WO2015161623A1 - 太阳能空调及其控制方法和控制装置 - Google Patents

太阳能空调及其控制方法和控制装置 Download PDF

Info

Publication number
WO2015161623A1
WO2015161623A1 PCT/CN2014/087289 CN2014087289W WO2015161623A1 WO 2015161623 A1 WO2015161623 A1 WO 2015161623A1 CN 2014087289 W CN2014087289 W CN 2014087289W WO 2015161623 A1 WO2015161623 A1 WO 2015161623A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
air conditioner
compressor
operating frequency
solar air
Prior art date
Application number
PCT/CN2014/087289
Other languages
English (en)
French (fr)
Inventor
梁敏游
白东培
李洪涛
Original Assignee
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司 filed Critical 美的集团股份有限公司
Priority to US15/106,837 priority Critical patent/US10508825B2/en
Priority to EP14890330.5A priority patent/EP3139104A4/en
Publication of WO2015161623A1 publication Critical patent/WO2015161623A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/005Machines, plants or systems, using particular sources of energy using solar energy in compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current

Definitions

  • the present invention relates to the field of air conditioning technology, and in particular to a solar air conditioner control method, a solar air conditioner control device, and a solar air conditioner.
  • the existing solar air conditioners mainly have the following two options:
  • the present invention aims to solve at least one of the technical problems existing in the prior art or related art.
  • an object of the present invention is to provide a method of controlling a solar air conditioner.
  • Another object of the present invention is to provide a control device for a solar air conditioner.
  • Still another object of the present invention is to provide a solar air conditioner.
  • a method for controlling a solar air conditioner comprising: a detecting step of detecting the solar air conditioner when detecting that the solar air conditioner enters an energy saving control mode The change of the DC voltage outputted by the inverter; the determining step of adjusting the operating frequency of the compressor in the solar air conditioner according to the change of the DC voltage, so that the solar air conditioner uses a solar battery for power supply.
  • the condition of the DC voltage output by the inverter of the solar air conditioner can reflect the state of the solar battery, and therefore, the solar energy can be obtained by detecting the DC voltage output from the inverter.
  • the battery's power status and then adjust the operating frequency of the compressor in the air conditioner according to the DC voltage, so that the maximum use of solar energy, without the need for utility power.
  • the operating frequency of the compressor when the change of the direct current voltage is that the direct current voltage is increased, the operating frequency of the compressor is increased, and when the change of the direct current voltage is that the direct current voltage is decreased, Lowering the operating frequency of the compressor.
  • the solar air conditioner control method when the DC voltage is increased, the amount of power of the solar cell is increased at this time, and the operating frequency of the compressor can be increased at this time, and when the DC voltage is lowered, at this time It shows that the power consumption of the solar cell is reduced.
  • the operating frequency of the compressor in order to ensure that the solar cell can be used, the operating frequency of the compressor can be reduced, so that the compressor frequency can be changed according to the change of the direct current voltage, so that the solar battery of the solar air conditioner can be utilized to the maximum extent. .
  • the control method further includes: a setting step of setting a voltage preset value according to the received setting command; and the determining step specifically includes: when the output DC voltage changes Increasing an operating frequency of the compressor when a preset value lower than the voltage is higher than the voltage preset value; when the output DC voltage is changed from being higher than the voltage preset value Decreasing the operating frequency of the compressor when the voltage is lower than the preset value of the voltage; determining the operation of the compressor when the change of the output DC voltage is always higher than the preset voltage value Whether the frequency reaches a frequency at which the DC voltage is lower than the preset value of the voltage, and when the determination result is no, the rising speed of the operating frequency of the compressor is accelerated; when the determination result is YES, determining the Whether the DC voltage outputted by the inverter in the solar air conditioner continuously rises, and when the judgment result is YES, the operating frequency of the compressor is increased; when the judgment result is no, the solar energy is judged.
  • the DC voltage outputted by the inverter in the air conditioner remains unchanged, and when the determination result is YES, the rising speed of the operating frequency of the compressor is lowered, and when the determination result is no, that is, the inverter in the solar air conditioner
  • the DC voltage outputted by the device continuously decreases, thereby reducing the operating frequency of the compressor; when the change of the DC voltage of the output is always lower than the preset voltage value, the operating frequency of the compressor is lowered, and Determining whether the DC voltage is rising and still lower than the voltage preset value in the process of lowering the operating frequency of the compressor, and when the determination result is no, continuing to decrease the operating frequency of the compressor; When it is, the operating frequency of the compressor is increased.
  • a voltage preset value is set, and the up-conversion or down-conversion control of the compressor is determined by comparing the magnitudes of the direct current voltage and the preset voltage value, thereby causing the solar battery to The power as much as possible supports the normal operation of the compressor.
  • the method further includes: controlling the solar air conditioner to enter the energy saving control mode according to the received opening command; and controlling the solar air conditioner to exit the energy saving control mode according to the received closing command.
  • the user can select to enter or exit the energy saving control mode by himself.
  • the energy-saving control mode it will start to detect the change of the DC voltage, thereby achieving the maximum use of solar energy.
  • the user can normally use the air conditioner. The change of the DC voltage of the transformer is detected. In this way, users can choose the mode they want at any time according to their individual needs.
  • the solar air conditioner control method when the solar air conditioner exits the energy saving control mode, the power supply method can be selected according to the change of the output voltage, thereby enhancing the flexibility of the control.
  • a control device for a solar air conditioner comprising: a detecting unit, when detecting that the solar air conditioner enters an energy saving control mode, starting to detect an inverter output in the solar air conditioner The change of the DC voltage; the determining unit adjusts the operating frequency of the compressor in the solar air conditioner according to the change of the DC voltage, so that the solar air conditioner uses the solar battery to supply power.
  • the condition of the DC voltage output by the inverter of the solar air conditioner can reflect the state of the solar battery, and therefore, the solar energy can be obtained by detecting the DC voltage output from the inverter.
  • the battery's power status and then adjust the operating frequency of the compressor in the air conditioner according to the DC voltage, so that the maximum use of solar energy, without the need for utility power.
  • adjusting the operating frequency of the compressor in the solar air conditioner according to the change of the DC voltage specifically includes: when the change of the DC voltage is that the DC voltage is increased, The operating frequency of the compressor reduces the operating frequency of the compressor when the change in the direct current voltage is such that the direct current voltage decreases.
  • the solar air conditioner control device when the DC voltage is increased, the electric power of the solar cell is increased at this time, and the operating frequency of the compressor can be increased at this time, and when the DC voltage is lowered, at this time It shows that the power consumption of the solar cell is reduced.
  • the operating frequency of the compressor in order to ensure that the solar cell can be used, the operating frequency of the compressor can be reduced, so that the compressor frequency can be changed according to the change of the direct current voltage, so that the solar battery of the solar air conditioner can be utilized to the maximum extent. .
  • the method further includes: a setting unit, configured to set a voltage preset value according to the received setting command; and the determining unit specifically includes: a first processing unit, when the output DC voltage changes Increasing an operating frequency of the compressor when a preset value lower than the voltage becomes higher than the voltage preset value; and a second processing unit, when a change in the output DC voltage is higher than When the voltage preset value becomes lower than the voltage preset value, lowering the operating frequency of the compressor; and the third processing unit, when the output DC voltage changes, is always higher than the voltage pre- When the value is set, it is determined whether the operating frequency of the compressor reaches a frequency that needs to be frequency-reduced when the DC voltage is lower than the preset voltage value, and when the determination result is no, the rising speed of the operating frequency of the compressor is accelerated.
  • the determining unit specifically includes: a first processing unit, when the output DC voltage changes Increasing an operating frequency of the compressor when a preset value lower than the voltage becomes higher than the voltage preset value; and a second
  • the determination result is YES, it is determined whether the DC voltage output by the inverter in the solar air conditioner continuously rises, and when the determination result is YES, the operating frequency of the compressor is increased;
  • the determination result is no, it is determined whether the DC voltage output by the inverter in the solar air conditioner remains unchanged, and when the determination result is YES, the rising speed of the operating frequency of the compressor is decreased, and when the determination result is no That is, the DC voltage outputted by the inverter in the solar air conditioner continuously decreases, thereby reducing the operating frequency of the compressor; and the fourth processing unit, when the DC voltage of the output changes, is always lower than the voltage
  • the preset value is decreased, the operating frequency of the compressor is lowered, and it is determined whether the DC voltage rises during the process of lowering the operating frequency of the compressor and is still lower than the preset value of the voltage, and the determination result is no.
  • the operating frequency of the compressor is continuously lowered; when the determination result is YES, the operating frequency of the compressor is increased
  • a voltage preset value is set, and the up-conversion or down-conversion control of the compressor is determined by comparing the magnitudes of the direct current voltage and the preset voltage value, thereby causing the solar battery to The power as much as possible supports the normal operation of the compressor.
  • the method further includes: an opening unit, controlling the solar air conditioner to enter the energy saving control mode according to the received opening command; and closing the unit, and controlling the solar air conditioner to exit according to the received closing command The energy saving control mode.
  • the user can select to enter or exit the energy saving control mode by himself.
  • the energy-saving control mode it will start to detect the change of the DC voltage, thereby achieving the maximum use of solar energy.
  • the user can normally use the air conditioner. The change of the DC voltage of the transformer is detected. In this way, users can choose the mode they want at any time according to their individual needs.
  • the solar air conditioner after the solar air conditioner exits the energy saving control mode, it is determined whether the output DC voltage is higher than a voltage of a utility power grid, and when the determination result is yes, the solar power is supplied, when judging When the result is no, power is supplied from the mains grid.
  • the power supply method can be selected according to the change of the output voltage, thereby enhancing the flexibility of control.
  • a solar air conditioner comprising the solar air conditioner control apparatus according to any one of the above aspects, wherein the air conditioner has the same technical effect as the solar air conditioner control apparatus described above, This will not be repeated here.
  • the frequency of the compressor is changed according to the change of the direct current voltage, so that the solar battery of the solar air conditioner can be utilized to the maximum extent.
  • FIG. 1 shows a schematic flow chart of a method of controlling a solar air conditioner according to an embodiment of the present invention
  • FIG. 2 shows a block diagram of a control device for a solar air conditioner according to an embodiment of the present invention
  • FIG. 3 shows a block diagram of a solar air conditioner in accordance with one embodiment of the present invention
  • FIG. 4 shows a schematic flow chart of a method of controlling a solar air conditioner according to an embodiment of the present invention.
  • FIG. 5 is a specific flowchart of step A of the solar air conditioner control method of FIG. 4;
  • step C of the solar air conditioner control method of FIG. 4 is a specific flowchart of step C of the solar air conditioner control method of FIG. 4;
  • FIG. 7 is a specific flowchart of step B of the solar air conditioner control method of FIG. 4;
  • FIG. 8 shows a specific flow chart of the step D of the control method of the solar air conditioner of FIG.
  • FIG. 1 shows a schematic flow chart of a method of controlling a solar air conditioner according to an embodiment of the present invention.
  • the method includes: a detecting step 102, when detecting that the solar air conditioner enters an energy saving control mode, detecting a change of a DC voltage output by the inverter in the solar air conditioner.
  • the determining step 104 is to adjust an operating frequency of the compressor in the solar air conditioner according to the change of the DC voltage, so that the solar air conditioner uses a solar battery to supply power.
  • the condition of the DC voltage output by the inverter of the solar air conditioner can reflect the state of the solar battery, and therefore, the solar energy can be obtained by detecting the DC voltage output from the inverter.
  • the battery's power status and then adjust the operating frequency of the compressor in the air conditioner according to the DC voltage, so that the maximum use of solar energy, without the need for utility power.
  • the operating frequency of the compressor when the change of the direct current voltage is that the direct current voltage is increased, the operating frequency of the compressor is increased, and when the change of the direct current voltage is that the direct current voltage is decreased, Lowering the operating frequency of the compressor.
  • the solar air conditioner control method when the DC voltage is increased, the amount of power of the solar cell is increased at this time, and the operating frequency of the compressor can be increased at this time, and when the DC voltage is lowered, at this time It shows that the power consumption of the solar cell is reduced.
  • the operating frequency of the compressor in order to ensure that the solar cell can be used, the operating frequency of the compressor can be reduced, so that the compressor frequency can be changed according to the change of the direct current voltage, so that the solar battery of the solar air conditioner can be utilized to the maximum extent. .
  • the method before the detecting step 102, the method further includes: setting a voltage preset value according to the received setting command; and the determining step 104 specifically includes: when the output DC voltage changes Increasing the operating frequency of the compressor when the preset value is lower than the voltage preset value; when the output DC voltage is changed by the voltage preset Decreasing the operating frequency of the compressor when the value becomes lower than the voltage preset value; determining the compressor when the change of the output DC voltage is always higher than the voltage preset value Whether the operating frequency reaches a frequency at which the DC voltage is lower than the preset value of the voltage, and when the determination result is no, the rising speed of the operating frequency of the compressor is accelerated; when the determination result is YES, the determining unit Whether the DC voltage outputted by the inverter in the solar air conditioner continuously rises, and when the determination result is YES, the operating frequency of the compressor is increased; when the judgment result is no, the solar energy is judged Whether the DC voltage outputted by the inverter in
  • a voltage preset value is set, and the up-conversion or down-conversion control of the compressor is determined by comparing the magnitudes of the direct current voltage and the preset voltage value, thereby causing the solar battery to The power as much as possible supports the normal operation of the compressor.
  • a voltage preset value is set, and the up-conversion or down-conversion control of the compressor is determined by comparing the magnitudes of the direct current voltage and the preset voltage value, thereby causing the solar battery to The power as much as possible supports the normal operation of the compressor.
  • the method further includes: controlling the solar air conditioner to enter the energy saving control mode according to the received opening command; and controlling the solar air conditioner to exit the energy saving control mode according to the received closing command.
  • the user can select to enter or exit the energy saving control mode by himself.
  • the energy-saving control mode it will start to detect the change of the DC voltage, thereby achieving the maximum use of solar energy.
  • the user can normally use the air conditioner. The change of the DC voltage of the transformer is detected. In this way, users can choose the mode they want at any time according to their individual needs.
  • the solar air conditioner after the solar air conditioner exits the energy saving control mode, it is determined whether the output DC voltage is higher than a voltage of a utility power grid, and when the determination result is yes, the solar power is supplied, when judging When the result is no, power is supplied from the mains grid.
  • the power supply method when the solar air conditioner exits the energy saving control mode, the power supply method can be selected according to the change of the output voltage, thereby enhancing the flexibility of the control.
  • FIG. 2 shows a block diagram of a control device for a solar air conditioner according to an embodiment of the present invention.
  • a control device 200 for a solar air conditioner includes: a detecting unit 202, when detecting that the solar air conditioner enters an energy saving control mode, starts detecting an inverter in the solar air conditioner. The change of the output DC voltage; the determining unit 204 adjusts the operating frequency of the compressor in the solar air conditioner according to the change of the DC voltage, so that the solar air conditioner uses the solar battery to supply power.
  • the condition of the DC voltage output by the inverter of the solar air conditioner can reflect the state of the solar battery, and therefore, the solar energy can be obtained by detecting the DC voltage output from the inverter.
  • the battery's power status and then adjust the operating frequency of the compressor in the air conditioner according to the DC voltage, so that the maximum use of solar energy, without the need for utility power.
  • adjusting the operating frequency of the compressor in the solar air conditioner according to the change of the DC voltage specifically includes: when the change of the DC voltage is that the DC voltage is increased, The operating frequency of the compressor reduces the operating frequency of the compressor when the change in the direct current voltage is such that the direct current voltage decreases.
  • the solar air conditioner control device when the DC voltage is increased, the electric power of the solar cell is increased at this time, and the operating frequency of the compressor can be increased at this time, and when the DC voltage is lowered, at this time It shows that the power consumption of the solar cell is reduced.
  • the operating frequency of the compressor in order to ensure that the solar cell can be used, the operating frequency of the compressor can be reduced, so that the compressor frequency can be changed according to the change of the direct current voltage, so that the solar battery of the solar air conditioner can be utilized to the maximum extent. .
  • the method further includes: a setting unit 206, configured to set a voltage preset value according to the received setting command; and the determining unit 204 specifically includes: a first processing unit 2042, when the output DC voltage The change condition is to increase the operating frequency of the compressor when the voltage preset value is lower than the voltage preset value; the second processing unit 2044, when the output DC voltage changes Decreasing the operating frequency of the compressor when the preset value is higher than the voltage preset value; the third processing unit 2046, when the output DC voltage changes continuously When the voltage preset value is determined, it is determined whether the operating frequency of the compressor reaches a frequency that needs to be frequency-reduced when the DC voltage is lower than the preset voltage value, and when the determination result is no, the compressor is accelerated.
  • a setting unit 206 configured to set a voltage preset value according to the received setting command
  • the determining unit 204 specifically includes: a first processing unit 2042, when the output DC voltage The change condition is to increase the operating frequency of the compressor when the voltage preset value is
  • a voltage preset value is set, and the up-conversion or down-conversion control of the compressor is determined by comparing the magnitudes of the direct current voltage and the preset voltage value, thereby causing the solar battery to The power as much as possible supports the normal operation of the compressor.
  • the method further includes: an opening unit 208, controlling the solar air conditioner to enter the energy saving control mode according to the received opening command; and closing the unit 210, controlling the solar energy according to the received closing command
  • the air conditioner exits the energy saving control mode.
  • the user can select to enter or exit the energy saving control mode by himself.
  • the energy-saving control mode it will start to detect the change of the DC voltage, thereby achieving the maximum use of solar energy.
  • the user can normally use the air conditioner. The change of the DC voltage of the transformer is detected. In this way, users can choose the mode they want at any time according to their individual needs.
  • the solar air conditioner after the solar air conditioner exits the energy saving control mode, it is determined whether the output DC voltage is higher than a voltage of a utility power grid, and when the determination result is yes, the solar power is supplied, when judging When the result is no, power is supplied from the mains grid.
  • the power supply method can be selected according to the change of the output voltage, thereby enhancing the flexibility of control.
  • FIG. 3 shows a block diagram of a solar air conditioner in accordance with one embodiment of the present invention.
  • a solar air conditioner 300 includes: a solar battery 302, a DC inverter air conditioner 304, a solar power controller 306 connected between the solar battery 302 and the DC inverter air conditioner 304, and Mains grid 308.
  • the DC inverter air conditioner 304 includes an AC-DC rectifier 3042, a DC inverter air conditioner indoor circuit 3044, and a DC inverter air conditioner outdoor circuit 3046;
  • the DC inverter air conditioner indoor circuit 3044 includes a main control MCU, a switching power supply, an indoor EMC circuit, a display unit, DC fan, communication unit, temperature sensor and other functional units;
  • DC inverter air conditioner outdoor circuit 3046 includes main control MCU, switching power supply, communication unit, DC fan, temperature sensor, variable frequency control and drive unit, inverter compressor and other functional units .
  • the solar power controller 306 includes a DC-high voltage DC inverter 3062 and a solar maximum output power MPPT control unit 3064; the solar maximum output power MPPT control unit 3064 monitors the output power of the solar cell, and controls the DC-high voltage DC inverter 3062 to solar energy.
  • the low-voltage direct current output from the battery is converted into high-voltage direct current and directly supplied to the direct current inverter air conditioner 304.
  • the utility grid 308 is added.
  • the mains grid 308 passes through the AC-DC rectifier 3042 and is powered in parallel with the solar power controller 306 to the DC inverter air conditioner outdoor circuit 3046.
  • the solar battery 302 supplies power to the DC inverter air conditioner outdoor circuit.
  • 3046 is used, otherwise it is powered by the mains grid 308 for use by the DC inverter air conditioner outdoor circuit 3046.
  • the invention particularly adds an energy saving control function.
  • This function can be set by the user through the air conditioner remote control, mobile application software, and computer network terminal software.
  • the DC inverter air conditioner indoor circuit 3044 receives the ECO command issued by the air conditioner remote controller, the mobile phone application software, and the computer network terminal software, and sends the energy-saving control command to the DC through the indoor and outdoor communication circuit.
  • Inverter air conditioner outdoor circuit 3046 After receiving the command, the DC inverter air conditioner outdoor circuit 3046 runs the energy saving control mode.
  • the air conditioning system changes the operating frequency of the compressor by means of up-conversion or frequency-down, and adjusts the power supply required by the air-conditioning system, and does not need the mains supply to maximize Use solar energy to the limit.
  • FIG. 4 shows a schematic flow chart of a method of controlling a solar air conditioner according to an embodiment of the present invention.
  • a method for controlling a solar air conditioner according to an embodiment of the present invention includes:
  • Step 402 Determine whether the solar air conditioner enters the energy saving control mode. If the determination result is yes, the process proceeds to step 404. If the determination result is negative, the process proceeds to step 412. After the user turns on the air conditioner, the energy-saving control mode can be entered through the air conditioner remote controller, the mobile phone application software, the computer network terminal software, etc., the DC inverter air conditioner outdoor circuit 3046 starts the compressor, the compressor starts running, and when the compressor frequency After the rise, the power required by the air conditioner increases.
  • the DC voltage outputted by the DC-high voltage DC inverter is lowered, if it is lower than The voltage after rectification of the mains grid will be immediately replaced by the mains grid. If the mains grid is used for power supply, it will not reflect the energy-saving advantages of solar energy. Therefore, in order to maximize the use of solar energy while operating the air conditioner at a higher frequency range, it is necessary to quickly track the change of the output DC voltage of the DC-high voltage DC inverter 3, and change the compressor frequency according to the change of the voltage, thereby Reduce the frequency when solar energy is insufficient, and increase the frequency when solar energy is sufficient.
  • Step 404 judging the change of the DC voltage outputted by the DC-high voltage DC inverter of the air conditioner.
  • Step 406 determining whether the change of the DC voltage is changed from the lower voltage preset value X1 to the voltage preset value X1. If the determination result is yes, the process proceeds to step A; if the determination result is negative, the process proceeds to step 408. .
  • step 408 it is determined whether the DC voltage is always higher than the voltage preset value X1. When the determination result is yes, the process proceeds to step B. If the determination result is negative, the process proceeds to step 410.
  • Step 410 Determine whether the change of the DC voltage is changed from the voltage preset value X1 to the voltage preset value X1. When the determination result is yes, the process proceeds to step C; when the determination result is negative, the DC voltage is low. At the voltage preset value X1, the process proceeds to step D.
  • step 412 the operation of the air conditioner is controlled in accordance with the normal mode.
  • step A The flow of step A, step B, step C and step D will be described in detail below.
  • FIG. 5 shows a detailed flow chart of step A in accordance with one embodiment of the present invention.
  • step A includes:
  • Step 502 increasing the operating frequency of the compressor at a first rising speed, such as increasing the frequency by 5% at a rate of 1 Hz per 0.1 s at the current frequency.
  • FIG. 6 shows a detailed flow chart of step C in accordance with an embodiment of the present invention.
  • step C includes:
  • step 602 the initial frequency F1 at which the down-conversion starts is recorded.
  • the operating frequency of the compressor is decreased at a first descent speed, such as by a frequency of 5% at a rate of 1 Hz per 0.1 s at the current frequency.
  • FIG. 7 shows a detailed flow chart of step B in accordance with an embodiment of the present invention.
  • step B includes:
  • Step 702 When the change of the DC voltage output by the inverter in the solar air conditioner is always higher than the preset voltage value, determine whether the operating frequency of the compressor reaches the DC voltage is lower than the voltage. When the preset value is required, the frequency F1 of the frequency reduction is required. If the determination result is negative, the process proceeds to step 704. If the determination result is YES, the process proceeds to step 706.
  • the frequency increases the operating frequency at a second rising speed, such as increasing the operating frequency of the compressor at a rate of 0.1 Hz per 50 ms.
  • step 706 it is determined whether the DC voltage is continuously rising. If the determination result is YES, the process proceeds to step 708. If the determination result is negative, the process proceeds to step 710.
  • the frequency increases the operating frequency at a third rising speed, such as increasing the operating frequency by a rate of 0.1 Hz per 100 milliseconds.
  • step 710 it is determined whether the DC voltage remains unchanged. If the determination result is YES, the process proceeds to step 712. When the determination result is negative, that is, the voltage is continuously decreased, and the process proceeds to step 714.
  • the frequency increases the operating frequency at a fourth rising speed, such as increasing the operating frequency by a rate of 0.1 Hz per 500 milliseconds.
  • step 714 the frequency is decreased by the second falling speed, for example, the operating frequency is decreased by a rate of 0.1 Hz per 100 milliseconds.
  • FIG. 8 shows a detailed flow chart of step D in accordance with an embodiment of the present invention.
  • step D includes:
  • step 802 it is determined whether the output DC voltage is continuously decreased.
  • the process proceeds to step 804. If the determination result is negative, the process proceeds to step 806.
  • step 804 the frequency decreases the operating frequency at a third falling speed, such as decreasing the operating frequency of the compressor at a rate of 0.1 Hz per 100 ms at the current frequency.
  • step 806 it is determined whether the DC voltage of the output remains unchanged. If the determination result is yes, the process proceeds to step 808. If the determination result is negative, the process proceeds to step 810.
  • the frequency decreases the operating frequency at a fourth falling speed, such as decreasing the operating frequency of the compressor at a rate of 0.1 Hz per 500 ms at the current frequency.
  • Step 810 the output DC voltage is in a continuous rising state, and the frequency increases the operating frequency at a fifth rising speed, for example, increasing the operating frequency of the compressor at a speed of 0.1 Hz per 100 ms at the current frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种太阳能空调的控制方法,包括:检测步骤,在检测到太阳能空调进入节能控制模式时,开始检测太阳能空调中的逆变器输出的直流电压的变化情况;判断步骤,根据直流电压的变化情况调整太阳能空调中压缩机的运行频率,以使太阳能空调使用太阳能电池进行供电。由此,可最大限度地利用太阳能,避免了由于太阳能供电不足而需要由市电供电的问题,节省了成本。还公开了一种太阳能空调的控制装置和一种太阳能空调。

Description

太阳能空调及其控制方法和控制装置
技术领域
本发明涉及空调技术领域,具体而言,涉及一种太阳能空调的控制方法、太阳能空调的控制装置和一种太阳能空调。
背景技术
现有的太阳能空调主要有以下两种方案:
1、太阳能电池供电不足时,由蓄电池供电,然而蓄电池安装占用空间,而且蓄电池使用寿命短,需要定期更换,成本高且操作不方便;
2、太阳能电池供电不足时,太阳能空调的逆变器输出的直流电压一旦低于市电电网电压,会立即改为市电电网供电,消耗成本高。
因此,如何最大限度地采用太阳能提供电量的方式来运行空调***,成为目前亟待解决的技术问题。
发明内容
本发明旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本发明的一个目的在于提出了一种太阳能空调的控制方法。
本发明的另一个目的在于提出了一种太阳能空调的控制装置。
本发明的又一个目的在于提出了一种太阳能空调。
为实现上述目的,根据本发明的第一方面的实施例,提出了一种太阳能空调的控制方法,包括:检测步骤,在检测到所述太阳能空调进入节能控制模式时,开始检测所述太阳能空调中的逆变器输出的直流电压的变化情况;判断步骤,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率,以使所述太阳能空调使用太阳能电池进行供电。
根据本发明的实施例的太阳能空调的控制方法,太阳能空调器的逆变器输出的直流电压的情况可以反映太阳能电池的电量情况,因此,通过检测逆变器输出的直流电压情况,可以获知太阳能电池的电量情况,进而根据直流电压情况调节空调器中压缩机的运行频率,这样,可以最大限度地利用太阳能,而不需要市电供电。
根据本发明的一个实施例,当所述直流电压的变化情况为所述直流电压升高时,提高所述压缩机的运行频率,当所述直流电压的变化情况为所述直流电压降低时,降低所述压缩机的运行频率。
根据本发明的实施例的太阳能空调的控制方法,当直流电压升高时,此时说明太阳能电池的电量有所增加,此时可以提高压缩机的运行频率,而当直流电压降低时,此时说明太阳能电池的电量有所减少,此时为了保证太阳能电池能够使用,可以降低压缩机的运行频率,这样,根据直流电压的变化改变压缩机频率,使太阳能空调的太阳能电池能够最大限度地被利用。
根据本发明的一个实施例,所述控制方法还包括:设置步骤,根据接收到的设置命令,设置电压预设值;以及所述判断步骤具体包括:当所述输出的直流电压的变化情况为由低于所述电压预设值变为高于所述电压预设值时,提高所述压缩机的运行频率;当所述输出的直流电压的变化情况为由高于所述电压预设值变为低于所述电压预设值时,降低所述压缩机的运行频率;当所述输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率,在判断结果为否时,加快所述压缩机的运行频率的上升速度;在判断结果为是时,判断所述太阳能空调中的逆变器输出的直流电压是否连续上升,当判断结果为是时,提升所述压缩机的运行频率;当判断结果为否时,判断所述太阳能空调中的逆变器输出的直流电压是否保持不变,当判断结果为是时,降低所述压缩机的运行频率的上升速度,当判断结果为否时,即所述太阳能空调中的逆变器输出的直流电压连续下降,则降低所述压缩机的运行频率;当所述输出的直流电压的变化情况为一直低于所述电压预设值时,降低所述压缩机的运行频率,并判断在降低所述压缩机的运行频率的过程中所述直流电压是否上升且仍低于所述电压预设值,在判断结果为否时,继续降低所述压缩机的运行频率;判断结果为是时,则升高所述压缩机的运行频率。根据本发明的实施例的太阳能空调的控制方法,设置一个电压预设值,并通过比较直流电压和预设电压值的大小来决定对压缩机进行升频或降频控制,从而使得太阳能电池的电量尽可能地支撑压缩机正常运行。
根据本发明的一个实施例,还包括:根据接收到的开启命令,控制所述太阳能空调进入所述节能控制模式;以及根据接收到的关闭命令,控制所述太阳能空调退出所述节能控制模式。
根据本发明的实施例的太阳能空调的控制方法,用户可以自行选择进入或退出节能控制模式。当进入节能控制模式时,就会开始检测直流电压的变化情况,进而实现最大限度的利用太阳能的目的,而当退出节能控制模式时,可以使用户正常使用空调,此时,并不会对逆变器的直流电压的变化情况进行检测。这样,用户可以根据个人需要随时选择自己需要的模式。
根据本发明的一个实施例,在所述太阳能空调退出所述节能控制模式后,判断所述输出的直流电压是否高于市电电网的电压,当判断结果为是时,由太阳能供电,当判断结果为否时,由所述市电电网供电。根据本发明的实施例的太阳能空调的控制方法,当太阳能空调退出节能控制模式后可根据输出电压的变化自行选择供电方法,增强了控制的灵活性。
根据本发明第二方面的实施例,提出了一种太阳能空调的控制装置,包括:检测单元,在检测到所述太阳能空调进入节能控制模式时,开始检测所述太阳能空调中的逆变器输出的直流电压的变化情况;判断单元,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率,以使所述太阳能空调使用太阳能电池进行供电。
根据本发明的实施例的太阳能空调的控制装置,太阳能空调器的逆变器输出的直流电压的情况可以反映太阳能电池的电量情况,因此,通过检测逆变器输出的直流电压情况,可以获知太阳能电池的电量情况,进而根据直流电压情况调节空调器中压缩机的运行频率,这样,可以最大限度地利用太阳能,而不需要市电供电。
根据本发明的一个实施例,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率具体包括:当所述直流电压的变化情况为所述直流电压升高时,提高所述压缩机的运行频率,当所述直流电压的变化情况为所述直流电压降低时,降低所述压缩机的运行频率。
根据本发明的实施例的太阳能空调的控制装置,当直流电压升高时,此时说明太阳能电池的电量有所增加,此时可以提高压缩机的运行频率,而当直流电压降低时,此时说明太阳能电池的电量有所减少,此时为了保证太阳能电池能够使用,可以降低压缩机的运行频率,这样,根据直流电压的变化改变压缩机频率,使太阳能空调的太阳能电池能够最大限度地被利用。
根据本发明的一个实施例,还包括:设置单元,根据接收到的设置命令,设置电压预设值;以及所述判断单元具体包括:第一处理单元,当所述输出的直流电压的变化情况为由低于所述电压预设值变为高于所述电压预设值时,提高所述压缩机的运行频率;第二处理单元,当所述输出的直流电压的变化情况为由高于所述电压预设值变为低于所述电压预设值时,降低所述压缩机的运行频率;第三处理单元,当所述输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率,在判断结果为否时,加快所述压缩机的运行频率的上升速度;在判断结果为是时,判断所述太阳能空调中的逆变器输出的直流电压是否连续上升,当判断结果为是时,提升所述压缩机的运行频率;当判断结果为否时,判断所述太阳能空调中的逆变器输出的直流电压是否保持不变,当判断结果为是时,降低所述压缩机的运行频率的上升速度,当判断结果为否时,即所述太阳能空调中的逆变器输出的直流电压连续下降,则降低所述压缩机的运行频率;第四处理单元,当所述输出的直流电压的变化情况为一直低于所述电压预设值时,降低所述压缩机的运行频率,并判断在降低所述压缩机的运行频率的过程中所述直流电压是否上升且仍低于所述电压预设值,在判断结果为否时,继续降低所述压缩机的运行频率;判断结果为是时,则升高所述压缩机的运行频率。
根据本发明的实施例的太阳能空调的控制方法,设置一个电压预设值,并通过比较直流电压和预设电压值的大小来决定对压缩机进行升频或降频控制,从而使得太阳能电池的电量尽可能地支撑压缩机正常运行。
根据本发明的一个实施例,还包括:开启单元,根据接收到的开启命令,控制所述太阳能空调进入所述节能控制模式;以及关闭单元,根据接收到的关闭命令,控制所述太阳能空调退出所述节能控制模式。
根据本发明的实施例的太阳能空调的控制方法,用户可以自行选择进入或退出节能控制模式。当进入节能控制模式时,就会开始检测直流电压的变化情况,进而实现最大限度的利用太阳能的目的,而当退出节能控制模式时,可以使用户正常使用空调,此时,并不会对逆变器的直流电压的变化情况进行检测。这样,用户可以根据个人需要随时选择自己需要的模式。
根据本发明的一个实施例,在所述太阳能空调退出所述节能控制模式后,判断所述输出的直流电压是否高于市电电网的电压,当判断结果为是时,由太阳能供电,当判断结果为否时,由所述市电电网供电。
根据本发明的实施例的太阳能空调的控制装置,当太阳能空调退出节能控制模式后可根据输出电压的变化自行选择供电方法,增强了控制的灵活性。
根据本发明第三方面的实施例提出了一种太阳能空调,包括如上述技术方案中任一项所述的太阳能空调的控制装置,该空调具有和上述太阳能空调的控制装置相同的技术效果,在此不再赘述。
通过本发明的技术方案,根据直流电压的变化改变压缩机频率,从而使太阳能空调的太阳能电池能够最大限度地被利用。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本发明的实施例的太阳能空调的控制方法的示意流程图;
图2示出了根据本发明的实施例的太阳能空调的控制装置的框图;
图3示出了根据本发明的一个实施例的太阳能空调的框图;
图4示出了根据本发明的一个实施例的太阳能空调的控制方法的示意流程图。
图5示出了图4中太阳能空调的控制方法的步骤A的具体流程图;
图6示出了图4中太阳能空调的控制方法的步骤C的具体流程图;
图7示出了图4中太阳能空调的控制方法的步骤B的具体流程图;
图8示出了图4中太阳能空调的控制方法步骤D的具体流程图。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不受下面公开的具体实施例的限制。
图1示出了根据本发明的实施例的太阳能空调的控制方法的示意流程图。
如图1所示,根据本发明的一个实施例,包括:检测步骤102,在检测到所述太阳能空调进入节能控制模式时,开始检测所述太阳能空调中的逆变器输出的直流电压的变化情况;判断步骤104,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率,以使所述太阳能空调使用太阳能电池进行供电。
根据本发明的实施例的太阳能空调的控制方法,太阳能空调器的逆变器输出的直流电压的情况可以反映太阳能电池的电量情况,因此,通过检测逆变器输出的直流电压情况,可以获知太阳能电池的电量情况,进而根据直流电压情况调节空调器中压缩机的运行频率,这样,可以最大限度地利用太阳能,而不需要市电供电。
根据本发明的一个实施例,当所述直流电压的变化情况为所述直流电压升高时,提高所述压缩机的运行频率,当所述直流电压的变化情况为所述直流电压降低时,降低所述压缩机的运行频率。
根据本发明的实施例的太阳能空调的控制方法,当直流电压升高时,此时说明太阳能电池的电量有所增加,此时可以提高压缩机的运行频率,而当直流电压降低时,此时说明太阳能电池的电量有所减少,此时为了保证太阳能电池能够使用,可以降低压缩机的运行频率,这样,根据直流电压的变化改变压缩机频率,使太阳能空调的太阳能电池能够最大限度地被利用。
根据本发明的一个实施例,在所述检测步骤102之前还包括:根据接收到的设置命令,设置电压预设值;以及所述判断步骤104具体包括:当所述输出的直流电压的变化情况为由低于所述电压预设值变为高于所述电压预设值时,提高所述压缩机的运行频率;当所述输出的直流电压的变化情况为由高于所述电压预设值变为低于所述电压预设值时,降低所述压缩机的运行频率;当所述输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率,在判断结果为否时,加快所述压缩机的运行频率的上升速度;在判断结果为是时,判断所述太阳能空调中的逆变器输出的直流电压是否连续上升,当判断结果为是时,提升所述压缩机的运行频率;当判断结果为否时,判断所述太阳能空调中的逆变器输出的直流电压是否保持不变,当判断结果为是时,降低所述压缩机的运行频率的上升速度,当判断结果为否时,即所述太阳能空调中的逆变器输出的直流电压连续下降,则降低所述压缩机的运行频率;当所述输出的直流电压的变化情况为一直低于所述电压预设值时,降低所述压缩机的运行频率,并判断在降低所述压缩机的运行频率的过程中所述直流电压是否上升且仍低于所述电压预设值,在判断结果为否时,继续降低所述压缩机的运行频率;判断结果为是时,则升高所述压缩机的运行频率。根据本发明的实施例的太阳能空调的控制方法,设置一个电压预设值,并通过比较直流电压和预设电压值的大小来决定对压缩机进行升频或降频控制,从而使得太阳能电池的电量尽可能地支撑压缩机正常运行。
根据本发明的实施例的太阳能空调的控制方法,设置一个电压预设值,并通过比较直流电压和预设电压值的大小来决定对压缩机进行升频或降频控制,从而使得太阳能电池的电量尽可能地支撑压缩机正常运行。
根据本发明的一个实施例,还包括:根据接收到的开启命令,控制所述太阳能空调进入所述节能控制模式;以及根据接收到的关闭命令,控制所述太阳能空调退出所述节能控制模式。
根据本发明的实施例的太阳能空调的控制方法,用户可以自行选择进入或退出节能控制模式。当进入节能控制模式时,就会开始检测直流电压的变化情况,进而实现最大限度的利用太阳能的目的,而当退出节能控制模式时,可以使用户正常使用空调,此时,并不会对逆变器的直流电压的变化情况进行检测。这样,用户可以根据个人需要随时选择自己需要的模式。
根据本发明的一个实施例,在所述太阳能空调退出所述节能控制模式后,判断所述输出的直流电压是否高于市电电网的电压,当判断结果为是时,由太阳能供电,当判断结果为否时,由所述市电电网供电。
根据本发明的实施例的太阳能空调的控制方法,当太阳能空调退出节能控制模式后可根据输出电压的变化自行选择供电方法,增强了控制的灵活性。
图2示出了根据本发明的实施例的太阳能空调的控制装置的框图。
如图2所示,根据本发明的实施例的太阳能空调的控制装置200,包括:检测单元202,在检测到所述太阳能空调进入节能控制模式时,开始检测所述太阳能空调中的逆变器输出的直流电压的变化情况;判断单元204,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率,以使所述太阳能空调使用太阳能电池进行供电。
根据本发明的实施例的太阳能空调的控制装置,太阳能空调器的逆变器输出的直流电压的情况可以反映太阳能电池的电量情况,因此,通过检测逆变器输出的直流电压情况,可以获知太阳能电池的电量情况,进而根据直流电压情况调节空调器中压缩机的运行频率,这样,可以最大限度地利用太阳能,而不需要市电供电。
根据本发明的一个实施例,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率具体包括:当所述直流电压的变化情况为所述直流电压升高时,提高所述压缩机的运行频率,当所述直流电压的变化情况为所述直流电压降低时,降低所述压缩机的运行频率。
根据本发明的实施例的太阳能空调的控制装置,当直流电压升高时,此时说明太阳能电池的电量有所增加,此时可以提高压缩机的运行频率,而当直流电压降低时,此时说明太阳能电池的电量有所减少,此时为了保证太阳能电池能够使用,可以降低压缩机的运行频率,这样,根据直流电压的变化改变压缩机频率,使太阳能空调的太阳能电池能够最大限度地被利用。
根据本发明的一个实施例,还包括:设置单元206,根据接收到的设置命令,设置电压预设值;以及所述判断单元204具体包括:第一处理单元2042,当所述输出的直流电压的变化情况为由低于所述电压预设值变为高于所述电压预设值时,提高所述压缩机的运行频率;第二处理单元2044,当所述输出的直流电压的变化情况为由高于所述电压预设值变为低于所述电压预设值时,降低所述压缩机的运行频率;第三处理单元2046,当所述输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率,在判断结果为否时,加快所述压缩机的运行频率的上升速度;在判断结果为是时,判断所述太阳能空调中的逆变器输出的直流电压是否连续上升,当判断结果为是时,提升所述压缩机的运行频率;当判断结果为否时,判断所述太阳能空调中的逆变器输出的直流电压是否保持不变,当判断结果为是时,降低所述压缩机的运行频率的上升速度,当判断结果为否时,即所述太阳能空调中的逆变器输出的直流电压连续下降,则降低所述压缩机的运行频率;第四处理单元2048,当所述输出的直流电压的变化情况为一直低于所述电压预设值时,降低所述压缩机的运行频率,并判断在降低所述压缩机的运行频率的过程中所述直流电压是否上升且仍低于所述电压预设值,在判断结果为否时,继续降低所述压缩机的运行频率;判断结果为是时,则升高所述压缩机的运行频率。
根据本发明的实施例的太阳能空调的控制方法,设置一个电压预设值,并通过比较直流电压和预设电压值的大小来决定对压缩机进行升频或降频控制,从而使得太阳能电池的电量尽可能地支撑压缩机正常运行。
根据本发明的一个实施例,还包括:开启单元208,根据接收到的开启命令,控制所述太阳能空调进入所述节能控制模式;以及关闭单元210,根据接收到的关闭命令,控制所述太阳能空调退出所述节能控制模式。
根据本发明的实施例的太阳能空调的控制方法,用户可以自行选择进入或退出节能控制模式。当进入节能控制模式时,就会开始检测直流电压的变化情况,进而实现最大限度的利用太阳能的目的,而当退出节能控制模式时,可以使用户正常使用空调,此时,并不会对逆变器的直流电压的变化情况进行检测。这样,用户可以根据个人需要随时选择自己需要的模式。
根据本发明的一个实施例,在所述太阳能空调退出所述节能控制模式后,判断所述输出的直流电压是否高于市电电网的电压,当判断结果为是时,由太阳能供电,当判断结果为否时,由所述市电电网供电。
根据本发明的实施例的太阳能空调的控制装置,当太阳能空调退出节能控制模式后可根据输出电压的变化自行选择供电方法,增强了控制的灵活性。
图3示出了根据本发明的一个实施例的太阳能空调的框图。
如图3所示,根据本发明的一个实施例的太阳能空调300,包括:太阳能电池302、直流变频空调器304、连接在太阳能电池302和直流变频空调器304之间的太阳能供电控制器306以及市电电网308。直流变频空调器304包括AC-DC整流器3042、直流变频空调器室内电路3044和直流变频空调器室外电路3046;直流变频空调器室内电路3044包括主控MCU、开关电源、室内EMC电路、显示单元、直流风机、通讯单元、温度传感器以及其他功能单元;直流变频空调器室外电路3046包括主控MCU、开关电源、通讯单元、直流风机、温度传感器、变频控制与驱动单元、变频压缩机以及其他功能单元。太阳能供电控制器306包括DC-高压DC逆变器3062和太阳能最大输出功率MPPT控制单元3064;太阳能最大输出功率MPPT控制单元3064监控太阳能电池的输出功率,控制DC-高压DC逆变器3062将太阳能电池输出的低压直流电转化成高压直流电,直接供电给直流变频空调器304。
为了避免因太阳能电池输出功率不足(主要是没有太阳能的情况)造成不能驱动空调的情况发生,增加了市电电网308。市电电网308经过AC-DC整流器3042后和太阳能供电控制器306并联供电给直流变频空调器室外电路3046。当太阳能供电控制器306中的DC-高压DC逆变器3062输出直流电压高于市电电网308经过AC-DC整流器3042整流后的直流电压时,由太阳能电池302供电给直流变频空调器室外电路3046使用,否则由市电电网308供电给直流变频空调器室外电路3046使用。
本发明根据太阳能空调***的特点,特别增加了一种节能控制功能。该功能可以通过空调遥控器、手机应用端软件、电脑网络终端软件由用户设置。当用户设置开启该节能控制功能后,直流变频空调器室内电路3044接收到空调遥控器、手机应用端软件、电脑网络终端软件发出的ECO指令,通过室内外通信电路,把节能控制指令发送给直流变频空调器室外电路3046。直流变频空调器室外电路3046接收到该指令后,就会运行节能控制模式。在该模式下,当太阳能电池302提供的电量不足时,空调***通过升频或降频的方式,改变压缩机的运行频率,调整空调***所需要的电量供给,不需要市电供电,以最大限度地利用太阳能。
图4示出了根据本发明的一个实施例的太阳能空调的控制方法的示意流程图。
如图4所示,根据本发明的一个实施例的太阳能空调的控制方法,包括:
步骤402,判断太阳能空调是否进入节能控制模式,在判断结果为是时,进入步骤404,在判断结果为否时,进入步骤412。其中,用户开启空调后,可以通过空调遥控器、手机应用端软件、电脑网络终端软件等设定进入节能控制模式,直流变频空调器室外电路3046启动压缩机,压缩机启动运行,当压缩机频率上升后,空调需要的功率增大,功率增大后,由于太阳能电池提供的能量不足以支撑该功率增大的需求,因此DC-高压DC逆变器输出的直流电压就会降低,如果低于市电电网整流后的电压,则会马上改为由市电电网供电。如果采用市电电网供电,则体现不出太阳能的节能优势。因此,为了能够最大限度地利用太阳能同时让空调运行在一个较高的频率段,需要迅速地跟踪DC-高压DC逆变器3的输出DC电压的变化,根据电压的变化改变压缩机频率,从而在太阳能不充足的时候降低频率,而在太阳能充足的时候升高频率。
步骤404,判断空调器的DC-高压DC逆变器输出的直流电压的变化情况。
步骤406,判断直流电压的变化情况是否为由低于电压预设值X1变为高于电压预设值X1,在判断结果为是时,进入步骤A;在判断结果为否时,进入步骤408。
步骤408,判断直流电压是否一直高于电压预设值X1,当判断结果为是时,进入步骤B;在判断结果为否时,进入步骤410。
步骤410,判断直流电压的变化情况是否为由高于电压预设值X1变为低于电压预设值X1,在判断结果为是时,进入步骤C;在判断结果为否时,即直流电压低于电压预设值X1,进入步骤D。
步骤412,按照正常模式控制空调器的运行。
下面分别详细说明步骤A,步骤B步骤C和步骤D的流程。
图5示出了根据本发明的一个实施例的步骤A的具体流程图;
如图5所示,步骤A的具体流程包括:
步骤502,以第一上升速度提高所述压缩机的运行频率,比如在当前频率上以每0.1s上升1Hz的速度增加5%的频率。
图6示出了根据本发明的实施例的步骤C的具体流程图;
如图6所示,步骤C的具体流程包括:
步骤602,记录开始降频的初始频率F1。
步骤604,以第一下降速度降低所述压缩机的运行频率,比如在当前频率上以每0.1s下降1Hz的速度减少5%的频率。
图7示出了根据本发明的实施例的步骤B的具体流程图;
如图7所示,步骤B的具体流程包括:
步骤702,当所述太阳能空调中的逆变器输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率F1,在判断结果为否时,进入步骤704,在判断结果为是时,进入步骤706。
步骤704,频率以第二上升速度升高运行频率,比如以每50ms上升0.1HZ的速度升高压缩机的运行频率。
步骤706,判断直流电压是否连续上升,在判断结果为是时,进入步骤708,在判断结果为否时进入步骤710。
步骤708,频率以第三上升速度升高运行频率,比如以每100毫秒上升0.1HZ的速度升高运行频率。
步骤710,判断直流电压是否保持不变,在判断结果为是时,进入步骤712,在判断结果为否时,即电压处于连续下降状态,进入步骤714。
步骤712,频率以第四上升速度升高运行频率,比如以每500毫秒上升0.1HZ的速度升高运行频率。
步骤714,频率以第二下降速度降低运行频率,比如以每100毫秒下降0.1HZ的速度降低运行频率。
图8示出了根据本发明的实施例的步骤D的具体流程图。
如图8所示,步骤D的具体流程包括:
步骤802,判断所述输出的直流电压是否连续下降,当判断结果为是时,进入步骤804,在判断结果为否时,进入步骤806。
步骤804,频率以第三下降速度降低运行频率,比如在当前频率上以每100ms下降0.1Hz的速度减少所述压缩机的运行频率。
步骤806,判断所述输出的直流电压是否保持不变,判断结果为是时,进入步骤808,在判断结果为否时,进入步骤810。
步骤808,频率以第四下降速度降低运行频率,比如在当前频率上以每500ms下降0.1Hz的速度减少所述压缩机的运行频率。
步骤810,所述输出的直流电压处于连续上升状态,频率以第五上升速度升高运行频率,比如在当前频率上以每100ms上升0.1Hz的速度提升所述压缩机的运行频率。
以上结合附图详细说明了本发明的技术方案,通过本发明的技术方案,可以最大限度地利用太阳能,简化了结构,操作灵活,节约了使用成本。
在本发明中,术语“第一”、“第二”、“第三”、“第四”、“第五”仅用于描述的目的,而不能理解为指示或暗示相对重要性。
以上所述仅为本发明的实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种太阳能空调的控制方法,其特征在于,包括:
    检测步骤,在检测到所述太阳能空调进入节能控制模式时,开始检测所述太阳能空调中的逆变器输出的直流电压的变化情况;
    判断步骤,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率,以使所述太阳能空调使用太阳能电池进行供电。
  2. 根据权利要求1所述的太阳能空调的控制方法,其特征在于,所述判断步骤具体包括:
    当所述直流电压的变化情况为所述直流电压升高时,提高所述压缩机的运行频率,当所述直流电压的变化情况为所述直流电压降低时,降低所述压缩机的运行频率。
  3. 根据权利要求1所述的太阳能空调的控制方法,其特征在于,
    还包括:设置步骤,根据接收到的设置命令,设置电压预设值;以及
    所述判断步骤具体包括:
    当所述输出的直流电压的变化情况为由低于所述电压预设值变为高于所述电压预设值时,提高所述压缩机的运行频率;
    当所述输出的直流电压的变化情况为由高于所述电压预设值变为低于所述电压预设值时,降低所述压缩机的运行频率;
    当所述输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率,在判断结果为否时,加快所述压缩机的运行频率的上升速度;在判断结果为是时,判断所述太阳能空调中的逆变器输出的直流电压是否连续上升,当判断结果为是时,提升所述压缩机的运行频率;当判断结果为否时,判断所述太阳能空调中的逆变器输出的直流电压是否保持不变,当判断结果为是时,降低所述压缩机的运行频率的上升速度,当判断结果为否时,即所述太阳能空调中的逆变器输出的直流电压连续下降,则降低所述压缩机的运行频率;
    当所述输出的直流电压的变化情况为一直低于所述电压预设值时,降低所述压缩机的运行频率,并判断在降低所述压缩机的运行频率的过程中所述直流电压是否上升且仍低于所述电压预设值,在判断结果为否时,继续降低所述压缩机的运行频率;判断结果为是时,则升高所述压缩机的运行频率。
  4. 根据权利要求1所述的太阳能空调的控制方法,其特征在于,还包括:
    根据接收到的开启命令,控制所述太阳能空调进入所述节能控制模式;以及
    根据接收到的关闭命令,控制所述太阳能空调退出所述节能控制模式。
  5. 根据权利要求4所述的太阳能空调的控制方法,其特征在于,在所述太阳能空调退出所述节能控制模式后,判断所述输出的直流电压是否高于市电电网的电压,当判断结果为是时,由太阳能供电,当判断结果为否时,由所述市电电网供电。
  6. 一种太阳能空调的控制装置,其特征在于,包括:
    检测单元,在检测到所述太阳能空调进入节能控制模式时,开始检测所述太阳能空调中的逆变器输出的直流电压的变化情况;
    判断单元,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率,以使所述太阳能空调使用太阳能电池进行供电。
  7. 根据权利要求6所述的太阳能空调的控制装置,其特征在于,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率具体包括:
    当所述直流电压的变化情况为所述直流电压升高时,提高所述压缩机的运行频率,当所述直流电压的变化情况为所述直流电压降低时,降低所述压缩机的运行频率。
  8. 根据权利要求6所述的太阳能空调的控制装置,其特征在于,还包括:
    设置单元,根据接收到的设置命令,设置电压预设值;以及
    所述判断单元包括:
    第一处理单元,当所述输出的直流电压的变化情况为由低于所述电压预设值变为高于所述电压预设值时,提高所述压缩机的运行频率;
    第二处理单元,当所述输出的直流电压的变化情况为由高于所述电压预设值变为低于所述电压预设值时,降低所述压缩机的运行频率;
    第三处理单元,当所述输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率,在判断结果为否时,加快所述压缩机的运行频率的上升速度;在判断结果为是时,判断所述太阳能空调中的逆变器输出的直流电压是否连续上升,当判断结果为是时,提升所述压缩机的运行频率;当判断结果为否时,判断所述太阳能空调中的逆变器输出的直流电压是否保持不变,当判断结果为是时,降低所述压缩机的运行频率的上升速度,当判断结果为否时,即所述太阳能空调中的逆变器输出的直流电压连续下降,则降低所述压缩机的运行频率;
    第四处理单元,当所述输出的直流电压的变化情况为一直低于所述电压预设值时,降低所述压缩机的运行频率,并判断在降低所述压缩机的运行频率的过程中所述直流电压是否上升且仍低于所述电压预设值,在判断结果为否时,继续降低所述压缩机的运行频率;判断结果为是时,则升高所述压缩机的运行频率。
  9. 根据权利要求6所述的太阳能空调的控制装置,其特征在于,还包括:
    开启单元,根据接收到的开启命令,控制所述太阳能空调进入所述节能控制模式;以及
    关闭单元,根据接收到的关闭命令,控制所述太阳能空调退出所述节能控制模式。
  10. 根据权利要求9所述的太阳能空调的控制装置,其特征在于,在所述太阳能空调退出所述节能控制模式后,判断所述输出的直流电压是否高于市电电网的电压,当判断结果为是时,由太阳能供电,当判断结果为否时,由所述市电电网供电。
  11. 一种太阳能空调,其特征在于,包括:太阳能电池、直流变频空调器、连接在太阳能电池和直流变频空调器之间的太阳能供电控制器以及市电电网;所述太阳能供电控制器包括逆变器,所述太阳能空调器还包括控制装置,该控制装置包括:
    检测单元,在检测到所述太阳能空调进入节能控制模式时,开始检测所述太阳能供电控制器中的逆变器输出的直流电压的变化情况;
    判断单元,根据所述直流电压的变化情况调整所述直流变频空调器的压缩机的运行频率,以使所述太阳能空调使用太阳能电池进行供电。
  12. 如权利要求11所述的太阳能空调器,其特征在于,根据所述直流电压的变化情况调整所述太阳能空调中压缩机的运行频率具体包括:
    当所述直流电压的变化情况为所述直流电压升高时,提高所述压缩机的运行频率,当所述直流电压的变化情况为所述直流电压降低时,降低所述压缩机的运行频率。
  13. 如权利要求11所述的太阳能空调器,其特征在于,所述控制装置还包括:设置单元,根据接收到的设置命令,设置电压预设值;
    所述判断单元包括:
    第一处理单元,当所述输出的直流电压的变化情况为由低于所述电压预设值变为高于所述电压预设值时,提高所述压缩机的运行频率;
    第二处理单元,当所述输出的直流电压的变化情况为由高于所述电压预设值变为低于所述电压预设值时,降低所述压缩机的运行频率;
    第三处理单元,当所述输出的直流电压的变化情况为一直高于所述电压预设值时,判断所述压缩机的运行频率是否达到所述直流电压低于所述电压预设值时需要降频的频率,在判断结果为否时,加快所述压缩机的运行频率的上升速度;在判断结果为是时,判断所述太阳能空调中的逆变器输出的直流电压是否连续上升,当判断结果为是时,提升所述压缩机的运行频率;当判断结果为否时,判断所述太阳能空调中的逆变器输出的直流电压是否保持不变,当判断结果为是时,降低所述压缩机的运行频率的上升速度,当判断结果为否时,即所述太阳能空调中的逆变器输出的直流电压连续下降,则降低所述压缩机的运行频率;
    第四处理单元,当所述输出的直流电压的变化情况为一直低于所述电压预设值时,降低所述压缩机的运行频率,并判断在降低所述压缩机的运行频率的过程中所述直流电压是否上升且仍低于所述电压预设值,在判断结果为否时,继续降低所述压缩机的运行频率;判断结果为是时,则升高所述压缩机的运行频率。
  14. 如权利要求11所述的太阳能空调器,其特征在于,所述控制装置还包括:
    开启单元,根据接收到的开启命令,控制所述太阳能空调进入所述节能控制模式;以及
    关闭单元,根据接收到的关闭命令,控制所述太阳能空调退出所述节能控制模式。
  15. 根据权利要求14所述的太阳能空调,其特征在于,在所述太阳能空调退出所述节能控制模式后,判断所述逆变器输出的直流电压是否高于市电电网的电压,当判断结果为是时,由太阳能供电,当判断结果为否时,由所述市电电网供电。
PCT/CN2014/087289 2014-04-22 2014-09-24 太阳能空调及其控制方法和控制装置 WO2015161623A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/106,837 US10508825B2 (en) 2014-04-22 2014-09-24 Solar air conditioner, method and device for controlling solar air conditioner
EP14890330.5A EP3139104A4 (en) 2014-04-22 2014-09-24 Solar air conditioner and control method and control device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410164000.5A CN103940045B (zh) 2014-04-22 2014-04-22 太阳能空调及其控制方法和控制装置
CN201410164000.5 2014-04-22

Publications (1)

Publication Number Publication Date
WO2015161623A1 true WO2015161623A1 (zh) 2015-10-29

Family

ID=51187824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087289 WO2015161623A1 (zh) 2014-04-22 2014-09-24 太阳能空调及其控制方法和控制装置

Country Status (4)

Country Link
US (1) US10508825B2 (zh)
EP (1) EP3139104A4 (zh)
CN (1) CN103940045B (zh)
WO (1) WO2015161623A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061081A (zh) * 2021-10-28 2022-02-18 青岛海尔空调器有限总公司 空调控制方法、控制设备、存储介质、空调外机及空调
CN114234307A (zh) * 2021-11-17 2022-03-25 青岛海尔空调器有限总公司 太阳能空调及其控制方法、电子设备和存储介质
CN115823670A (zh) * 2022-11-23 2023-03-21 青岛海尔空调器有限总公司 太阳能空调的控制方法、控制装置和太阳能空调

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940045B (zh) 2014-04-22 2016-08-24 广东美的集团芜湖制冷设备有限公司 太阳能空调及其控制方法和控制装置
CN104191930B (zh) * 2014-08-04 2017-01-25 惠州华阳通用电子有限公司 一种汽车自动空调的控制方法及***
CN107850005A (zh) * 2015-05-29 2018-03-27 完美绿色公司 用于能源分配的***、方法和计算机程序产品
EP3144927B1 (en) * 2015-09-15 2020-11-18 Harman Becker Automotive Systems GmbH Wireless noise and vibration sensing
CN105202666A (zh) * 2015-10-22 2015-12-30 广东美的制冷设备有限公司 太阳能空调***及其控制方法
CN106059005B (zh) * 2016-07-18 2018-11-13 广东美的制冷设备有限公司 供电控制电路、空调器的控制方法、控制装置及家电设备
US20180106530A1 (en) * 2016-10-17 2018-04-19 Haier Us Appliance Solutions, Inc. Solar-assisted electrical appliance
CN106568171A (zh) * 2016-11-07 2017-04-19 广东美的制冷设备有限公司 太阳能空调器控制方法、装置及太阳能空调器
CN106918121A (zh) * 2017-03-31 2017-07-04 广东美的制冷设备有限公司 空调器及其的控制方法和装置
CN107388661B (zh) * 2017-07-27 2020-07-28 广东美的制冷设备有限公司 太阳能空调***及其功率控制方法和装置
CN107461972B (zh) * 2017-08-15 2020-07-03 广东美的制冷设备有限公司 太阳能制冷设备的控制方法及相关设备、太阳能空调
CN107747794A (zh) * 2017-08-18 2018-03-02 国网天津市电力公司 一种新型环境温度自趋优的节能控制方法
CN107917502B (zh) * 2017-11-13 2020-06-19 广东美的制冷设备有限公司 太阳能空调器控制方法和太阳能空调器
KR101999183B1 (ko) * 2018-05-10 2019-07-11 엘에스산전 주식회사 인버터 제어방법
CN110864408B (zh) * 2018-08-08 2021-09-24 青岛海尔空调器有限总公司 空调器及其控制方法
CN109539496B (zh) * 2018-10-19 2021-07-23 重庆海尔空调器有限公司 一种空调器自适应控制方法和空调器
CN109595146B (zh) * 2018-11-01 2020-09-01 海信容声(广东)冰箱有限公司 压缩机控制设备和方法
CN110758052B (zh) * 2019-10-31 2021-07-13 广东美的制冷设备有限公司 驱动控制方法和装置、空调设备、车辆及存储介质
CN110779182A (zh) * 2019-11-05 2020-02-11 芜湖倡蓝新能源科技有限责任公司 一种太阳能板直接供电的变频空调压缩机频率控制方式
CN112158150A (zh) * 2020-09-25 2021-01-01 瑞安市赛超制冷设备有限公司 一种驻车空调及其供电控制***、运行控制方法
CN113483461B (zh) * 2021-09-07 2021-11-05 湖南大学 一种光伏直驱空调控制方法及装置
CN114216183B (zh) * 2021-11-18 2024-06-18 青岛海尔空调器有限总公司 太阳能空调及其控制方法、电子设备和存储介质
CN114234415A (zh) * 2021-11-25 2022-03-25 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器、存储介质
CN114264046A (zh) * 2021-12-20 2022-04-01 珠海格力电器股份有限公司 空调的控制方法及空调
CN114704892A (zh) * 2022-04-02 2022-07-05 常州世博恩新能源科技有限公司 一种分布式太阳能空调控制***
CN115764851A (zh) * 2022-11-23 2023-03-07 青岛海尔空调器有限总公司 空调器的节能运行控制方法、装置及空调器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560218A (en) * 1993-11-26 1996-10-01 Samsung Electronics Co., Ltd. Control apparatus and method for an air conditioner
JPH0942802A (ja) * 1995-08-02 1997-02-14 Sanyo Electric Co Ltd 商用電源供給機能付空気調和システム
JP2004044892A (ja) * 2002-07-11 2004-02-12 Yazaki Corp 太陽電池と商用電源を併用する空気集熱装置とその制御方法
CN201917021U (zh) * 2010-07-30 2011-08-03 费晓凯 一种太阳能空调装置
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调***
CN103940045A (zh) * 2014-04-22 2014-07-23 广东美的集团芜湖制冷设备有限公司 太阳能空调及其控制方法和控制装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678846B2 (ja) 1991-12-09 1997-11-19 シャープ株式会社 太陽電池出力電力制御回路
TW336271B (en) * 1995-06-13 1998-07-11 Sanyo Electric Co Solar generator and an air conditioner with such a solar generator
US6813897B1 (en) * 2003-07-29 2004-11-09 Hewlett-Packard Development Company, L.P. Supplying power to at least one cooling system component
JP2005337519A (ja) * 2004-05-24 2005-12-08 Toshiba Kyaria Kk 空気調和機
US20100066168A1 (en) * 2008-09-17 2010-03-18 Joseph Gamliel Powering a direct current air conditioner using solar cells
CN101806490A (zh) * 2010-02-03 2010-08-18 广东美的电器股份有限公司 带太阳能电池的变频空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560218A (en) * 1993-11-26 1996-10-01 Samsung Electronics Co., Ltd. Control apparatus and method for an air conditioner
JPH0942802A (ja) * 1995-08-02 1997-02-14 Sanyo Electric Co Ltd 商用電源供給機能付空気調和システム
JP2004044892A (ja) * 2002-07-11 2004-02-12 Yazaki Corp 太陽電池と商用電源を併用する空気集熱装置とその制御方法
CN201917021U (zh) * 2010-07-30 2011-08-03 费晓凯 一种太阳能空调装置
CN203586455U (zh) * 2013-12-11 2014-05-07 珠海格力电器股份有限公司 光伏空调***
CN103940045A (zh) * 2014-04-22 2014-07-23 广东美的集团芜湖制冷设备有限公司 太阳能空调及其控制方法和控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3139104A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061081A (zh) * 2021-10-28 2022-02-18 青岛海尔空调器有限总公司 空调控制方法、控制设备、存储介质、空调外机及空调
CN114234307A (zh) * 2021-11-17 2022-03-25 青岛海尔空调器有限总公司 太阳能空调及其控制方法、电子设备和存储介质
CN115823670A (zh) * 2022-11-23 2023-03-21 青岛海尔空调器有限总公司 太阳能空调的控制方法、控制装置和太阳能空调

Also Published As

Publication number Publication date
US10508825B2 (en) 2019-12-17
EP3139104A4 (en) 2018-04-04
CN103940045A (zh) 2014-07-23
CN103940045B (zh) 2016-08-24
US20170191694A1 (en) 2017-07-06
EP3139104A1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2015161623A1 (zh) 太阳能空调及其控制方法和控制装置
WO2019075909A1 (zh) 空调器及其控制方法、控制装置和计算机可读存储介质
WO2017041337A1 (zh) 空调器的控制方法、终端及***
WO2017008521A1 (zh) 一种基于移动终端的智能家电控制方法及移动终端、附件
WO2014166279A1 (zh) 一种电子转换器电路***及控制方法
CN1605143A (zh) 用于稳定电压的控制***和方法
WO2019051897A1 (zh) 终端运行参数调整方法、装置及计算机可读存储介质
US5351267A (en) Process for electrode control of a DC arc furnace, and an electrode control device
WO2018058956A1 (zh) 一种交流电机控制方法、装置及空调器
EP3879564B1 (en) System and method for controlling power to a heater
WO2015143859A1 (zh) 光伏空调器的温度调节方法和***
WO2018040552A1 (zh) 导风装置、空调柜机及其送风方法
WO2019051900A1 (zh) 智能家居设备的控制方法、装置及可读存储介质
TWI510907B (zh) Adjustment method of power sensitivity
CN111271840A (zh) 一种有效的电压异常保护方法、装置及空调机组
JP2014087207A (ja) 無効電力補償装置の制御方法および制御装置
WO2018107632A1 (zh) 无人机电机散热方法及装置
WO2017022930A1 (en) Refrigerator
CN106413165A (zh) 半导体微波加热设备及其功率控制方法和功率控制装置
WO2018201625A1 (zh) 变频空调、停机控制方法及计算机可读存储介质
WO2023101282A1 (ko) 고조파 성분 크기를 제어하는 전력 제어 방법 및 장치
WO2021225373A1 (ko) 유도 가열 장치 및 유도 가열 장치의 제어 방법
WO2017219612A1 (zh) 空调飞行器的控制方法及装置
WO2016035982A1 (ko) 인버터 회로 및 이를 이용한 공기조화기 및 냉장고
WO2024058456A1 (ko) 교류 전압의 pwm 스위칭 방법 및 그 방법을 채용한 가전 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14890330

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014890330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014890330

Country of ref document: EP

Ref document number: 15106837

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE