WO2016016444A1 - Device and method for producing magnetic nanoparticles - Google Patents

Device and method for producing magnetic nanoparticles Download PDF

Info

Publication number
WO2016016444A1
WO2016016444A1 PCT/EP2015/067714 EP2015067714W WO2016016444A1 WO 2016016444 A1 WO2016016444 A1 WO 2016016444A1 EP 2015067714 W EP2015067714 W EP 2015067714W WO 2016016444 A1 WO2016016444 A1 WO 2016016444A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
magnetic
magnetic nanoparticles
nanoparticles
coating
Prior art date
Application number
PCT/EP2015/067714
Other languages
German (de)
French (fr)
Inventor
Andreas Kanitz
Marek Maleika
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2016016444A1 publication Critical patent/WO2016016444A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to a device and a method for the production of magnetic nanoparticles such as Fe, Co, Magnetic nanoparticles (NPs) are interesting for a variety techni ⁇ shear applications.
  • magnetic nanoparticles are a promising tool, for example as a contrast agent in MRI, as magnetic markers or for cancer therapy, where the particles serve as a transport for drugs that are targeted with a Mag ⁇ netfeld directed into the tumor.
  • ferromagnetic particles in which permanent magnetic states prevail used for data storage and form the basis of current and future magneti ⁇ shear storage media (eg hard disks).
  • Nanoscale permanent-magnetic particles can also be used as materials for permanent magnets due to a suitable atomic and crystallographic structure (nanoscale single-domain particles). Such permanent magnets could replace the rarer and expensive neodymium magnets because of their good availability and their low price. This would create new applications of the permanent magnets e.g. in power generation, (generators), in automation (stepping motors), in storage technology, etc.
  • the particles may co-precipitate, thermal
  • the object of the present invention is therefore to specify a method and a device for producing the magnetic nanoparticles, such as Fe, Co, Ni, Fe 3 O 4 / Y-Fe 2 O 3 NPs.
  • the subject of the present invention egg ⁇ ne device for producing nanoscale ferromagnetic particles in the arc remoter plasma, a plasma generator with connected cooling and magnetic trap, and the required supply and discharge lines comprising.
  • the present invention is a process for the preparation of magnetic nanoparticles, wherein the nanoparticles in
  • the plasma generator used is a generator for arc discharge. These are operated, for example, under the following conditions: atmospheric pressure, plasma cycle time (PCT) 5-100% and plasma frequency between 15-25 KHz. These generators are available commercially, for example, from Plasmatreat or Diener. All the following forms of precursor materials can be used: gaseous, liquid or in powder form.
  • a plasma is generated in the plasma generator with H 2 / argon, H 2 / He or H 2 / N 2 in the various
  • Precursor materials such as iron pentacarbonyl Fe (CO) 5 ;
  • Cobalt formate Co (HCOO) 2 Nickel tetracarbonyl Ni (Co) 4 ; Nickel formate Ni (HCOO) 4 are introduced under atmospheric pressure.
  • the coating achieves a permanent oxidation barrier.
  • a magnetic trap was incorporated to separate the produced magnetic NPs from the by-products obtained in the synthesis.
  • the proposed synthetic and coating methods for producing metallic NPs provide an effective and v. A. cost-effective and time-efficient solution for the production of nanoparticulate permanent magnets.
  • the production can be conducted in a continuous process.
  • the metallic NPs produced with the aid of the device can be generated in an oxide-free manner with a barrier layer in one step.
  • the NPs obtained have a protection against oxidation and can be safely removed from the plant immediately after manufacture, since
  • the connected magnetic trap is used in the process that the process can be performed continuously and the products are quantitatively separable from the by-products.
  • the figure shows a plasma generator 1, in which a H 2 / argon, H 2 / He or H 2 / N 2 ion gas mixture is introduced. Subsequent to the plasma generator 1, the ion gas mixture is mixed with precursor materials such as iron pentacarbonyl Fe (CO) 5 ;
  • Nickel formate Ni (HCOO) 4 is introduced into an electric field under atmospheric pressure.
  • Precursor molecules to metal atoms and gaseous by-products eg CO or C0 2 . Subsequently, the individual metal atoms combine to form larger agglomerates and thus form the required nanoscale particles.
  • the coating chamber 3 Directly adjacent to the reaction chamber 2 is the coating chamber 3, in which carbonaceous coating precursors such as acetylene, ethene, methane and / or silicon-containing precursors such as hexamethyldisilane, HMDS, vinyltrimethylsilane VTMS, trifluoromethyltrimethylsilane TFMTMS and / or alkylphosphonates, and inorganic species such as boric acid ester precursors are reacted for coating with the NPs. Thereafter, the coated NPs are cooled with all by-products in the cooling 4 and in a magnetic trap 5 a ⁇ passed . In the magnetic case 5, the mag- netic NPs at the magnetic outer walls 6 down, whereas the by - products of the manufacturing process in the
  • the invention relates to an apparatus and a method for producing magnetic nanoparticles such as Fe, Co, Ni, Fe 3 0 4 / Y-Fe 2 0 3 NPs.
  • a method and an on ⁇ device disclosed in the effective production of nanoparticles in a continuous process using an arc remote plasma in combination with a magnetic trap.

Abstract

The invention relates to a device and a method for producing magnetic nanoparticles such as Fe, Co, Ni, Fe3O4/γ-Fe2O3 nanoparticles. For this purpose, a method and a device for effectively producing nanoparticles in a continuous process by means of an arc-remote plasma in combination with a magnetic trap are disclosed.

Description

Beschreibung description
VORRICHTUNG UND VERFAHREN ZUR HERSTELLUNG VON MAGNENTISCHEN NANOPARTIKELN DEVICE AND METHOD FOR PRODUCING MAGNENTIC NANOPARTICLES
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung von magnetischen Nanopartikeln wie z.B. Fe, Co,
Figure imgf000003_0001
Magnetische Nanopartikel (NPs) sind für eine Vielzahl techni¬ scher Anwendungen interessant. In der Medizin stellen magnetische Nanopartikel ein vielversprechendes Hilfsmittel dar, zum Beispiel als Kontrastmittel beim MRI, als magnetische Markierungen oder für die Krebstherapie, wo die Partikel als Transportmittel für Arzneistoffe dienen, die mit einem Mag¬ netfeld gezielt in den Tumor dirigiert werden.
The invention relates to a device and a method for the production of magnetic nanoparticles such as Fe, Co,
Figure imgf000003_0001
Magnetic nanoparticles (NPs) are interesting for a variety techni ¬ shear applications. In medicine, magnetic nanoparticles are a promising tool, for example as a contrast agent in MRI, as magnetic markers or for cancer therapy, where the particles serve as a transport for drugs that are targeted with a Mag ¬ netfeld directed into the tumor.
Zum anderen werden Ferromagnetpartikel , in denen dauerhaft magnetische Zustände herrschen, zur Datenspeicherung genutzt und bilden die Grundlage heutiger und zukünftiger magneti¬ scher Speichermedien (z.B. Festplatten). On the other are ferromagnetic particles in which permanent magnetic states prevail, used for data storage and form the basis of current and future magneti ¬ shear storage media (eg hard disks).
Nanoskalige dauermagnetische Partikel können auch aufgrund eines geeigneten atomaren und kristallographischen Aufbaus (nanoskalige Eindomänenteilchen) als Materialien für Dauermagnete eingesetzt werden. Solche Permanentmagnete könnten wegen ihrer guten Verfügbarkeit und ihres geringen Preises die selteneren und teuren Neodymmagnete ablösen. Dies würde neue Anwendungen der Permanentmagnete z.B. in der Energieer- zeugung, (Generatoren) , bei der Automatisierung (Schrittmotoren) , in der Speichertechnik usw. ermöglichen. Nanoscale permanent-magnetic particles can also be used as materials for permanent magnets due to a suitable atomic and crystallographic structure (nanoscale single-domain particles). Such permanent magnets could replace the rarer and expensive neodymium magnets because of their good availability and their low price. This would create new applications of the permanent magnets e.g. in power generation, (generators), in automation (stepping motors), in storage technology, etc.
Es gibt eine Vielzahl von verschiedenen Synthesemöglichkeiten für die Herstellung von magnetischen Nanopartikeln. Bei- spielsweise können die Teilchen über Mitfällung, thermischeThere are a variety of different synthetic possibilities for the production of magnetic nanoparticles. For example, the particles may co-precipitate, thermal
Zersetzung, Reduktion, Hydrothermalsynthese oder Laserpyroly¬ se hergestellt werden. Da die herzustellenden Metall-NPs (wie z.B. Fe- oder Co-NPs) sehr reaktiv sind (auch pyrogen), müs- sen die Synthesen unter Inertgasbedingungen durchgeführt werden . Decomposition, reduction, hydrothermal synthesis or Laserpyroly ¬ se be prepared. Since the metal NPs to be produced (such as Fe or Co NPs) are very reactive (also pyrogenic), the syntheses are carried out under inert gas conditions.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfah- ren und eine Vorrichtung zur Herstellung der magnetischen Na- nopartikel wie z.B. Fe, Co, Ni, Fe304/Y-Fe203 NPs anzugeben. The object of the present invention is therefore to specify a method and a device for producing the magnetic nanoparticles, such as Fe, Co, Ni, Fe 3 O 4 / Y-Fe 2 O 3 NPs.
Diese Aufgabe wird durch den Gegenstand der vorliegenden Er¬ findung, wie sie in der Beschreibung, den Ansprüchen und der Figur offenbart ist, gelöst. This object is achieved by the subject matter of the present ¬ invention as disclosed in the description, the claims and the figure.
Dementsprechend ist Gegenstand der vorliegenden Erfindung ei¬ ne Vorrichtung zur Herstellung nanoskaliger ferromagnetischer Teilchen im Lichtbogenremoteplasma, einen Plasmagenerator mit angeschlossener Kühlung und Magnetfalle, sowie die erforderlichen Zu- und Ableitungen umfassend. Außerdem ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung von magnetischen Nanopartikeln, bei dem die Nanopartikel im Accordingly, the subject of the present invention egg ¬ ne device for producing nanoscale ferromagnetic particles in the arc remoter plasma, a plasma generator with connected cooling and magnetic trap, and the required supply and discharge lines comprising. In addition, the present invention is a process for the preparation of magnetic nanoparticles, wherein the nanoparticles in
Lichtbogenplasma erzeugt und magnetisiert werden und im An- schluss über eine magnetische Falle die magnetisierten Parti¬ kel aus dem Gasstrom abgeschieden werden. Arc plasma generated and magnetized and are subsequently deposited via a magnetic trap, the magnetized Parti ¬ angle from the gas stream.
Als Plasmagenerator wird ein Generator für die Lichtbogenentladung eingesetzt. Diese werden beispielsweise unter folgen- den Bedingungen betrieben: atmosphärischer Druck, Plasma Cyc- le Time (PCT) 5-100 % und Plasma-Frequenz zwischen 15-25 KHz. Diese Generatoren sind handelsüblich beispielsweise über die Firma Plasmatreat oder Diener zugänglich. Es können alle folgenden Formen von Precursormaterialien verwendet werden: gasförmig, flüssig oder in Pulverform. The plasma generator used is a generator for arc discharge. These are operated, for example, under the following conditions: atmospheric pressure, plasma cycle time (PCT) 5-100% and plasma frequency between 15-25 KHz. These generators are available commercially, for example, from Plasmatreat or Diener. All the following forms of precursor materials can be used: gaseous, liquid or in powder form.
Erfindungsgemäß wird im Plasmagenerator mit H2/Argon, H2/He oder H2/N2 ein Plasma erzeugt in das verschiedene According to the invention, a plasma is generated in the plasma generator with H 2 / argon, H 2 / He or H 2 / N 2 in the various
Precursormaterialien wie Eisenpentacarbonyl Fe(CO)5; Precursor materials such as iron pentacarbonyl Fe (CO) 5 ;
Eisenformiat Fe(HCOO)2; Cobaltoctacarbonyl Co2(CO)8; Iron formate Fe (HCOO) 2 ; Cobalt octacarbonyl Co 2 (CO) 8 ;
Cobaltformiat Co(HCOO)2; Nickeltetracarbonyl Ni(Co)4; Nickelformiat Ni (HCOO) 4 unter Atmosphärendruck eingebracht werden . Cobalt formate Co (HCOO) 2 ; Nickel tetracarbonyl Ni (Co) 4 ; Nickel formate Ni (HCOO) 4 are introduced under atmospheric pressure.
Es hat sich bewährt, die NPs sofort nach ihrer Entstehung zu beschichten, da die NPs eine hohe Oxidationsempfindlichkeit haben und durch die sofortige Beschichtung im Plasma bzw. im Remoteplasma mit kohlenstoffhaltigen Precursoren wie Acety- len, Ethen, Methan und/oder siliziumhaltigen Precursoren wie z.B. Hexamethyldisilan, HMDS, Vinyltrimethylsilan VTMS, Trifluoromethyltrimethylsilane TFMTMS oder Alkylphosphonate eingesetzt werden. Auch anorganische Beschichtungen auf Basis von Borsäureesterprecursoren sind möglich. It has proven useful to coat the NPs immediately after their formation, since the NPs have a high oxidation sensitivity and by the immediate coating in the plasma or in the remote plasma with carbonaceous precursors such as acetylene, ethene, methane and / or silicon-containing precursors such. Hexamethyldisilane, HMDS, vinyltrimethylsilane VTMS, trifluoromethyltrimethylsilanes TFMTMS or alkylphosphonates. Also inorganic coatings based on boric acid ester precursors are possible.
Durch die Beschichtung wird eine dauerhafte Oxidationsbarrie- re erreicht. The coating achieves a permanent oxidation barrier.
Um die hergestellten magnetischen NPs von den bei der Synthese anfallenden Nebenprodukten zu trennen, wurde eine magnetische Falle eingebaut, damit die hergestellten magnetischen NPs von den bei der Synthese anfallenden Nebenprodukten abtrennbar sind. In order to separate the prepared magnetic NPs from the by-products obtained in the synthesis, a magnetic trap was incorporated to separate the produced magnetic NPs from the by-products obtained in the synthesis.
Die vorgeschlagenen Synthese- und Beschichtungsmethoden zur Erzeugung metallischer NPs stellen eine wirksame und v.a. kostengünstige und dauereffiziente Lösung zur Herstellung von nanopartikulären Permanentmagneten dar. Die Herstellung kann im kontinuierlichen Prozess geführt werden. The proposed synthetic and coating methods for producing metallic NPs provide an effective and v. A. cost-effective and time-efficient solution for the production of nanoparticulate permanent magnets. The production can be conducted in a continuous process.
Die mit Hilfe der Vorrichtung erzeugten metallischen NPs kön- nen in einem Schritt oxidfrei mit einer Barriereschicht er- zeugt werden. The metallic NPs produced with the aid of the device can be generated in an oxide-free manner with a barrier layer in one step.
Auf diese Weise verfügen die erhaltenen NPs über einen daue haften Oxidationsschutz und können gleich nach der Herstel- lung gefahrlos aus der Anlage entnommen werden, da In this way, the NPs obtained have a protection against oxidation and can be safely removed from the plant immediately after manufacture, since
oxygene/pyrogene Reaktionen an Luft nicht mehr befürchtet werden müssen. Insbesondere auch die angeschlossene magnetische Falle dient im Prozess dazu, dass das Verfahren kontinuierlich geführt werden kann und die Produkte quantitativ von den Nebenproduk- ten abtrennbar sind. oxygene / pyrogenic reactions in air no longer have to be feared. In particular, the connected magnetic trap is used in the process that the process can be performed continuously and the products are quantitatively separable from the by-products.
Im Folgenden wird die Erfindung noch anhand einer Figur, die ein Ausführungsbeispiel der Vorrichtung zeigt, näher erläu¬ tert : In the following the invention will be closer erläu tert ¬ still with reference to a figure, which shows an embodiment of the device:
Die Figur zeigt einen Plasmagenerator 1, in den ein H2/Argon, H2/He oder H2/N2 Ionengasgemisch eingeleitet wird. Im An- schluss an den Plasmagenerator 1 wird das Ionengasgemisch mit Precursormaterialien wie Eisenpentacarbonyl Fe(CO)5; The figure shows a plasma generator 1, in which a H 2 / argon, H 2 / He or H 2 / N 2 ion gas mixture is introduced. Subsequent to the plasma generator 1, the ion gas mixture is mixed with precursor materials such as iron pentacarbonyl Fe (CO) 5 ;
Eisenformiat Fe(HCOO)2; Cobaltoctacarbonyl Co2(CO)8; Iron formate Fe (HCOO) 2 ; Cobalt octacarbonyl Co 2 (CO) 8 ;
Cobaltformiat Co(HCOO)2; Nickeltetracarbonyl Ni(Co)4; Cobalt formate Co (HCOO) 2 ; Nickel tetracarbonyl Ni (Co) 4 ;
Nickelformiat Ni (HCOO) 4 unter Atmosphärendruck in ein elektrisches Feld eingebracht. In der Reaktionskammer 2 erfolgt die Zersetzung der Nickel formate Ni (HCOO) 4 is introduced into an electric field under atmospheric pressure. In the reaction chamber 2, the decomposition of the
Precursormoleküle zu Metallatomen und zu gasförmigen Nebenprodukten (z.B. CO oder C02) . Anschließend verbinden sich die einzelnen Metallatome zu größeren Agglomeraten und bilden somit die geforderten nanoskalige Partikeln. Precursor molecules to metal atoms and gaseous by-products (eg CO or C0 2 ). Subsequently, the individual metal atoms combine to form larger agglomerates and thus form the required nanoscale particles.
Direkt angeschlossen an die Reaktionskammer 2 befindet sich die Beschichtungskammer 3, in der kohlenstoffhaltige Be- schichtungs-Precursoren wie Acetylen, Ethen, Methan und/oder siliziumhaltigen Precursoren wie z.B. Hexamethyldisilan, HMDS, Vinyltrimethylsilan VTMS, Trifluoromethyltrimethyl- silan TFMTMS und/oder Alkylphosphonate, sowie anorganische Spezies wie Borsäureesterprecursoren zur Beschichtung mit den NPs umgesetzt werden. Danach werden die beschichteten NPs mit allen Nebenprodukten in der Kühlung 4 gekühlt und in eine magnetische Falle 5 ein¬ geleitet. In der magnetischen Falle 5 schlagen sich die mag- netischen NPs an den magnetischen Außenwänden 6 nieder, wohingegen die Nebenprodukte des Herstellungsprozesses im Directly adjacent to the reaction chamber 2 is the coating chamber 3, in which carbonaceous coating precursors such as acetylene, ethene, methane and / or silicon-containing precursors such as hexamethyldisilane, HMDS, vinyltrimethylsilane VTMS, trifluoromethyltrimethylsilane TFMTMS and / or alkylphosphonates, and inorganic species such as boric acid ester precursors are reacted for coating with the NPs. Thereafter, the coated NPs are cooled with all by-products in the cooling 4 and in a magnetic trap 5 a ¬ passed . In the magnetic case 5, the mag- netic NPs at the magnetic outer walls 6 down, whereas the by - products of the manufacturing process in the
Gasstrom die Vorrichtung über die Ableitung 7 verlassen. Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Herstellung von magnetischen Nanopartikel wie z.B. Fe, Co, Ni, Fe304/Y-Fe203 NPs. Dazu werden ein Verfahren und eine Vor¬ richtung zur effektiven Herstellung von NPs im kontinuierlichen Prozess unter Einsatz eines Lichtbogenremote-Plasmas in Kombination mit einer magnetischen Falle offenbart. Gas flow leave the device via the drain 7. The invention relates to an apparatus and a method for producing magnetic nanoparticles such as Fe, Co, Ni, Fe 3 0 4 / Y-Fe 2 0 3 NPs. For this purpose, a method and an on ¬ device disclosed in the effective production of nanoparticles in a continuous process using an arc remote plasma in combination with a magnetic trap.

Claims

Patentansprüche Patent claims
1. Vorrichtung zur Herstellung nanoskaliger ferromagneti- scher Teilchen im Lichtbogenremoteplasma, einen Plasmage¬ nerator (1) mit angeschlossener Reaktionskammer (2) und folgender Kühlung (4) mit Magnetfalle (5), sowie die er¬ forderlichen Zu- und Ableitungen umfassend. 1. Device for producing nanoscale ferromagnetic particles in arc remote plasma, comprising a plasma generator (1) with a connected reaction chamber (2) and subsequent cooling (4) with a magnetic trap (5), as well as the necessary supply and discharge lines.
2. Vorrichtung nach Anspruch 1, wobei zwischen dem Plasmagenerator (l),der Reaktionskammer (2) zur Herstellung der magnetisierten Nanopartikel einerseits und der Kühlung (4) andererseits eine Beschichtungskammer 2. Device according to claim 1, wherein between the plasma generator (l), the reaction chamber (2) for producing the magnetized nanoparticles on the one hand and the cooling (4) on the other hand there is a coating chamber
(3) vorgesehen ist, in der die gerade erzeugten magnetischen Nanoparti- kel zur Ausbildung einer Oxidationsbarriere beschichtet werden . (3) is provided, in which the magnetic nanoparticles just generated are coated to form an oxidation barrier.
Vorrichtung nach einem der vorstehenden Ansprüche, bei der die Magnetfalle (5) in die Kühlung (4) integriert ist . Device according to one of the preceding claims, in which the magnetic trap (5) is integrated into the cooling (4).
4. Verfahren zur Herstellung von magnetischen Nanopartikel, bei dem die magnetischen Nanopartikel im Lichtbogenplasma erzeugt werden, wobei im Anschluss an die Erzeugung der magnetischen Partikel im Plasmagasstrom diese über eine magnetische Falle aus dem Gasstrom mit allen Nebenprodukten abgetrennt werden. 4. Process for producing magnetic nanoparticles, in which the magnetic nanoparticles are generated in the arc plasma, whereby, following the generation of the magnetic particles in the plasma gas stream, they are separated from the gas stream with all by-products via a magnetic trap.
5. Verfahren nach Anspruch 4, bei dem die magnetischen Nano- partikel in einer Beschichtungskammer (3) mit kohlenstoffhaltigen Precursoren zur Ausbildung einer dauerhaften Oxidationsbarriere beschichtet werden. 5. The method according to claim 4, in which the magnetic nanoparticles are coated in a coating chamber (3) with carbon-containing precursors to form a permanent oxidation barrier.
6. Verfahren nach Anspruch 4 oder 5, wobei zur Erzeugung des Plasmas ein H2/Argon, H2/He oder H2/N2 Gasstrom in den Plasmagenerator eingeleitet wird. Verfahren nach einem der Ansprüche 4 bis 6, wobei 6. The method according to claim 4 or 5, wherein an H 2 /Argon, H 2 /He or H 2 /N 2 gas stream is introduced into the plasma generator to generate the plasma. Method according to one of claims 4 to 6, wherein
Precursoren wie Eisenpentacarbonyl Fe(CO)5; Eisenformiat Fe(HCOO)2; Cobaltoctacarbonyl Co2(CO)8; Cobaltformiat Co(HCOO)2; Nickeltetracarbonyl Ni(Co)4; Nickelformiat Ni(HCOO)4 in der Reaktionskammer (2) mit dem Lichtbogenplasma aus dem Plasmagenerator (1) umgesetzt werden. Precursors such as iron pentacarbonyl Fe(CO) 5 ; Iron formate Fe(HCOO) 2 ; Cobalt octacarbonyl Co 2 (CO) 8 ; Cobalt formate Co(HCOO) 2 ; nickel tetracarbonyl Ni(Co) 4 ; Nickel formate Ni(HCOO) 4 is reacted in the reaction chamber (2) with the arc plasma from the plasma generator (1).
Verfahren nach einem der Ansprüche 4 bis 7, das unter At mosphärendruck, Plasma Cycle Time (PCT) 5-100 % und Pias ma-Frequenz zwischen 15-25 KHz durchgeführt wird. Method according to one of claims 4 to 7, which is carried out under atmospheric pressure, plasma cycle time (PCT) 5-100% and Pias ma frequency between 15-25 KHz.
Verfahren nach einem der Ansprüche 4 bis 8, wobei in ei ner an die Reaktionskammer (2) anschließenden Beschich- tungskammer (3) die erzeugten magnetischen Nanopartikel in situ beschichtet werden. Method according to one of claims 4 to 8, wherein the magnetic nanoparticles produced are coated in situ in a coating chamber (3) adjoining the reaction chamber (2).
Verfahren nach einem der Ansprüche 4 bis 9, wobei die Beschichtung mit kohlenstoffhaltigen Precursoren wie Ace- tylen, Ethen, Methan und/oder siliziumhaltigen Method according to one of claims 4 to 9, wherein the coating with carbon-containing precursors such as acetylene, ethene, methane and/or silicon-containing
Precursoren wie z.B. Hexamethyldisilan, HMDS, Precursors such as hexamethyldisilane, HMDS,
Vinyltrimethylsilan VTMS, Trifluoromethyltrimethyl-silan TFMTMS und/oder Alkylphosphonate, sowie anorganischen Spezies wie Borsäureesterprecursoren zur Beschichtung in der Beschichtungskammer (3) umgesetzt werden. Vinyltrimethylsilane VTMS, trifluoromethyltrimethylsilane TFMTMS and/or alkylphosphonates, as well as inorganic species such as boric acid ester precursors, are implemented for coating in the coating chamber (3).
Vorrichtung nach einem der vorstehenden Ansprüche, bei der die magnetischen Nanopartikel in der Kühlung (4) auf oder unter die jeweilige materialspezifische Curie- Temperatur abgekühlt werden. Device according to one of the preceding claims, in which the magnetic nanoparticles in the cooling (4) are cooled to or below the respective material-specific Curie temperature.
PCT/EP2015/067714 2014-08-01 2015-07-31 Device and method for producing magnetic nanoparticles WO2016016444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014215184.8 2014-08-01
DE102014215184.8A DE102014215184A1 (en) 2014-08-01 2014-08-01 Apparatus and method for producing magnetic nanoparticles

Publications (1)

Publication Number Publication Date
WO2016016444A1 true WO2016016444A1 (en) 2016-02-04

Family

ID=53776611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067714 WO2016016444A1 (en) 2014-08-01 2015-07-31 Device and method for producing magnetic nanoparticles

Country Status (2)

Country Link
DE (1) DE102014215184A1 (en)
WO (1) WO2016016444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10899958B2 (en) 2016-07-22 2021-01-26 Halliburton Energy Services, Inc. Liquid gas treatment fluids for use in subterranean formation operations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220420A2 (en) * 1985-10-30 1987-05-06 Hitachi, Ltd. Apparatus for producing ultrafine particles
US5665277A (en) * 1994-10-27 1997-09-09 Northwestern University Nanoparticle synthesis apparatus and method
US6398125B1 (en) * 2001-02-10 2002-06-04 Nanotek Instruments, Inc. Process and apparatus for the production of nanometer-sized powders
US20070085053A1 (en) * 2005-10-14 2007-04-19 Gergely John S Process for preparing superparamagnetic transition metal nanoparticles
KR20070091776A (en) * 2006-03-07 2007-09-12 한국기계연구원 The apparatus and method of nano powder synthesis using collisinal processes of plasma charged particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790765B (en) * 2007-08-30 2012-07-18 住友电气工业株式会社 Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP5389080B2 (en) * 2010-08-27 2014-01-15 株式会社東芝 Metal-containing particle aggregate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220420A2 (en) * 1985-10-30 1987-05-06 Hitachi, Ltd. Apparatus for producing ultrafine particles
US5665277A (en) * 1994-10-27 1997-09-09 Northwestern University Nanoparticle synthesis apparatus and method
US6398125B1 (en) * 2001-02-10 2002-06-04 Nanotek Instruments, Inc. Process and apparatus for the production of nanometer-sized powders
US20070085053A1 (en) * 2005-10-14 2007-04-19 Gergely John S Process for preparing superparamagnetic transition metal nanoparticles
KR20070091776A (en) * 2006-03-07 2007-09-12 한국기계연구원 The apparatus and method of nano powder synthesis using collisinal processes of plasma charged particles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DONG X L ET AL: "Carbon-coated Fe-Co(C) nanocapsules prepared by arc discharge in methane", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, US, vol. 86, no. 12, 15 December 1999 (1999-12-15), pages 6701 - 6706, XP012048146, ISSN: 0021-8979, DOI: 10.1063/1.371747 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10899958B2 (en) 2016-07-22 2021-01-26 Halliburton Energy Services, Inc. Liquid gas treatment fluids for use in subterranean formation operations

Also Published As

Publication number Publication date
DE102014215184A1 (en) 2016-02-04

Similar Documents

Publication Publication Date Title
DE102019111339B4 (en) METHOD FOR PRODUCING A BULK MATERIAL BASED ON NITRIDE
Hu et al. Fabrication and magnetic properties of Fe3O4 octahedra
DE602004008958T2 (en) PRODUCTION OF METAL NANODRICES
DE102009048397A1 (en) Atmospheric pressure plasma process for producing surface modified particles and coatings
Li et al. Architectural genesis of metal (loid) s with iron nanoparticle in water
David et al. Preparation of iron/graphite core–shell structured nanoparticles
WO2016016444A1 (en) Device and method for producing magnetic nanoparticles
Amagasa et al. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols
Kutelia et al. Nucleation and growth of carbon nanoforms on the surface of metallic plate-substrates and the mechanism of their doping with the clusters of ferromagnetic atoms
US20070085053A1 (en) Process for preparing superparamagnetic transition metal nanoparticles
Lee et al. Preparation of magnetic metal and graphene hybrids with tunable morphological, structural and magnetic properties
EP1899499B1 (en) Method for producing a layer, which has nanoparticles, on a substrate
Sówka et al. Processing and properties of composite magnetic powders containing Co nanoparticles in polymeric matrix
Toparli et al. Iron-nickelcobalt (Fe-Ni-Co) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR) method
Feng et al. Synthesis of carbon-encapsulated Iron and iron nitride nanoparticles from ferrocene through reactive radio-frequency thermal plasma
Khiriya et al. Facile synthesis of high magnetization long term stable bimetallic FeCo nanoparticles
KR20130077369A (en) The magnetic metal oxide nano particles, the magnetic intermetallic compound nano particles and methods of making them
DE102008056968B4 (en) A method of depositing a nanocomposite layer on a substrate by chemical vapor deposition
Kubono et al. Mössbauer spectra of iron (III) sulfide particles
CN106191820A (en) A kind of method preparing silver conductive and heat-conductive pattern
JP2005203653A (en) Method for manufacturing magnet and method for producing ultrafine particle magnetic powder used for it
JP5879854B2 (en) Nano-heterostructure magnetoresistive element, manufacturing method thereof, and magnetic sensor
CH635050A5 (en) METHOD FOR MELTING MAGNETICALLY SOFT FERRITES.
WO2016146308A1 (en) Anisotropic high-performance permanent magnet having optimised nanostructural design and method for production of same
EP2350344B1 (en) Method and device for applying or embedding particles to/in a layer applied by plasma coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745479

Country of ref document: EP

Kind code of ref document: A1