WO2016004756A1 - 一种统一潮流控制器的线路功率控制方法及*** - Google Patents

一种统一潮流控制器的线路功率控制方法及*** Download PDF

Info

Publication number
WO2016004756A1
WO2016004756A1 PCT/CN2015/071273 CN2015071273W WO2016004756A1 WO 2016004756 A1 WO2016004756 A1 WO 2016004756A1 CN 2015071273 W CN2015071273 W CN 2015071273W WO 2016004756 A1 WO2016004756 A1 WO 2016004756A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
reference value
line power
valve side
measured
Prior art date
Application number
PCT/CN2015/071273
Other languages
English (en)
French (fr)
Inventor
田杰
潘磊
刘超
沈全荣
李海英
卢宇
董云龙
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to MX2017000434A priority Critical patent/MX360963B/es
Priority to US15/324,744 priority patent/US10250070B2/en
Priority to EP15819677.4A priority patent/EP3157122A4/en
Priority to BR112017000504-2A priority patent/BR112017000504B1/pt
Priority to RU2017100586A priority patent/RU2663820C1/ru
Publication of WO2016004756A1 publication Critical patent/WO2016004756A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1807Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators
    • H02J3/1814Arrangements for adjusting, eliminating or compensating reactive power in networks using series compensators wherein al least one reactive element is actively controlled by a bridge converter, e.g. unified power flow controllers [UPFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof

Definitions

  • the invention belongs to the field of flexible transmission of power systems, and particularly relates to a power control method and system for a unified power flow controller line.
  • the power generation and transmission are more economical and efficient, while increasing the scale and complexity of the power system; plus a large number of distributed generation systems are connected to the grid.
  • Unified Power Flow Controller also known as UPFC (Unified Power Flow Controller)
  • UPFC Unified Power Flow Controller
  • STATCOM static synchronous compensator
  • SSSC static synchronous series compensator
  • the basic structure of the UPFC is shown in Figure 1.
  • 1 is a parallel transformer
  • 2 is a back-to-back voltage source converter
  • 3 is a series transformer
  • 4 is a controlled AC line.
  • the UPFC includes a parallel side converter, one or more series side converters, and also includes a parallel side transformer, a series side transformer, a parallel side transformer line switch, a series side transformer bypass switch, etc.;
  • Control its parallel side converter controls DC voltage and AC grid point voltage or reactive power
  • series side converter can realize line terminal voltage, phase shift control, impedance control or direct power flow control, for different topology converters
  • the UPFC has different control strategies.
  • the unified power flow controllers for engineering applications in the world all adopt GTO device series, low-level converter bridge and transformer multi-structure converter, and the converter has complex structure, low reliability and high maintenance cost; The scalability, portability, and maintainability of the protection system are poor.
  • voltage source converters built by new devices such as IGBTs are widely used in the field of flexible DC transmission.
  • domestic universities and research institutes have carried out control strategies for low-level inverter UPFC based on IGBT components. Research, but the low-voltage converter has a high switching frequency and a large loss, while Containing a large number of harmonics, there has been no engineering application.
  • the modular multi-level converter Due to its modular nature, the modular multi-level converter (MMC) is easy to expand in voltage and capacity levels, facilitating the engineering implementation of UPFC. In addition, the lower switching frequency reduces converter losses and improves voltage source commutation. Reliability of the device.
  • the object of the present invention is to provide a line power control and system for a unified power flow controller, which is simple and practical, has high reliability, can quickly and accurately control the power of the line, and can realize independent power of the line active power and reactive power. Decoupling control.
  • the solution of the present invention is:
  • a line power control method for a unified power flow controller the outer loop line power control generates a valve side current reference value, the inner loop valve side current control generates an inverter output voltage reference value, and the inverter control outputs a corresponding value according to the voltage reference value. Voltage, control line power.
  • the line power control method of the above unified power flow controller the outer loop line power control generates the valve side power
  • the flow reference value specifically refers to: the outer loop line power control calculates the line current command according to the input power command and the measured line AC voltage; the difference between the line power command and the measured line power after the proportional integral link, and the above calculation result The line current commands are added to obtain the current reference value of the outer ring valve side.
  • the inner ring valve side current control generates the inverter output voltage reference value specifically refers to: the inner ring valve side current control according to the input of the valve side current reference value, and the valve side measured AC The current and AC voltage are calculated to obtain the inverter output voltage reference value.
  • the measured AC voltage of the line is subjected to dq conversion, and then calculated with the line power command to obtain a dq component of the line current command, and correspondingly, the line current command for adding That is, the dq component of the line current command.
  • the line power control method of the unified power flow controller described above calculates the AC current and the AC voltage of the measured valve side through dq conversion, and then calculates the bridge arm reactor value and the valve side current reference value dq component to obtain the inverter output voltage.
  • the dq component of the reference value is further inversely converted by dq to obtain a reference value of the output voltage of the converter.
  • the line power control method of the unified power flow controller, the dq transformation and the dq inverse transformation are based on the measured phase angle of the line voltage A as a reference angle.
  • the above unified power flow controller line power control method is applicable to a unified power flow controller based on an MMC structural converter.
  • the above unified power flow controller line power control method is applicable to a unified power flow controller that does not include a filter device structure on the series side.
  • the invention also provides a line power control system for a unified power flow controller, characterized in that: the control system comprises an outer loop line power control unit, an inner loop valve side current control unit and a converter valve control unit; the outer loop line power The control unit is configured to generate a valve side current reference value, the inner ring valve side current control generates an inverter output voltage reference value according to the valve side current reference value, and the converter valve control outputs a corresponding voltage according to the voltage reference value , control line power.
  • the line power control system of the unified power flow controller is characterized in that: the outer loop line power control unit comprises a current command calculation module, a first actual measurement module, a second actual measurement module, an integration module and an addition module, wherein
  • the first measured module is used to measure the line AC voltage
  • the second measured module is used to measure the line power
  • the current command calculation module exchanges the line according to the input power command and the first measured module Voltage, calculate the line current command
  • the integration module is configured to proportionally integrate the difference between the line power command and the line power measured by the second actual measurement module;
  • the summation module is configured to add an output value of the integration module to an output value of the current command module to obtain an outer loop valve side current reference value.
  • the line power control system of the unified power flow controller is characterized in that: the inner ring valve side current control unit comprises: a third actual measurement module, a fourth actual measurement module, and a calculation module, wherein
  • the third measured module is used to measure the AC voltage on the valve side
  • the fourth measured module is used to measure the AC current on the valve side
  • the calculation module is configured to calculate the converter output voltage reference value by using the valve side current reference value, the actual AC voltage measured by the third actual measurement module, and the actual AC current measured by the fourth actual measurement module.
  • the line power control system of the unified power flow controller is characterized in that: the outer loop line power control unit further comprises a dq conversion module, and correspondingly, the alternating voltage is converted by the dq conversion module, and then calculated with the line power command. Obtaining the dq component of the line current command; the dq transformation is based on the measured phase angle of the line voltage A as a reference angle.
  • the line power control system of the unified power flow controller is characterized in that: the inner ring valve side current control unit further comprises a dq conversion module and a dq inverse transform module;
  • the measured AC current and AC voltage of the valve side are converted by the dq conversion module, and then calculated with the bridge arm reactor value and the valve side current reference value dq component, and the converter output voltage reference value dq component is obtained. Then, the dq inverse transform module performs dq inverse transform to obtain the inverter output voltage reference value;
  • the dq transformation and the dq inverse transformation take the measured phase angle of the line voltage A as a reference angle.
  • the unified power flow controller line power control method and system of the invention can quickly and accurately control the line power, and can independently control the active power and reactive power of the line, and fully exert the trend of the unified power flow controller optimization system.
  • the invention realizes the decoupling control of the line active power and the reactive power, and forms a multi-objective coordinated control strategy of the unified power flow controller together with the DC voltage control, the reactive power control or the constant AC voltage control of the parallel side converter.
  • the invention is equally applicable to line power control of line-to-line power flow controllers (IPFCs) and CSCs (switchable static compensators).
  • FIG. 1 is an equivalent structural diagram of a unified power flow controller in the present invention
  • FIG. 2 is a schematic diagram of a line power control method in the present invention.
  • the invention provides a line power control method for a unified power flow controller.
  • the outer loop power control decouples the line active power and the reactive power, and the inner loop alternating current control directly controls the converter valve current to improve the unified power flow controller. Dynamic performance.
  • the unified power flow controller line power control method adopts a double loop control strategy, including outer loop line power control and inner loop valve side current control; outer loop line power control generates valve side current reference values I sedref , I seqref , inner ring valve The side current control generates an inverter output voltage reference value U cref , and finally the inverter outputs a corresponding voltage according to the voltage reference value to control the line power.
  • the line power control outer loop calculates the line current commands I Ldref and I Lqref through the input power commands P ref , Q ref and the measured line AC voltage U L ; the line power command and The difference between the measured line powers P Line and Q Line passes through a proportional integral link, and the output is added to the calculated line current command to obtain the valve side current reference values I sedref and I seqref .
  • the line power control method of the unified power flow controller described above is calculated by the valve side current control inner ring through the input valve side current reference value, and the valve side measured alternating current I sed , I seq and the alternating voltage U sed , U seq .
  • the current output voltage reference value U cref is calculated by the valve side current control inner ring through the input valve side current reference value, and the valve side measured alternating current I sed , I seq and the alternating voltage U sed , U seq .
  • the line power control method of the foregoing unified power flow controller converts the measured alternating current voltage through dq, and then calculates with the line power command to obtain the dq component of the line current command;
  • the measured AC current and the AC voltage on the valve side are converted by dq, and then calculated with the bridge arm reactor value and the valve side current reference value dq component to obtain the converter output voltage.
  • the reference value dq component is further inversely converted by dq to obtain a three-phase AC voltage reference value of the converter output voltage.
  • the dq transformation and the dq inverse transformation are based on the measured phase angle of the line voltage A as a reference angle.
  • the aforementioned unified power flow controller line power control method is applicable to a unified power flow controller based on an MMC structure converter; and a unified power flow controller that does not include a filter device structure on the series side.
  • the present invention also provides a line power control system for a unified power flow controller, the control system comprising an outer loop line power control unit, an inner loop valve side current control unit and a converter valve control unit; the outer loop line power control The unit is configured to generate a valve side current reference value, and the inner ring valve side current control generates an inverter output voltage reference value according to the valve side current reference value, and the converter valve control outputs a corresponding voltage according to the voltage reference value, and controls Line power.
  • the foregoing outer loop line power control unit includes a current command calculation module, a first actual measurement module, a second actual measurement module, an integration module, and an addition module, wherein
  • the first measured module is used to measure the line AC voltage
  • the second measured module is used to measure the line power
  • the current command calculation module calculates the line current command according to the input power command and the line AC voltage measured by the first measured module
  • the integration module is configured to proportionally integrate the difference between the line power command and the line power measured by the second actual measurement module;
  • the summation module is configured to add an output value of the integration module to an output value of the current command module to obtain an outer loop valve side current reference value.
  • the foregoing inner ring valve side current control unit comprises: a third actual measurement module, a fourth actual measurement module, and a calculation module, wherein
  • the third measured module is used to measure the AC voltage on the valve side
  • the fourth measured module is used to measure the AC current on the valve side
  • the calculation module is configured to calculate the converter output voltage reference value by using the valve side current reference value, the actual AC voltage measured by the third actual measurement module, and the actual AC current measured by the fourth actual measurement module.
  • the foregoing outer loop line power control unit further includes a dq conversion module, and correspondingly, the alternating voltage is converted by the dq conversion module, and then calculated with the line power command to obtain a dq component of the line current command; the dq transformation is measured.
  • the phase angle of the line voltage A phase is the reference angle.
  • the aforementioned inner ring valve side current control unit further includes a dq conversion module and a dq inverse conversion module;
  • the measured AC current and AC voltage of the valve side are converted by the dq conversion module, and then calculated with the bridge arm reactor value and the valve side current reference value dq component to obtain the converter output voltage reference value dq component, and then After the dq inverse transform is performed by the dq inverse transform module, the converter output voltage is obtained.
  • Test value
  • the aforementioned dq transformation and dq inverse transformation take the phase angle of the measured line voltage A as a reference angle.
  • the aforementioned dq transformation refers to the transformation described by the three-dimensional static coordinate system description from the three-phase stationary coordinate system description to the two-phase rotation dq coordinate system; the aforementioned dq inverse transformation refers to converting the three-phase alternating current amount from the two-phase rotating dq coordinate system description.
  • the present invention introduces an embodiment in a unified power flow controller applied to a single line, but the present invention is not limited to a single line application unified power flow controller system, for multiple return lines or different drop points applied to the same substation and the same bus line.
  • Uniform power flow controllers for multiple lines are applicable; line power control for line-to-line power flow controllers and convertible static compensators is also applicable.
  • Any unified power flow controller line power control method involving the line power outer ring and the valve side current inner ring is within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)
  • Rectifiers (AREA)

Abstract

一种统一潮流控制器的线路功率控制方法及***,控制***包括外环线路功率控制、内环阀侧电流控制及换流阀控制;外环线路功率控制根据输入的线路功率指令(P ref、Q ref)、实测线路电压(U L)、实测线路功率(P line、Q line),计算得到串联侧换流器阀侧电流参考值,内环阀侧电流控制根据外环功率控制输出的阀侧电流参考值(I sedref、I seqref),以及实测阀侧电流、实测阀侧电压,计算得到换流器输出电压参考值(U cref);换流器根据电压参考值输出相应的电压,控制线路功率达到参考值。该控制***可以实现线路有功功率和无功功率的独立、解耦控制。

Description

一种统一潮流控制器的线路功率控制方法及*** 技术领域
本发明属于电力***柔性输电领域,具体涉及一种统一潮流控制器线路功率控制方法及***。
背景技术
随着大型电力***的互联以及各种新设备的使用,在使发电、输电更经济、更高效的同时也增加了电力***的规模和复杂度;再加上大量的分布式发电***接入电网,使传统的固定由输电网向配电网传送的潮流发生逆向;用户负荷的不断增长需要潮流控制手段提高现有的功率输送能力;正在蓬勃发展的智能电网和电力市场间复杂的功率交换需要频繁的潮流控制。
统一潮流控制器,又称UPFC(Unified Power Flow Controller),是目前为止通用性最好的潮流控制装置,它由两个完全相同的电压源换流器通过直流公共端连接,可以看作是一台静止同步补偿器(STATCOM)和一台静止同步串联补偿器(SSSC)并联构成,仅通过改变控制规律,就能分别或同时并快速地实现并联补偿、串联补偿和移相等不同的控制功能,提高电力***的性能。
UPFC的基本结构如图1所示,其中图中,1为并联变压器,2为背靠背的电压源换流器,3为串联变压器,4为被控交流线路。UPFC包含一个并联侧换流器,一个或者多个串联侧换流器,还包含并联侧变压器、串联侧变压器、并联侧变压器进线开关、串联侧变压器旁路开关等;其可以实现多目标协调控制,其并联侧换流器控制直流电压以及交流并网点电压或者无功功率,串联侧换流器可以实现线路端电压、移相控制、阻抗控制或者直接潮流控制,对于采用不同拓扑换流器的UPFC,其控制策略也不一样。目前世界上已有工程应用的统一潮流控制器均采用GTO器件串联、低电平换流桥、变压器多重化结构换流器,其换流器结构复杂、可靠性不高、维护成本高;控制保护***的扩展性、移植性、维护性较差。随着电力半导体器件的不断发展,新型器件如IGBT构建的电压源换流器在柔性直流输电领域广泛应用,国内高校及科研机构对基于IGBT元件的低电平换流器UPFC的控制策略进行了研究,但低电压换流器的开关频率高、损耗较大,同时 含有大量的谐波,一直没有工程应用。模块化多电平换流器(MMC)由于其模块化特性,电压、容量等级易于扩展,便于UPFC的工程实现,另外,较低的开关频率使得换流器损耗降低,提高了电压源换流器的可靠性。
无论是端电压控制、移相控制、或者是阻抗控制,对于电力***来说,最终的目标是改变线路的潮流,因此,利用UPFC对线路功率进行控制是最直接、最有效的方法。对于采用MMC这一新拓扑结构的UPFC,已有高校进行了相关策略的研究,张振华等人的“基于MMC拓扑的UPFC控制策略仿真研究”(电力***保护与控制,2012,40(3),74~77),利用反馈线性化将非线性***解耦,在线性化后的***中引入变结构控制,对并联侧和串联侧分别设计完成控制器;其控制策略包括有功率外环、电压内环和电流内环三个环节,功率外环控制输出得到内环电压控制的参考值,虽然其能实现有功和无功的独立调节,但控制***复杂、可靠性低,不适用于工程应用。
郑博文的“模块化多电平UPFC装置级控制策略研究”(中国电力科学研究院硕士论文,2013,6),其在串联侧换流器并联有电容器,利用单闭环PID控制UPFC串联侧输出电压控制***,其控制***中引入了滤波电容器,影响了控制线路功率的响应速度,另外,其直接通过PID控制串联侧电压,对阀侧电流的暂态响应较慢,影响UPFC***的暂态控制。
为了提高统一潮流控制器的快速、准确性,充分发挥其优化潮流的特点,推动统一潮流控制器应用的快速发展,需要一种更可靠、更适合工程应用的统一潮流控制器线路功率控制方法。
发明内容
本发明的目的,在于提供一种统一潮流控制器的线路功率控制及***,简单实用、可靠性高,可以快速、精确的控制线路的功率,并且能实现线路有功功率和无功功率的独立、解耦控制。
为了达到上述目的,本发明的解决方案是:
一种统一潮流控制器的线路功率控制方法,外环线路功率控制生成阀侧电流参考值,内环阀侧电流控制生成换流器输出电压参考值,换流器控制根据电压参考值输出相应的电压,控制线路功率。
上述的统一潮流控制器的线路功率控制方法,外环线路功率控制生成阀侧电 流参考值具体指:外环线路功率控制根据输入功率指令以及实测线路交流电压,计算得到线路电流指令;线路功率指令与实测线路功率的差值经过比例积分环节后的输出值,与上述计算所得线路电流指令相加,得到外环阀侧电流参考值。上述的统一潮流控制器的线路功率控制方法,内环阀侧电流控制生成换流器输出电压参考值具体指:内环阀侧电流控制根据输入所述阀侧电流参考值,以及阀侧实测交流电流和交流电压,计算得到换流器输出电压参考值。
上述的统一潮流控制器的线路功率控制方法,将实测线路交流电压经过dq变换,再与线路功率指令进行计算,得到线路电流指令的dq分量,相应地,所述用于相加的线路电流指令即为所述线路电流指令的dq分量。
上述的统一潮流控制器的线路功率控制方法,将实测阀侧交流电流及交流电压经过dq变换后,再与桥臂电抗器值及阀侧电流参考值dq分量进行计算,得到换流器输出电压参考值dq分量,再经过dq反变换后得到所述换流器输出电压参考值。
上述的统一潮流控制器的线路功率控制方法,所述的dq变换及dq反变换以实测线路电压A相相角为参考角度。
上述的统一潮流控制器线路功率控制方法适用于基于MMC结构换流器的统一潮流控制器。
上述的统一潮流控制器线路功率控制方法适用于串联侧不包含滤波装置结构的统一潮流控制器。
本发明还提供统一潮流控制器的线路功率控制***,其特征在于:所述控制***包括外环线路功率控制单元、内环阀侧电流控制单元及换流阀控制单元;所述外环线路功率控制单元用于生成阀侧电流参考值,所述内环阀侧电流控制根据所述阀侧电流参考值生成换流器输出电压参考值,换流阀控制根据所述电压参考值输出相应的电压,控制线路功率。
上述的统一潮流控制器的线路功率控制***,其特征在于:所述外环线路功率控制单元包括电流指令计算模块、第一实测模块、第二实测模块、积分模块和加和模块,其中
第一实测模块用于实测线路交流电压;
第二实测模块用于实测线路功率;
电流指令计算模块根据输入功率指令以及第一实测模块所测得的线路交流 电压,计算得到线路电流指令;
积分模块用于将所述线路功率指令与第二实测模块测得的线路功率的差值经过比例积分;
加和模块用于将所述积分模块的输出值与所述电流指令模块的输出值相加,得到外环阀侧电流参考值。
上述的统一潮流控制器的线路功率控制***,其特征在于:所述内环阀侧电流控制单元包括:第三实测模块、第四实测模块、计算模块,其中
第三实测模块用于实测阀侧交流电压;
第四实测模块用于实测阀侧交流电流;
计算模块用于将所述阀侧电流参考值,以及所述第三实测模块测得的实际交流电压、第四实测模块测得的实际交流电流,计算得到换流器输出电压参考值。
上述的统一潮流控制器的线路功率控制***,其特征在于:所述外环线路功率控制单元还包括dq变换模块,相应地,交流电压经过dq变换模块的变换后,再与线路功率指令进行计算,得到线路电流指令的dq分量;所述的dq变换以实测线路电压A相相角为参考角度。
上述的一种统一潮流控制器的线路功率控制***,其特征在于:所述内环阀侧电流控制单元还包括dq变换模块以及dq反变换模块;
相应地,所述实测阀侧交流电流及交流电压经过dq变换模块的变换后,再与桥臂电抗器值及阀侧电流参考值dq分量进行计算,得到换流器输出电压参考值dq分量,再经过dq反变换模块进行dq反变换后得到所述换流器输出电压参考值;
所述的dq变换及dq反变换以实测线路电压A相相角为参考角度。
采用上述方案后,本发明统一潮流控制器线路功率控制方法及***可以快速、准确的控制线路功率,并且可以独立的控制线路的有功功率和无功功率,充分发挥统一潮流控制器优化***潮流的特点;其方法简单、可靠性高,适用于基于MMC结构统一潮流控制器的工程应用。本发明实现了线路有功功率和无功功率的解耦控制,与并联侧换流器定直流电压控制、无功功率控制或者定交流电压控制一起,形成统一潮流控制器的多目标协调控制策略。本发明同样适用于线间潮流控制器(IPFC)以及CSC(可变换静止补偿器)的线路功率控制。
附图说明
图1是本发明中统一潮流控制器的等效结构图;
图2是本发明中线路功率控制方法的原理图。
具体实施方式
下面结合附图对本发明的具体实施方式进行详细说明。
本发明提供一种统一潮流控制器的线路功率控制方法,外环功率控制将线路有功功率和无功功率进行解耦控制,内环交流电流控制直接控制换流器阀电流,提高统一潮流控制器的动态性能。
图2是本发明中统一潮流控制器线路功率控制方法的图。所述的统一潮流控制器线路功率控制方法采用双环控制策略,包括外环线路功率控制和内环阀侧电流控制;外环线路功率控制产生阀侧电流参考值Isedref、Iseqref,内环阀侧电流控制产生换流器输出电压参考值Ucref,最终换流器根据电压参考值输出相应的电压,控制线路功率。
前述的统一潮流控制器的线路功率控制方法,其线路功率控制外环通过输入功率指令Pref、Qref以及实测线路交流电压UL,计算得到线路电流指令ILdref、ILqref;线路功率指令与实测线路功率PLine、QLine的差值经过一个比例积分环节,其输出量与上述计算所得线路电流指令相加,得到阀侧电流参考值Isedref、Iseqref
前述的统一潮流控制器的线路功率控制方法,其阀侧电流控制内环通过输入阀侧电流参考值,以及阀侧实测交流电流Ised、Iseq和交流电压Used、Useq,计算得到换流器输出电压参考值Ucref
前述的统一潮流控制器的线路功率控制方法,将实测线路交流电压经过dq变换,再与线路功率指令进行计算,得到线路电流指令的dq分量;
前述的统一潮流控制器的线路功率控制方法,将阀侧实测交流电流及交流电压经过dq变换后,再与桥臂电抗器值及阀侧电流参考值dq分量进行计算,得到换流器输出电压参考值dq分量,再经过dq反变换后得到换流器输出电压的三相交流电压参考值。前述的统一潮流控制器的线路功率控制方法,所述的dq变换及dq反变换以实测线路电压A相相角为参考角度。
前述的统一潮流控制器线路功率控制方法适用于基于MMC结构换流器的统一潮流控制器;以及所有串联侧不包含滤波装置结构的统一潮流控制器。
另外,本发明还提供一种统一潮流控制器的线路功率控制***,所述控制***包括外环线路功率控制单元、内环阀侧电流控制单元及换流阀控制单元;前述外环线路功率控制单元用于生成阀侧电流参考值,前述内环阀侧电流控制根据所述阀侧电流参考值生成换流器输出电压参考值,换流阀控制根据所述电压参考值输出相应的电压,控制线路功率。
前述的外环线路功率控制单元包括电流指令计算模块、第一实测模块、第二实测模块、积分模块和加和模块,其中
第一实测模块用于实测线路交流电压;
第二实测模块用于实测线路功率;
电流指令计算模块根据输入功率指令以及第一实测模块所测得的线路交流电压,计算得到线路电流指令;
积分模块用于将所述线路功率指令与第二实测模块测得的线路功率的差值经过比例积分;
加和模块用于将所述积分模块的输出值与所述电流指令模块的输出值相加,得到外环阀侧电流参考值。
前述的内环阀侧电流控制单元包括:第三实测模块、第四实测模块、计算模块,其中
第三实测模块用于实测阀侧交流电压;
第四实测模块用于实测阀侧交流电流;
计算模块用于将所述阀侧电流参考值,以及所述第三实测模块测得的实际交流电压、第四实测模块测得的实际交流电流,计算得到换流器输出电压参考值。
前述的外环线路功率控制单元还包括dq变换模块,相应地,交流电压经过dq变换模块的变换后,再与线路功率指令进行计算,得到线路电流指令的dq分量;所述的dq变换以实测线路电压A相相角为参考角度。
前述的内环阀侧电流控制单元还包括dq变换模块以及dq反变换模块;
相应地,前述实测阀侧交流电流及交流电压经过dq变换模块的变换后,再与桥臂电抗器值及阀侧电流参考值dq分量进行计算,得到换流器输出电压参考值dq分量,再经过dq反变换模块进行dq反变换后得到所述换流器输出电压参 考值;
前述的dq变换及dq反变换以实测线路电压A相相角为参考角度。
前述的dq变换是指将三相交流量从三相静止坐标系描述转换为两相旋转的dq坐标***描述的变换;前述dq反变换是指将三相交流量从两相旋转的dq坐标***描述转换为三相静止坐标系描述的变换。
本发明以应用于单线路的统一潮流控制器来介绍实施方案,但本发明不限于单线路应用统一潮流控制器的***,对于多回线路或者应用于同一个变电站、同一母线上的不同落点的多条线路的统一潮流控制器都适用;对于线间潮流控制器以及可变换静止补偿器的线路功率控制也适用。任何牵涉到采用线路功率外环和阀侧电流内环的统一潮流控制器线路功率控制方法都属于本发明范围之内。
最后应该说明的是:结合上述实施例仅说明本发明的技术方案而非对其限制。所属领域的普通技术人员应当理解到:本领域技术人员可以对本发明的具体实施方式进行修改或者等同替换,但这些修改或变更均在申请待批的专利要求保护范围之内。

Claims (14)

  1. 一种统一潮流控制器的线路功率控制方法,其特征在于:
    外环线路功率控制生成阀侧电流参考值,内环阀侧电流控制根据所述阀侧电流参考值生成换流器输出电压参考值,换流阀控制根据所述电压参考值输出相应的电压,控制线路功率。
  2. 如权利要求1所述一种统一潮流控制器的线路功率控制方法,其特征在于:外环线路功率控制生成阀侧电流参考值具体指:外环线路功率控制根据输入功率指令以及实测线路交流电压,计算得到线路电流指令;线路功率指令与实测线路功率的差值经过比例积分环节后的输出值,与上述计算所得线路电流指令相加,得到外环阀侧电流参考值。
  3. 如权利要求1所述一种统一潮流控制器的线路功率控制方法,其特征在于:内环阀侧电流控制生成换流器输出电压参考值具体指:内环阀侧电流控制根据输入所述阀侧电流参考值,以及阀侧实测交流电流和交流电压,计算得到换流器输出电压参考值。
  4. 如权利要求2所述一种统一潮流控制器的线路功率控制方法,其特征在于:所述实测线路交流电压经过dq变换,再与线路功率指令进行计算,得到线路电流指令的dq分量,相应地,所述用于相加的线路电流指令即为所述线路电流指令的dq分量。
  5. 如权利要求3所述一种统一潮流控制器的线路功率控制方法,其特征在于:所述实测阀侧交流电流及交流电压经过dq变换后,再与桥臂电抗器值及阀侧电流参考值dq分量进行计算,得到换流器输出电压参考值dq分量,再经过dq反变换后得到所述换流器输出电压参考值。
  6. 如权利要求4所述一种统一潮流控制器的线路功率控制方法,其特征在于:所述的dq变换以实测线路电压A相相角为参考角度。
  7. 如权利要求5所述一种统一潮流控制器的线路功率控制方法,其特征在于:所述的dq变换及dq反变换以实测线路电压A相相角为参考角度。
  8. 如权利要求1所述一种统一潮流控制器的线路功率控制方法,其特征在于:所述的线路功率控制方法适用于基于MMC结构换流器的统一潮流控制器。
  9. 如权利要求1所述一种统一潮流控制器的线路功率控制方法,其特征在于:所述的线路功率控制方法适用于串联侧不包含滤波装置结构的统一潮流控制 器。
  10. 一种统一潮流控制器的线路功率控制***,其特征在于:所述控制***包括外环线路功率控制单元、内环阀侧电流控制单元及换流阀控制单元;所述外环线路功率控制单元用于生成阀侧电流参考值,所述内环阀侧电流控制根据所述阀侧电流参考值生成换流器输出电压参考值,换流阀控制根据所述电压参考值输出相应的电压,控制线路功率。
  11. 如权利要求10所述的统一潮流控制器的线路功率控制***,其特征在于:所述外环线路功率控制单元包括电流指令计算模块、第一实测模块、第二实测模块、积分模块和加和模块,其中
    第一实测模块用于实测线路交流电压;
    第二实测模块用于实测线路功率;
    电流指令计算模块根据输入功率指令以及第一实测模块所测得的线路交流电压,计算得到线路电流指令;
    积分模块用于将所述线路功率指令与第二实测模块测得的线路功率的差值经过比例积分;
    加和模块用于将所述积分模块的输出值与所述电流指令模块的输出值相加,得到外环阀侧电流参考值。
  12. 如权利要求10所述的统一潮流控制器的线路功率控制***,其特征在于:所述内环阀侧电流控制单元包括:第三实测模块、第四实测模块、计算模块,其中
    第三实测模块用于实测阀侧交流电压;
    第四实测模块用于实测阀侧交流电流;
    计算模块用于将所述阀侧电流参考值,以及所述第三实测模块测得的实际交流电压、第四实测模块测得的实际交流电流,计算得到换流器输出电压参考值。
  13. 如权利要求11所述的统一潮流控制器的线路功率控制***,其特征在于:所述外环线路功率控制单元还包括dq变换模块,相应地,交流电压经过dq变换模块的变换后,再与线路功率指令进行计算,得到线路电流指令的dq分量;所述的dq变换以实测线路电压A相相角为参考角度。
  14. 如权利要求12所述的一种统一潮流控制器的线路功率控制***,其特征在于:所述内环阀侧电流控制单元还包括dq变换模块以及dq反变换模块;
    相应地,所述实测阀侧交流电流及交流电压经过dq变换模块的变换后,再与桥臂电抗器值及阀侧电流参考值dq分量进行计算,得到换流器输出电压参考值dq分量,再经过dq反变换模块进行dq反变换后得到所述换流器输出电压参考值;
    所述的dq变换及dq反变换以实测线路电压A相相角为参考角度。
PCT/CN2015/071273 2014-07-10 2015-01-22 一种统一潮流控制器的线路功率控制方法及*** WO2016004756A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MX2017000434A MX360963B (es) 2014-07-10 2015-01-22 Método y sistema de control de potencia de línea para controlador de flujo de energía unificado.
US15/324,744 US10250070B2 (en) 2014-07-10 2015-01-22 Line power control method and system for unified power flow controller
EP15819677.4A EP3157122A4 (en) 2014-07-10 2015-01-22 Line power control method and system of unified power flow controller
BR112017000504-2A BR112017000504B1 (pt) 2014-07-10 2015-01-22 Método de controle de energia de linha para um controlador de fluxo de energia unificado
RU2017100586A RU2663820C1 (ru) 2014-07-10 2015-01-22 Способ и система регулирования мощности на линии для устройства комплексного регулирования перетоков мощности

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410328092.6A CN104052073B (zh) 2014-07-10 2014-07-10 一种统一潮流控制器的线路功率控制方法及***
CN201410328092.6 2014-07-10

Publications (1)

Publication Number Publication Date
WO2016004756A1 true WO2016004756A1 (zh) 2016-01-14

Family

ID=51504606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071273 WO2016004756A1 (zh) 2014-07-10 2015-01-22 一种统一潮流控制器的线路功率控制方法及***

Country Status (7)

Country Link
US (1) US10250070B2 (zh)
EP (1) EP3157122A4 (zh)
CN (1) CN104052073B (zh)
BR (1) BR112017000504B1 (zh)
MX (1) MX360963B (zh)
RU (1) RU2663820C1 (zh)
WO (1) WO2016004756A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768268A (zh) * 2019-09-25 2020-02-07 国网江苏省电力有限公司 一种考虑upfc投运的hvdc功率控制策略调整方法和***

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052073B (zh) 2014-07-10 2017-02-01 南京南瑞继保电气有限公司 一种统一潮流控制器的线路功率控制方法及***
CN104267296B (zh) * 2014-10-21 2017-02-22 国家电网公司 基于mmc的statcom故障诊断方法
CN108475927B (zh) * 2015-08-14 2021-06-29 密歇根州立大学理事会 使用本地可用参数进行独立有功和无功功率流控制的方法
CN105896544B (zh) * 2016-05-30 2019-03-05 许继电气股份有限公司 Upfc串联变与其旁路开关之间的潮流转移控制方法
CN106058852B (zh) * 2016-05-30 2018-08-07 许继电气股份有限公司 一种统一潮流控制器的线路功率控制方法
CN107302220B (zh) * 2016-09-14 2019-01-04 南京赫曦电气有限公司 一种分布式电压和潮流控制方法及其装置
WO2018098672A1 (zh) * 2016-11-30 2018-06-07 国网江苏省电力公司电力科学研究院 一种新型统一潮流控制器及其控制方法
CN106961113B (zh) * 2017-05-08 2020-01-14 许继集团有限公司 统一潮流控制器***及换流器无功控制方法
CN107947173B (zh) * 2017-12-20 2024-02-02 南京南瑞继保电气有限公司 一种串联补偿器及控制方法
CN108206529B (zh) * 2017-12-29 2021-04-30 国网江苏省电力有限公司经济技术研究院 一种抑制电力***低频振荡的方法
CN108429264B (zh) * 2018-03-28 2021-07-27 南京南瑞继保电气有限公司 一种串联补偿设备的输出电压控制装置
CN108462183B (zh) * 2018-03-28 2021-07-27 南京南瑞继保电气有限公司 一种串联补偿设备的线路电压控制装置
RU2687952C1 (ru) * 2018-03-28 2019-05-17 Игорь Григорьевич Крахмалин Способ управления потоками мощности посредством векторного регулирования напряжения в узлах нагрузки и устройство, его реализующее
CN108518307B (zh) * 2018-04-03 2019-12-24 北京金风科创风电设备有限公司 风力发电机组的功率控制方法、控制装置、控制器和***
CN108574282A (zh) * 2018-05-02 2018-09-25 燕山大学 一种基于非线性控制的upfc在微电网中的潮流控制方法
CN108539748B (zh) * 2018-05-14 2021-04-16 国网江苏省电力有限公司经济技术研究院 双回线统一潮流控制器及其串联侧换流器控制方法
KR102490765B1 (ko) * 2018-05-28 2023-01-20 엔알 일렉트릭 컴퍼니 리미티드 보상기 및 그의 제어 방법 및 장치
CN108777497B (zh) * 2018-07-27 2020-09-15 国网宁夏电力有限公司 一种双级式光伏发电主动参与电网频率调节控制策略
CN109193676B (zh) * 2018-08-14 2021-09-07 河海大学 一种电力***的无功优化方法
CN109038687B (zh) * 2018-08-30 2020-06-12 上海交通大学 适用于直流输电***的全直流潮流控制器及其控制方法
CN109861240B (zh) * 2019-02-03 2022-10-04 武汉理工大学 一种基于adpss/etsdac建模的分布式潮流控制器的控制方法
CN109980628B (zh) * 2019-04-18 2020-08-25 浙江大学 多电压等级直流配电网的分散式标幺化功率协调控制方法
CN113098023B (zh) * 2020-01-08 2022-09-23 国网宁夏电力有限公司 一种统一潮流控制器串联换流器改进前馈控制方法
CN111525541B (zh) * 2020-05-27 2022-05-31 东北电力大学 具有故障切除能力的三端口直流潮流控制器拓扑结构
CN111934289B (zh) * 2020-07-01 2022-08-12 南方电网科学研究院有限责任公司 逆变侧阀短路保护动作的控制方法、装置、设备及介质
CN111884227B (zh) * 2020-07-31 2021-08-27 广东电网有限责任公司 一种upfc模型参数调整方法及***
CN116544959B (zh) * 2023-06-27 2023-12-12 哈尔滨理工大学 一种光伏统一潮流控制器的非线性控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138255A (zh) * 2011-11-25 2013-06-05 沈阳工业大学 一种包含统一潮流控制器的电力***最优潮流的分解计算方法
CN103414185A (zh) * 2013-07-26 2013-11-27 南京南瑞继保电气有限公司 一种统一潮流控制器及其控制方法
CN203352168U (zh) * 2013-09-16 2013-12-18 国家电网公司 基于模块化多电平换流器的统一潮流控制器
CN104052073A (zh) * 2014-07-10 2014-09-17 南京南瑞继保电气有限公司 一种统一潮流控制器的线路功率控制方法及***

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU459826A1 (ru) * 1972-08-10 1975-02-05 Ленинградский Политехнический Институт Им.М.И.Калинина Способ регулировани перетока активной мощности по линии св зи между част ми энергосистемы
ATE201103T1 (de) * 1994-07-22 2001-05-15 Electric Power Res Inst Starkstromleitungsleistungsregler mit nach den echt- und blindleistungsanforderungen kontinuierlich regelbarer spannungsquelle
KR100514198B1 (ko) * 1998-03-03 2005-09-13 지멘스 웨스팅하우스 파워 코포레이션 전력흐름의 안정된 반전을 포함하여 전송선로에서의 전력흐름을 제어하는 장치 및 방법
TWI264864B (en) * 2005-04-08 2006-10-21 Univ Chang Gung Power flow calculation method of power grid with unified power flow controller
CN101741094B (zh) * 2010-01-25 2013-02-27 株洲变流技术国家工程研究中心有限公司 一种基于可关断器件的移动式输电装置
CN101854061B (zh) * 2010-04-30 2012-04-25 浙江大学 一种三相模块化多电平换流器环流抑制方法
CN101924370B (zh) * 2010-09-08 2013-01-23 株洲变流技术国家工程研究中心有限公司 一种混合型电能质量治理装置
RU2446537C1 (ru) * 2010-12-29 2012-03-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Устройство регулирования напряжения и передаваемой мощности электрической сети
CN102412579B (zh) * 2011-09-26 2014-03-12 中国电力科学研究院 一种基于快速傅里叶变换的谐波电流补偿方法
TW201333485A (zh) * 2012-02-14 2013-08-16 Hon Hai Prec Ind Co Ltd Led燈條檢測方法
US8848400B2 (en) * 2012-02-15 2014-09-30 General Electric Company System and method for reactive power regulation
WO2013126660A2 (en) * 2012-02-24 2013-08-29 Board Of Trustees Of Michigan State University Transformer-less unified power flow controller
CN103312199B (zh) * 2013-05-14 2015-08-26 上海交通大学 直接网侧功率控制的单相功率因数校正器
CN103647286A (zh) * 2013-11-15 2014-03-19 许继集团有限公司 一种模块化多电平换流器孤岛切换控制方法
CN103701131B (zh) * 2013-12-31 2015-09-02 武汉大学 改进型sen变压器的拓扑结构及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138255A (zh) * 2011-11-25 2013-06-05 沈阳工业大学 一种包含统一潮流控制器的电力***最优潮流的分解计算方法
CN103414185A (zh) * 2013-07-26 2013-11-27 南京南瑞继保电气有限公司 一种统一潮流控制器及其控制方法
CN203352168U (zh) * 2013-09-16 2013-12-18 国家电网公司 基于模块化多电平换流器的统一潮流控制器
CN104052073A (zh) * 2014-07-10 2014-09-17 南京南瑞继保电气有限公司 一种统一潮流控制器的线路功率控制方法及***

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3157122A4 *
ZHU PENGCHENG ET AL.: "Analysis and Study on Control Strategy for UPFC", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 30, no. 1, 10 January 2006 (2006-01-10), pages 46, XP055252290, ISSN: 1000-1026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768268A (zh) * 2019-09-25 2020-02-07 国网江苏省电力有限公司 一种考虑upfc投运的hvdc功率控制策略调整方法和***
CN110768268B (zh) * 2019-09-25 2022-09-30 国网江苏省电力有限公司 一种考虑upfc投运的hvdc功率控制策略调整方法和***

Also Published As

Publication number Publication date
CN104052073B (zh) 2017-02-01
MX2017000434A (es) 2017-08-21
BR112017000504A2 (pt) 2017-11-14
EP3157122A1 (en) 2017-04-19
BR112017000504B1 (pt) 2022-05-10
EP3157122A4 (en) 2017-07-26
MX360963B (es) 2018-11-21
RU2663820C1 (ru) 2018-08-10
US10250070B2 (en) 2019-04-02
US20170199502A1 (en) 2017-07-13
CN104052073A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
WO2016004756A1 (zh) 一种统一潮流控制器的线路功率控制方法及***
CN103078316B (zh) 一种电网电压扰动发生装置及其控制方法
CN102739071B (zh) 基于环流解耦的模块化多电平变流器直流电容电压控制方法
CN102780226B (zh) 基于斩控均压的链式statcom直流侧电压控制方法及控制电路
CN103050967B (zh) 一种柔性直流输电***自抗扰控制方法
CN104934989A (zh) 基于新型模块化多电平拓扑的无功补偿装置及其控制方法
CN101699694B (zh) 三相三线动态分相无功补偿装置及其控制方法
Zhang et al. Three-phase four-leg inverter based on voltage hysteresis control
CN108512250A (zh) 一种三相大功率光伏并网逆变器及降低其输出电流thd的重复控制方法
Pires et al. HVDC transmission system using multilevel power converters based on dual three-phase two-level inverters
CN106787878B (zh) 一种基于虚拟环流分量的单相mmc环流抑制器及抑制方法
WO2017062097A1 (en) Solar power conversion system and method
Gade et al. Recent trends in power quality improvement: Review of the unified power quality conditioner
CN108418231B (zh) 一种混合多端口铁路功率变换器及其功率协调控制方法
Chennai et al. Unified power quality conditioner based on a three-level NPC inverter using fuzzy control techniques for all voltage disturbances compensation
Liu et al. Stability control method based on virtual inductance of grid-connected PV inverter under weak grid
CN106300340B (zh) 一种柔性多状态开关装置及其控制方法
Singh Performance evaluation of three different configurations of DSTATCOM with nonlinear loads
Singh et al. A new 24-pulse STATCOM for voltage regulation
CN201556947U (zh) 三相三线动态分相无功补偿装置
CN107069819A (zh) 一种单相并网变流器的控制方法
CN102694385A (zh) D-statcom的线电流不对称补偿的相电流平衡限幅方法
Hu et al. VSC-HVDC Power Control Strategy for Improving Voltage Stability of AC-DC Power Grid
CN109378847B (zh) 一种微电网储能pcs控制***和方法
Reddy et al. Hybrid renewable energy sources based four leg inverter for power quality improvement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819677

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15324744

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000434

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015819677

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015819677

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017000504

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017100586

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017000504

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170110