冷却速度が3℃/s以上、冷却停止温度が600℃以下である。
 圧延終了後に600℃以下まで加速冷却するのは、母材の強度、低温靭性を担保するためである。また、圧延板のひずみ低減の観点から、冷却停止温度は350℃以上であることが好ましい。また、冷却速度は、耐食性に大きく影響する。冷却速度が3℃/s未満では、圧延直後からの冷却過程において、合せ材中に炭化物が析出し、耐食性が劣化する。冷却速度の上限は特に限定されないが、通常、50℃/s以下である。また、冷却速度は平均冷却速度を意味する。
 放冷(Air cooling)工程とは、加速冷却工程後に放冷する工程である。例えば、冷却速度が10~30℃/minで冷却すればよい。
 本発明のクラッド鋼から構成される母材となる素材ならびに合せ材となる素材は、上記成分範囲に調整され、常法等により溶製することができる。クラッド圧延用組立スラブは、母材/合せ材/合せ材/母材というように重ね合わせた形式が製造上効率的である。また、冷却時の反りを考慮すると、母材同士、合せ材同士は等厚であることが望ましい。もちろん、上記で記述した組立方式に限定する必要が無いことは言うまでも無い。
 熱間圧延により準備した低合金鋼から構成される母材と、Alloy625から構成される合せ材を用いてサンドウィッチ形式にスラブ組み立てを行った後、四周を真空中でEBW(Electron Beam Welding、電子ビーム溶接)により溶接して厚さ300mmのクラッドスラブを組み立てた。このスラブを加熱して熱間圧延を行い、上下2枚1セットで50mmまで仕上げ、板厚25mm(低合金鋼:22mm+Alloy625:3mm)のクラッド鋼板を製造した。なお、表1に母材の成分組成を、表2に合せ材:Alloy625の成分組成を、表3に製造条件を示す。
 母材のベイナイト組織の平均粒径は、EBSD法にて、15度以上の方位差を持つものを一つの粒として認識し、面積で加重平均する方法で測定した。
 母材の機械的特性は、API-5L規格(API:American Petroleum Institute、アメリカ石油協会)に準拠した引張試験片とDWTT試験片を採取し、引張試験とDWTT試験で評価した。DWTT試験は、-25℃を試験温度とし、延性破面率85%以上を母材の低温靭性に優れているものとした。
 また、合せ材の耐食性試験は、JIS G0573 ステンレス鋼の65体積%硝酸腐食試験(ヒューイ試験)方法に準拠した。試験方法は、沸騰させた65%硝酸溶液中に試験片を48時間浸漬させ、試験前後の重量変化から腐食速度(g/(m・h))を算出し、新たな沸騰65%硝酸溶液中に同一試験片を再び浸漬させる。この48時間浸漬試験を5回繰り返し、5回の腐食速度の平均値から耐食性能を評価した。評価基準は、0.75g/(m・h)以下のものを耐食性能が良好であると判断した。
 また、クラッド鋼としての接合性は、JIS G0601:2012のクラッド鋼の試験方法に記載のせん断強さ試験に準拠して行った。評価基準はせん断強さ(せん断応力)が300MPa以上のものを接合性が良好であると判断した。
 表4には試験結果の総合評価を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 
 表1には、母材の成分組成を示す。鋼No.A1~A6は本発明の範囲に属する発明例である。一方、鋼No.B1~B2はNbが発明の範囲外となっている比較例である。合せ材には、表2の成分組成を有するAlloy625を用いた。表3には、表1に示す成分組成の母材と、表2に示す成分組成を有するAlloy625を使ったクラッド鋼板の製造条件を示す。製造方法No.E1~E10は、加熱、圧延、冷却のいずれの製造条件とも発明の範囲に属する発明例である。一方、製造方法No.F1~F6は加熱、圧延、冷却のいずれかの製造条件が発明の範囲外である比較例である。
 表4には、製造した各種クラッド鋼の試験結果を示す。表には、母材の引張試験、落重試験の結果、平均結晶粒径、せん断試験結果および合せ材の腐食試験結果を示す。実施例No.1~15はいずれの試験も目標値をクリアした発明例である。また、全ての発明例が延性破面率で85%以上であることから、安定的に、延性破面率で85%以上になるといえる。比較例No.16、17は母材の化学成分が発明の範囲外であり、No.18~23は何れかの製造条件が発明の範囲外であるため各種試験結果が目標値に達しなかった。
 熱間圧延により準備した低合金鋼から構成される母材と、Alloy825から構成される合せ材を用いてサンドウィッチ形式にスラブ組み立てを行った後、四周を真空中でEBW(Electron Beam Welding、電子ビーム溶接)により溶接して厚さ300mmのクラッドスラブを組み立てた。このスラブを加熱して熱間圧延を行い、上下2枚1セットで50mmまで仕上げ、板厚25mm(低合金鋼:22mm+Alloy825:3mm)のクラッド鋼板を製造した。なお、表1に母材の成分組成を、表2に合せ材:Alloy825の成分組成を、表3に製造条件を示す。
 母材中に含まれる析出Nb量は、母材を10%AA電解液(10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メチルアルコール電解液)中で電解し、得られた抽出残渣について、ICP発光分光分析法を用いて、抽出残渣中に含まれるNb量を分析し、析出物となっているNb量を算出した。また、母材のベイナイト組織の平均粒径は実施例1と同様の方法で行った。また、引張試験とDWTT試験も実施例1と同様に行った。なお、合せ材の耐食性試験、クラッド鋼としての接合性の試験について、これらの試験結果を表5に記載していないが、実施例1と同様の試験を行った結果、表5の発明例及び比較例はいずれも良好な結果が得られた。
 表5には、製造した各種クラッド鋼の試験結果を示す。表には、母材の引張試験、落重試験の結果、析出Nb量および平均結晶粒径を示す。実施例No.24~29はいずれの試験も目標値をクリアした発明例である。実施例No.30、31は母材の化学成分が発明の範囲外であり、No.32は母材圧延時の加熱温度が発明の範囲外であるため、適正な析出Nb量が得られず、DWTT特性が目標値に達しなかった。
Figure JPOXMLDOC01-appb-T000005
    

Claims (4)

  1.  Ni合金から構成される合せ材と、
     質量%で、C:0.020~0.10%、Si:0.10~0.50%、Mn:0.75~1.80%、P:0.015%以下、S:0.0030%以下、Nb:0.040~0.10%、Ti:0.005~0.030%、N:0.0010~0.0060%、Al:0.070%以下を含有し、残部Fe及び不可避的不純物からなる低合金鋼から構成される母材と、を有し、
     前記母材のベイナイト組織の平均粒径が30μm以下であることを特徴とするNi合金クラッド鋼板。
  2.  前記母材中に含まれる析出Nb量が、質量%で、0.040~0.070%であることを特徴とする請求項1に記載のNi合金クラッド鋼板。
  3.  前記母材は、さらに、質量%で、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.1%以下、Ca:0.0010~0.0050%のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1又は2に記載のNi合金クラッド鋼板。
  4.  請求項1~3のいずれかに記載のクラッド鋼板の製造方法であって、
     クラッド圧延に先立って行われる母材圧延において、スラブ加熱温度を1000℃~1100℃とし、
     クラッド圧延において、1050℃~1200℃に加熱されたスラブを、鋼板表面温度が950℃以上での圧下比を2.0以上、鋼板表面温度が900℃以下の温度域における累積圧下率を40%以上、圧延終了温度を鋼板表面温度で750℃以上とする条件で熱間圧延する熱間圧延工程と、前記熱間圧延工程後に、冷却速度3℃/s以上、冷却停止温度600℃以下とする条件で加速冷却する加速冷却工程と、
     前記加速冷却工程後に放冷する放冷工程と、を有することを特徴とするNi合金クラッド鋼板の製造方法。
     
PCT/JP2015/005593 2014-11-11 2015-11-09 Ni合金クラッド鋼板及びその製造方法 WO2016075925A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016558886A JP6354853B2 (ja) 2014-11-11 2015-11-09 Ni合金クラッド鋼板及びその製造方法
MYPI2017701551A MY183024A (en) 2014-11-11 2015-11-09 Nickel-base alloy-clad steel plate and method for producing the same
KR1020177011546A KR101967678B1 (ko) 2014-11-11 2015-11-09 Ni 합금 클래드 강판 및 그의 제조 방법
CN201580059754.7A CN107075645B (zh) 2014-11-11 2015-11-09 Ni合金包层钢板及其制造方法
EP15859180.0A EP3219820B1 (en) 2014-11-11 2015-11-09 Nickel-base alloy-clad steel plate and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014228675 2014-11-11
JP2014-228675 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016075925A1 true WO2016075925A1 (ja) 2016-05-19

Family

ID=55954028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005593 WO2016075925A1 (ja) 2014-11-11 2015-11-09 Ni合金クラッド鋼板及びその製造方法

Country Status (6)

Country Link
EP (1) EP3219820B1 (ja)
JP (1) JP6354853B2 (ja)
KR (1) KR101967678B1 (ja)
CN (1) CN107075645B (ja)
MY (1) MY183024A (ja)
WO (1) WO2016075925A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6369658B1 (ja) * 2017-09-19 2018-08-08 新日鐵住金株式会社 鋼管及び鋼板
WO2018181381A1 (ja) * 2017-03-29 2018-10-04 Jfeスチール株式会社 クラッド鋼板およびその製造方法
JP2019007055A (ja) * 2017-06-27 2019-01-17 Jfeスチール株式会社 母材が高強度で低温靱性に優れたクラッド鋼板およびその製造方法
JP2019531896A (ja) * 2016-08-12 2019-11-07 フェストアルピーネ グロープブレッヒ ゲーエムベーハーVoestalpine Grobblech Gmbh 圧延接合金属シートの製造方法
WO2020004410A1 (ja) * 2018-06-27 2020-01-02 Jfeスチール株式会社 クラッド鋼板およびその製造方法
CN110656228A (zh) * 2019-10-31 2020-01-07 攀钢集团攀枝花钢铁研究院有限公司 厚规格x80管线钢的生产方法
CN114193855A (zh) * 2021-07-20 2022-03-18 吕林 一种基于过渡中间坯料生产的镍基合金复合板及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130914A1 (ja) * 2017-12-28 2019-07-04 Jfeスチール株式会社 クラッド鋼板
EP3778965A1 (en) 2018-03-30 2021-02-17 JFE Steel Corporation Two-phase stainless-clad steel sheet and method for manufacturing same
CN111918979B (zh) * 2018-03-30 2022-01-18 杰富意钢铁株式会社 双相不锈钢包层钢板和其制造方法
CN112789364B (zh) * 2018-10-01 2022-07-12 日铁不锈钢株式会社 奥氏体系不锈钢复合钢板和母材钢板以及复合钢板的制造方法
JP7006855B2 (ja) * 2019-09-20 2022-01-24 Jfeスチール株式会社 クラッド鋼およびその製造方法
WO2021060173A1 (ja) * 2019-09-25 2021-04-01 Jfeスチール株式会社 クラッド鋼板及びその製造方法
CN115210399B (zh) * 2020-03-13 2023-09-22 日铁不锈钢株式会社 包层钢板及其制造方法以及焊接结构物
KR102623298B1 (ko) * 2022-12-05 2024-01-10 동국제강 주식회사 가속 냉각 열처리 제어공정(tmcp)을 이용한 니켈 합금계 클래드 강재 제조방법 및 이 제조 방법으로 제조된 니켈 합금계 클래드 강재

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245657A (ja) * 1992-03-06 1993-09-24 Nkk Corp 母材の脆性破壊伝播停止特性に優れた高ニッケル合金クラッド鋼板の製造方法
JP2510783B2 (ja) * 1990-11-28 1996-06-26 新日本製鐵株式会社 低温靭性の優れたクラッド鋼板の製造方法
JP2006328460A (ja) * 2005-05-25 2006-12-07 Japan Steel Works Ltd:The クラッド鋼用母材および該クラッド鋼用母材を用いたクラッド鋼の製造方法
JP2014101568A (ja) * 2012-11-22 2014-06-05 Jfe Steel Corp 溶接部靭性に優れた高靭性高耐食性Ni合金クラッド鋼板及びその製造方法
JP2015086422A (ja) * 2013-10-30 2015-05-07 Jfeスチール株式会社 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217418A (ja) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Dwtt特性の優れた非調質高張力鋼板の製造方法
JPH04182080A (ja) * 1990-11-14 1992-06-29 Nkk Corp 母材靭性の優れたニッケル基合金圧延クラッド鋼板の製造方法
JPH0825040B2 (ja) 1992-03-06 1996-03-13 新日本製鐵株式会社 優れた低温靭性を有するクラッド鋼板の製造方法
JP2598357B2 (ja) * 1992-03-11 1997-04-09 新日本製鐵株式会社 低温靱性の優れた高張力鋼板の製造法
JPH0711331A (ja) * 1993-06-29 1995-01-13 Nkk Corp 管継手の製造方法
JPH07246481A (ja) 1994-03-10 1995-09-26 Nippon Steel Corp 高強度クラッド鋼板の製造方法
JP2002194466A (ja) * 2000-12-21 2002-07-10 Nkk Corp ニッケル基合金クラッド鋼およびその製造方法
JP3699077B2 (ja) 2002-10-29 2005-09-28 株式会社日本製鋼所 溶接熱影響部の低温靭性に優れたクラッド鋼板用母材および該クラッド鋼板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510783B2 (ja) * 1990-11-28 1996-06-26 新日本製鐵株式会社 低温靭性の優れたクラッド鋼板の製造方法
JPH05245657A (ja) * 1992-03-06 1993-09-24 Nkk Corp 母材の脆性破壊伝播停止特性に優れた高ニッケル合金クラッド鋼板の製造方法
JP2006328460A (ja) * 2005-05-25 2006-12-07 Japan Steel Works Ltd:The クラッド鋼用母材および該クラッド鋼用母材を用いたクラッド鋼の製造方法
JP2014101568A (ja) * 2012-11-22 2014-06-05 Jfe Steel Corp 溶接部靭性に優れた高靭性高耐食性Ni合金クラッド鋼板及びその製造方法
JP2015086422A (ja) * 2013-10-30 2015-05-07 Jfeスチール株式会社 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3219820A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019531896A (ja) * 2016-08-12 2019-11-07 フェストアルピーネ グロープブレッヒ ゲーエムベーハーVoestalpine Grobblech Gmbh 圧延接合金属シートの製造方法
EP3604597A4 (en) * 2017-03-29 2020-02-05 JFE Steel Corporation PLATED STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
WO2018181381A1 (ja) * 2017-03-29 2018-10-04 Jfeスチール株式会社 クラッド鋼板およびその製造方法
JPWO2018181381A1 (ja) * 2017-03-29 2019-06-27 Jfeスチール株式会社 クラッド鋼板およびその製造方法
CN110462087A (zh) * 2017-03-29 2019-11-15 杰富意钢铁株式会社 复合钢板及其制造方法
KR20190129956A (ko) * 2017-03-29 2019-11-20 제이에프이 스틸 가부시키가이샤 클래드 강판 및 그 제조 방법
KR102259450B1 (ko) * 2017-03-29 2021-06-01 제이에프이 스틸 가부시키가이샤 클래드 강판 및 그 제조 방법
JP2019007055A (ja) * 2017-06-27 2019-01-17 Jfeスチール株式会社 母材が高強度で低温靱性に優れたクラッド鋼板およびその製造方法
WO2019058422A1 (ja) * 2017-09-19 2019-03-28 新日鐵住金株式会社 鋼管及び鋼板
JP6369658B1 (ja) * 2017-09-19 2018-08-08 新日鐵住金株式会社 鋼管及び鋼板
WO2020004410A1 (ja) * 2018-06-27 2020-01-02 Jfeスチール株式会社 クラッド鋼板およびその製造方法
JP6705569B1 (ja) * 2018-06-27 2020-06-03 Jfeスチール株式会社 クラッド鋼板およびその製造方法
KR20210010566A (ko) * 2018-06-27 2021-01-27 제이에프이 스틸 가부시키가이샤 클래드 강판 및 그 제조 방법
CN112334589A (zh) * 2018-06-27 2021-02-05 杰富意钢铁株式会社 包覆钢板及其制造方法
US20210260689A1 (en) * 2018-06-27 2021-08-26 Jfe Steel Corporation Clad steel plate and method of producing the same
KR102401618B1 (ko) 2018-06-27 2022-05-24 제이에프이 스틸 가부시키가이샤 클래드 강판 및 그 제조 방법
US11628512B2 (en) 2018-06-27 2023-04-18 Jfe Steel Corporation Clad steel plate and method of producing the same
CN110656228A (zh) * 2019-10-31 2020-01-07 攀钢集团攀枝花钢铁研究院有限公司 厚规格x80管线钢的生产方法
CN114193855A (zh) * 2021-07-20 2022-03-18 吕林 一种基于过渡中间坯料生产的镍基合金复合板及其制备方法

Also Published As

Publication number Publication date
CN107075645A (zh) 2017-08-18
JP6354853B2 (ja) 2018-07-11
CN107075645B (zh) 2020-06-16
EP3219820A4 (en) 2017-09-20
KR20170063866A (ko) 2017-06-08
MY183024A (en) 2021-02-06
KR101967678B1 (ko) 2019-04-10
JPWO2016075925A1 (ja) 2017-05-25
EP3219820A1 (en) 2017-09-20
EP3219820B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6354853B2 (ja) Ni合金クラッド鋼板及びその製造方法
JP6210114B2 (ja) オーステナイト系ステンレスクラッド鋼板およびその製造方法
JP5573265B2 (ja) 引張強度590MPa以上の延靭性に優れた高強度厚鋼板およびその製造方法
EP2811045B1 (en) Base metal for high-toughness clad steel plate giving weld with excellent toughness, and process for producing said clad steel plate
JP6127939B2 (ja) 母材の低温靭性とhaz靭性並びに合せ材の耐食性に優れたオーステナイト系ステンレスクラッド鋼板の製造方法
JP6149368B2 (ja) 耐遅れ破壊特性に優れた高張力鋼板の製造方法
JP6079165B2 (ja) 溶接部靭性に優れた高靭性高耐食性Ni合金クラッド鋼板及びその製造方法
JP5527455B2 (ja) 高靭性クラッド鋼板の母材及びそのクラッド鋼板の製造方法
JP6024643B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板の製造方法
JP6128057B2 (ja) 低yrクラッド鋼板及びその製造方法
WO2018139513A1 (ja) 二相ステンレスクラッド鋼およびその製造方法
KR20200086737A (ko) 열연 강판 및 그의 제조 방법
WO2020004410A1 (ja) クラッド鋼板およびその製造方法
JP6079611B2 (ja) 母材の低温靭性とHAZ靭性及び合せ材の耐食性に優れたNi合金クラッド鋼板およびその製造方法
JP5692305B2 (ja) 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法
JP2009127065A (ja) 母材低温靭性およびhaz低温靭性に優れた低降伏比高張力鋼板とその製造方法
JP5082475B2 (ja) 強度−伸びバランスに優れた高靭性高張力鋼板の製造方法
JP6750572B2 (ja) 母材が高強度で低温靱性に優れたクラッド鋼板およびその製造方法
JP2013255936A (ja) 耐海水腐食性および低温靭性に優れたオーステナイト系ステンレスクラッド鋼の製造方法
JP5489504B2 (ja) 溶接部の靭性に優れたステンレス鋼製溶接構造体および溶接用ステンレス鋼板
JP5464572B2 (ja) すべり軸受用高強度鋼板
JP2016079425A (ja) 靭性に優れた鋼板およびその製造方法
JP2019081931A (ja) 靭性に優れた低温用ニッケル含有鋼板およびその製造方法
JP7506306B2 (ja) 大入熱溶接用高強度鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558886

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177011546

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015859180

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE