WO2016063552A1 - 空調システムの制御装置、空調システム、及び空調システムの異常判定方法 - Google Patents

空調システムの制御装置、空調システム、及び空調システムの異常判定方法 Download PDF

Info

Publication number
WO2016063552A1
WO2016063552A1 PCT/JP2015/052030 JP2015052030W WO2016063552A1 WO 2016063552 A1 WO2016063552 A1 WO 2016063552A1 JP 2015052030 W JP2015052030 W JP 2015052030W WO 2016063552 A1 WO2016063552 A1 WO 2016063552A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
conditioning system
unit
indoor
indoor unit
Prior art date
Application number
PCT/JP2015/052030
Other languages
English (en)
French (fr)
Inventor
篤 塩谷
隆英 伊藤
松尾 実
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP15852619.4A priority Critical patent/EP3196564B1/en
Priority to US15/520,793 priority patent/US20170328593A1/en
Priority to CN201580057865.4A priority patent/CN107110539A/zh
Publication of WO2016063552A1 publication Critical patent/WO2016063552A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0428Safety, monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Definitions

  • the present invention relates to a control device for an air conditioning system, an air conditioning system, and an abnormality determination method for the air conditioning system.
  • a manufacturer obtains air conditioning system operation data by remote monitoring, and proposes energy saving to the customer and determines whether maintenance is necessary.
  • Non-Patent Document 1 a local server installed in a customer's building periodically transmits air-conditioner operation data to a center server for air-conditioning remote monitoring via the Internet. Discloses an air conditioning remote monitoring system in which operation data received by a center server is displayed. In this air conditioning remote monitoring system, the main data of the air conditioner (pressure value, refrigerant temperature, fan speed, compressor operating time, compressor speed, compressor start / stop frequency, etc.) are periodically sent to the center server at regular intervals. Send.
  • the main data of the air conditioner pressure value, refrigerant temperature, fan speed, compressor operating time, compressor speed, compressor start / stop frequency, etc.
  • the manufacturer identifies the failure part indicating the abnormality based on the operation data transmitted to the center server, and contacts the service center and requests for repair.
  • the present invention has been made in view of such circumstances, and is capable of more easily and accurately grasping the operating state of the air conditioning system, an air conditioning system control device, an air conditioning system, and an air conditioning system abnormality determination method
  • the purpose is to provide.
  • the air conditioning system control device, the air conditioning system, and the air conditioning system abnormality determination method of the present invention employ the following means.
  • the control device for an air conditioning system is a control device for an air conditioning system including one or a plurality of outdoor units and one or a plurality of indoor units, via the outdoor unit and a communication medium.
  • An outdoor unit control means for acquiring information on a device mounted on the outdoor unit via the communication medium and outputting a control command to the device mounted on the outdoor unit via the communication medium;
  • An indoor unit that is communicable with a unit via a communication medium, acquires information on a device mounted on the indoor unit via the communication medium, and outputs a control command to the device mounted on the indoor unit
  • An abnormality determination unit that determines whether or not there is an abnormality in the device by individually changing the operating point of the control unit and the outdoor unit or the device mounted on the indoor unit and acquiring a predetermined state quantity before and after the change And comprising
  • the control device of the air conditioning system virtually includes an outdoor unit control unit that outputs a control command to a device mounted on the outdoor unit, and an indoor unit control unit that outputs a control command to a device mounted on the indoor unit. It is mounted on.
  • Devices mounted on the outdoor unit and the indoor unit are, for example, an expansion valve, a fan, and a four-way valve. That is, since the outdoor unit control means and the indoor unit control unit exist independently of the outdoor unit and the indoor unit, the configurations of the outdoor unit and the indoor unit are simplified. Further, for example, it is not necessary to install an advanced program in the outdoor unit and the indoor unit, such as mounting only the communication and actuating functions of parts, and the outdoor unit and the indoor unit can be easily replaced.
  • the outdoor unit or the indoor unit may be an outdoor unit or an indoor unit manufactured by a manufacturer different from the control device as long as it satisfies the specifications.
  • the outdoor unit and the indoor unit are controlled by different control devices
  • the outdoor unit and the indoor unit are operated by different control programs. It is difficult to accurately grasp the condition. For this reason, in the conventional air conditioning system, it has been necessary to collect and manage data such as the operating state and various state quantities of the air conditioning system by a remote monitoring server or the like.
  • a remote monitoring server or the like it has been necessary to collect and manage data such as the operating state and various state quantities of the air conditioning system by a remote monitoring server or the like.
  • an outdoor unit or an indoor unit manufactured by a different manufacturer is used in the air conditioning system, it is necessary to determine whether or not the devices mounted thereon are operating correctly as the air conditioning system.
  • the control device of the air conditioning system obtains a predetermined state quantity before and after individually changing the operating point of the outdoor unit or the device mounted on the indoor unit, thereby determining whether there is an abnormality in the device.
  • the determination is made by the abnormality determination means. That is, the control device performs active monitoring control that actively operates the device.
  • the state quantity is, for example, the temperature of the refrigerant, the pressure of the refrigerant, the flow rate of the refrigerant, or the like.
  • one control device controls the outdoor unit and the indoor unit, so that the control state of each device and various state quantities in the air conditioning system can be managed by this control device. For this reason, it is easy to associate the timing at which the operating points of the devices are individually changed with the change in the state quantity before and after that timing. That is, this configuration can easily and accurately grasp the operating state of the air conditioning system without using a remote monitoring server as in the conventional air conditioning system. In addition, even if outdoor units and indoor units manufactured by different manufacturers are used, this configuration acquires a predetermined amount of state before and after individually changing the operating point of the equipment mounted on these units. Since the presence / absence is determined, it is possible to accurately grasp the influence of the operation of the device on the air conditioning system.
  • one control device controls the outdoor unit and the indoor unit, individually changes the operating point of the outdoor unit or the equipment mounted on the indoor unit, and sets a predetermined state quantity before and after the change. Since it is acquired, the operating state of the air conditioning system can be grasped more easily and accurately.
  • the abnormality determination unit acquires the predetermined state quantity that is more likely to change according to a change in the operating point of the device, and determines whether the device is abnormal. Good.
  • the presence / absence of the device abnormality is determined based only on a predetermined state quantity that is likely to vary, so the operating state of the air conditioning system is determined earlier. can do.
  • the abnormality determination means determines whether there is an abnormality in the device by sequentially changing the operating point of the device for each of the outdoor units or the indoor units. May be.
  • the state of the outdoor unit or the indoor unit can be determined more accurately.
  • the abnormality determining means may determine whether or not there is an abnormality in the device during operation of the air conditioning system.
  • the amount of refrigerant in the air conditioning system may be calculated based on the state quantity.
  • the air conditioning system includes one or a plurality of outdoor units, one or a plurality of indoor units, and the control device described above.
  • An abnormality determination method for an air conditioning system includes: one or a plurality of outdoor units; one or a plurality of indoor units; and communication with the outdoor unit via a communication medium. And acquiring information on the equipment mounted on the outdoor unit via the outdoor unit control means for outputting a control command to the equipment mounted on the outdoor unit, and communicating with the indoor unit via a communication medium
  • An air conditioner system abnormality determination method comprising: an indoor unit control means for acquiring information on a device mounted on the indoor unit via the communication medium and outputting a control command to the device mounted on the indoor unit And the operating point of the said outdoor unit or the apparatus mounted in the said indoor unit is changed separately, the predetermined state quantity before and behind a change is acquired, and the presence or absence of the abnormality of the said apparatus is determined.
  • FIG. 1 is a diagram showing a refrigerant system of an air conditioning system 1 according to the present embodiment.
  • the air conditioning system 1 includes one outdoor unit B and a plurality of indoor units A1 and A2 connected by a refrigerant pipe 10 common to the outdoor unit B.
  • a configuration in which two indoor units A1 and A2 are connected to one outdoor unit B is illustrated.
  • the number of outdoor units B installed and the number of connected indoor units A1 and A2 are illustrated. Is not limited.
  • the outdoor unit B includes, for example, a compressor 11 that compresses and sends out refrigerant, a four-way valve 12 that switches a refrigerant circulation direction, an outdoor heat exchanger 13 that exchanges heat between the refrigerant and outside air, an outdoor fan 15, and refrigerant.
  • an accumulator 16 provided in the suction side piping of the compressor 11, for example, an outdoor unit expansion valve 17 which is an electronic expansion valve is provided.
  • the outdoor unit B is provided with various sensors 20 (see FIG. 2) such as a pressure sensor 21 (high pressure sensor 21_1, low pressure sensor 21_2) for measuring the refrigerant pressure, an outdoor temperature sensor 24 for measuring the refrigerant temperature, and the like. ing.
  • the high pressure sensor 21_1 measures the pressure of the refrigerant discharged from the compressor 11, and the low pressure sensor 21_2 measures the pressure of the refrigerant sent to the compressor 11.
  • Each of the indoor units A1 and A2 includes an indoor heat exchanger 31, an indoor fan 32, an indoor unit expansion valve 33, and the like.
  • the two indoor units A1 and A2 are connected to the refrigerant pipes 10 branched by the header 22 and the distributor 23 in the outdoor unit B, respectively.
  • the indoor temperature sensor 35_1 measures the inlet refrigerant temperature of the indoor heat exchanger 31
  • the indoor temperature sensor 35_2 measures the intermediate refrigerant temperature of the indoor heat exchanger 31
  • the indoor temperature sensor 35_3 is connected to the indoor heat exchanger 31. Measure the outlet refrigerant temperature.
  • FIG. 2 is an electrical configuration diagram of the air conditioning system 1 according to the present embodiment.
  • indoor units A1 and A2 an outdoor unit B, and a control device 3 are connected via a common bus 5 so that information can be exchanged between them.
  • the common bus 5 is an example of a communication medium, and the communication may be wireless or wired.
  • the control device 3 is connected to a maintenance / inspection device 6 that performs maintenance / inspection via a communication medium 7, and is configured to transmit operation data periodically or to promptly notify that when an abnormality occurs. .
  • each indoor unit control part 41_1, 41_2 and the outdoor unit control part 43 are provided independently of the indoor units A1, A2 and the outdoor unit B.
  • the indoor unit control unit 41_1 that controls the indoor unit A1, the indoor unit control unit 41_2 that controls the indoor unit A2, and the outdoor unit control unit 43 that controls the outdoor unit B are virtualized control units. Each is mounted on the control device 3.
  • the indoor unit control unit 41 and the outdoor unit control unit 43 exist independently of the indoor unit A and the outdoor unit B, the configurations of the indoor unit A and the outdoor unit B are simplified. Further, for example, it is not necessary to install an advanced program in the indoor unit A and the outdoor unit B, such as mounting only the communication and actuating functions of parts, and the indoor unit A and the outdoor unit B can be easily replaced. Can do.
  • the indoor units A1 and A2 and the outdoor unit B may be indoor units A and B manufactured by a manufacturer different from the control device 3 as long as they satisfy the specifications.
  • the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 are integrated into the control device 3 having one piece of hardware, and can operate independently on the hardware included in the control device 3. .
  • the control device 3 includes a master control unit 40 for causing the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 to virtually exist in the control device.
  • the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 are configured to be able to exchange information with each other. Moreover, the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43 may perform autonomous distributed control that enables autonomous distributed control independent of each other while sharing information, for example.
  • the autonomous distributed control refers to the sensors 20 and other control units (for example, in the case of the indoor unit control unit 41_1, the indoor unit control unit 41_2 and the outdoor unit control unit 43 correspond to other control units).
  • the information is received from the information, and the information is input to the predetermined application according to the control rule, and the corresponding indoor unit A1, A2 or the outdoor unit B (for example, the indoor unit A1 in the case of the indoor unit control unit 41_1) is controlled. To give a directive.
  • indoor unit A1 an indoor unit local controller 52 provided corresponding to each device 51 such as the indoor fan 32, the indoor unit expansion valve 33, etc. (see FIG. 1) is shared via a gateway (communication means) 53. It is connected to the bus 5.
  • indoor unit A2 is also set as the structure similar to indoor unit A1.
  • outdoor unit local controllers 62 provided corresponding to various devices 61 such as the compressor 11, the four-way valve 12, the outdoor fan 13 and the like (see FIG. 1) are connected via a gateway (communication means) 63. Are connected to a common bus 5.
  • the gateways 53 and 63 are a collection of functions including, for example, a communication driver, an address storage area, a device attribute storage area, a component device information storage area, an OS, and a communication framework.
  • the address storage area is a storage area for storing an address, which is a unique identification number assigned to communicate with the control device 3 or the like.
  • the device attribute storage area is a storage area for storing its own attribute information and the attribute information of the devices 51 and 61 that it owns. For example, whether it is an indoor unit or an outdoor unit, capability, mounted sensors Information (for example, temperature sensor, pressure sensor, etc.), device information (for example, number of fan taps, full pulse of valve, etc.) is stored.
  • sensors 20 for example, a pressure sensor for measuring the refrigerant pressure and a temperature sensor for measuring the refrigerant temperature
  • sensors 20 are respectively connected to the common bus 5 via the AD board 71. It is connected to the.
  • a node having a correction function for correcting the measurement value may be provided between the AD board 71 and the sensors 20. In this way, by providing a correction function, it is possible to use inexpensive sensors that are inexpensive and not so high in measurement accuracy.
  • the indoor unit control units 41 ⁇ / b> _ ⁇ b> 1 and 41 ⁇ / b> _ ⁇ b> 2 of the control device 3 receive measurement data and control from the sensors 20, the indoor unit local controller 52, and the outdoor unit local controller 62 via the common bus 5.
  • Various pieces of equipment for example, the indoor fan 32, the indoor unit expansion valve 33, etc.
  • a control command is output to
  • the control command is sent to the indoor unit local controller 52 via the common bus 5 and the gateway 53.
  • the indoor unit local controller 52 drives the corresponding device based on the received control command.
  • the outdoor unit control unit 43 of the control device 3 acquires measurement data and control information from the sensors 20, the indoor unit local controller 52, and the outdoor unit local controller 62 via the common bus 5, and uses these measurement data as the measurement data. Based on this, by executing a predetermined outdoor unit control program, various devices (for example, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor fan 15, and the outdoor unit expansion valve 17) provided in the outdoor unit B are executed. Etc.) is output. The control command is sent to the outdoor unit local controller 62 via the common bus 5 and the gateway 63. The outdoor unit local controller 62 drives each corresponding device based on the received control command.
  • various devices for example, the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the outdoor fan 15, and the outdoor unit expansion valve 17
  • Etc. is output.
  • the control command is sent to the outdoor unit local controller 62 via the common bus 5 and the gateway 63.
  • the outdoor unit local controller 62 drives each corresponding device based on the received control command.
  • the indoor units A1 and A2 and the outdoor unit B may be autonomously distributed controlled by the indoor unit control units 41_1 and 41_2 and the outdoor unit control unit 43, respectively.
  • a control rule is set between the indoor units A1 and A2 and the outdoor unit B, and each performs control according to the control rule.
  • the indoor units A1 and A2 may have set temperatures or settings set by the user or the like when the refrigerant pressure acquired from the sensors 20 is within a predetermined first allowable variation range.
  • a control command for making the actual air flow and the actual air flow coincide with the air flow is determined and output to the indoor units A1 and A2 via the common bus 5, respectively.
  • indoor unit control part 41_1 and 41_2 are good also as determining each control command by mutually exchanging information and cooperating.
  • the outdoor unit control unit 43 controls the output command of the air conditioning system 1 for maintaining the refrigerant pressure within a predetermined second allowable fluctuation range, for example, the rotational speed of the compressor 11 and the rotational speed of the outdoor fan 15.
  • the command is determined and transmitted to the outdoor unit B via the common bus 5.
  • the outdoor unit control unit 43 can grasp the output change information of the indoor units A1 and A2 and determine the behavior of the outdoor unit B. It becomes possible.
  • the control device 3, the indoor unit local controller 52, and the outdoor unit local controller 62 are, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
  • the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the outdoor unit and the indoor unit are controlled by different control devices
  • the outdoor unit and the indoor unit are operated by different control programs, so the operating state of the entire air conditioning system is accurately grasped. Difficult to do.
  • it has been necessary to collect and manage data such as the operating state and various state quantities of the air conditioning system by a remote monitoring server or the like.
  • the indoor unit A and the outdoor unit B manufactured by different manufacturers are used in the air conditioning system 1 according to the present embodiment, whether or not the devices mounted thereon are operating correctly as the air conditioning system 1 is determined. It is necessary to judge.
  • the control device 3 of the air conditioning system 1 includes a failure prediction control unit 44.
  • the failure prediction control unit 44 individually changes the operating points of the devices (the device 51 and the device 61) mounted in the indoor unit A or the outdoor unit B, acquires predetermined state quantities before and after the change, A failure prediction operation for determining the presence or absence is executed.
  • control device 3 can individually operate various devices mounted on the air conditioning system 1 by the failure prediction control unit 44 regardless of normal operation control such as cooling operation and heating operation.
  • the control device 3 performs active monitoring control that actively operates the device.
  • the state quantity is measured by the sensors 20, for example, the temperature of the refrigerant, the pressure of the refrigerant, the flow rate of the refrigerant, and the like.
  • FIG. 3 is a functional block diagram showing functions of the failure prediction control unit 44 in the control device 3 according to the present embodiment.
  • the failure prediction control unit 44 includes a check device selection unit 70, an operating point change control unit 72, a state quantity acquisition unit 74, a storage unit 76, an abnormality determination unit 78, and a refrigerant amount calculation unit 80.
  • the check device selection unit 70 selects a device that individually changes the operation point for failure prediction operation.
  • the operating point change control unit 72 outputs a predetermined control command to the device that changes the operating point.
  • the state quantity acquisition unit 74 acquires predetermined state quantities before and after the change of the operating point from the various sensors 20 and the like.
  • the storage unit 76 stores the state quantities acquired by the state quantity acquiring unit 74 in time series.
  • the abnormality determination unit 78 determines whether there is an abnormality in the device based on the acquired state quantity.
  • the refrigerant quantity calculation unit 80 executes a refrigerant quantity calculation process for calculating the refrigerant quantity in the air conditioning system 1 based on the acquired state quantity.
  • the operating point of the device mounted on the indoor unit A or the outdoor unit B is individually changed, and the state quantity before and after the change is acquired, so that the device is air-conditioned.
  • the influence on the system 1 can be clarified. If the influence is not appropriate, there is a possibility that the device is abnormal (failure or the like).
  • the control device 3 since one control device 3 controls the indoor unit A and the outdoor unit B, the control device 3 controls the control state of each device, various state quantities in the air conditioning system 1, and the like. Can be managed. For this reason, it is easy to associate the timing at which the operating points of the devices are individually changed with the change in the state quantity before and after that timing. That is, the air conditioning system 1 according to the present embodiment can easily and accurately grasp the operating state of the air conditioning system 1 without using a remote monitoring server as in the conventional air conditioning system. For example, when an abnormal change occurs in the state quantity before and after the operation point of the device is changed, or when no change occurs, it is determined that the device has a failure.
  • the air-conditioning system 1 has a predetermined before and after changing the operating points of the devices mounted on them. Since the state quantity is acquired and the presence / absence of an abnormality is determined, the influence of the operation of the device on the air conditioning system 1 can be accurately grasped.
  • the conventional air conditioning system that remotely monitors the presence or absence of abnormalities is equipped with a large number of devices, so the amount of operation data sent to a remote monitoring server, etc. is enormous, and the state of the air conditioning system is accurate. It is difficult to grasp quickly and determine whether there is an abnormality. Therefore, the state quantity acquisition unit 74 described above acquires a predetermined state quantity that is more likely to vary according to a change in the operating point of the device. That is, the sensors 20 that acquire the state quantity are predetermined according to the device that changes the operating point. And the abnormality determination part 78 determines the presence or absence of abnormality of an apparatus based on the acquired state quantity. In addition, the state quantity in which the fluctuation is likely to appear is, in other words, a state quantity having a larger amount of time change with respect to a change in the operating point of the device.
  • the air conditioning system 1 determines whether there is an abnormality in the device based on a predetermined state quantity that easily changes when the operating point of the device is changed. Can be determined earlier. Further, even if the failure prediction operation is performed during the operation of the air conditioning system 1, the presence / absence of an abnormality is determined in a short time in order to determine the presence / absence of an equipment abnormality based on a predetermined state quantity that is likely to change. Therefore, the user's sense of temperature control is not impaired.
  • Table 1 below is a table showing an example of a combination of a device that changes an operating point and a state quantity to be acquired in failure prediction operation.
  • a forced opening degree command for changing the opening degree by a predetermined amount is output to the indoor unit expansion valve 33.
  • the amount of heat exchanged by the indoor heat exchanger 31 is changed by the forced opening degree command, and it is determined whether or not the indoor unit expansion valve 33 is functioning normally.
  • the state quantity acquired in this case is a change of indoor temperature sensor 35_1, 35_2, 35_3. Note that a change in the degree of superheat may be acquired as the state quantity during cooling. This is because, when the opening degree of the indoor unit expansion valve 33 is changed, a temperature change appears most rapidly as a reaction as to whether or not the refrigerant flows in the refrigerant pipe 10.
  • a forced rotational speed command for changing the rotational speed by a predetermined amount is output to the indoor fan 32.
  • the amount of heat exchanged by the indoor heat exchanger 31 is changed by this forced rotation speed command, and it is determined whether or not the indoor fan 32 is functioning normally.
  • the state quantity acquired in this case is a change of the high-pressure sensor 21_1 and the low-pressure sensor 21_2. This is because when the rotational speed of the indoor fan 32 is changed, the change in the refrigerant pressure appears as the earliest reaction.
  • the value of the low-pressure sensor 21_2 decreases by decreasing the rotational speed of the indoor fan 32, and the rotational speed of the indoor fan 32 is reduced. By increasing the value, the value of the low-pressure sensor 21_2 increases.
  • the value of the high-pressure sensor 21_1 is increased by decreasing the rotational speed of the indoor fan 32, and the rotational speed of the indoor fan 32 is increased. As a result, the value of the high-pressure sensor 21_1 decreases.
  • the control device 3 can easily determine whether there is an abnormality in the indoor fan 32 by acquiring a pressure change by the high pressure sensor 21_1 or the low pressure sensor 21_2 with respect to a change in the operating point of the indoor fan 32.
  • a forced rotational speed command for changing the rotational speed by a predetermined amount is output to the outdoor fan 15.
  • the amount of heat exchanged by the outdoor heat exchanger 13 is changed by this forced rotation speed command, and it is determined whether or not the outdoor fan 15 is functioning normally.
  • the state quantity acquired in this case is a change of the high-pressure sensor 21_1 and the low-pressure sensor 21_2. This is because, when the rotational speed of the outdoor fan 15 is changed, a change in the pressure of the refrigerant appears as a reaction most quickly.
  • the value of the high-pressure sensor 21_1 is increased by decreasing the rotational speed of the outdoor fan 15, and the rotational speed of the outdoor fan 15 is decreased. By increasing the value, the value of the high-pressure sensor 21_1 decreases.
  • the value of the low-pressure sensor 21_2 is decreased by decreasing the rotational speed of the outdoor fan 15, and the rotational speed of the outdoor fan 15 is increased. As a result, the value of the low-pressure sensor 21_2 increases.
  • the device that changes the operating point is the four-way valve 12
  • whether or not the four-way valve 12 is functioning normally is determined based on the flow direction of the refrigerant during the cooling operation or the heating operation.
  • a switching command for switching the direction of the refrigerant is output to the four-way valve 12 in order to perform the defrost operation. It may be determined whether or not the four-way valve 12 is functioning normally by changing the flow direction of the refrigerant according to the switching command.
  • the state quantity acquired in this case is the value of any of the indoor temperature sensors 35_1, 35_2, and 35_3 and the outdoor temperature sensor 24. The reason for this is that the flow direction during cooling operation and the flow direction during heating operation are uniquely determined.
  • the four-way valve 12 functions normally. This is because it can be determined. Specifically, if the four-way valve 12 functions normally during the cooling operation, the value of the outdoor temperature sensor 24 is higher than the value of the indoor temperature sensor 35_3 and the like. On the other hand, if the four-way valve 12 is functioning normally during the heating operation, the value of the outdoor temperature sensor 24 is lower than the value of the indoor temperature sensor 35_3 or the like.
  • a forced opening degree command for changing the opening degree by a predetermined amount is output to the outdoor unit expansion valve 17.
  • the amount of heat exchanged by the outdoor heat exchanger 13 is changed by this forced opening degree command, and it is determined whether or not the outdoor unit expansion valve 17 is functioning normally.
  • the state quantity acquired in this case is a change of the high-pressure sensor 21_1 and the low-pressure sensor 21_2. This is because, when the opening degree of the outdoor unit expansion valve 17 is changed, a change in pressure appears as a reaction most quickly to match the heat balance during operation due to a change in the amount of exchange heat (circulation flow rate).
  • the outdoor unit expansion valve 17 is functioning normally during the cooling operation, the value of the high pressure sensor 21_1 is lowered by opening the outdoor unit expansion valve 17, and the outdoor unit expansion valve 17 is closed. As a result, the value of the high-pressure sensor 21_1 increases.
  • the outdoor unit expansion valve 17 is functioning normally during the heating operation, the value of the low pressure sensor 21_2 is increased by opening the outdoor unit expansion valve 17, and the low pressure sensor is closed by closing the outdoor unit expansion valve 17. The value of 21_2 decreases. Further, during the heating operation, the change in the degree of superheat calculated from the value of the low-pressure sensor 21_2 and the value of the outdoor temperature sensor 24 may be detected by opening and closing the outdoor unit expansion valve 17.
  • the operating point of the device is changed by the failure prediction operation, the operating point of the device is returned to the original operating point after a predetermined time (for example, several seconds) has elapsed.
  • FIG. 4 is a flowchart showing a flow of failure prediction processing (failure prediction program) according to the present embodiment.
  • the failure prediction process is executed by the control device 3.
  • step 100 it is determined whether or not a predetermined accumulated operation time (for example, 50 hours) has elapsed since the end of the previously performed failure prediction process. If the determination is affirmative, the process proceeds to step 102.
  • a predetermined accumulated operation time for example, 50 hours
  • failure prediction operation is performed.
  • the operation state is determined by changing the operation point of the equipment in order for each of the plurality of indoor units A or outdoor units B. The state can be determined more accurately.
  • the failure prediction operation determines whether there is an abnormality in the device during the operation of the air conditioning system 1. In the failure predictive operation according to the present embodiment, since the operating point of the device is changed in a short time, it is possible to determine the presence or absence of an abnormality without impairing the user's sense of temperature even while the air conditioning system 1 is in operation.
  • step 104 it is determined whether or not there is a device that shows an abnormality by the failure predictive operation. If the determination is affirmative, the process proceeds to step 106.
  • step 106 in order to eliminate the abnormality, the operation of the air conditioning system 1 is stopped and the failure prediction process is terminated.
  • FIG. 5A and 5B are flowcharts showing an example of the failure prediction operation executed in step 102.
  • FIG. 5A and 5B as an example, an apparatus that individually changes the operating point is selected as the indoor unit expansion valve 33.
  • step 200 a predetermined indoor unit A that is stopped is selected, and the temperature of the indoor heat exchanger 31 mounted on the selected indoor unit A is stored in the storage unit 76.
  • the indoor unit A is selected in the order in which the indoor unit expansion valve 33 is unchecked and the address value is small.
  • the temperature of the indoor heat exchanger 31 is a temperature measured by at least one of the indoor temperature sensors 35_1, 35_2, and 35_3.
  • Each temperature stored in step 200 is stored as an initial value T n (0).
  • T n is one of the temperatures measured by the indoor temperature sensors 35_1, 35_2, and 35_3,
  • T 1 is the temperature measured by the indoor temperature sensor 35_1,
  • T 2 is the temperature measured by the indoor temperature sensor 35_2, and
  • T 3 indicates the temperature measured by the indoor temperature sensor 35_3.
  • the indoor unit expansion valve 33 of the stopped indoor unit A is in a closed state.
  • the indoor unit expansion valve 33 mounted on the indoor unit A selected in step 200 is opened. Specifically, a predetermined opening degree pulse is output from the operating point change control unit 72 to the indoor unit expansion valve 33.
  • the temperature is measured by the indoor temperature sensors 35_1, 35_2, and 35_3, stored in the storage unit 76, and whether or not the temperature change before and after the indoor unit expansion valve 33 is opened is equal to or lower than a predetermined temperature. judge.
  • a predetermined temperature As an example, an affirmative determination is made when the temperature difference between the measured temperature T n (t) and the initial value T n (0) satisfies the following equation. T n (t) ⁇ T n (0) ⁇ 10 If the determination in step 204 is affirmative, it is determined that the indoor unit expansion valve 33 is normal, and the routine proceeds to step 206. On the other hand, if a negative determination is made, the routine proceeds to step 208.
  • step 206 the indoor unit expansion valve 33 is closed again, and the process proceeds to step 212.
  • step 208 the indoor unit expansion valve 33 is closed again, and the process proceeds to step 210.
  • step 210 since the normality of the indoor unit expansion valve 33 is unconfirmed, information indicating the indoor unit expansion valve 33 of the indoor unit A selected as the hold processing is stored in the storage unit 76, and the process proceeds to step 212.
  • step 212 it is determined whether or not the check for the indoor unit expansion valve 33 has been completed for all the stopped indoor units A. If the determination is affirmative, the process proceeds to step 214. If the determination is negative, the process proceeds to step 200. Return.
  • step 214 a predetermined indoor unit A in operation is selected, and the temperature of the indoor heat exchanger 31 mounted on the selected indoor unit A is stored in the storage unit 76.
  • the indoor unit A is selected in the order in which the indoor unit expansion valve 33 is unchecked and the address value is small.
  • the indoor unit expansion valve 33 of the indoor unit A in operation is in an open state.
  • the indoor unit expansion valve 33 mounted on the indoor unit A selected in step 214 is fully closed. Specifically, 0 is output as an opening degree pulse from the operating point change control unit 72 to the indoor unit expansion valve 33.
  • the following formula is a formula for determining whether or not the indoor unit expansion valve 33 is operating based on a change in the degree of superheat as an example.
  • step 218 If the determination in step 218 is affirmative, it is determined that the indoor unit expansion valve 33 is normal, the opening degree of the indoor unit expansion valve 33 is returned to the original, and the process proceeds to step 224. On the other hand, if a negative determination is made, the process proceeds to step 220.
  • step 220 If the determination in step 220 is affirmative, it is determined that the indoor unit expansion valve 33 is normal, the opening degree of the indoor unit expansion valve 33 is returned to the original, and the process proceeds to step 224. On the other hand, in the case of negative determination, the routine proceeds to step 222.
  • step 222 since the normality of the indoor unit expansion valve 33 has not yet been determined, information indicating the indoor unit expansion valve 33 of the indoor unit A selected as the hold process is stored in the storage unit 76, and the process proceeds to step 224.
  • step 224 it is determined whether or not the check for the indoor unit expansion valve 33 has been completed for all the indoor units A in operation. If the determination is affirmative, the process proceeds to step 226. If the determination is negative, the process proceeds to step 214. Return.
  • step 2266 it is determined whether or not the indoor unit expansion valve 33 is normal for all the indoor units A. If the determination is affirmative, the failure prediction operation is terminated.
  • step 226 when the information indicating the indoor unit expansion valve 33 subjected to the hold process is stored in the storage unit 76, a negative determination is made in step 226. In this case, the process returns to step 200, and the failure prediction operation is repeated again after a predetermined time (for example, 60 minutes) has elapsed.
  • a predetermined time for example, 60 minutes
  • the reason why the failure predictive operation is performed again after the predetermined time has elapsed is that the failure predictive operation is executed during the operation of the air conditioning system 1, so that depending on the operation state of the air conditioning system 1, the state quantity This is because there is a case where there is no change in. If the predetermined time has elapsed, the operating state of the air conditioning system 1 changes, and even if the operating point of the device is changed in the same manner as the previous time, the state quantity may change, and the device may be determined to be normal.
  • failure prediction operation there is a device whose normality is undetermined, and even if the failure prediction operation is repeated a predetermined number of times (for example, twice), a device that cannot be determined to be normal is abnormal (failure or air conditioning system 1). Non-conformity).
  • an abnormality in the device can be detected before the failure of the air conditioning system 1, and a certain level of abnormality determination using data is possible regardless of the determination by human thought.
  • quality such as which manufacturer's equipment and which manufacturer's combination with the indoor unit causes problems, etc.
  • Statistical data on devices that have problems. This result can be reflected in immediate response to abnormalities and design changes.
  • the refrigerant quantity calculation process executed by the refrigerant quantity calculation unit 80 of the control device 3 will be described.
  • the control device 3 since the control device 3 controls the indoor unit A and the outdoor unit B, it can manage various state quantities and the like in the air conditioning system 1. Therefore, the refrigerant amount calculation process calculates the refrigerant amount in the air conditioning system 1 using the state quantity of the refrigerant during operation of the air conditioning system 1. Thereby, the increase / decrease state of the refrigerant amount can be managed in time series, and the presence or absence of refrigerant leakage can be determined.
  • the air conditioning system 1 is virtually divided into a plurality of regions (hereinafter referred to as “divided regions”).
  • An example of division is: Outdoor heat exchanger 13,2. Indoor heat exchanger 31,3. 3.
  • the gas pipe is a pipe in the refrigerant pipe 10 through which a gaseous refrigerant flows from the indoor unit A to the outdoor unit B.
  • the liquid pipe is a pipe in the refrigerant pipe 10 through which a liquid refrigerant flows from the outdoor unit B to the indoor unit A.
  • the pressure vessel is a compressor 11 and an accumulator 16.
  • the in-machine pipe is a pipe that connects each device in the indoor unit A and a pipe that connects each device in the outdoor unit B.
  • the amount of refrigerant can be calculated, for example, by multiplying the density (kg / m 3 ) of the refrigerant and the internal volume (m 3 ) of the pipe or the like.
  • the refrigerant density is calculated based on a state quantity measured by a pressure sensor and a temperature sensor included in the air conditioning system 1.
  • the length, inner diameter, and the like of each pipe through which the refrigerant flows are obtained in advance as design values, and the internal volume of the pipe and the like is calculated from the design values. Then, the refrigerant amount is calculated for each divided region, and the sum of them is estimated as the refrigerant amount circulating in the air conditioning system 1.
  • Outdoor heat exchanger 13 (condenser) In the outdoor heat exchanger 13, the liquid phase and the gas phase are mixed, and the required refrigerant amount in the operating state varies greatly depending on the liquid phase region generated in the outdoor heat exchanger 13. Therefore, the control device 3 stores in advance a map in which the refrigerant amount in the outdoor heat exchanger 13 in the operating state of the air conditioning system 1 is predicted. In this map, for example, the horizontal axis is high pressure and the vertical axis is refrigerant amount, and the relationship between the high pressure and the refrigerant amount corresponding to different degrees of supercooling is shown.
  • the refrigerant amount is calculated by reading the refrigerant amount corresponding to the measured value of the high-pressure sensor 21_1 and the degree of supercooling from the map.
  • the average density of the refrigerant in the outdoor heat exchanger 13 is calculated based on the pressure and temperature in the outdoor heat exchanger 13, and the density is multiplied by the volume in the outdoor heat exchanger 13.
  • the amount of refrigerant in the outdoor heat exchanger 13 may be calculated.
  • the control device 3 controls the amount of refrigerant in the indoor heat exchanger 31 in the operating state of the air conditioning system 1 in the same manner as the outdoor heat exchanger 13.
  • Predicted maps are stored in advance.
  • the horizontal axis represents the low pressure and the vertical axis represents the refrigerant amount, and the relationship between the low pressure corresponding to the degree of superheat and the refrigerant amount is shown. That is, in the refrigerant amount calculation process, the refrigerant amount is calculated by reading out the refrigerant amount corresponding to the measured value of the low pressure sensor 21_2 and the degree of superheat from the map.
  • the average density of the refrigerant in the indoor heat exchanger 31 is calculated based on the pressure and temperature in the indoor heat exchanger 31, and the density is multiplied by the volume in the indoor heat exchanger 31.
  • the amount of refrigerant in the indoor heat exchanger 31 may be calculated.
  • the gas density is calculated from the measured value of the low pressure sensor 21_2 and the measured value of the temperature sensor in the gas pipe, and the refrigerant amount is calculated by multiplying the gas density by the internal volume of the gas pipe. .
  • the liquid density is calculated from the measured value of the low-pressure sensor 21_2 and the measured value of the temperature sensor in the liquid pipe, and the refrigerant amount is calculated by multiplying the liquid density by the internal volume of the liquid pipe. .
  • the gas density is calculated from the measurement value of the low pressure sensor 21_2 and the measurement value of the temperature sensor in the pressure vessel, and the refrigerant amount is calculated by multiplying the gas density and the internal volume of the pressure vessel. .
  • the inside of the pressure vessel is a substantially single-phase superheated gas.
  • In-machine piping There are two types of in-machine piping: the piping through which the liquid phase flows (hereinafter referred to as “liquid line”) and the piping through which the gas phase flows (hereinafter referred to as “gas line”). Therefore, in the refrigerant amount calculation process, the liquid line and the gas line are virtually divided according to the operation state of the air conditioning system 1. In the refrigerant amount calculation process, the liquid density calculated from the pressure and temperature in the liquid line and the internal volume of the liquid line are multiplied to obtain the refrigerant amount in the liquid line, and the gas density calculated from the pressure and temperature in the gas line; The refrigerant volume in the gas line is obtained by multiplying the internal volume of the gas line. The sum of the refrigerant amount in the liquid line and the refrigerant amount in the gas line is used as the refrigerant amount in the in-machine piping.
  • the refrigerant amount is not limited to storing the correlation equation in the control device 3 and being calculated based on the correlation equation.
  • the control device 3 is connected to an external server and is calculated in this server. May be.
  • FIG. 6 is a flowchart showing the flow of the refrigerant amount determination process according to the present embodiment.
  • the refrigerant amount determination process is executed by the control device 3.
  • step 300 it is determined whether or not a predetermined accumulated operation time (for example, 50 hours) has elapsed since the end of the refrigerant amount determination process executed last time. If the determination is affirmative, the process proceeds to step 302.
  • a predetermined accumulated operation time for example, 50 hours
  • step 302 the refrigerant amount calculation process described above is performed, and the calculated refrigerant amount is stored.
  • step 304 it is determined whether or not the refrigerant amount calculated this time has decreased by a predetermined amount or more compared to the refrigerant amount calculated last time.
  • This predetermined amount may be a ratio of the refrigerant amount calculated last time to the refrigerant amount calculated this time, or may be a difference (absolute value) between the refrigerant amount calculated last time and the refrigerant amount calculated this time. For example, when the predetermined amount is calculated based on the ratio, when the refrigerant amount calculated last time has decreased by 10% or more compared to the refrigerant amount calculated this time, the determination in step 304 is affirmative, and the process proceeds to step 306.
  • the process returns to step 300. That is, when the decrease in the refrigerant amount is greater than or equal to the predetermined amount, an abnormality in which the refrigerant leaks from the air conditioning system 1 has occurred.
  • step 306 it is reported that an abnormality has occurred, for example, via the maintenance / inspection apparatus 6, and the refrigerant amount determination process is terminated.
  • the control device 3 of the air conditioning system 1 is capable of communicating with the outdoor unit B via the communication medium, and stores information on the devices mounted on the outdoor unit B via the communication medium.
  • the outdoor unit control unit 43 that obtains and outputs a control command to a device mounted on the outdoor unit B can communicate with the indoor unit A via a communication medium, and is mounted on the indoor unit A via the communication medium.
  • the control apparatus 3 changes the operating point of the apparatus mounted in the indoor unit A or the outdoor unit B separately, acquires the predetermined state quantity before and behind a change, and determines the presence or absence of an abnormality of an apparatus.
  • one control device 3 controls the indoor unit A and the outdoor unit B, individually changes the operating point of the equipment mounted on the indoor unit A or the outdoor unit B, and sets a predetermined state quantity before and after the change. Therefore, the operating state of the air conditioning system 1 can be more easily and accurately grasped.
  • each process may be executed at predetermined time intervals such as once a week.
  • the flow of the failure prediction process and the refrigerant amount determination process described in the above embodiment is also an example, and unnecessary steps are deleted or new steps are added within a range not departing from the gist of the present invention. The order may be changed.
  • the mode in which the failure prediction process is executed during the operation of the air conditioning system 1 has been described.
  • the present invention is not limited to this, and the failure prediction process is performed while the air conditioning system 1 is stopped. It is good also as a form to perform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空調システム(1)の制御装置(3)は、室外機(B)と通信媒体を介して通信可能とされ、通信媒体を介して室外機(B)に搭載される機器の情報を取得すると共に、室外機(B)に搭載される機器へ制御指令を出力する室外機制御部(43)と、室内機(A)と通信媒体を介して通信可能とされ、通信媒体を介して室内機(A)に搭載される機器の情報を取得すると共に、室内機(A)に搭載される機器へ制御指令を出力する室内機制御部(41)と、を備える。そして、制御装置(3)は、室内機(A)又は室外機(B)に搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得し、機器の異常の有無を判定する故障予知運転を実行する。これにより、空調システム(1)の制御装置(3)は、空調システム(1)の運転状態を、より簡便かつ正確に把握可能とすることができる。

Description

空調システムの制御装置、空調システム、及び空調システムの異常判定方法
 本発明は、空調システムの制御装置、空調システム、及び空調システムの異常判定方法に関するものである。
 従来の空調システムでは、保守の一環として、例えば、メーカーが遠隔監視によって空調システムの運転データを取得し、顧客に対して省エネルギー化の提案やメンテナンスの必要性の有無の判定等を行っている。
 室外機と室内機とを各々異なる制御装置で制御している従来の空調システムでは、室外機、室内機が各々異なる制御プログラムによって動作するため、空調システムの運転状態を正確に把握することが難しい。
 そこで、非特許文献1には、顧客の建物内に設置したローカルサーバが空調機の運転データを定期的に空調遠隔監視用のセンターサーバにインターネットを介して送信し、空調遠隔監視センターの監視画面にセンターサーバが受信した運転データが表示される空調遠隔監視システムが開示されている。この空調遠隔監視システムでは、空調機の主要なデータ(圧力値、冷媒温度、ファン回転数、圧縮機運転時間、圧縮機回転数、圧縮機発停回数等)を一定の間隔でセンターサーバに定期送信する。
 そして、異常が発生した場合、メーカーは、センターサーバに送信された運転データに基づいて異常を示す故障部位を特定し、サービスセンターへ連絡や修理の要請を実施している。
東芝レビュー Vol.60 No.6(2005) p.52-55
 しかしながら、インターネット等の外部ネットワーク環境が不十分な地域では、空調遠隔監視用のセンターサーバを設置することは困難であり、また、空調遠隔監視用のセンターサーバの設置にもコストを必要とする。
 さらに、異なるメーカーが製造した室外機や室内機が空調システムに用いられていると、それらに搭載されている機器(機能部品ともいう。)が空調システムとして正しく動作しているか否かを判定する必要がある。この判定を行わないと、空調システムの異常の原因が明確にできず、異常の責任を有するメーカーを明確にできない。
 本発明は、このような事情に鑑みてなされたものであって、空調システムの運転状態をより簡便かつ正確に把握可能とする、空調システムの制御装置、空調システム、及び空調システムの異常判定方法を提供することを目的とする。
 上記課題を解決するために、本発明の空調システムの制御装置、空調システム、及び空調システムの異常判定方法は以下の手段を採用する。
 本発明の第一態様に係る空調システムの制御装置は、一又は複数台の室外機、及び一又は複数台の室内機を備える空調システムの制御装置であって、前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御手段と、前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御手段と、前記室外機又は前記室内機に搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得することで、前記機器の異常の有無を判定する異常判定手段と、を備える。
 本構成に係る空調システムの制御装置は、室外機に搭載される機器へ制御指令を出力する室外機制御手段と、室内機に搭載される機器へ制御指令を出力する室内機制御手段を仮想的に搭載している。室外機や室内機に搭載されている機器は、例えば膨張弁、ファン、及び四方弁である。
 すなわち、室外機制御手段及び室内機制御手段は、室外機及び室内機とは独立して存在するので、室外機及び室内機の構成が簡素化される。さらに、例えば、通信と部品のアクチュエート機能のみの搭載というように、室外機及び室内機に高度なプログラムを搭載する必要がなく、室外機及び室内機の交換を容易に行うことができる。なお、室外機や室内機は、仕様を満たすものであれば、制御装置とは異なるメーカーが製造した室外機や室内機であってもよい。
 ここで、室外機と室内機とを各々異なる制御装置で制御している従来の空調システムでは、室外機、室内機が各々異なる制御プログラムによって動作するため、空調システム全体の異常の有無を含む運転状態を正確に把握することが難しい。このため、従来の空調システムでは、遠隔監視用のサーバ等によって空調システムの運転状態や各種状態量等のデータを集約して管理する必要があった。
 さらに、空調システムに異なるメーカーが製造した室外機や室内機が用いられていると、それらに搭載されている機器が空調システムとして正しく動作しているか否かを判定する必要がある。
 そこで、本構成に係る空調システムの制御装置は、室外機又は室内機に搭載される機器の運転点を個別に変化させた前後における所定の状態量を取得することで、機器の異常の有無を異常判定手段によって判定する。すなわち、制御装置は、積極的に機器を動作させるアクティブ型の監視制御を行う。状態量は、例えば冷媒の温度、冷媒の圧力、冷媒の流量等である。
 室外機又は室内機に搭載される機器の運転点を個別に変化させ、変化前後における状態量を取得することで、その機器が空調システムに与える影響が明確になる。そして、その影響が適正でない場合は、その機器が異常(故障等)である可能性等が考えられる。
 また、本構成に係る空調システムは、一つの制御装置が室外機及び室内機を制御するので、この制御装置によって、各機器の制御状態や空調システムにおける各種状態量等を管理可能である。このため、機器の運転点を個別に変化させたタイミングと、そのタイミングの前後における状態量の変化との関連付けが容易である。すなわち、本構成は、従来の空調システムのように遠隔監視用のサーバを用いることなく、空調システムの運転状態を、簡便かつ正確に把握可能である。
 また、本構成は、異なるメーカーが製造した室外機や室内機が用いられたとしても、これらに搭載される機器の運転点を個別に変化させた前後における所定の状態量を取得して異常の有無を判定するので、機器の動作が空調システムに与える影響を正確に把握可能となる。
 以上のように、本構成は、一つの制御装置が室外機及び室内機を制御し、室外機又は室内機に搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得するので、空調システムの運転状態が、より簡便かつ正確に把握可能となる。
 上記第一態様では、前記異常判定手段が、前記機器の運転点の変化に応じてより変動が表れ易い、予め定められた前記状態量を取得し、前記機器の異常の有無を判定してもよい。
 本構成によれば、機器の運転点を変化させた場合、変動の表れやすい予め定められた状態量のみに基づいて、機器の異常の有無を判定するので、空調システムの運転状態をより早く判定することができる。
 上記第一態様では、前記異常判定手段が、複数台の前記室外機又は前記室内機に対し、一台ずつ順番に前記機器の運転点を変化させることで、前記機器の異常の有無を判定してもよい。
 本構成によれば、室外機又は室内機の状態をより的確に判定できる。
 上記第一態様では、前記異常判定手段が、前記空調システムの運転中に、前記機器の異常の有無を判定してもよい。
 本構成によれば、機器の運転点を短時間で変更するので、室外機又は室内機が運転中でも、利用者の温調感を損なうことなく、異常の有無を判定することができる。
 上記第一態様では、前記状態量に基づいて前記空調システム内の冷媒量を算出してもよい。
 本構成によれば、冷媒流量の時間変化に基づいて、冷媒の漏れの有無を検出できる。
 本発明の第二態様に係る空調システムは、一又は複数台の室外機と、一又は複数台の室内機と、上記記載の制御装置と、を備える。
 本発明の第三態様に係る空調システムの異常判定方法は、一又は複数台の室外機、一又は複数台の室内機、前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御手段、及び前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御手段を備える空調システムの異常判定方法であって、前記室外機又は前記室内機に搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得し、前記機器の異常の有無を判定する。
 本発明によれば、空調システムの運転状態をより簡便かつ正確に把握可能とする、という優れた効果を有する。
本発明の実施形態に係る空調システムの冷媒系統を示した図である。 本発明の実施形態に係る空調システムの電気的構成図である。 本発明の実施形態に係る故障予知制御部の機能ブロック図である。 本発明の実施形態に係る故障予知処理の流れを示すフローチャートである。 本発明の実施形態に係る故障予知運転の流れを示すフローチャートである。 本発明の実施形態に係る故障予知運転の流れを示すフローチャートである。 本発明の実施形態に係る冷媒量判定処理の流れを示すフローチャートである。
 以下に、本発明に係る空調システムの制御装置、空調システム、及び空調システムの異常判定方法の一実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る空調システム1の冷媒系統を示した図である。図1に示すように、空調システム1は、1台の室外機Bと、該室外機Bと共通の冷媒配管10により接続される複数の室内機A1,A2とを備える。図1では、便宜上、1台の室外機Bに、2台の室内機A1,A2が接続されている構成を例示しているが、室外機Bの設置台数及び室内機A1,A2の接続台数については限定されない。
 室外機Bは、例えば、冷媒を圧縮して送出する圧縮機11、冷媒の循環方向を切り換える四方弁12、冷媒と外気との間で熱交換を行う室外熱交換器13、室外ファン15、冷媒の機液分離等を目的として圧縮機11の吸入側配管に設けられたアキュムレータ16、例えば電子膨張弁である室外機膨張弁17等を備えている。また、室外機Bには、冷媒圧力を計測する圧力センサ21(高圧センサ21_1、低圧センサ21_2)、冷媒温度等を計測する室外温度センサ24等の各種センサ類20(図2参照)が設けられている。なお、高圧センサ21_1は圧縮機11から吐出された冷媒の圧力を計測し、低圧センサ21_2は圧縮機11へ送られる冷媒の圧力を計測する。
 室内機A1,A2はそれぞれ、室内熱交換器31、室内ファン32、及び室内機膨張弁33等を備えている。2台の室内機A1,A2は、それぞれ室外機B内のヘッダー22、ディストリビュータ23で分岐された各冷媒配管10に接続されている。
 室内温度センサ35_1は、室内熱交換器31の入口冷媒温度を計測し、室内温度センサ35_2は、室内熱交換器31の中間冷媒温度を計測し、室内温度センサ35_3は、室内熱交換器31の出口冷媒温度を計測する。
 図2は、本実施形態に係る空調システム1の電気的構成図である。図2に示すように、室内機A1,A2、室外機B、制御装置3が共通バス5を介して接続されており、相互に情報の授受が可能な構成とされている。なお、共通バス5は、通信媒体の一例であり、通信は無線、有線を問わない。
 制御装置3は、保守点検を行う保守点検装置6に通信媒体7を介して接続され、定期的に運転データを送信したり、異常発生時にはその旨を速やかに通知できるような構成とされている。
 ここで、従来の空調システムでは、各室内機ユニット及び室外機ユニットの内部に、それぞれ制御装置が設けられている。これに対し、本実施形態では、各室内機制御部41_1,41_2及び室外機制御部43が、室内機A1,A2及び室外機Bとは独立して設けられている。具体的には、室内機A1を制御する室内機制御部41_1、室内機A2を制御する室内機制御部41_2、及び室外機Bを制御する室外機制御部43は、仮想化された制御部としてそれぞれ制御装置3に実装されている。
 すなわち、室内機制御部41及び室外機制御部43は、室内機A及び室外機Bとは独立して存在するので、室内機A及び室外機Bの構成が簡素化される。さらに、例えば、通信と部品のアクチュエート機能のみの搭載というように、室内機A及び室外機Bに高度なプログラムを搭載する必要がなく、室内機A及び室外機Bの交換を容易に行うことができる。なお、室内機A1,A2や室外機Bは、仕様を満たすものであれば、制御装置3と異なるメーカーが製造した室内機Aや室外機Bであってもよい。
 つまり、室内機制御部41_1,41_2及び室外機制御部43は、1つのハードウェアを有する制御装置3に集約されており、制御装置3が備えるハードウェア上でそれぞれ独立した動作が可能とされる。制御装置3は、室内機制御部41_1、41_2及び室外機制御部43を制御装置内に仮想的に存在させるためのマスター制御部40を有している。
 制御装置3において、室内機制御部41_1,41_2及び室外機制御部43は、互いに情報の授受が可能な構成とされている。また、室内機制御部41_1,41_2及び室外機制御部43は、例えば、情報を共有しながら各自が独立した自律分散制御を実現させる自律分散制御を行うこととしてもよい。ここで、自律分散制御とは、センサ類20や他の制御部(例えば、室内機制御部41_1であれば、室内機制御部41_2及び室外機制御部43が他の制御部に相当する。)から情報を受信し、該情報を入力として所定のアプリケーションが制御ルールに従い、対応する室内機A1,A2又は室外機B(例えば、室内機制御部41_1であれば、室内機A1)に対して制御指令を与えることをいう。
 室内機A1において、室内ファン32、室内機膨張弁33等(図1参照)の各種機器51に対応してそれぞれ設けられている室内機ローカルコントローラ52は、ゲートウェイ(通信手段)53を介して共通バス5に接続されている。なお、図示が省略されているが、室内機A2も室内機A1と同様の構成とされている。
 室外機Bにおいて、圧縮機11、四方弁12、室外ファン13等(図1参照)の各種機器61に対応してそれぞれ設けられている室外機ローカルコントローラ62は、ゲートウェイ(通信手段)63を介して共通バス5に接続されている。
 ゲートウェイ53,63は、例えば、通信ドライバ、アドレス記憶領域、機器属性記憶領域、構成機器情報記憶領域、OS、通信フレームワークを含む機能の集まりである。
 アドレス記憶領域は、制御装置3等と通信を行うために割り振られる固有の識別番号であるアドレスを記憶するための記憶領域である。
 また、機器属性記憶領域は、自身の属性情報及び保有する機器51、61の属性情報を記憶するための記憶領域であり、例えば、室内機であるか室外機であるか、能力、搭載センサ類(例えば、温度センサ、圧力センサ等)、機器の情報(例えば、ファンタップ数、弁のフルパルス等)等の情報が格納されている。
 さらに、室内機A1,A2及び室外機Bに設けられたセンサ類20(例えば、冷媒圧力を計測する圧力センサや冷媒温度を計測する温度センサ等)は、それぞれADボード71を介して共通バス5に接続されている。ここで、センサ類20の計測精度が低い場合には、ADボード71とセンサ類20との間に、計測値を補正するための補正機能を有するノードを設けることとしてもよい。このように、補正機能を持たせることにより、センサ類20として廉価で計測精度のさほど高くないセンサを利用することが可能となる。
 このような空調システム1においては、例えば、制御装置3の室内機制御部41_1,41_2は、共通バス5を介してセンサ類20、室内機ローカルコントローラ52、室外機ローカルコントローラ62から計測データや制御情報を取得し、これらの計測データに基づいて、所定の室内機制御プログラムを実行することにより、室内機A1,A2に設けられた各種機器(例えば、室内ファン32、室内機膨張弁33等)に対して制御指令を出力する。制御指令は、共通バス5、ゲートウェイ53を介して室内機ローカルコントローラ52へ送られる。室内機ローカルコントローラ52は、受信した制御指令に基づいて、それぞれ対応する機器を駆動する。これにより、制御指令に基づく室内機A1,A2の制御が実現される。
 同様に、制御装置3の室外機制御部43は、共通バス5を介してセンサ類20、室内機ローカルコントローラ52、室外機ローカルコントローラ62から計測データや制御情報を取得し、これらの計測データに基づいて、所定の室外機制御プログラムを実行することにより、室外機Bに設けられた各種機器(例えば、圧縮機11、四方弁12、室外熱交換器13、室外ファン15、室外機膨張弁17等)に対して制御指令を出力する。制御指令は、共通バス5、ゲートウェイ63を介して室外機ローカルコントローラ62へ送られる。室外機ローカルコントローラ62は、受信した制御指令に基づいて、それぞれ対応する機器を駆動する。
 室内機A1,A2及び室外機Bは、それぞれ室内機制御部41_1,41_2及び室外機制御部43によって自律分散制御されてもよい。この場合、室内機A1,A2及び室外機B間には、制御ルールが設定されており、この制御ルールに従ってそれぞれが制御を行う。たとえば、冷媒圧力を例に挙げると、室内機A1,A2は、センサ類20から取得した冷媒圧力が、所定の第1許容変動範囲内の場合には、ユーザなどに設定された設定温度や設定風量に、実温度や実風量を一致させるための制御指令を決定し、共通バス5を介して室内機A1,A2にそれぞれ出力する。ここで、室内機制御部41_1,41_2は、互いに情報の授受を行い協調することにより、各々の制御指令を決定することとしてもよい。また、室外機制御部43は、冷媒圧力を所定の第2許容変動範囲内に維持するための空調システム1の出力指令、例えば、圧縮機11の回転数や室外ファン15の回転速度等に関する制御指令を決定し、共通バス5を介して室外機Bに送信する。
 例えば、第1許容範囲を第2許容範囲よりも広く設定しておくことで、室外機制御部43は室内機A1,A2の出力変化情報を把握し、室外機Bの挙動を決定することが可能となる。
 なお、制御装置3、室内機ローカルコントローラ52、及び室外機ローカルコントローラ62は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 ここで、室外機と室内機とを各々異なる制御装置で制御している従来の空調システムでは、室外機、室内機が各々異なる制御プログラムによって動作するため、空調システム全体の運転状態を正確に把握することが難しい。このため、従来の空調システムでは、遠隔監視用のサーバ等によって空調システムの運転状態や各種状態量等のデータを集約して管理する必要があった。
 また、本実施形態に係る空調システム1に異なるメーカーが製造した室内機Aや室外機Bが用いられていると、それらに搭載されている機器が空調システム1として正しく動作しているか否かを判定する必要がある。
 そこで、本実施形態に係る空調システム1の制御装置3は、故障予知制御部44を備える。
 故障予知制御部44は、室内機A又は室外機Bに搭載される機器(機器51及び機器61)の運転点を個別に変化させ、変化前後における所定の状態量を取得し、機器の異常の有無を判定する故障予知運転を実行する。
 すなわち、制御装置3は、故障予知制御部44によって空調システム1に搭載されている各種機器を、冷房運転や暖房運転等の通常の運転制御とは関係なく個別に動作させることが可能である。そして、これにより制御装置3は、積極的に機器を動作させるアクティブ型の監視制御を行うこととなる。なお、状態量は、センサ類20で計測される、例えば冷媒の温度、冷媒の圧力、冷媒の流量等である。
 図3は、本実施形態に係る制御装置3における故障予知制御部44の機能を示す機能ブロック図である。
 故障予知制御部44は、チェック機器選択部70、運転点変化制御部72、状態量取得部74、記憶部76、異常判定部78、及び冷媒量算出部80を備える。
 チェック機器選択部70は、故障予知運転のために、運転点を個別に変化させる機器を選択する。
 運転点変化制御部72は、運転点を変化させる機器に対して所定の制御指令を出力する。
 状態量取得部74は、運転点の変化前後における所定の状態量を各種センサ類20等から取得する。
 記憶部76は、状態量取得部74によって取得された状態量を時系列で記憶する。
 異常判定部78は、取得した状態量に基づいて、機器の異常の有無を判定する。
 冷媒量算出部80は、取得した状態量に基づいて、空調システム1内の冷媒量を算出する冷媒量算出処理を実行する。
 このように、本実施形態に係る故障予知運転は、室内機A又は室外機Bに搭載される機器の運転点を個別に変化させ、変化前後における状態量を取得することで、その機器が空調システム1に与える影響を明確にできる。そして、その影響が適正でない場合は、その機器が異常(故障等)である可能性等が考えられる。
 また、本実施形態に係る空調システム1は、一つの制御装置3が室内機A及び室外機Bを制御するので、この制御装置3によって、各機器の制御状態や空調システム1における各種状態量等を管理可能である。このため、機器の運転点を個別に変化させたタイミングと、そのタイミングの前後における状態量の変化との関連付けが容易である。すなわち、本実施形態に係る空調システム1は、従来の空調システムのように遠隔監視用のサーバを用いることなく、空調システム1の運転状態を、簡便かつ正確に把握可能である。そして、例えば、機器の運転点を変化させた前後の状態量に異常な変化が生じた場合や、変化が生じない場合には、その機器に故障が生じていると判定される。
 また、本実施形態に係る空調システム1は、異なるメーカーが製造した室内機Aや室外機Bが用いられたとしても、これらに搭載される機器の運転点を個別に変化させた前後における所定の状態量を取得して異常の有無を判定するので、機器の動作が空調システム1に与える影響を正確に把握可能となる。
 また、異常の有無等を遠隔監視される従来の空調システムでは、多数の機器が搭載されているので、遠隔監視用のサーバ等に送信する運転データ量が膨大であり、空調システムの状態を正確かつ迅速に把握し、異常の有無を判定することが難しい。
 そこで、上述した状態量取得部74は、機器の運転点の変化に応じてより変動が表れ易い、予め定められた状態量を取得する。すなわち、運転点を変化させる機器に応じて状態量を取得するセンサ類20が予め定められている。そして、異常判定部78が、取得した状態量に基づいて、機器の異常の有無を判定する。なお、上記変動の表れやすい状態量とは、換言すると、機器の運転点の変化に対する時間変化量がより大きい状態量である。
 このように、本構成に係る空調システム1は、機器の運転点を変化させた場合、変動の表れやすい予め定められた状態量に基づいて、機器の異常の有無を判定するので、空調システム1の運転状態をより早く判定することができる。
 また、空調システム1の運転中に故障予知運転が行われても、変動の表れやすい予め定められた状態量に基づいて機器の異常の有無を判定するため、短時間で異常の有無を判定することができるので、利用者の温調感が損なわれることはない。
 下記表1は、故障予知運転において、運転点を変化させる機器と取得する状態量との組み合わせの一例を示した表である。
Figure JPOXMLDOC01-appb-T000001
 
 運転点を変化させる機器を室内機膨張弁33とする場合、室内機膨張弁33に対して開度を所定量変化させる強制開度指令が出力される。この強制開度指令によって室内熱交換器31による交換熱量を変化させ、室内機膨張弁33が正常に機能しているか否かが判定される。
 そして、この場合に取得される状態量は、室内温度センサ35_1,35_2,35_3の変化である。なお、冷房時には状態量として過熱度の変化が取得されてもよい。この理由は、室内機膨張弁33の開度を変化させた場合、冷媒配管10内の冷媒の流れの有無として温度変化が最も早く反応として表れるためである。
 運転点を変化させる機器を室内ファン32とする場合、室内ファン32に対して回転数を所定量変化させる強制回転数指令が出力される。この強制回転数指令によって室内熱交換器31による交換熱量を変化させ、室内ファン32が正常に機能しているか否かが判定される。
 そして、この場合に取得される状態量は、高圧センサ21_1や低圧センサ21_2の変化である。この理由は、室内ファン32の回転数を変化させた場合、冷媒の圧力変化が最も早く反応として表れるためである。具体的には、冷房運転時において室内ファン32が正常に機能しているのであれば、室内ファン32の回転数を減少させることで低圧センサ21_2の値が下降し、室内ファン32の回転数を増加させることで低圧センサ21_2の値が上昇する。一方、暖房運転時において室内ファン32が正常に機能しているのであれば、室内ファン32の回転数を減少させることで高圧センサ21_1の値が上昇し、室内ファン32の回転数を増加させることで高圧センサ21_1の値が下降する。
 なお、このように室内機Aに備えられている室内ファン32の運転点を変化させる場合に、室外機Bに備えられている高圧センサ21_1や低圧センサ21_2による圧力変化を取得することは、室外機と室内機とを各々異なる制御装置で制御している従来の空調システムでは困難であった。
 しかし、一つの制御装置3が室内機A及び室外機Bを制御する本実施形態に係る空調システム1では、上述のように、機器の運転点を個別に変化させたタイミングと、そのタイミングの前後における状態量の変化との関連付けが容易である。このため、制御装置3は、室内ファン32の運転点の変化に対する高圧センサ21_1や低圧センサ21_2による圧力変化を取得して、室内ファン32の異常の有無を容易に判定できる。
 運転点を変化させる機器を室外ファン15とする場合、室外ファン15に対して回転数を所定量変化させる強制回転数指令が出力される。この強制回転数指令によって室外熱交換器13による交換熱量を変化させ、室外ファン15が正常に機能しているか否かが判定される。
 そして、この場合に取得される状態量は、高圧センサ21_1や低圧センサ21_2の変化である。この理由は、室外ファン15の回転数を変化させた場合、冷媒の圧力変化が最も早く反応として表れるためである。具体的には、冷房運転時において室外ファン15が正常に機能しているのであれば、室外ファン15の回転数を減少させることで高圧センサ21_1の値が上昇し、室外ファン15の回転数を増加させることで高圧センサ21_1の値が下降する。一方、暖房運転時において室外ファン15が正常に機能しているのであれば、室外ファン15の回転数を減少させることで低圧センサ21_2の値が下降し、室外ファン15の回転数を増加させることで低圧センサ21_2の値が上昇する。
 運転点を変化させる機器を四方弁12とする場合、冷房運転又は暖房運転時における冷媒の流れ方向に基づいて、四方弁12が正常に機能しているか否かが判定される。
 なお、暖房運転時には、デフロスト運転を行うために、四方弁12に対して冷媒の方向を切り替える切替指令が出力される。この切替指令によって冷媒の流れ方向を変化させ、四方弁12が正常に機能しているか否かが判定されてもよい。
 そして、この場合に取得される状態量は、室内温度センサ35_1,35_2,35_3の何れかと室外温度センサ24の値である。この理由は、冷房運転時の流れ方向、暖房運転時の流れ方向が一義的に決まるため、室内機Aと室外機Bの温度を取得すれば、四方弁12が正常に機能しているか否かの判定が可能なためである。具体的には、冷房運転時に四方弁12が正常に機能しているのであれば、室外温度センサ24の値が室内温度センサ35_3等の値よりも高くなる。一方、暖房運転時に四方弁12が正常に機能しているのであれば、室外温度センサ24の値が室内温度センサ35_3等の値よりも低くなる。
 運転点を変化させる機器を室外機膨張弁17とする場合、室外機膨張弁17に対して開度を所定量変化させる強制開度指令が出力される。この強制開度指令によって室外熱交換器13による交換熱量を変化させ、室外機膨張弁17が正常に機能しているか否かが判定される。
 そして、この場合に取得される状態量は、高圧センサ21_1や低圧センサ21_2の変化である。この理由は、室外機膨張弁17の開度を変化させた場合、交換熱量(循環流量)の変化によって、運転中の熱収支を合わせるために圧力変化が最も早く反応として表れるためである。具体的には、冷房運転時に室外機膨張弁17が正常に機能しているのであれば、室外機膨張弁17を開くことで高圧センサ21_1の値が下降し、室外機膨張弁17を閉めることで高圧センサ21_1の値が上昇する。一方、暖房運転時に室外機膨張弁17が正常に機能しているのであれば、室外機膨張弁17を開くことで低圧センサ21_2の値が上昇し、室外機膨張弁17を閉めることで低圧センサ21_2の値が下降する。また、暖房運転時には、室外機膨張弁17を開閉することで、低圧センサ21_2の値と室外温度センサ24の値から算出される過熱度の変化を検知してもよい。
 なお、故障予知運転によって機器の運転点を変化させても、所定時間(例えば数秒間)経過した後には、機器の運転点は、元の運転点に戻される。
 図4は、本実施形態に係る故障予知処理(故障予知プログラム)の流れを示すフローチャートである。故障予知処理は、制御装置3によって実行される。
 まず、ステップ100では、前回実行した故障予知処理の終了から所定の積算運転時間(例えば50時間)が経過したか否かを判定し、肯定判定の場合にステップ102へ移行する。
 ステップ102では、故障予知運転を行う。
 なお、故障予知運転は、複数台の室内機A又は室外機Bに対し、一台ずつ順番に機器の運転点を変化させることで運転状態の判定を行うので、室内機A又は室外機Bの状態をより的確に判定できる。
 また、故障予知運転は、空調システム1の運転中に、機器の異常の有無を判定する。
 本実施形態に係る故障予知運転は、機器の運転点を短時間で変更するので、空調システム1が運転中でも、利用者の温調感を損なうことなく、異常の有無を判定することができる。
 次のステップ104では、故障予知運転によって異常を示す機器があるか否かを判定し、肯定判定の場合はステップ106へ移行し、否定判定の場合はステップ100へ戻る。
 ステップ106では、異常を解消するために、空調システム1の運転を停止し、故障予知処理を終了する。
 図5A,Bは、ステップ102で実行される故障予知運転の一例を示すフローチャートである。図5A,Bでは、一例として、運転点を個別に変化させる機器が室内機膨張弁33に選択されている。
 まず、ステップ200では、停止中の所定の室内機Aを選択し、選択した室内機Aに搭載されている室内熱交換器31の温度を記憶部76に記憶する。
 室内機Aは、室内機膨張弁33が未チェックかつアドレスの値が小さい順に選択される。また、室内熱交換器31の温度とは、室内温度センサ35_1,35_2,35_3の少なくとも一つで計測した温度である。ステップ200で記憶した各温度は初期値T(0)として記憶される。Tは、室内温度センサ35_1,35_2,35_3で計測された温度の何れかであり、Tは室内温度センサ35_1で計測された温度、Tは室内温度センサ35_2で計測された温度、Tは室内温度センサ35_3で計測された温度を示す。
 なお、停止中の室内機Aの室内機膨張弁33は、閉じた状態である。
 次のステップ202では、ステップ200で選択した室内機Aに搭載されている室内機膨張弁33を開く。具体的には、運転点変化制御部72から、室内機膨張弁33に対して所定の開度パルスが出力される。
 次のステップ204では、室内温度センサ35_1,35_2,35_3で温度を計測し、記憶部76に記憶すると共に、室内機膨張弁33を開いた前後の温度変化が所定温度以下であるか否かを判定する。一例として、計測温度T(t)と初期値T(0)との温度差が下記式を満たした場合に、肯定判定とされる。
  T(t)≦T(0)-10
 ステップ204において肯定判定の場合は、室内機膨張弁33は正常であるとされてステップ206へ移行する。一方、否定判定の場合は、ステップ208へ移行する。
 ステップ206では、室内機膨張弁33を再び閉じて、ステップ212へ移行する。
 ステップ208では、室内機膨張弁33を再び閉じて、ステップ210へ移行する。
 ステップ210では、室内機膨張弁33の正常性が未確定であるため、保留処理として選択した室内機Aの室内機膨張弁33を示す情報を記憶部76に記憶し、ステップ212へ移行する。
 ステップ212では、停止中の全ての室内機Aについて、室内機膨張弁33に対するチェックが終了したか否かを判定し、肯定判定の場合はステップ214へ移行し、否定判定の場合はステップ200へ戻る。
 ステップ214では、運転中の所定の室内機Aを選択し、選択した室内機Aに搭載されている室内熱交換器31の温度を記憶部76に記憶する。
 室内機Aは、室内機膨張弁33が未チェックかつアドレスの値が小さい順に選択される。
 なお、運転中の室内機Aの室内機膨張弁33は、開いた状態である。
 次のステップ216では、ステップ214で選択した室内機Aに搭載されている室内機膨張弁33を全閉とする。具体的には、運転点変化制御部72から、室内機膨張弁33に対して開度パルスとして0が出力される。
 次のステップ218では、室内温度センサ35_1,35_2,35_3で温度を計測し、室内機膨張弁33を閉じた前後の温度変化が第1温度以上であるか否かを判定する。具体的には、計測温度Tn=1,2,3(t)と初期値Tn=1,2,3(0)に基づく温度差が下記式を満たした場合に、肯定判定とされる。なお、下記式は、一例として過熱度の変化により室内機膨張弁33が動作しているか否かを判定するための式である。
  SH(0)=T(0)-min(T(0),T(0))
  SH(t)=T(t)-min(T(t),T(t))
  SH(t)≧SH(0)+5
 ステップ218において肯定判定の場合は、室内機膨張弁33は正常であるとされ、室内機膨張弁33の開度を元に戻してステップ224へ移行する。一方、否定判定の場合は、ステップ220へ移行する。
 運転中の室内機Aは、空調システム1の運転状態によっては温度変化が上記第1温度以上とならない場合もある。
 そこで、ステップ220では、過熱度の温度変化である第1温度ではなく、室内温度センサ35_1,35_2,35_3の各々で計測した温度の変化が第2温度以上であるか否かを判定する。
 例えば、計測温度Tn=1,2,3(t)と初期値Tn=1,2,3(0)との温度差が下記式を満たした場合に、肯定判定とされる。
  Tn=1,2,3(t)≧Tn=1,2,3(0)+10
 ステップ220において肯定判定の場合は、室内機膨張弁33は正常であるとされ、室内機膨張弁33の開度を元に戻してステップ224へ移行する。一方、否定判定の場合は、ステップ222へ移行する。
 ステップ222では、室内機膨張弁33の正常性が未確定であるため、保留処理として選択した室内機Aの室内機膨張弁33を示す情報を記憶部76に記憶し、ステップ224へ移行する。
 ステップ224では、運転中の全ての室内機Aについて、室内機膨張弁33に対するチェックが終了したか否かを判定し、肯定判定の場合はステップ226へ移行し、否定判定の場合はステップ214へ戻る。
 ステップ226では、全ての室内機Aについて、室内機膨張弁33が正常であるとされたか否かを判定し、肯定判定の場合は故障予知運転を終了する。
 一方、保留処理された室内機膨張弁33を示す情報が記憶部76に記憶されている場合は、ステップ226で否定判定とされる。この場合はステップ200へ戻り、所定時間(例えば60分)が経過した後に再び故障予知運転を繰り返す。
 所定時間経過後に再び故障予知運転を行う理由は、故障予知運転が空調システム1の運転中に実行されているため、空調システム1の運転状態によっては、機器の運転点を変更しても状態量に変化が生じない場合が生じるためである。所定時間経過後であれば、空調システム1の運転状態が変わり、機器の運転点を前回と同様に変化させても、状態量に変化が生じ、その機器が正常と判定される場合がある。
 そして、故障予知運転では、正常性が未確定の機器があり、故障予知運転を所定回数(例えば2回)繰り返しても、正常であることを確定できない機器は、異常(故障又は空調システム1に不適合)と判定される。
 以上説明した故障予知運転により、機器の異常が空調システム1の故障前に検知できると共に、人の思考による判定によらず、データを用いた一定の水準の異常判定が可能となる。
 また、故障予知運転による結果のみを集約し、機器の認証結果と不適合部位のデータを集計することで、どのメーカーのどの機器、どのメーカーの室内機との組み合わせで問題が発生するか等、品質的に問題が発生する機器等の統計データが得られる。そして、この結果を、異常に対する即時対応、設計変更に反映させることが可能となる。
 また、運転状態によっては、例えば室内部屋で発生する負荷に対して、室内機Aの能力が足りない(選定ミス、性能低下)等を区分することが可能となり、不適合に対する補償の範囲を制限することができる。
 次に、制御装置3の冷媒量算出部80で実行される冷媒量算出処理について説明する。
 上述したように、制御装置3は、室内機A及び室外機Bを制御するので、空調システム1における各種状態量等を管理できる。
 そこで、冷媒量算出処理は、空調システム1の運転中の冷媒の状態量を用いて、空調システム1内の冷媒量を算出する。これにより、冷媒量の増減の状態を時系列で管理することができ、冷媒の漏れの有無を判定できる。
 本実施形態に係る冷媒量算出処理は、空調システム1を仮想的に複数の領域(以下「分割領域」という。)に分ける。
 分割の一例は、1.室外熱交換器13、2.室内熱交換器31、3.ガス管、4.液管、5.圧力容器、6.機内配管である。
 ガス管は、冷媒配管10のうち、室内機Aから室外機Bへ向かうガス状の冷媒が流れる配管である。液管は、冷媒配管10のうち、室外機Bから室内機Aへ向かう液状の冷媒が流れる配管である。
 圧力容器は、圧縮機11とアキュムレータ16である。
 機内配管は、室内機A内における各機器を接続する配管と、室外機B内における各機器を接続する配管である。
 冷媒量は、例えば、冷媒の密度(kg/m)と配管等の内容積(m)とを乗算することで算出可能である。
 冷媒密度は、空調システム1が備える圧力センサと温度センサによって計測された状態量に基づいて算出される。また、冷媒が流れる各配管の長さや内径等は、予め設計値として得られており、設計値から配管等の内容積は算出される。そして、分割領域毎に冷媒量が算出され、それらの総和が空調システム1を循環する冷媒量として推定される。
 次に、冷房運転の場合を例に冷媒量の算出方法を分割領域毎に説明する。
1.室外熱交換器13(凝縮器)
 室外熱交換器13は、液相と気相が混在しており、その内部に発生する液相領域によって、運転状態における必要冷媒量が大きく異なる。そこで、制御装置3は、空調システム1の運転状態における室外熱交換器13内の冷媒量を予測したマップを予め記憶する。このマップは、例えば、横軸が高圧、縦軸が冷媒量とされ、異なる過冷却度に応じた高圧と冷媒量との関係が示される。
 すなわち、冷媒量算出処理では、高圧センサ21_1の計測値と過冷却度とに応じた冷媒量をマップから読み出すことで、冷媒量を算出する。
 なお、これに限らず、室外熱交換器13における圧力と温度に基づいて、室外熱交換器13内の冷媒の平均密度を算出し、密度と室外熱交換器13内の容積を乗算することで、室外熱交換器13内の冷媒量を算出してもよい。
2.室内熱交換器31(蒸発器)
 室内熱交換器31も、液相と気相が混在しているので、室外熱交換器13と同様に、制御装置3が、空調システム1の運転状態における室内熱交換器31内の冷媒量を予測したマップを予め記憶する。このマップは、例えば、横軸が低圧、縦軸が冷媒量とされ、過熱度に応じた低圧と冷媒量との関係が示される。
 すなわち、冷媒量算出処理では、低圧センサ21_2の計測値と過熱度に応じた冷媒量をマップから読み出すことで、冷媒量を算出する。
 なお、これに限らず、室内熱交換器31における圧力と温度に基づいて、室内熱交換器31内の冷媒の平均密度を算出し、密度と室内熱交換器31内の容積を乗算することで、室内熱交換器31内の冷媒量を算出してもよい。
3.ガス管
 冷媒量算出処理では、低圧センサ21_2の測定値とガス管における温度センサの計測値とからガス密度を算出し、このガス密度とガス管の内容積とを乗算して冷媒量を算出する。
4.液管
 冷媒量算出処理では、低圧センサ21_2の測定値と液管における温度センサの計測値とから液密度を算出し、この液密度と液管の内容積とを乗算して冷媒量を算出する。
5.圧力容器
 冷媒量算出処理では、低圧センサ21_2の測定値と圧力容器における温度センサの計測値とからガス密度を算出し、このガス密度と圧力容器の内容積とを乗算して冷媒量を算出する。
 なお、空調システム1の運転中はアキュムレータ16内に液がないので、圧力容器内は、ほぼ単相の過熱ガスと想定できる。
6.機内配管
 機内配管は、液相が流れる配管(以下「液ライン」という。)と気相が流れる配管(以下「ガスライン」という。)とがある。そこで、冷媒量算出処理では、空調システム1の運転状態に応じて液ラインとガスラインとを仮想的に分ける。冷媒量算出処理では、液ラインにおける圧力と温度から算出した液密度と、液ラインの内容積とを乗算して液ライン内の冷媒量とし、ガスラインにおける圧力と温度から算出したガス密度と、ガスラインの内容積とを乗算してガスライン内の冷媒量とする。そして、液ライン内の冷媒量とガスライン内の冷媒量との和が、機内配管における冷媒量とされる。
 なお、冷媒量は、上述したように、制御装置3で相関式を記憶し、この相関式に基づいて算出されることに限られず、制御装置3が外部のサーバに接続され、このサーバにおいて算出されてもよい。
 図6は、本実施形態に係る冷媒量判定処理の流れを示すフローチャートである。冷媒量判定処理は、制御装置3によって実行される。
 まず、ステップ300では、前回実行した冷媒量判定処理の終了から所定の積算運転時間(例えば50時間)が経過したか否かを判定し、肯定判定の場合にステップ302へ移行する。
 ステップ302では、上述した冷媒量算出処理を行い、算出した冷媒量を記憶する。
 次のステップ304では、今回算出された冷媒量が前回算出された冷媒量に比べて、所定量以上減少したか否かを判定する。この所定量は、前回算出した冷媒量の今回算出した冷媒量に対する割合であってもよいし、前回算出した冷媒量と今回算出した冷媒量との差(絶対値)であってもよい。例えば、割合によって所定量を算出する場合は、前回算出した冷媒量が、今回算出した冷媒量に比べて10%以上減少した場合に、ステップ304では肯定とし、ステップ306へ移行する。一方、減算量が10%未満の場合は、否定と判定し、ステップ300へ戻る。
 すなわち、冷媒量の減少が所定量以上の場合は、空調システム1から冷媒が漏れ出る異常が発生していることとなる。
 ステップ306では、異常が発生していることを、例えば、保守点検装置6を介して発報し、冷媒量判定処理を終了する。
 以上説明したように、本実施形態に係る空調システム1の制御装置3は、室外機Bと通信媒体を介して通信可能とされ、通信媒体を介して室外機Bに搭載される機器の情報を取得すると共に、室外機Bに搭載される機器へ制御指令を出力する室外機制御部43と、室内機Aと通信媒体を介して通信可能とされ、通信媒体を介して室内機Aに搭載される機器の情報を取得すると共に、室内機Aに搭載される機器へ制御指令を出力する室内機制御部41と、を備える。そして、制御装置3は、室内機A又は室外機Bに搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得し、機器の異常の有無を判定する。
 このように、一つの制御装置3が室内機A及び室外機Bを制御し、室内機A又は室外機Bに搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得するので、空調システム1の運転状態が、より簡便かつ把握正確に可能となる。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更又は改良を加えることができ、該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。また、上記実施形態を適宜組み合わせてもよい。
 例えば、上記実施形態では、故障予知処理や冷媒量判定処理を前回実行した各処理の終了から所定の積算運転時間の経過後に実行する形態について説明したが、本発明は、これに限定されるものではなく、各処理を週に1回等、所定の時間間隔毎に実行する形態としてもよい。
 また、上記実施形態で説明した故障予知処理や冷媒量判定処理の流れも一例であり、本発明の主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよい。
 例えば、上記実施形態では、故障予知処理を空調システム1の運転中に実行する形態について説明したが、本発明は、これに限定されるものではなく、故障予知処理を空調システム1の停止中に実行する形態としてもよい。
 1  空調システム
 3  制御装置
 41 室内機制御部
 43 室外機制御部
 44 故障予知制御部
 A  室内機
 B  室外機

Claims (7)

  1.  一又は複数台の室外機、及び一又は複数台の室内機を備える空調システムの制御装置であって、
     前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御手段と、
     前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御手段と、
     前記室外機又は前記室内機に搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得することで、前記機器の異常の有無を判定する異常判定手段と、
    を備える空調システムの制御装置。
  2.  前記異常判定手段は、前記機器の運転点の変化に応じてより変動が表れ易い、予め定められた前記状態量を取得し、前記機器の異常の有無を判定する請求項1記載の空調システムの制御装置。
  3.  前記異常判定手段は、複数台の前記室外機又は前記室内機に対し、一台ずつ順番に前記機器の運転点を変化させることで、前記機器の異常の有無を判定する請求項1又は請求項2記載の空調システムの制御装置。
  4.  前記異常判定手段は、前記空調システムの運転中に、前記機器の異常の有無を判定する請求項1から請求項3の何れか1項記載の空調システムの制御装置。
  5.  前記状態量に基づいて前記空調システム内の冷媒量を算出する請求項1から請求項4の何れか1項記載の空調システムの制御装置。
  6.  一又は複数台の室外機と、
     一又は複数台の室内機と、
     請求項1から請求項5の何れか1項記載の制御装置と、
    を備える空調システム。
  7.  一又は複数台の室外機、一又は複数台の室内機、前記室外機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室外機に搭載される機器の情報を取得すると共に、前記室外機に搭載される前記機器へ制御指令を出力する室外機制御手段、及び前記室内機と通信媒体を介して通信可能とされ、前記通信媒体を介して前記室内機に搭載される機器の情報を取得すると共に、前記室内機に搭載される前記機器へ制御指令を出力する室内機制御手段を備える空調システムの異常判定方法であって、
     前記室外機又は前記室内機に搭載される機器の運転点を個別に変化させ、変化前後における所定の状態量を取得し、前記機器の異常の有無を判定する空調システムの異常判定方法。
     
PCT/JP2015/052030 2014-10-24 2015-01-26 空調システムの制御装置、空調システム、及び空調システムの異常判定方法 WO2016063552A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15852619.4A EP3196564B1 (en) 2014-10-24 2015-01-26 Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
US15/520,793 US20170328593A1 (en) 2014-10-24 2015-01-26 Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
CN201580057865.4A CN107110539A (zh) 2014-10-24 2015-01-26 空调***的控制装置、空调***以及空调***的异常判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014217459A JP6359423B2 (ja) 2014-10-24 2014-10-24 空調システムの制御装置、空調システム、及び空調システムの制御装置の異常判定方法
JP2014-217459 2014-10-24

Publications (1)

Publication Number Publication Date
WO2016063552A1 true WO2016063552A1 (ja) 2016-04-28

Family

ID=55760610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052030 WO2016063552A1 (ja) 2014-10-24 2015-01-26 空調システムの制御装置、空調システム、及び空調システムの異常判定方法

Country Status (5)

Country Link
US (1) US20170328593A1 (ja)
EP (1) EP3196564B1 (ja)
JP (1) JP6359423B2 (ja)
CN (1) CN107110539A (ja)
WO (1) WO2016063552A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109409621A (zh) * 2019-01-18 2019-03-01 新誉轨道交通科技有限公司 一种列车空调维修调度***及其工作方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6464903B2 (ja) * 2015-04-16 2019-02-06 ダイキン工業株式会社 空気調和機のインバータ駆動装置
US20170100985A1 (en) * 2015-10-09 2017-04-13 Ritchie Engineering Company, Inc. Refrigeration efficiency monitoring system
CN106016631B (zh) * 2016-07-07 2022-05-03 广东海悟科技有限公司 一种机房用空调监控***
KR102411200B1 (ko) * 2017-10-30 2022-06-17 엘지전자 주식회사 공기조화기
CN108131795B (zh) * 2017-12-19 2020-04-17 广东美的制冷设备有限公司 运行控制方法、装置、空调器和计算机可读存储介质
CN110906511B (zh) * 2018-09-17 2021-11-02 青岛海尔空调电子有限公司 一种用于多联机检测管线对应关系的方法、装置及空调器
JP6760348B2 (ja) 2018-10-11 2020-09-23 株式会社富士通ゼネラル 空気調和機、データ送信方法及び空気調和システム
CN110108002B (zh) * 2019-05-31 2021-02-26 珠海格力电器股份有限公司 提高运行能效和稳定性的室外机运行控制方法和装置
CN115210508A (zh) * 2020-03-02 2022-10-18 大金工业株式会社 设备管理***
JP7413896B2 (ja) * 2020-03-31 2024-01-16 株式会社富士通ゼネラル 空気調和装置
JP6927397B1 (ja) * 2020-09-24 2021-08-25 ダイキン工業株式会社 空気調和システムおよびその室内機
CN112283875B (zh) * 2020-10-26 2022-04-22 Tcl空调器(中山)有限公司 一种空调器、空调内外机通讯电路及其故障检测方法
JP7177366B2 (ja) * 2021-04-28 2022-11-24 ダイキン工業株式会社 空気調和装置の据え付け支援システム、据え付け支援装置、及び据え付け支援方法
CN113446193B (zh) * 2021-06-23 2022-10-28 珠海横琴能源发展有限公司 一种集控制冷***的控制方法、装置及集控制冷***
CN114484733B (zh) * 2022-01-26 2023-07-21 宁波奥克斯电气股份有限公司 膨胀阀控制方法、装置和空调***
CN115235039A (zh) * 2022-05-12 2022-10-25 南京天加环境科技有限公司 一种四通阀控制方法、装置及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106350A (ja) * 1990-08-27 1992-04-08 Mitsubishi Electric Corp 空気調和機の制御装置
JPH05296524A (ja) * 1992-04-20 1993-11-09 Matsushita Seiko Co Ltd 空気調和機
JP2001255046A (ja) * 2000-03-13 2001-09-21 Sanyo Electric Co Ltd 冷凍装置
JP2006038363A (ja) * 2004-07-28 2006-02-09 Sanyo Electric Co Ltd エンジン駆動式空気調和装置及びその制御方法
JP2012127603A (ja) * 2010-12-17 2012-07-05 Mitsubishi Electric Building Techno Service Co Ltd 空調システム
JP2013139924A (ja) * 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3102208B2 (ja) * 1993-06-30 2000-10-23 ダイキン工業株式会社 空気調和装置の運転制御装置
JP2002349940A (ja) * 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 空気調和システム
CN100516680C (zh) * 2004-07-08 2009-07-22 乐金电子(天津)电器有限公司 统一控制一拖多型空调***及其控制方法
KR100631539B1 (ko) * 2004-10-26 2006-10-09 엘지전자 주식회사 멀티형 공기조화기의 통신선 오결선 검출시스템 및 방법
US20090151369A1 (en) * 2006-04-25 2009-06-18 Alexander Lifson Malfunction detection for fan or pump refrigerant system
US7814756B2 (en) * 2006-09-20 2010-10-19 Mitsubishi Electric Corporation Air-conditioning system
ES2742529T3 (es) * 2006-09-21 2020-02-14 Mitsubishi Electric Corp Sistema de refrigeración/acondicionamiento de aire con función de detección de fugas de refrigerante, acondicionador de aire/refrigerador y método para detectar fugas de refrigerante
EP2085842B1 (en) * 2008-01-28 2014-05-07 LG Electronics Inc. Equipment controlling system and controlling method thereof
JP5040975B2 (ja) * 2008-09-30 2012-10-03 ダイキン工業株式会社 漏洩診断装置
CN102345915B (zh) * 2011-08-02 2013-11-27 宁波奥克斯电气有限公司 直流变频空调的故障运行控制方法
CN102748832B (zh) * 2012-06-07 2014-09-17 宁波奥克斯电气有限公司 空调故障检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106350A (ja) * 1990-08-27 1992-04-08 Mitsubishi Electric Corp 空気調和機の制御装置
JPH05296524A (ja) * 1992-04-20 1993-11-09 Matsushita Seiko Co Ltd 空気調和機
JP2001255046A (ja) * 2000-03-13 2001-09-21 Sanyo Electric Co Ltd 冷凍装置
JP2006038363A (ja) * 2004-07-28 2006-02-09 Sanyo Electric Co Ltd エンジン駆動式空気調和装置及びその制御方法
JP2012127603A (ja) * 2010-12-17 2012-07-05 Mitsubishi Electric Building Techno Service Co Ltd 空調システム
JP2013139924A (ja) * 2011-12-28 2013-07-18 Daikin Industries Ltd 冷凍装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196564A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109409621A (zh) * 2019-01-18 2019-03-01 新誉轨道交通科技有限公司 一种列车空调维修调度***及其工作方法
CN109409621B (zh) * 2019-01-18 2019-04-23 新誉轨道交通科技有限公司 一种列车空调维修调度***及其工作方法

Also Published As

Publication number Publication date
JP2016084968A (ja) 2016-05-19
CN107110539A (zh) 2017-08-29
JP6359423B2 (ja) 2018-07-18
EP3196564A1 (en) 2017-07-26
EP3196564B1 (en) 2020-11-04
US20170328593A1 (en) 2017-11-16
EP3196564A4 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
JP6359423B2 (ja) 空調システムの制御装置、空調システム、及び空調システムの制御装置の異常判定方法
US11769118B2 (en) Systems and methods for automated diagnostics of HVAC systems
WO2016063550A1 (ja) 空調システムの制御装置、空調システム、及び空調システムの異常判定方法
US20160370026A1 (en) Post-installation learning fault detection
US9239180B2 (en) Refrigeration and air-conditioning apparatus
US9696073B2 (en) Fault detection and diagnostic system for a refrigeration circuit
JP6609417B2 (ja) 空気調和機
JP5525965B2 (ja) 冷凍サイクル装置
US20150292762A1 (en) Hvac systems and controls
AU2018423601B2 (en) Failure diagnosis system
WO2016077559A1 (en) On board chiller capacity calculation
WO2017033240A1 (ja) データ取得システム、異常検知システム、冷凍サイクル装置、データ取得方法、及び異常検知方法
US20240005212A1 (en) Correction apparatus, prediction apparatus, method, non-transitory computer-readable recording medium storing program, and correction model
JP2019066164A (ja) 冷媒量推定方法及び空気調和装置
CN111006306B (zh) 一种多联机
JP2021156528A (ja) 空気調和機及び空気調和システム
KR102521851B1 (ko) 칠러 시스템
JP2021156532A (ja) 空気調和機
JP7516806B2 (ja) 空気調和機
WO2024058149A1 (ja) 機器性能値予測方法、システム、およびプログラム
US20240142125A1 (en) Air conditioning system, abnormality estimation method for air conditioning system, air conditioner, and abnormality estimation method for air conditioner
JP7380663B2 (ja) 空気調和機及び空気調和システム
WO2022244739A1 (ja) 冷媒漏洩検知システム
US20230235933A1 (en) Air conditioner
JP2021156530A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852619

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15520793

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015852619

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE